Trusted Firmware-A

unknown

May 18, 2021

10

11

12

13

14

About

Getting Started
Processes & Policies
Components

System Design
Platform Ports
Performance & Testing
Security Advisories
Design Documents
Threat Model

Change Log & Release Notes
Glossary

License

Getting Started

Index

CONTENTS

23
103
129
233
331
423
431
443
447
461
537
541
543

545

CHAPTER
ONE

ABOUT

1.1 Feature Overview

This page provides an overview of the current 7F7-A feature set. For a full description of these features and their
implementation details, please see the documents that are part of the Components and System Design chapters.

The Change Log & Release Notes provides details of changes made since the last release.

1.1.1 Current features

* Initialization of the secure world, for example exception vectors, control registers and interrupts for the platform.

e Library support for CPU specific reset and power down sequences. This includes support for errata workarounds
and the latest Arm DynamIQ CPUs.

* Drivers to enable standard initialization of Arm System IP, for example Generic Interrupt Controller (GIC),
Cache Coherent Interconnect (CCI), Cache Coherent Network (CCN), Network Interconnect (NIC) and Trust-
Zone Controller (TZC).

* A generic SCMI driver to interface with conforming power controllers, for example the Arm System Control
Processor (SCP).

¢ SMC (Secure Monitor Call) handling, conforming to the SMC Calling Convention using an EL3 runtime services
framework.

e PSCI library support for CPU, cluster and system power management use-cases. This library is pre-integrated
with the AArch64 EL3 Runtime Software, and is also suitable for integration with other AArch32 EL3 Runtime
Software, for example an AArch32 Secure OS.

* A minimal AArch32 Secure Payload (SP_MIN) to demonstrate PSC/ library integration with AArch32 EL3
Runtime Software.

» Secure Monitor library code such as world switching, EL1 context management and interrupt routing. When
a Secure-EL1 Payload (SP) is present, for example a Secure OS, the AArch64 EL3 Runtime Software must be
integrated with a Secure Payload Dispatcher (SPD) component to customize the interaction with the SP.

* A Test SP and SPD to demonstrate AArch64 Secure Monitor functionality and SP interaction with PSCI.
* SPDs for the OP-TEE Secure OS, NVIDIA Trusted Little Kernel and Trusty Secure OS.

* A Trusted Board Boot implementation, conforming to all mandatory TBBR requirements. This includes im-
age authentication, Firmware Update (or recovery mode), and packaging of the various firmware images into a
Firmware Image Package (FIP).

* Pre-integration of TBB with the Arm CryptoCell product, to take advantage of its hardware Root of Trust and
crypto acceleration services.

https://developer.arm.com/docs/den0028/latest
https://github.com/OP-TEE/optee_os
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
https://source.android.com/security/trusty

Trusted Firmware-A

* Reliability, Availability, and Serviceability (RAS) functionality, including

— A Secure Partition Manager (SPM) to manage Secure Partitions in Secure-ELO, which can be used to
implement simple management and security services.

— An SDEI dispatcher to route interrupt-based SDEI events.

— An Exception Handling Framework (EHF) that allows dispatching of EL3 interrupts to their registered
handlers, to facilitate firmware-first error handling.

* A dynamic configuration framework that enables each of the firmware images to be configured at runtime if
required by the platform. It also enables loading of a hardware configuration (for example, a kernel device tree)
as part of the FIP, to be passed through the firmware stages. This feature is now incorporated inside the firmware
configuration framework (fconf), which is still flagged as experimental.

* Support for alternative boot flows, for example to support platforms where the EL3 Runtime Software is loaded
using other firmware or a separate secure system processor, or where a non-TF-A ROM expects BL2 to be loaded
at EL3.

* Support for the GCC, LLVM and Arm Compiler 6 toolchains.

* Support for combining several libraries into a “romlib” image that may be shared across images to reduce memory
footprint. The romlib image is stored in ROM but is accessed through a jump-table that may be stored in read-
write memory, allowing for the library code to be patched.

* Support for the Secure Partition Manager Dispatcher (SPMD) component as a new standard service.

 Support for ARMVS.3 pointer authentication in the normal and secure worlds. The use of pointer authentication
in the normal world is enabled whenever architectural support is available, without the need for additional build
flags. Use of pointer authentication in the secure world remains an experimental configuration at this time and
requires the BRANCH_PROTECTION option to be set to non-zero.

* Position-Independent Executable (PIE) support. Currently for BL2, BL31, and TSP, with further support to be
added in a future release.

1.1.2 Still to come

* Support for additional platforms.
* Refinements to Position Independent Executable (PIE) support.

* Continued support for the FF-A v1.0 (formally known as SPCI) specification, to enable the use of secure partition
management in the secure world.

* Documentation enhancements.
* Ongoing support for new architectural features, CPUs and System IP.
* Ongoing support for new Arm system architecture specifications.

* Ongoing security hardening, optimization and quality improvements.

Copyright (c) 2019-2021, Arm Limited. All rights reserved.

2 Chapter 1. About

Trusted Firmware-A

1.2 Release Processes

1.2.1 Project Release Cadence

The project currently aims to do a release once every 6 months which will be tagged on the master branch. There will be
a code freeze (stop merging non-essential changes) up to 4 weeks prior to the target release date. The release candidates
will start appearing after this and only bug fixes or updates required for the release will be merged. The maintainers are
free to use their judgement on what changes are essential for the release. A release branch may be created after code
freeze if there are significant changes that need merging onto the integration branch during the merge window.

The release testing will be performed on release candidates and depending on issues found, additional release candidates
may be created to fix the issues.

[<-=-----——- 6 months---------- > |
|<---4 weeks--->| |<---4 weeks--->|
o > time
| I I |
code freeze ver w.Xx code freeze ver y.z

Upcoming Releases

These are the estimated dates for the upcoming release. These may change depending on project requirement and
partner feedback.

Release Version | Target Date Expected Code Freeze
v2.0 st week of Oct ‘18 1st week of Sep ‘18
v2.1 5th week of Mar ‘19 | Ist week of Mar ‘19
v2.2 4th week of Oct ‘19 1st week of Oct ‘19
v2.3 4th week of Apr 20 | 1st week of Apr ‘20
v2.4 2nd week of Nov ‘20 | 4th week of Oct ‘20
v2.5 3rd week of May ‘21 | 5th week of Apr ‘21
v2.6 4th week of Oct 21 1st week of Oct 21

1.2.2 Removal of Deprecated Interfaces

As mentioned in the Platform Compatibility Policy, this is a live document cataloging all the deprecated interfaces in
TF-A project and the Release version after which it will be removed.

Interface | Deprecation Date | Removed after Release | Comments

Copyright (c¢) 2018-2021, Arm Limited and Contributors. All rights reserved.

1.2. Release Processes 3

Trusted Firmware-A

1.3 Project Maintenance

Trusted Firmware-A (TF-A) is an open governance community project. All contributions are ultimately merged by the
maintainers listed below. Technical ownership of most parts of the codebase falls on the code owners listed below. An
acknowledgement from these code owners is required before the maintainers merge a contribution.

More details may be found in the Project Maintenance Process document.

1.3.1 Maintainers

Mail Dan Handley <dan.handley @arm.com>

GitHub ID danh-arm

Mail Soby Mathew <soby.mathew @arm.com>
GitHub ID soby-mathew

Mail Sandrine Bailleux <sandrine.bailleux @arm.com>
GitHub ID sandrine-bailleux-arm

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>
GitHub ID AlexeiFedorov

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Mail Mark Dykes <mark.dykes @arm.com>

GitHub ID mardyk01

Mail Olivier Deprez <olivier.deprez@arm.com>
GitHub ID odeprez

Mail Bipin Ravi <bipin.ravi@arm.com>

GitHub ID bipinravi-arm

Mail Joanna Farley <joanna.farley @arm.com>
GitHub ID joannafarley-arm

Mail Julius Werner <jwerner @chromium.org>
GitHub ID jwerner-chromium

Mail Varun Wadekar <vwadekar @nvidia.com>
GitHub ID vwadekar

Mail Andre Przywara <andre.przywara@arm.com>
GitHub ID Andre-ARM

Mail Lauren Wehrmeister <Lauren. Wehrmeister @arm.com>
GitHub ID laurenw-arm

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>
GitHub ID madhukar-Arm

Mail Raghu Krishnamurthy <raghu.ncstate @icloud.com>

4 Chapter 1. About

https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/
mailto:dan.handley@arm.com
https://github.com/danh-arm
mailto:soby.mathew@arm.com
https://github.com/soby-mathew
mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:mark.dykes@arm.com
https://github.com/mardyk01
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:bipin.ravi@arm.com
https://github.com/bipinravi-arm
mailto:joanna.farley@arm.com
https://github.com/joannafarley-arm
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium
mailto:vwadekar@nvidia.com
https://github.com/vwadekar
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:raghu.ncstate@icloud.com

Trusted Firmware-A

GitHub ID raghuncstate

1.3.2 Code owners

Common Code

Armv7-A architecture port

Mail Etienne Carriere <etienne.carriere @linaro.org>

GitHub ID ectienne-Ims

Build Definitions for CMake Build System

Mail Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
GitHub ID javieralso-arm

Mail Chris Kay <chris.kay @arm.com>

GitHub ID CJKay

Files /

Software Delegated Exception Interface (SDEI)

Mail Mark Dykes <mark.dykes @arm.com>
GitHub ID mardyk01

Mail John Powell <John.Powell @arm.com>
GitHub ID john-powell-arm

Files services/std_svc/sdei/

Trusted Boot

Mail Sandrine Bailleux <sandrine.bailleux @arm.com>
GitHub ID sandrine-bailleux-arm

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Mail Manish Badarkhe <manish.badarkhe @arm.com>
GitHub ID ManishVB-Arm

Files drivers/auth/

1.3. Project Maintenance 5

https://github.com/raghuncstate
mailto:etienne.carriere@linaro.org
https://github.com/etienne-lms
mailto:Javier.AlmansaSobrino@arm.com
https://github.com/javieralso-arm
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:mark.dykes@arm.com
https://github.com/mardyk01
mailto:John.Powell@arm.com
https://github.com/john-powell-arm
mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm

Trusted Firmware-A

Secure Partition Manager (SPM)

Mail Olivier Deprez <olivier.deprez@arm.com>
GitHub ID odeprez

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Mail Maksims Svecovs <maksims.svecovs @arm.com>
GitHub ID max-shvetsov

Mail Joao Alves <Joao.Alves@arm.com>

GitHub ID J-Alves

Files services/std_svc/spm*

Exception Handling Framework (EHF)

Mail Manish Badarkhe <manish.badarkhe @arm.com>
GitHub ID ManishVB-Arm

Mail John Powell <John.Powell @arm.com>

GitHub ID john-powell-arm

Files bl31/ehf.c

Drivers, Libraries and Framework Code

Console API framework

Mail Julius Werner <jwerner @chromium.org>
GitHub ID jwerner-chromium

Files drivers/console/

Files include/drivers/console.h

Files plat/common/aarch64/crash_console_helpers.S

coreboot support libraries

Mail Julius Werner <jwerner @chromium.org>
GitHub ID jwerner-chromium

Files drivers/coreboot/

Files include/drivers/coreboot/

Files include/lib/coreboot.h

Files lib/coreboot/

6 Chapter 1. About

mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:maksims.svecovs@arm.com
https://github.com/max-shvetsov
mailto:Joao.Alves@arm.com
https://github.com/J-Alves
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:John.Powell@arm.com
https://github.com/john-powell-arm
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium

Trusted Firmware-A

eMMC/UFS drivers

Mail Haojian Zhuang <haojian.zhuang @linaro.org>
GitHub ID hzhuangl

Files drivers/partition/

Files drivers/synopsys/emmc/

Files drivers/synopsys/ufs/

Files drivers/ufs/

Files include/drivers/dw_ufs.h

Files include/drivers/ufs.h

Files include/drivers/synopsys/dw_mmc.h

JTAG DCC console driver

M Michal Simek <michal.simek @xilinx.com>

G michalsimek

M Venkatesh Yadav Abbarapu <venkatesh.abbarapu@xilinx.com>
G venkatesh

F drivers/arm/dcc/

F include/drivers/arm/dcc.h

Power State Coordination Interface (PSCI)

Mail Javier Almansa Sobrino <Javier.AlmansaSobrino @arm.com>
GitHub ID javieralso-arm

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>
GitHub ID madhukar-Arm

Mail Lauren Wehrmeister <Lauren. Wehrmeister @arm.com>
GitHub ID laurenw-arm

Mail Zelalem Aweke <Zelalem.Aweke @arm.com>

GitHub ID zelalem-aweke

Files lib/psci/

1.3. Project Maintenance

mailto:haojian.zhuang@linaro.org
https://github.com/hzhuang1
mailto:michal.simek@xilinx.com
https://github.com/michalsimek
mailto:venkatesh.abbarapu@xilinx.com
https://github.com/vabbarap
mailto:Javier.AlmansaSobrino@arm.com
https://github.com/javieralso-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:Zelalem.Aweke@arm.com
https://github.com/zelalem-aweke

Trusted Firmware-A

DebugFS

Mail Olivier Deprez <olivier.deprez@arm.com>
GitHub ID odeprez
Files lib/debugfs/

Firmware Configuration Framework (FCONF)

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>
GitHub ID madhukar-Arm

Mail Manish Badarkhe <manish.badarkhe @arm.com>

GitHub ID ManishVB-Arm

Mail Lauren Wehrmeister <Lauren. Wehrmeister @arm.com>
GitHub ID laurenw-arm

Files lib/fconf/

Performance Measurement Framework (PMF)

Mail Joao Alves <Joao.Alves@arm.com>
GitHub ID J-Alves

Mail Jimmy Brisson <Jimmy.Brisson@arm.com>
GitHub ID theotherjimmy

Files lib/pmf/

Arm CPU libraries

Mail Lauren Wehrmeister <Lauren.Wehrmeister @arm.com>
GitHub ID laurenw-arm

Mail John Powell <John.Powell @arm.com>

GitHub ID john-powell-arm

Files lib/cpus/

Reliability Availability Serviceabilty (RAS) framework

Mail Olivier Deprez <olivier.deprez@arm.com>
GitHub ID odeprez

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Files lib/extensions/ras/

8 Chapter 1. About

mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:Joao.Alves@arm.com
https://github.com/J-Alves
mailto:Jimmy.Brisson@arm.com
https://github.com/theotherjimmy
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:John.Powell@arm.com
https://github.com/john-powell-arm
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm

Trusted Firmware-A

Activity Monitors Unit (AMU) extensions

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>
GitHub ID AlexeiFedorov

Files lib/extensions/amu/

Memory Partitioning And Monitoring (MPAM) extensions

Mail Zelalem Aweke <Zelalem.Aweke @arm.com>
GitHub ID zelalem-aweke

Mail Jimmy Brisson <Jimmy.Brisson@arm.com>
GitHub ID theotherjimmy

Files lib/extensions/mpam/

Pointer Authentication (PAuth) and Branch Target Identification (BTI) extensions

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>
GitHub ID AlexeiFedorov
Mail Zelalem Aweke <Zelalem.Aweke @arm.com>
GitHub ID zelalem-aweke

Files lib/extensions/pauth/

Statistical Profiling Extension (SPE)

Mail Zelalem Aweke <Zelalem.Aweke @arm.com>
GitHub ID zelalem-aweke

Mail Jimmy Brisson <Jimmy.Brisson@arm.com>
GitHub ID theotherjimmy

Files lib/extensions/spe/

Scalable Vector Extension (SVE)

Mail Jimmy Brisson <Jimmy.Brisson@arm.com>
GitHub ID theotherjimmy

Files lib/extensions/sve/

1.3. Project Maintenance

mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:Zelalem.Aweke@arm.com
https://github.com/zelalem-aweke
mailto:Jimmy.Brisson@arm.com
https://github.com/theotherjimmy
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:Zelalem.Aweke@arm.com
https://github.com/zelalem-aweke
mailto:Zelalem.Aweke@arm.com
https://github.com/zelalem-aweke
mailto:Jimmy.Brisson@arm.com
https://github.com/theotherjimmy
mailto:Jimmy.Brisson@arm.com
https://github.com/theotherjimmy

Trusted Firmware-A

Standard C library

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>
GitHub ID AlexeiFedorov

Mail John Powell <John.Powell @arm.com>
GitHub ID john-powell-arm

Files lib/libc/

Library At ROM (ROMIib)

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>
GitHub ID madhukar-Arm
Files lib/romlib/

Translation tables (xlat_tables) library

Mail Javier Almansa Sobrino <Javier.AlmansaSobrino @arm.com>
GitHub ID javieralso-arm

Mail Joao Alves <Joao.Alves@arm.com>

GitHub ID J-Alves

Files lib/xlat_tables_*/

10 abstraction layer

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Mail Olivier Deprez <olivier.deprez@arm.com>
GitHub ID odeprez

Files drivers/io/

GIC driver

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID AlexeiFedorov

Mail Manish Pandey <manish.pandey2 @arm.com>

GitHub ID manish-pandey-arm

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>
GitHub ID madhukar-Arm

Mail Olivier Deprez <olivier.deprez@arm.com>

10 Chapter 1. About

mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:John.Powell@arm.com
https://github.com/john-powell-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:Javier.AlmansaSobrino@arm.com
https://github.com/javieralso-arm
mailto:Joao.Alves@arm.com
https://github.com/J-Alves
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:olivier.deprez@arm.com

Trusted Firmware-A

GitHub ID odeprez
Files drivers/arm/gic/

Libfdt wrappers

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>

GitHub ID madhukar-Arm
Mail Manish Badarkhe <manish.badarkhe @arm.com>
GitHub ID ManishVB-Arm

Files common/fdt_wrappers.c

Firmware Encryption Framework

Mail Sumit Garg <sumit.garg@linaro.org>
GitHub ID b49020

Files drivers/io/io_encrypted.c

Files include/drivers/io/io_encrypted.h

Files include/tools_share/firmware_encrypted.h

Measured Boot

Mail Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID AlexeiFedorov

Mail Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>

GitHub ID javieralso-arm
Files drivers/measured_boot
Files include/drivers/measured_boot

Files plat/arm/board/fvp/fvp_measured_boot.c

System Control and Management Interface (SCMI) Server

Mail Etienne Carriere <etienne.carriere @st.com>
GitHub ID etienne-Ims

Mail Peng Fan <peng.fan@nxp.com>

GitHub ID MrVan

Files drivers/scmi-msg

Files include/drivers/scmi*

1.3. Project Maintenance

11

https://github.com/odeprez
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:sumit.garg@linaro.org
https://github.com/b49020
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:Javier.AlmansaSobrino@arm.com
https://github.com/javieralso-arm
mailto:etienne.carriere@st.com
https://github.com/etienne-lms
mailto:peng.fan@nxp.com
https://github.com/MrVan

Trusted Firmware-A

Platform Ports

Allwinner ARMv8 platform port

Mail Andre Przywara <andre.przywara@arm.com>
GitHub ID Andre-ARM

Mail Samuel Holland <samuel @sholland.org>
GitHub ID smaeul

Files docs/plat/allwinner.rst

Files plat/allwinner/

Files drivers/allwinner/

Amlogic Meson S905 (GXBB) platform port

Mail Andre Przywara <andre.przywara@arm.com>
GitHub ID Andre-ARM

Files docs/plat/meson-gxbb.rst

Files drivers/amlogic/

Files plat/amlogic/gxbb/

Amlogic Meson S905x (GXL) platform port

Mail Remi Pommarel <repk @triplefau.lt>
GitHub ID remi-triplefault
Files docs/plat/meson-gxl.rst

Files plat/amlogic/gxl/

Amlogic Meson S905X2 (G12A) platform port

Mail Carlo Caione <ccaione @baylibre.com>
GitHub ID carlocaione
Files docs/plat/meson-gl2a.rst

Files plat/amlogic/g12a/

12

Chapter 1. About

mailto:andre.przywara@arm.com
https://github.com/Andre-ARM
mailto:samuel@sholland.org
https://github.com/smaeul
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM
mailto:repk@triplefau.lt
https://github.com/repk
mailto:ccaione@baylibre.com
https://github.com/carlocaione

Trusted Firmware-A

Amlogic Meson A113D (AXG) platform port

Mail Carlo Caione <ccaione @baylibre.com>
GitHub ID carlocaione
Files docs/plat/meson-axg.rst

Files plat/amlogic/axg/

Arm FPGA platform port

Mail Andre Przywara <andre.przywara@arm.com>

GitHub ID Andre-ARM

Mail Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
GitHub ID javieralso-arm

Files plat/arm/board/arm_fpga

Arm FVP Platform port

Mail Manish Pandey <manish.pandey2 @arm.com>

GitHub ID manish-pandey-arm

Mail Madhukar Pappireddy <Madhukar.Pappireddy @arm.com>
GitHub ID madhukar-Arm

Files plat/arm/board/fvp

Arm Juno Platform port

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Mail Chris Kay <chris.kay @arm.com>

GitHub ID CJKay

Files plat/arm/board/juno

Arm Morello and N1SDP Platform ports

Mail Manoj Kumar <manoj.kumar3 @arm.com>
GitHub ID manojkumar-arm

Mail Chandni Cherukuri <chandni.cherukuri@arm.com>
GitHub ID chandnich

Files plat/arm/board/morello

Files plat/arm/board/n1sdp

1.3. Project Maintenance 13

mailto:ccaione@baylibre.com
https://github.com/carlocaione
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM
mailto:Javier.AlmansaSobrino@arm.com
https://github.com/javieralso-arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:manoj.kumar3@arm.com
https://github.com/manojkumar-arm
mailto:chandni.cherukuri@arm.com
https://github.com/chandnich

Trusted Firmware-A

Arm Rich loT Platform ports

Mail Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
GitHub ID abdellatif-elkhlifi

Mail Vishnu Banavath <vishnu.banavath@arm.com>
GitHub ID vishnu-banavath

Files plat/arm/board/corstone700

Files plat/arm/board/a5ds

Arm Reference Design platform ports

Mail Thomas Abraham <thomas.abraham @arm.com>
GitHub ID thomas-arm

Mail Vijayenthiran Subramaniam <vijayenthiran.subramaniam @arm.com>
GitHub ID vijayenthiran-arm

Files plat/arm/css/sgi/

Files plat/arm/board/rdeledge/

Files plat/arm/board/rdnledge/

Files plat/arm/board/rdn2/

Files plat/arm/board/rdv1/

Files plat/arm/board/rdv1mc/

Files plat/arm/board/sgi575/

Arm Total Compute(tc0) platform port

Mail Arunachalam Ganapathy <arunachalam.ganapathy @arm.com>
GitHub ID arugan02

Mail Usama Arif <usama.arif @arm.com>

GitHub ID uvarifl

Files plat/arm/board/tcO

HiSilicon HiKey and HiKey960 platform ports

Mail Haojian Zhuang <haojian.zhuang @linaro.org>
GitHub ID hzhuangl

Files docs/plat/hikey.rst

Files docs/plat/hikey960.rst

Files plat/hisilicon/hikey/

Files plat/hisilicon/hikey960/

14

Chapter 1. About

mailto:abdellatif.elkhlifi@arm.com
https://github.com/abdellatif-elkhlifi
mailto:vishnu.banavath@arm.com
https://github.com/vishnu-banavath
mailto:thomas.abraham@arm.com
https://github.com/thomas-arm
mailto:vijayenthiran.subramaniam@arm.com
https://github.com/vijayenthiran-arm
mailto:arunachalam.ganapathy@arm.com
https://github.com/arugan02
mailto:usama.arif@arm.com
https://github.com/uarif1
mailto:haojian.zhuang@linaro.org
https://github.com/hzhuang1

Trusted Firmware-A

HiSilicon Poplar platform port

Mail Shawn Guo <shawn.guo@linaro.org>
GitHub ID shawnguo2

Files docs/plat/poplar.rst

Files plat/hisilicon/poplar/

Intel SocFPGA platform ports

Mail Tien Hock Loh <tien.hock.loh@intel.com>

GitHub ID thloh85-intel

Mail Hadi Asyrafi <muhammad.hadi.asyrafi.abdul.halim @intel.com>
GitHub ID mabdulha

Files plat/intel/soc

Files drivers/intel/soc/

MediaTek platform ports

Mail Yidi Lin () <yidi.lin@mediatek.com>
GitHub ID mtk09422
Files plat/mediatek/

Marvell platform ports and SoC drivers

Mail Konstantin Porotchkin <kostap @marvell.com>
GitHub ID kostapr

Files docs/plat/marvell/

Files plat/marvell/

Files drivers/marvell/

Files tools/marvell/

NVidia platform ports

Mail Varun Wadekar <vwadekar @nvidia.com>
GitHub ID vwadekar

Files docs/plat/nvidia-tegra.rst

Files include/lib/cpus/aarch64/denver.h

Files lib/cpus/aarch64/denver.S

Files plat/nvidia/

1.3. Project Maintenance 15

mailto:shawn.guo@linaro.org
https://github.com/shawnguo2
mailto:tien.hock.loh@intel.com
https://github.com/thloh85-intel
mailto:muhammad.hadi.asyrafi.abdul.halim@intel.com
mailto:yidi.lin@mediatek.com
https://github.com/mtk09422
mailto:kostap@marvell.com
https://github.com/kostapr
mailto:vwadekar@nvidia.com
https://github.com/vwadekar

Trusted Firmware-A

NXP QorlQ Layerscape platform ports

Mail Jiafei Pan <jiafei.pan @nxp.com>
GitHub ID qorig-open-source

Files docs/plat/ls1043a.rst

Files plat/layerscape/

NXP i.MX 7 WaRP7 platform port and SoC drivers

Mail Bryan O’Donoghue <bryan.odonoghue @linaro.org>
GitHub ID bryanodonoghue

Mail Jun Nie <jun.nie@linaro.org>

GitHub ID niej

Files docs/plat/warp7.rst

Files plat/imx/common/

Files plat/imx/imx7/

Files drivers/imx/timer/

Files drivers/imx/uart/

Files drivers/imx/usdhc/

NXP i.MX 8 platform port

Mail Anson Huang <Anson.Huang @nxp.com>
GitHub ID Anson-Huang
Files docs/plat/imx8.rst

Files plat/imx/

NXP i.MX8M platform port

Mail Jacky Bai <ping.bai @nxp.com>
GitHub ID JackyBai
Files docs/plat/imx8m.rst

Files plat/imx/imx8m/

16

Chapter 1. About

mailto:jiafei.pan@nxp.com
https://github.com/qoriq-open-source
mailto:bryan.odonoghue@linaro.org
https://github.com/bryanodonoghue
mailto:jun.nie@linaro.org
https://github.com/niej
mailto:Anson.Huang@nxp.com
https://github.com/Anson-Huang
mailto:ping.bai@nxp.com
https://github.com/JackyBai

Trusted Firmware-A

QEMU platform port

Mail Jens Wiklander <jens.wiklander @linaro.org>
GitHub ID jenswi-linaro
Files docs/plat/gemu.rst

Files plat/qgemu/

QTI platform port

Mail Saurabh Gorecha <sgorecha@codeaurora.org>

GitHub ID sgorecha

Mail Debasish Mandal <dmandal @codeaurora.org>

Mail QTI TF Maintainers <qti.trustedfirmware.maintainers @codeaurora.org>
Files docs/plat/qti.rst

Files plat/qti/

Raspberry Pi 3 platform port

Mail Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>
GitHub ID grandpaul

Files docs/plat/rpi3.rst

Files plat/rpi/rpi3/

Files plat/rpi/common/

Files drivers/rpi3/

Files include/drivers/rpi3/

Raspberry Pi 4 platform port

Mail Andre Przywara <andre.przywara@arm.com>
GitHub ID Andre-ARM

Files docs/plat/rpi4.rst

Files plat/rpi/rpi4/

Files plat/rpi/common/

Files drivers/rpi3/

Files include/drivers/rpi3/

1.3. Project Maintenance 17

mailto:jens.wiklander@linaro.org
https://github.com/jenswi-linaro
mailto:sgorecha@codeaurora.org
https://github.com/sgorecha
mailto:dmandal@codeaurora.org
mailto:qti.trustedfirmware.maintainers@codeaurora.org
mailto:paul.liu@linaro.org
https://github.com/grandpaul
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM

Trusted Firmware-A

Renesas rcar-gen3 platform port

Mail Jorge Ramirez-Ortiz <jramirez@baylibre.com>
GitHub ID Idts

Mail Marek Vasut <marek.vasut@gmail.com>
GitHub ID marex

Files docs/plat/rcar-gen3.rst

Files plat/renesas/common

Files plat/renesas/rcar

Files drivers/renesas/common

Files drivers/renesas/rcar

Files tools/renesas/rcar_layout_create

Renesas RZ/G2 platform port

Mail Biju Das <biju.das.jz@bp.renesas.com>
GitHub ID bijucdas

Mail Marek Vasut <marek.vasut@ gmail.com>
GitHub ID marex

Mail Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>
GitHub ID prabhakarlad

Files docs/plat/rz-g2.rst

Files plat/renesas/common

Files plat/renesas/rzg

Files drivers/renesas/common

Files drivers/renesas/rzg

Files tools/renesas/rzg_layout_create

RockChip platform port

Mail Tony Xie <tony.xie @rock-chips.com>
GitHub ID TonyXie06

GitHub ID rockchip-linux

Mail Heiko Stuebner <heiko@sntech.de>
GitHub ID mmind

Files plat/rockchip/

18

Chapter 1. About

mailto:jramirez@baylibre.com
https://github.com/ldts
mailto:marek.vasut@gmail.com
https://github.com/marex
mailto:biju.das.jz@bp.renesas.com
https://github.com/bijucdas
mailto:marek.vasut@gmail.com
https://github.com/marex
mailto:prabhakar.mahadev-lad.rj@bp.renesas.com
https://github.com/prabhakarlad
mailto:tony.xie@rock-chips.com
https://github.com/TonyXie06
https://github.com/rockchip-linux
mailto:heiko@sntech.de
https://github.com/mmind

Trusted Firmware-A

STM32MP1 platform port

Mail Yann Gautier <yann.gautier @st.com>
GitHub ID Yann-Ims

Files docs/plat/stm32mp].rst

Files drivers/st/

Files fdts/stm32*

Files include/drivers/st/

Files include/dt-bindings/*/stm32*

Files plat/st/

Files tools/stm32image/

Synquacer platform port

Mail Sumit Garg <sumit.garg @linaro.org>
GitHub ID b49020
Files docs/plat/synquacer.rst

Files plat/socionext/synquacer/

Texas Instruments platform port

Mail Nishanth Menon <nm @ti.com>
GitHub ID nmenon

Files docs/plat/ti-k3.rst

Files plat/ti/

UniPhier platform port

Mail Orphan
Files docs/plat/socionext-uniphier.rst

Files plat/socionext/uniphier/

Xilinx platform port

Mail Michal Simek <michal.simek @xilinx.com>

GitHub ID michalsimek

Mail Venkatesh Yadav Abbarapu <venkatesh.abbarapu@xilinx.com>
GitHub ID venkatesh

Files docs/plat/xilinx-zyngmp.rst

1.3. Project Maintenance

19

mailto:yann.gautier@st.com
https://github.com/Yann-lms
mailto:sumit.garg@linaro.org
https://github.com/b49020
mailto:nm@ti.com
https://github.com/nmenon
mailto:michal.simek@xilinx.com
https://github.com/michalsimek
mailto:venkatesh.abbarapu@xilinx.com
https://github.com/vabbarap

Trusted Firmware-A

Files plat/xilinx/

Secure Payloads and Dispatchers

OP-TEE dispatcher

Mail Jens Wiklander <jens.wiklander@linaro.org>
GitHub ID jenswi-linaro
Files docs/components/spd/optee-dispatcher.rst

Files services/spd/opteed/

TLK/Trusty secure payloads

Mail Varun Wadekar <vwadekar@nvidia.com>
GitHub ID vwadekar

Files docs/components/spd/tlk-dispatcher.rst
Files docs/components/spd/trusty-dispatcher.rst
Files include/bl32/payloads/tlk.h

Files services/spd/tlkd/

Files services/spd/trusty/

Test Secure Payload (TSP)

Mail Manish Badarkhe <manish.badarkhe @arm.com>
GitHub ID ManishVB-Arm

Files bl32/tsp/

Files services/spd/tspd/

Tools

Fiptool

Mail Joao Alves <Joao.Alves@arm.com>
GitHub ID J-Alves
Files tools/fiptool/

20

Chapter 1. About

mailto:jens.wiklander@linaro.org
https://github.com/jenswi-linaro
mailto:vwadekar@nvidia.com
https://github.com/vwadekar
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Joao.Alves@arm.com
https://github.com/J-Alves

Trusted Firmware-A

Cert_create tool

Mail Sandrine Bailleux <sandrine.bailleux @arm.com>
GitHub ID sandrine-bailleux-arm

Files tools/cert_create/

Encrypt_fw tool

Mail Sumit Garg <sumit.garg@linaro.org>
GitHub ID b49020

Files tools/encrypt_fw/

Sptool

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm

Files tools/sptool/

Build system

Mail Manish Pandey <manish.pandey2 @arm.com>
GitHub ID manish-pandey-arm
Files Makefile

Files make_helpers/

1.4 Support & Contact

We welcome any feedback on 7F-A and there are several methods for providing it or for obtaining support.

Warning: If you think you have found a security vulnerability, please report this using the process defined in the
Security Handling document.

1.4.1 Mailing Lists

Public mailing lists for TF-A and the wider Trusted Firmware project are hosted on TrustedFirmware.org. The mailing
lists can be used for general enquiries, enhancement requests and issue reports, or to follow and participate in technical
or organizational discussions around the project. These discussions include design proposals, advance notice of changes
and upcoming events.

The relevant lists for the TF-A project are:
* TF-A development
* TF-A-Tests development

1.4. Support & Contact 21

mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:sumit.garg@linaro.org
https://github.com/b49020
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
https://lists.trustedfirmware.org/pipermail/tf-a/
https://lists.trustedfirmware.org/pipermail/tf-a-tests/

Trusted Firmware-A

You can see a summary of all the lists on the TrustedFirmware.org website.

1.4.2 Open Tech Forum Call

Every other week, we organize a call with all interested TF-A contributors. Anyone is welcome to join. This is an
opportunity to discuss any technical topic within the community. More details can be found here.

1.4.3 Issue Tracker

Bug reports may be filed on the issue tracker on the TrustedFirmware.org website. Using this tracker gives everyone
visibility of the known issues in TF-A.

1.4.4 Arm Licensees

Arm licensees have an additional support conduit - they may contact Arm directly via their partner managers.

Copyright (c) 2019-2020, Arm Limited. All rights reserved.

1.5 Contributor Acknowledgements

Note: This file is only relevant for legacy contributions, to acknowledge the specific contributors referred to in “Arm
Limited and Contributors” copyright notices. As contributors are now encouraged to put their name or company name
directly into the copyright notices, this file is not relevant for new contributions. See the License document for the
correct template to use for new contributions.

¢ Linaro Limited

e Marvell International Ltd.
* NVIDIA Corporation

* NXP Semiconductors

* Socionext Inc.

* STMicroelectronics

¢ Xilinx, Inc.

Copyright (c) 2019, Arm Limited. All rights reserved.

22 Chapter 1. About

https://lists.trustedfirmware.org
https://www.trustedfirmware.org/meetings/tf-a-technical-forum/
https://developer.trustedfirmware.org

CHAPTER
TWO

GETTING STARTED

2.1 Prerequisites

This document describes the software requirements for building 7F-A for AArch32 and AArch64 target platforms.

It may possible to build 7F-A with combinations of software packages that are different from those listed below, however
only the software described in this document can be officially supported.

2.1.1 Build Host

TF-A can be built using either a Linux or a Windows machine as the build host.

A relatively recent Linux distribution is recommended for building 7F-A. We have performed tests using Ubuntu 16.04
LTS (64-bit) but other distributions should also work fine as a base, provided that the necessary tools and libraries can
be installed.

2.1.2 Toolchain

TF-A can be built with any of the following cross-compiler toolchains that target the Armv7-A or Armv8-A architec-
tures:

* GCC >=9.2-2019.12 (from the Arm Developer website)
* Clang >=4.0
e Arm Compiler >= 6.0

In addition, a native compiler is required to build the supporting tools.

Note: The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE, Cygwin, and Msys (MinGW)
shells, using version 5.3.1 of the GNU toolchain.

Note: For instructions on how to select the cross compiler refer to Performing an Initial Build.

23

https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads

Trusted Firmware-A

2.1.3 Software and Libraries

The following tools are required to obtain and build 77-A:
* An appropriate toolchain (see Toolchain)
* GNU Make
* Git
The following libraries must be available to build one or more components or supporting tools:
e OpenSSL >=1.0.1
Required to build the cert_create tool.
The following libraries are required for Trusted Board Boot support:
* mbed TLS == 2.26.0 (tag: mbedtls-2.26.0)
These tools are optional:
* Device Tree Compiler (DTC) >=1.4.6

Needed if you want to rebuild the provided Flattened Device Tree (FDT) source files (.dts files).
DTC is available for Linux through the package repositories of most distributions.

e Arm Development Studio 5 (DS-5)

The standard software package used for debugging software on Arm development platforms and F'VP
models.

* Node.js >= 14

Highly recommended, and necessary in order to install and use the packaged Git hooks and helper
tools. Without these tools you will need to rely on the CI for feedback on commit message confor-
mance.

Package Installation (Linux)

If you are using the recommended Ubuntu distribution then you can install the required packages with the following
command:

sudo apt install build-essential git libssl-dev

The optional packages can be installed using:

sudo apt install device-tree-compiler

Additionally, to install an up-to-date version of Node.js, you can use the Node Version Manager to install a version of
your choosing (we recommend 14, but later LTS versions might offer a more stable experience):

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.38.0/install.sh | "$SHELL"
exec "$SHELL" -ic "nvm install 14; exec $SHELL"

24 Chapter 2. Getting Started

https://developer.arm.com/products/software-development-tools/ds-5-development-studio
https://github.com/nvm-sh/nvm#install--update-script

Trusted Firmware-A

2.1.4 Supporting Files

TF-A has been tested with pre-built binaries and file systems from Linaro Release 19.06. Alternatively, you can build
the binaries from source using instructions in Performing an Initial Build.

2.1.5 Getting the TF-A Source

Source code for 7F-A is maintained in a Git repository hosted on TrustedFirmware.org. To clone this repository from
the server, run the following in your shell:

git clone "https://review.trustedfirmware.org/TF-A/trusted-firmware-a"

Additional Steps for Contributors

If you are planning on contributing back to TF-A, there are some things you’ll want to know.

TF-A is hosted by a Gerrit Code Review server. Gerrit requires that all commits include a Change-Id footer, and this
footer is typically automatically generated by a Git hook installed by you, the developer.

If you have Node.js installed already, you can automatically install this hook, along with any additional hooks and
Javascript-based tooling that we use, by running from within your newly-cloned repository:

npm install --no-save

If you have opted not to install Node.js, you can install the Gerrit hook manually by running:

curl -Lo $(git rev-parse --git-dir)/hooks/commit-msg https://review.trustedfirmware.org/
—»tools/hooks/commit-msg
chmod +x $(git rev-parse --git-dir)/hooks/commit-msg

You can read more about Git hooks in the githooks page of the Git documentation, available here.

Copyright (c) 2021, Arm Limited. All rights reserved.

2.2 Building Documentation

To create a rendered copy of this documentation locally you can use the Sphinx tool to build and package the plain-text
documents into HTML-formatted pages.

If you are building the documentation for the first time then you will need to check that you have the required software
packages, as described in the Prerequisites section that follows.

Note: An online copy of the documentation is available at https://www.trustedfirmware.org/docs/tf-a, if you want to
view a rendered copy without doing a local build.

2.2. Building Documentation 25

http://releases.linaro.org/members/arm/platforms/19.06
https://www.gerritcodereview.com/
https://git-scm.com/docs/githooks
http://www.sphinx-doc.org/en/master/
https://www.trustedfirmware.org/docs/tf-a

Trusted Firmware-A

2.2.1 Prerequisites

For building a local copy of the 7F-A documentation you will need, at minimum:
 Python 3 (3.5 or later)
e PlantUML (1.2017.15 or later)
Optionally, the Dia application can be installed if you need to edit existing .dia diagram files, or create new ones.

You must also install the Python modules that are specified in the requirements.txt file in the root of the docs
directory. These modules can be installed using pip3 (the Python Package Installer). Passing this requirements file as
an argument to pip3 automatically installs the specific module versions required by 7F-A.

An example set of installation commands for Ubuntu 18.04 LTS follows, assuming that the working directory is docs:

sudo apt install python3 python3-pip plantuml [dia]
pip3 install [--user] -r requirements.txt

Note: Several other modules will be installed as dependencies. Please review the list to ensure that there will be no
conflicts with other modules already installed in your environment.

Passing the optional --user argument to pip3 will install the Python packages only for the current user. Omitting
this argument will attempt to install the packages globally and this will likely require the command to be run as root or
using sudo.

Note: More advanced usage instructions for pip are beyond the scope of this document but you can refer to the pip
homepage for detailed guides.

2.2.2 Building rendered documentation

Documents can be built into HTML-formatted pages from project root directory by running the following command.

make doc

Output from the build process will be placed in:

docs/build/html

We also support building documentation in other formats. From the docs directory of the project, run the following
command to see the supported formats. It is important to note that you will not get the correct result if the command
is run from the project root directory, as that would invoke the top-level Makefile for 7F-A itself.

make help

26 Chapter 2. Getting Started

https://wiki.gnome.org/Apps/Dia
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/

Trusted Firmware-A

2.2.3 Building rendered documentation from a container

There may be cases where you can not either install or upgrade required dependencies to generate the documents, so
in this case, one way to create the documentation is through a docker container. The first step is to check if docker is
installed in your host, otherwise check main docker page for installation instructions. Once installed, run the following
script from project root directory

docker run --rm -v $PWD:/TF sphinxdoc/sphinx \
bash -c 'cd /TF && \
pip3 install plantuml -r ./docs/requirements.txt && make doc'

The above command fetches the sphinxdoc/sphinx container from docker hub, launches the container, installs docu-
mentation requirements and finally creates the documentation. Once done, exit the container and output from the build
process will be placed in:

docs/build/html

Copyright (c) 2019, Arm Limited. All rights reserved.

2.3 Building Supporting Tools

2.3.1 Building and using the FIP tool

Firmware Image Package (FIP) is a packaging format used by TF-A to package firmware images in a single binary. The
number and type of images that should be packed in a FIP is platform specific and may include TF-A images and other
firmware images required by the platform. For example, most platforms require a BL33 image which corresponds to
the normal world bootloader (e.g. UEFI or U-Boot).

The TF-A build system provides the make target £ip to create a FIP file for the specified platform using the FIP creation
tool included in the TF-A project. Examples below show how to build a FIP file for FVP, packaging TF-A and BL33
images.

For AArch64:

make PLAT=fvp BL33=<path-to>/bl33.bin fip

For AArch32:

make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/b133.bin fip

The resulting FIP may be found in:

build/fvp/<build-type>/fip.bin

For advanced operations on FIP files, it is also possible to independently build the tool and create or modify FIPs using
this tool. To do this, follow these steps:

It is recommended to remove old artifacts before building the tool:

make -C tools/fiptool clean

Build the tool:

2.3. Building Supporting Tools 27

https://www.docker.com/
https://hub.docker.com/repository/docker/sphinxdoc/sphinx

Trusted Firmware-A

make [DEBUG=1] [V=1] fiptool

The tool binary can be located in:

./tools/fiptool/fiptool

Invoking the tool with help will print a help message with all available options.

Example 1: create a new Firmware package fip.bin that contains BL2 and BL31:

./tools/fiptool/fiptool create \
--tb-fw build/<platform>/<build-type>/bl2.bin \
--soc-fw build/<platform>/<build-type>/bl31.bin \
fip.bin

Example 2: view the contents of an existing Firmware package:

./tools/fiptool/fiptool info <path-to>/fip.bin

Example 3: update the entries of an existing Firmware package:

Change the BL2 from Debug to Release version
./tools/fiptool/fiptool update \
--tb-fw build/<platform>/release/bl2.bin \
build/<platform>/debug/fip.bin

Example 4: unpack all entries from an existing Firmware package:

Images will be unpacked to the working directory
./tools/fiptool/fiptool unpack <path-to>/fip.bin

Example 5: remove an entry from an existing Firmware package:

./tools/fiptool/fiptool remove \
--tb-fw build/<platform>/debug/fip.bin

Note that if the destination FIP file exists, the create, update and remove operations will automatically overwrite it.
The unpack operation will fail if the images already exist at the destination. In that case, use -f or —force to continue.

More information about FIP can be found in the Firmware Design document.

2.3.2 Building the Certificate Generation Tool

The cert_create tool is built as part of the TF-A build process when the £fip make target is specified and TBB is
enabled (as described in the previous section), but it can also be built separately with the following command:

make PLAT=<platform> [DEBUG=1] [V=1] certtool

For platforms that require their own IDs in certificate files, the generic ‘cert_create’ tool can be built with the following
command. Note that the target platform must define its IDs within a platform_oid.h header file for the build to
succeed.

make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool

28 Chapter 2. Getting Started

Trusted Firmware-A

DEBUG=1 builds the tool in debug mode. V=1 makes the build process more verbose. The following command should
be used to obtain help about the tool:

./tools/cert_create/cert_create -h

Building the Firmware Encryption Tool

The encrypt_f£w tool is built as part of the TF-A build process when the fip make target is specified, DECRYP-
TION_SUPPORT and TBB are enabled, but it can also be built separately with the following command:

make PLAT=<platform> [DEBUG=1] [V=1] enctool

DEBUG=1 builds the tool in debug mode. V=1 makes the build process more verbose. The following command should
be used to obtain help about the tool:

./tools/encrypt_fw/encrypt_fw -h

Note that the enctool in its current implementation only supports encryption key to be provided in plain format. A
typical implementation can very well extend this tool to support custom techniques to protect encryption key.

Also, a user may choose to provide encryption key or nonce as an input file via using cat <filename> instead of a
hex string.

Copyright (¢) 2019, Arm Limited. All rights reserved.

2.4 Performing an Initial Build

* Before building TF-A, the environment variable CROSS_COMPILE must point to the Linaro cross compiler.
For AArch64:

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-

For AArch32:

export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-none-eabi-

It is possible to build TF-A using Clang or Arm Compiler 6. To do so CC needs to point to the clang or armclang
binary, which will also select the clang or armclang assembler. Be aware that for Arm Compiler, the GNU linker
is used by default. However for Clang LLVM linker (LLD) is used by default. In case of being needed the linker
can be overridden using the LD variable. LLVM linker (LLD) version 9 is known to work with TF-A.

In both cases CROSS_COMPILE should be set as described above.
Arm Compiler 6 will be selected when the base name of the path assigned to CC matches the string ‘armclang’.

For AArch64 using Arm Compiler 6:

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all

Clang will be selected when the base name of the path assigned to CC contains the string ‘clang’. This is to allow
both clang and clang-X.Y to work.

For AArch64 using clang:

2.4. Performing an Initial Build 29

Trusted Firmware-A

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make CC=<path-to-clang>/bin/clang PLAT=<platform> all

* Change to the root directory of the TF-A source tree and build.
For AArch64:

make PLAT=<platform> all

For AArch32:

make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all

Notes:

— If PLAT is not specified, fvp is assumed by default. See the Build Options document for more information
on available build options.

— (AArch32 only) Currently only PLAT=£vp is supported.

— (AArch32 only) AARCH32_SP is the AArch32 EL3 Runtime Software and it corresponds to the BL32 im-
age. A minimal AARCH32_SP, sp_min, is provided by TF-A to demonstrate how PSCI Library can be
integrated with an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may include
other runtime services, for example Trusted OS services. A guide to integrate PSCI library with AArch32
EL3 Runtime Software can be found at PSCI Library Integration guide for Armv8-A AArch32 systems.

— (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32 image, is not compiled in by
default. Refer to the Test Secure Payload (TSP) and Dispatcher (TSPD) document for details on building
the TSP.

— By default this produces a release version of the build. To produce a debug version instead, refer to the
“Debugging options” section below.

— The build process creates products in a build directory tree, building the objects and binaries for each
boot loader stage in separate sub-directories. The following boot loader binary files are created from the
corresponding ELF files:

* build/<platform>/<build-type>/bll.bin

* build/<platform>/<build-type>/bl2.bin

% build/<platform>/<build-type>/bl31.bin (AArch64 only)

% build/<platform>/<build-type>/bl32.bin (mandatory for AArch32)

where <platform> is the name of the chosen platform and <build-type> is either debug or release.
The actual number of images might differ depending on the platform.

* Build products for a specific build variant can be removed using:

make DEBUG=<D> PLAT=<platform> clean

. where <D> is 0 or 1, as specified when building.

The build tree can be removed completely using:

make realclean

Copyright (c) 2020, Arm Limited. All rights reserved.

30 Chapter 2. Getting Started

Trusted Firmware-A

2.5 Build Options

The TF-A build system supports the following build options. Unless mentioned otherwise, these options are expected
to be specified at the build command line and are not to be modified in any component makefiles. Note that the build
system doesn’t track dependency for build options. Therefore, if any of the build options are changed from a previous
build, a clean build must be performed.

2.5.1 Common build options

AARCH32_INSTRUCTION_SET: Choose the AArch32 instruction set that the compiler should use. Valid values
are T32 and A32. It defaults to T32 due to code having a smaller resulting size.

AARCH32_SP : Choose the AArch32 Secure Payload component to be built as as the BL32 image when
ARCH=aarch32. The value should be the path to the directory containing the SP source, relative to the b132/;
the directory is expected to contain a makefile called <aarch32_sp-value>.mk.

AMU_RESTRICT_COUNTERS: Register reads to the group 1 counters will return zero at all but the highest imple-
mented exception level. Reads from the memory mapped view are unaffected by this control.

ARCH : Choose the target build architecture for TF-A. It can take either aarch64 or aarch32 as values. By
default, it is defined to aarch64.

ARM_ARCH_FEATURE: Optional Arm Architecture build option which specifies one or more feature modi-

fiers. This option has the form [no]feature+... and defaults to none. It translates into compiler option
-march=armvX[.Y]-a+[no]feature+.... See compiler’s documentation for the list of supported feature
modifiers.

ARM_ARCH_MAJOR: The major version of Arm Architecture to target when compiling TF-A. Its value must be
numeric, and defaults to 8 . See also, Armv8 Architecture Extensions and Armv7 Architecture Extensions in
Firmware Design.

ARM_ARCH_MINOR: The minor version of Arm Architecture to target when compiling TF-A. Its value must be a
numeric, and defaults to 0. See also, Armv8 Architecture Extensions in Firmware Design.

BL2: This is an optional build option which specifies the path to BL2 image for the £ip target. In this case, the
BL2 in the TF-A will not be built.

BL2U: This is an optional build option which specifies the path to BL2U image. In this case, the BL2U in TF-A
will not be built.

BL2_AT_EL3: This is an optional build option that enables the use of BL2 at EL3 execution level.

BL2_IN_XIP_MEM: In some use-cases BL2 will be stored in eXecute In Place (XIP) memory, like BL1. In these
use-cases, it is necessary to initialize the RW sections in RAM, while leaving the RO sections in place. This
option enable this use-case. For now, this option is only supported when BL2_AT_EL3 is setto ‘1’.

BL31: This is an optional build option which specifies the path to BL31 image for the fip target. In this case,
the BL31 in TF-A will not be built.

BL31_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the BL31 private key
in PEM format. If SAVE_KEYS=1, this file name will be used to save the key.

BL32: This is an optional build option which specifies the path to BL32 image for the fip target. In this case,
the BL32 in TF-A will not be built.

BL32_EXTRA1: This is an optional build option which specifies the path to Trusted OS Extral image for the fip
target.

BL32_EXTRA2: This is an optional build option which specifies the path to Trusted OS Extra2 image for the fip
target.

2.5.

Build Options 31

Trusted Firmware-A

BL32_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the BL32 private key
in PEM format. If SAVE_KEYS=1, this file name will be used to save the key.

BL33: Path to BL33 image in the host file system. This is mandatory for fip target in case TF-A BL2 is used.

BL33_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the BL33 private key
in PEM format. If SAVE_KEYS=1, this file name will be used to save the key.

BRANCH_PROTECTION: Numeric value to enable ARMv8.3 Pointer Authentication and ARMv8.5 Branch Target
Identification support for TF-A BL images themselves. If enabled, it is needed to use a compiler that supports
the option -mbranch-protection. Selects the branch protection features to use:

0: Default value turns off all types of branch protection
1: Enables all types of branch protection features

2: Return address signing to its standard level

3: Extend the signing to include leaf functions

4: Turn on branch target identification mechanism

The table below summarizes BRANCH_PROTECTION values, GCC compilation options and resulting PAuth/BTI
features.

Value | GCC option | PAuth | BTI
0 none N N
1 standard Y Y
2 pac-ret Y N
3 pac-ret+leaf | Y N
4 bti N Y

This option defaults to 0 and this is an experimental feature. Note that Pointer Authentication is enabled for
Non-secure world irrespective of the value of this option if the CPU supports it.

BUILD_MESSAGE_TIMESTAMP: String used to identify the time and date of the compilation of each build. It must
be set to a C string (including quotes where applicable). Defaults to a string that contains the time and date of
the compilation.

BUILD_STRING: Input string for VERSION_STRING, which allows the TF-A build to be uniquely identified.
Defaults to the current git commit id.

BUILD_BASE: Output directory for the build. Defaults to . /build

CFLAGS: Extra user options appended on the compiler’s command line in addition to the options set by the build
system.

COLD_BOOT_SINGLE_CPU: This option indicates whether the platform may release several CPUs out of reset.
It can take either O (several CPUs may be brought up) or 1 (only one CPU will ever be brought up during cold
reset). Default is 0. If the platform always brings up a single CPU, there is no need to distinguish between
primary and secondary CPUs and the boot path can be optimised. The plat_is_my_cpu_primary() and
plat_secondary_cold_boot_setup() platform porting interfaces do not need to be implemented in this
case.

COT: When Trusted Boot is enabled, selects the desired chain of trust. Defaults to tbbr.

CRASH_REPORTING: A non-zero value enables a console dump of processor register state when an unexpected
exception occurs during execution of BL31. This option defaults to the value of DEBUG - i.e. by default this is
only enabled for a debug build of the firmware.

CREATE_KEYS: This option is used when GENERATE_COT=1. It tells the certificate generation tool to create new
keys in case no valid keys are present or specified. Allowed options are ‘0’ or ‘1°. Default is ‘1’.

32

Chapter 2. Getting Started

Trusted Firmware-A

CTX_INCLUDE_AARCH32_REGS : Boolean option that, when set to 1, will cause the AArch32 system registers to
be included when saving and restoring the CPU context. The option must be set to 0 for AArch64-only platforms

(that is on hardware that does not implement AArch32, or at least not at EL1 and higher ELs). Default value is
1.

CTX_INCLUDE_EL2_REGS : This boolean option provides context save/restore operations when entering/exiting
an EL2 execution context. This is of primary interest when Armv8.4-SecEL?2 extension is implemented. Default
is 0 (disabled). This option must be equal to 1 (enabled) when SPD=spmd and SPMD_SPM_AT_SEL?2 is set.

CTX_INCLUDE_FPREGS: Boolean option that, when set to 1, will cause the FP registers to be included when
saving and restoring the CPU context. Default is 0.

CTX_INCLUDE_NEVE_REGS: Boolean option that, when set to 1, will cause the Armv8.4-NV registers to be
saved/restored when entering/exiting an EL2 execution context. Default value is 0.

CTX_INCLUDE_PAUTH_REGS: Boolean option that, when set to 1, enables Pointer Authentication for Secure
world. This will cause the ARMvS8.3-PAuth registers to be included when saving and restoring the CPU context
as part of world switch. Default value is 0 and this is an experimental feature. Note that Pointer Authentication
is enabled for Non-secure world irrespective of the value of this flag if the CPU supports it.

DEBUG: Chooses between a debug and release build. It can take either O (release) or 1 (debug) as values. 0 is the
default.

DECRYPTION_SUPPORT: This build flag enables the user to select the authenticated decryption algorithm to be
used to decrypt firmware/s during boot. It accepts 2 values: aes_gcm and none. The default value of this flag
is none to disable firmware decryption which is an optional feature as per TBBR. Also, it is an experimental
feature.

DISABLE_BIN_GENERATION: Boolean option to disable the generation of the binary image. If set to 1, then only
the ELF image is built. 0 is the default.

DISABLE_MTPMU: Boolean option to disable FEAT_MTPMU if implemented (Armv8.6 onwards). Its default
value is 0 to keep consistency with platforms that do not implement FEAT_MTPMU. For more information on
FEAT_MTPMU, check the latest Arm ARM.

DYN_DISABLE_AUTH: Provides the capability to dynamically disable Trusted Board Boot authentication at run-
time. This option is meant to be enabled only for development platforms. TRUSTED_BOARD_BOOT flag must be
set if this flag has to be enabled. 0 is the default.

E: Boolean option to make warnings into errors. Default is 1.

EL3_PAYLOAD_BASE: This option enables booting an EL3 payload instead of the normal boot flow. It must
specify the entry point address of the EL3 payload. Please refer to the “Booting an EL3 payload” section for
more details.

ENABLE_AMU: Boolean option to enable Activity Monitor Unit extensions. This is an optional architectural feature
available on v8.4 onwards. Some v8.2 implementations also implement an AMU and this option can be used to
enable this feature on those systems as well. Default is O.

ENABLE_ASSERTIONS: This option controls whether or not calls to assert() are compiled out. For debug
builds, this option defaults to 1, and calls to assert () are left in place. For release builds, this option defaults to
0 and calls to assert () function are compiled out. This option can be set independently of DEBUG. It can also
be used to hide any auxiliary code that is only required for the assertion and does not fit in the assertion itself.

ENABLE_BACKTRACE: This option controls whether to enable backtrace dumps or not. It is supported in both
AArch64 and AArch32. However, in AArch32 the format of the frame records are not defined in the AAPCS
and they are defined by the implementation. This implementation of backtrace only supports the format used by
GCC when T32 interworking is disabled. For this reason enabling this option in AArch32 will force the compiler
to only generate A32 code. This option is enabled by default only in AArch64 debug builds, but this behaviour
can be overridden in each platform’s Makefile or in the build command line.

2.5.

Build Options 33

Trusted Firmware-A

ENABLE_LTO: Boolean option to enable Link Time Optimization (LTO) support in GCC for TF-A. This option
is currently only supported for AArch64. Default is O.

ENABLE_MPAM_FOR_LOWER_ELS: Boolean option to enable lower ELs to use MPAM feature. MPAM is an op-
tional Armv8.4 extension that enables various memory system components and resources to define partitions;
software running at various ELs can assign themselves to desired partition to control their performance aspects.

When this option is set to 1, EL3 allows lower ELs to access their own MPAM registers without trapping into
EL3. This option doesn’t make use of partitioning in EL3, however. Platform initialisation code should configure
and use partitions in EL3 as required. This option defaults to 0.

ENABLE_PIE: Boolean option to enable Position Independent Executable(PIE) support within generic code in
TF-A. This option is currently only supported in BL2_AT_EL3, BL31, and BL32 (TSP) for AARCHG64 binaries,
and in BL32 (SP_min) for AARCH32. Default is 0.

ENABLE_PMF: Boolean option to enable support for optional Performance Measurement Framework(PMF). De-
fault is 0.

ENABLE_PSCI_STAT: Boolean option to enable support for optional PSCI functions PSCI_STAT_RESIDENCY
and PSCI_STAT_COUNT. Default is 0. In the absence of an alternate stat collection backend, ENABLE_PMF must
be enabled. If ENABLE_PMF is set, the residency statistics are tracked in software.

ENABLE_RUNTIME_INSTRUMENTATION: Boolean option to enable runtime instrumentation which injects times-
tamp collection points into TF-A to allow runtime performance to be measured. Currently, only PSCI is instru-
mented. Enabling this option enables the ENABLE_PNMF build option as well. Default is 0.

ENABLE_SPE_FOR_LOWER_ELS : Boolean option to enable Statistical Profiling extensions. This is an optional
architectural feature for AArch64. The default is 1 but is automatically disabled when the target architecture is
AArch32.

ENABLE_SVE_FOR_NS: Boolean option to enable Scalable Vector Extension (SVE) for the Non-secure world only.
SVE is an optional architectural feature for AArch64. Note that when SVE is enabled for the Non-secure world,
access to SIMD and floating-point functionality from the Secure world is disabled. This is to avoid corruption of
the Non-secure world data in the Z-registers which are aliased by the SIMD and FP registers. The build option is
not compatible with the CTX_INCLUDE_FPREGS build option, and will raise an assert on platforms where SVE is
implemented and ENABLE_SVE_FOR_NS set to 1. The default is 1 but is automatically disabled when the target
architecture is AArch32.

ENABLE_STACK_PROTECTOR: String option to enable the stack protection checks in GCC. Allowed values are
“all”, “strong”, “default” and “none”. The default value is set to “none”. “strong” is the recommended stack
protection level if this feature is desired. “none” disables the stack protection. For all values other than “none”,
the plat_get_stack_protector_canary() platform hook needs to be implemented. The value is passed as
the last component of the option -fstack-protector-$ENABLE_STACK_PROTECTOR.

ENCRYPT_BL31: Binary flag to enable encryption of BL31 firmware. This flag depends on
DECRYPTION_SUPPORT build flag which is marked as experimental.

ENCRYPT_BL32: Binary flag to enable encryption of Secure BL32 payload. This flag depends on
DECRYPTION_SUPPORT build flag which is marked as experimental.

ENC_KEY: A 32-byte (256-bit) symmetric key in hex string format. It could either be SSK or BSSK depending on
FW_ENC_STATUS flag. This value depends on DECRYPTION_SUPPORT build flag which is marked as experimental.

ENC_NONCE: A 12-byte (96-bit) encryption nonce or Initialization Vector (IV) in hex string format. This value
depends on DECRYPTION_SUPPORT build flag which is marked as experimental.

ERROR_DEPRECATED: This option decides whether to treat the usage of deprecated platform APIs, helper func-
tions or drivers within Trusted Firmware as error. It can take the value 1 (flag the use of deprecated APIs as
error) or 0. The default is 0.

34

Chapter 2. Getting Started

Trusted Firmware-A

EL3_EXCEPTION_HANDLING: When setto 1, enable handling of exceptions targeted at EL3. When set 0 (default),
no exceptions are expected or handled at EL3, and a panic will result. This is supported only for AArch64 builds.

EVENT_LOG_LEVEL: Chooses the log level to use for Measured Boot when MEASURED_BOOT is enabled. For a
list of valid values, see LOG_LEVEL. Default value is 40 (LOG_LEVEL_INFO).

FAULT_INJECTION_SUPPORT: ARMvVS8.4 extensions introduced support for fault injection from lower ELs, and
this build option enables lower ELs to use Error Records accessed via System Registers to inject faults. This is
applicable only to AArch64 builds.

This feature is intended for testing purposes only, and is advisable to keep disabled for production images.

e FIP_NAME: This is an optional build option which specifies the FIP filename for the fip target. Default is fip.
bin.

FWU_FIP_NAME: This is an optional build option which specifies the FWU FIP filename for the fwu_£fip target.
Default is fwu_fip.bin.

FW_ENC_STATUS: Top level firmware’s encryption numeric flag, values:

0®: Encryption is done with Secret Symmetric Key (SSK) which is common
for a class of devices.

1: Encryption is done with Binding Secret Symmetric Key (BSSK) which is
unique per device.

This flag depends on DECRYPTION_SUPPORT build flag which is marked as experimental.

* GENERATE_COT: Boolean flag used to build and execute the cert_create tool to create certificates as per the
Chain of Trust described in Trusted Board Boot. The build system then calls fiptool to include the certificates
in the FIP and FWU_FIP. Default value is ‘0’.

Specify both TRUSTED_BOARD_BOOT=1 and GENERATE_COT=1 to include support for the Trusted Board Boot
feature in the BL1 and BL2 images, to generate the corresponding certificates, and to include those certificates
in the FIP and FWU_FIP.

Note that if TRUSTED_BOARD_BOOT=0 and GENERATE_COT=1, the BL1 and BL2 images will not include support
for Trusted Board Boot. The FIP will still include the corresponding certificates. This FIP can be used to verify
the Chain of Trust on the host machine through other mechanisms.

Note that if TRUSTED_BOARD_BOOT=1 and GENERATE_COT=0, the BL1 and BL2 images will include support for
Trusted Board Boot, but the FIP and FWU_FIP will not include the corresponding certificates, causing a boot
failure.

e GICV2_GO_FOR_EL3: Unlike GICv3, the GICv2 architecture doesn’t have inherent support for specific EL3 type
interrupts. Setting this build option to 1 assumes GICv2 Group 0 interrupts are expected to target EL3, both
by platform abstraction layer and Interrupt Management Framework. This allows GICv2 platforms to enable
features requiring EL3 interrupt type. This also means that all GICv2 Group 0 interrupts are delivered to EL3,
and the Secure Payload interrupts needs to be synchronously handed over to Secure EL1 for handling. The default
value of this option is 0, which means the Group 0 interrupts are assumed to be handled by Secure EL1.

e HANDLE_EA_EL3_FIRST: When set to 1, External Aborts and SError Interrupts will be always trapped in EL3
i.e. in BL31 at runtime. When set to 0 (default), these exceptions will be trapped in the current exception level
(or in EL1 if the current exception level is ELO).

e HW_ASSISTED_COHERENCY: On most Arm systems to-date, platform-specific software operations are required for
CPUs to enter and exit coherency. However, newer systems exist where CPUs’ entry to and exit from coherency
is managed in hardware. Such systems require software to only initiate these operations, and the rest is managed
in hardware, minimizing active software management. In such systems, this boolean option enables TF-A to
carry out build and run-time optimizations during boot and power management operations. This option defaults
to 0 and if it is enabled, then it implies WARMBOOT_ENABLE_DCACHE_EARLY is also enabled.

2.5. Build Options 35

Trusted Firmware-A

If this flag is disabled while the platform which TF-A is compiled for includes cores that manage coherency
in hardware, then a compilation error is generated. This is based on the fact that a system cannot have,
at the same time, cores that manage coherency in hardware and cores that don’t. In other words, a plat-
form cannot have, at the same time, cores that require HW_ASSISTED_COHERENCY=1 and cores that require
HW_ASSISTED_COHERENCY=0.

Note that, when HW_ASSISTED_COHERENCY is enabled, version 2 of translation library (xlat tables v2) must be
used; version 1 of translation library is not supported.

INVERTED_MEMMAP: memmap tool print by default lower addresses at the bottom, higher addresses at the top.
This build flag can be set to ‘1’ to invert this behavior. Lower addresses will be printed at the top and higher
addresses at the bottom.

JUNO_AARCH32_EL3_RUNTIME: This build flag enables you to execute EL3 runtime software in AArch32 mode,
which is required to run AArch32 on Juno. By default this flag is set to ‘0’. Enabling this flag builds BL1 and
BL2 in AArch64 and facilitates the loading of SP_MIN and BL33 as AArch32 executable images.

KEY_ALG: This build flag enables the user to select the algorithm to be used for generating the PKCS keys and
subsequent signing of the certificate. It accepts 3 values: rsa, rsa_1_5 and ecdsa. The option rsa_1_5 is the
legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is retained only for compatibility. The
default value of this flag is rsa which is the TBBR compliant PKCS#1 RSA 2.1 scheme.

KEY_SIZE: This build flag enables the user to select the key size for the algorithm specified by KEY_ALG. The
valid values for KEY_SIZE depend on the chosen algorithm and the cryptographic module.

KEY_ALG | Possible key sizes
rsa 1024 , 2048 (default), 3072, 4096*
ecdsa unavailable

— Only 2048 bits size is available with CryptoCell 712 SBROM release 1. Only 3072 bits size is available
with CryptoCell 712 SBROM release 2.

HASH_ALG: This build flag enables the user to select the secure hash algorithm. It accepts 3 values: sha256,
sha384 and sha512. The default value of this flag is sha256.

LDFLAGS: Extra user options appended to the linkers’ command line in addition to the one set by the build system.

LOG_LEVEL: Chooses the log level, which controls the amount of console log output compiled into the build.
This should be one of the following:

® (LOG_LEVEL_NONE)
10 (LOG_LEVEL_ERROR)
20 (LOG_LEVEL_NOTICE)
30 (LOG_LEVEL_WARNING)
40 (LOG_LEVEL_INFO)
50 (LOG_LEVEL_VERBOSE)

All log output up to and including the selected log level is compiled into the build. The default value is 40 in
debug builds and 20 in release builds.

MEASURED_BOOT: Boolean flag to include support for the Measured Boot feature. If this flag is enabled
TRUSTED_BOARD_BOOT must be set. This option defaults to 0 and is an experimental feature in the stage of
development.

NON_TRUSTED_WORLD_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the
Non-Trusted World private key in PEM format. If SAVE_KEYS=1, this file name will be used to save the key.

NS_BL2U: Path to NS_BL2U image in the host file system. This image is optional. It is only needed if the
platform makefile specifies that it is required in order to build the fwu_£fip target.

36

Chapter 2. Getting Started

Trusted Firmware-A

NS_TIMER_SWITCH: Enable save and restore for non-secure timer register contents upon world switch. It can
take either O (don’t save and restore) or 1 (do save and restore). O is the default. An SPD may set this to 1 if it
wants the timer registers to be saved and restored.

OVERRIDE_LIBC: This option allows platforms to override the default libc for the BL image. It can be either 0
(include) or 1 (remove). The default value is 0.

PLO®11_GENERIC_UART: Boolean option to indicate the PLO11 driver that the underlying hardware is not a full
PLO11 UART but a minimally compliant generic UART, which is a subset of the PLO11. The driver will not
access any register that is not part of the SBSA generic UART specification. Default value is O (a full PLO11
compliant UART is present).

PLAT: Choose a platform to build TF-A for. The chosen platform name must be subdirectory of any depth under
plat/, and must contain a platform makefile named platform.mk. For example, to build TF-A for the Arm
Juno board, select PLAT=juno.

PRELOADED_BL33_BASE: This option enables booting a preloaded BL33 image instead of the normal boot flow.
When defined, it must specify the entry point address for the preloaded BL33 image. This option is incompatible
with EL3_PAYLOAD_BASE. If both are defined, EL3_PAYLOAD_BASE has priority over PRELOADED_BL33_BASE.

PROGRAMMABLE_RESET_ADDRESS: This option indicates whether the reset vector address can be programmed
or is fixed on the platform. It can take either O (fixed) or 1 (programmable). Default is 0. If the platform has a
programmable reset address, it is expected that a CPU will start executing code directly at the right address, both
on a cold and warm reset. In this case, there is no need to identify the entrypoint on boot and the boot path can
be optimised. The plat_get_my_entrypoint () platform porting interface does not need to be implemented
in this case.

PSCI_EXTENDED_STATE_ID: As per PSCI1.0 Specification, there are 2 formats possible for the PSCI power-
state parameter: original and extended State-ID formats. This flag if set to 1, configures the generic PSCI layer
to use the extended format. The default value of this flag is 0, which means by default the original power-state
format is used by the PSCI implementation. This flag should be specified by the platform makefile and it governs
the return value of PSCI_FEATURES API for CPU_SUSPEND smc function id. When this option is enabled
on Arm platforms, the option ARM_RECOM_STATE_ID_ENC needs to be set to 1 as well.

RAS_EXTENSION: When set to 1, enable Armv8.2 RAS features. RAS features are an optional extension for
pre-Armv8.2 CPUs, but are mandatory for Armv8.2 or later CPUs.

When RAS_EXTENSION is set to 1, HANDLE_EA_EL3_FIRST must also be set to 1.
This option is disabled by default.

RESET_TO_BL31: Enable BL31 entrypoint as the CPU reset vector instead of the BL1 entrypoint. It can take the
value 0 (CPU reset to BL1 entrypoint) or 1 (CPU reset to BL31 entrypoint). The default value is 0.

RESET_TO_SP_MIN: SP_MIN is the minimal AArch32 Secure Payload provided in TF-A. This flag configures
SP_MIN entrypoint as the CPU reset vector instead of the BL1 entrypoint. It can take the value O (CPU reset to
BL1 entrypoint) or 1 (CPU reset to SP_MIN entrypoint). The default value is 0.

ROT_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the ROT private key in
PEM format and enforces public key hash generation. If SAVE_KEYS=1, this file name will be used to save the
key.

SAVE_KEYS: This option is used when GENERATE_COT=1. It tells the certificate generation tool to save the keys
used to establish the Chain of Trust. Allowed options are ‘0’ or ‘1°. Default is ‘0’ (do not save).

SCP_BL2: Path to SCP_BL2 image in the host file system. This image is optional. If a SCP_BL?2 image is present
then this option must be passed for the £ip target.

SCP_BL2_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the SCP_BL2
private key in PEM format. If SAVE_KEYS=1, this file name will be used to save the key.

2.5.

Build Options 37

Trusted Firmware-A

SCP_BL2U: Path to SCP_BL2U image in the host file system. This image is optional. It is only needed if the
platform makefile specifies that it is required in order to build the fwu_£fip target.

SDEI_SUPPORT: Setting this to 1 enables support for Software Delegated Exception Interface to BL31 image.
This defaults to 0.

When set to 1, the build option EL3_EXCEPTION_HANDLING must also be set to 1.

SEPARATE_CODE_AND_RODATA: Whether code and read-only data should be isolated on separate memory pages.
This is a trade-off between security and memory usage. See “Isolating code and read-only data on separate
memory pages’” section in Firmware Design. This flag is disabled by default and affects all BL images.

SEPARATE_NOBITS_REGION: Setting this option to 1 allows the NOBITS sections of BL31 (.bss, stacks, page
tables, and coherent memory) to be allocated in RAM discontiguous from the loaded firmware image. When
set, the platform is expected to provide definitions for BL31_NOBITS_BASE and BL31_NOBITS_LIMIT. When
the option is O (the default), NOBITS sections are placed in RAM immediately following the loaded firmware
image.

SPD: Choose a Secure Payload Dispatcher component to be built into TF-A. This build option is only valid if
ARCH=aarch64. The value should be the path to the directory containing the SPD source, relative to services/
spd/; the directory is expected to contain a makefile called <spd-value>.mk. The SPM Dispatcher standard
service is located in services/std_svc/spmd and enabled by SPD=spmd. The SPM Dispatcher cannot be enabled
when the SPM_MM option is enabled.

SPIN_ON_BL1_EXIT: This option introduces an infinite loop in BL1. It can take either O (no loop) or 1 (add a
loop). O is the default. This loop stops execution in BL1 just before handing over to BL31. At this point, all
firmware images have been loaded in memory, and the MMU and caches are turned off. Refer to the “Debugging
options” section for more details.

SPMD_SPM_AT_SEL2 : this boolean option is used jointly with the SPM Dispatcher option (SPD=spmd). When
enabled (1) it indicates the SPMC component runs at the S-EL2 execution state provided by the Armv8.4-SecEL2
extension. This is the default when enabling the SPM Dispatcher. When disabled (0) it indicates the SPMC
component runs at the S-EL1 execution state. This latter configuration supports pre-Armv8.4 platforms (aka not
implementing the Armv8.4-SecEL2 extension).

SPM_MM : Boolean option to enable the Management Mode (MM)-based Secure Partition Manager (SPM) imple-
mentation. The default value is ® (disabled). This option cannot be enabled (1) when SPM Dispatcher is enabled
(SPD=spmd).

SP_LAYOUT_FILE: Platform provided path to JSON file containing the description of secure partitions. The
build system will parse this file and package all secure partition blobs into the FIP. This file is not necessarily
part of TF-A tree. Only available when SPD=spmd.

SP_MIN_WITH_SECURE_FIQ: Boolean flag to indicate the SP_MIN handles secure interrupts (caught through
the FIQ line). Platforms can enable this directive if they need to handle such interruption. When enabled, the
FIQ are handled in monitor mode and non secure world is not allowed to mask these events. Platforms that enable
FIQ handling in SP_MIN shall implement the api sp_min_plat_fiq_handler (). The default value is 0.

TRUSTED_BOARD_BOOT: Boolean flag to include support for the Trusted Board Boot feature. When set to ‘1°,
BL1 and BL2 images include support to load and verify the certificates and images in a FIP, and BL1 includes
support for the Firmware Update. The default value is ‘0’. Generation and inclusion of certificates in the FIP
and FWU_FIP depends upon the value of the GENERATE_COT option.

Warning: This option depends on CREATE_KEYS to be enabled. If the keys already exist in disk, they will
be overwritten without further notice.

TRUSTED_WORLD_KEY: This option is used when GENERATE_COT=1. It specifies the file that contains the Trusted
World private key in PEM format. If SAVE_KEYS=1, this file name will be used to save the key.

38

Chapter 2. Getting Started

Trusted Firmware-A

TSP_INIT_ASYNC: Choose BL32 initialization method as asynchronous or synchronous, (see “Initializing a
BL32 Image” section in Firmware Design). It can take the value O (BL32 is initialized using synchronous method)
or 1 (BL32 is initialized using asynchronous method). Default is 0.

TSP_NS_INTR_ASYNC_PREEMPT: A non zero value enables the interrupt routing model which routes non-secure
interrupts asynchronously from TSP to EL3 causing immediate preemption of TSP. The EL3 is responsible for
saving and restoring the TSP context in this routing model. The default routing model (when the value is 0) is
to route non-secure interrupts to TSP allowing it to save its context and hand over synchronously to EL3 via an
SMC.

Note: When EL3_EXCEPTION_HANDLING is 1, TSP_NS_INTR_ASYNC_PREEMPT must also be set to 1.

USE_ARM_LINK: This flag determines whether to enable support for ARM linker. When the LINKER build vari-
able points to the armlink linker, this flag is enabled automatically. To enable support for armlink, platforms will
have to provide a scatter file for the BL image. Currently, Tegra platforms use the armlink support to compile
BL3-1 images.

USE_COHERENT_MEM: This flag determines whether to include the coherent memory region in the BL. memory
map or not (see “Use of Coherent memory in TF-A” section in Firmware Design). It can take the value 1
(Coherent memory region is included) or 0 (Coherent memory region is excluded). Default is 1.

USE_DEBUGFS: When set to 1 this option activates an EXPERIMENTAL feature exposing a virtual filesystem
interface through BL31 as a SiP SMC function. Default is 0.

ARM_IO_IN_DTB: This flag determines whether to use IO based on the firmware configuration framework. This
will move the io_policies into a configuration device tree, instead of static structure in the code base. This is
currently an experimental feature.

COT_DESC_IN_DTB: This flag determines whether to create COT descriptors at runtime using fconf. If this flag
is enabled, COT descriptors are statically captured in tb_fw_config file in the form of device tree nodes and
properties. Currently, COT descriptors used by BL2 are moved to the device tree and COT descriptors used by
BL1 are retained in the code base statically. This is currently an experimental feature.

SDEI_IN_FCONF: This flag determines whether to configure SDEI setup in runtime using firmware configuration
framework. The platform specific SDEI shared and private events configuration is retrieved from device tree
rather than static C structures at compile time. This is currently an experimental feature and is only supported if
SDEI_SUPPORT build flag is enabled.

SEC_INT_DESC_IN_FCONF: This flag determines whether to configure Group 0 and Groupl secure interrupts
using the firmware configuration framework. The platform specific secure interrupt property descriptor is re-
trieved from device tree in runtime rather than depending on static C structure at compile time. This is currently
an experimental feature.

USE_ROMLIB: This flag determines whether library at ROM will be used. This feature creates a library of func-
tions to be placed in ROM and thus reduces SRAM usage. Refer to Library at ROM for further details. Default
is 0.

V: Verbose build. If assigned anything other than 0, the build commands are printed. Default is 0.

VERSION_STRING: String used in the log output for each TF-A image. Defaults to a string formed by concate-
nating the version number, build type and build string.

W: Warning level. Some compiler warning options of interest have been regrouped and put in the root Makefile.
This flag can take the values O to 3, each level enabling more warning options. Default is 0.

WARMBOOT_ENABLE_DCACHE_EARLY : Boolean option to enable D-cache early on the CPU after warm boot. This
is applicable for platforms which do not require interconnect programming to enable cache coherency (eg: single
cluster platforms). If this option is enabled, then warm boot path enables D-caches immediately after enabling
MMU. This option defaults to O.

2.5.

Build Options 39

Trusted Firmware-A

SUPPORT_STACK_MEMTAG: This flag determines whether to enable memory tagging for stack or not. It accepts
2 values: yes and no. The default value of this flag is no. Note this option must be enabled only for ARM
architecture greater than Armv8.5-A.

ERRATA_SPECULATIVE_AT: This flag determines whether to enable AT speculative errata workaround or not. It
accepts 2 values: 1 and 0. The default value of this flag is 0.

AT speculative errata workaround disables stagel page table walk for lower ELs (EL1 and ELO) in EL3 so that
AT speculative fetch at any point produces either the correct result or failure without TLB allocation.

This boolean option enables errata for all below CPUs.

Errata CPU Workaround Define

1165522 | Cortex-A76 | ERRATA_A76_1165522
1319367 | Cortex-A72 | ERRATA_A72_1319367
1319537 | Cortex-A57 | ERRATA_A57_1319537
1530923 | Cortex-AS55 | ERRATA_A55_1530923
1530924 | Cortex-A53 | ERRATA_A53_1530924

Note: This option is enabled by build only if platform sets any of above defines mentioned in *Workaround
Define’ column in the table. If this option is enabled for the EL3 software then EL2 software also must implement
this workaround due to the behaviour of the errata mentioned in new SDEN document which will get published
soon.

RAS_TRAP_LOWER_EL_ERR_ACCESS: This flag enables/disables the SCR_EL3.TERR bit, to trap access to the
RAS ERR and RAS ERX registers from lower ELs. This flag is disabled by default.

OPENSSL_DIR: This flag is used to provide the installed openssl directory path on the host machine which is used
to build certificate generation and firmware encryption tool.

USE_SP804_TIMER: Use the SP804 timer instead of the Generic Timer for functions that wait for an arbitrary
time length (udelay and mdelay). The default value is 0.

2.5.2 GICv3 driver options

GICv3 driver files are included using directive:

include drivers/arm/gic/v3/gicv3.mk

The driver can be configured with the following options set in the platform makefile:

GICV3_SUPPORT_GIC600: Add support for the GIC-600 variants of GICv3. Enabling this option will add run-
time detection support for the GIC-600, so is safe to select even for a GIC500 implementation. This option
defaults to 0.

GICV3_IMPL_GIC600_MULTICHIP: Selects GIC-600 variant with multichip functionality. This option defaults
to 0

GICV3_OVERRIDE_DISTIF_PWR_OPS: Allows override of default implementation of
arm_gicv3_distif_pre_save and arm_gicv3_distif_post_restore functions. This is required
for FVP platform which need to simulate GIC save and restore during SYSTEM_SUSPEND without powering
down GIC. Default is 0.

GIC_ENABLE_V4_EXTN : Enables GICv4 related changes in GICv3 driver. This option defaults to 0.

GIC_EXT_INTID: When set to 1, GICv3 driver will support extended PPI (1056-1119) and SPI (4096-5119)
range. This option defaults to 0.

40

Chapter 2. Getting Started

Trusted Firmware-A

2.5.3 Debugging options

To compile a debug version and make the build more verbose use

make PLAT=<platform> DEBUG=1 V=1 all

AArch64 GCC uses DWAREF version 4 debugging symbols by default. Some tools (for example DS-5) might not
support this and may need an older version of DWARF symbols to be emitted by GCC. This can be achieved by using
the -gdwarf-<version> flag, with the version being set to 2 or 3. Setting the version to 2 is recommended for DS-5
versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler optimizations by using -00.

Warning: Using -00 could cause output images to be larger and base addresses might need to be recalculated (see
the Memory layout on Arm development platforms section in the Firmware Design).

Extra debug options can be passed to the build system by setting CFLAGS or LDFLAGS:

CFLAGS="-00 -gdwarf-2' \
make PLAT=<platform> DEBUG=1 V=1 all

Note that using -W1, style compilation driver options in CFLAGS will be ignored as the linker is called directly.

It is also possible to introduce an infinite loop to help in debugging the post-BL2 phase of TF-A. This can be done by
rebuilding BL1 with the SPIN_ON_BL1_EXIT=1 build flag. Refer to the Common build options section. In this case,
the developer may take control of the target using a debugger when indicated by the console output. When using DS-5,
the following commands can be used:

Stop target execution
interrupt

#
Prepare your debugging environment, e.g. set breakpoints
#

Jump over the debug loop
set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4

Resume execution
continue

Copyright (¢) 2019-2021, Arm Limited. All rights reserved.

2.5. Build Options 41

Trusted Firmware-A

2.6 Image Terminology

This page contains the current name, abbreviated name and purpose of the various images referred to in the Trusted
Firmware project.

2.6.1 General Notes

* Some of the names and abbreviated names have changed to accommodate new requirements. The changed
names are as backward compatible as possible to minimize confusion. Where applicable, the previous names
are indicated. Some code, documentation and build artefacts may still refer to the previous names; these will
inevitably take time to catch up.

* The main name change is to prefix each image with the processor it corresponds to (for example AP_, SCP_, ...).
In situations where there is no ambiguity (for example, within AP specific code/documentation), it is permitted
to omit the processor prefix (for example, just BL1 instead of AP_BL1).

* Previously, the format for 3rd level images had 2 forms; BL3 was either suffixed with a dash (“-) followed by a
number (for example, BL3-1) or a subscript number, depending on whether rich text formatting was available.
This was confusing and often the dash gets omitted in practice. Therefore the new form is to just omit the dash
and not use subscript formatting.

[T3R1]

* The names no longer contain dash (“-”’) characters at all. In some places (for example, function names) it’s not
possible to use this character. All dashes are either removed or replaced by underscores (““_").

* The abbreviation BL stands for BootLoader. This is a historical anomaly. Clearly, many of these images are not
BootLoaders, they are simply firmware images. However, the BL abbreviation is now widely used and is retained
for backwards compatibility.

» The image names are not case sensitive. For example, b1l1 is interchangeable with BL1, although mixed case
should be avoided.

2.6.2 Trusted Firmware Images

AP Boot ROM: AP_BL1

Typically, this is the first code to execute on the AP and cannot be modified. Its primary purpose is to perform the
minimum initialization necessary to load and authenticate an updateable AP firmware image into an executable RAM
location, then hand-off control to that image.

AP RAM Firmware: AP_BL2

This is the 2nd stage AP firmware. It is currently also known as the “Trusted Boot Firmware”. Its primary purpose
is to perform any additional initialization required to load and authenticate all 3rd level firmware images into their
executable RAM locations, then hand-off control to the EL3 Runtime Firmware.

42 Chapter 2. Getting Started

Trusted Firmware-A

EL3 Runtime Firmware: AP_BL31

Also known as “SoC AP firmware” or “EL3 monitor firmware”. Its primary purpose is to handle transitions between
the normal and secure world.

Secure-EL1 Payload (SP): AP_BL32

Typically this is a TEE or Trusted OS, providing runtime secure services to the normal world. However, it may refer
to a more abstract Secure-EL1 Payload (SP). Note that this abbreviation should only be used in systems where there is
a single or primary image executing at Secure-EL1. In systems where there are potentially multiple SPs and there is
no concept of a primary SP, this abbreviation should be avoided; use the recommended Other AP 3rd level images
abbreviation instead.

AP Normal World Firmware: AP_BL33

For example, UEFI or uboot. Its primary purpose is to boot a normal world OS.

Other AP 3rd level images: AP_BL3_XXX

The abbreviated names of the existing 3rd level images imply a load/execution ordering (for example, AP_BL31 ->
AP_BL32 -> AP_BL33). Some systems may have additional images and/or a different load/execution ordering. The
abbreviated names of the existing images are retained for backward compatibility but new 3rd level images should be
suffixed with an underscore followed by text identifier, not a number.

In systems where 3rd level images are provided by different vendors, the abbreviated name should identify the vendor
as well as the image function. For example, AP_BL3_ARM_RAS.

SCP Boot ROM: SCP_BL1 (previously BLO)

Typically, this is the first code to execute on the SCP and cannot be modified. Its primary purpose is to perform the
minimum initialization necessary to load and authenticate an updateable SCP firmware image into an executable RAM
location, then hand-off control to that image. This may be performed in conjunction with other processor firmware (for
example, AP_BL1 and AP_BL2).

This image was previously abbreviated as BLO but in some systems, the SCP may directly load/authenticate its own
firmware. In these systems, it doesn’t make sense to interleave the image terminology for AP and SCP; both AP and
SCP Boot ROMs are BL1 from their own point of view.

SCP RAM Firmware: SCP_BL2 (previously BL3-0)
This is the 2nd stage SCP firmware. It is currently also known as the “SCP runtime firmware” but it could potentially
be an intermediate firmware if the SCP needs to load/authenticate multiple 3rd level images in future.

This image was previously abbreviated as BL3-0 but from the SCP’s point of view, this has always been the 2nd stage
firmware. The previous name is too AP-centric.

2.6. Image Terminology 43

Trusted Firmware-A

2.6.3 Firmware Update (FWU) Images

The terminology for these images has not been widely adopted yet but they have to be considered in a production
Trusted Board Boot solution.

AP Firmware Update Boot ROM: AP_NS_BL1U
Typically, this is the first normal world code to execute on the AP during a firmware update operation, and cannot be

modified. Its primary purpose is to load subsequent firmware update images from an external interface and communi-
cate with AP_BL1 to authenticate those images.

During firmware update, there are (potentially) multiple transitions between the secure and normal world. The “level”
of the BL image is relative to the world it’s in so it makes sense to encode “NS” in the normal world images. The
absence of “NS” implies a secure world image.

AP Firmware Update Config: AP_BL2U

This image does the minimum necessary AP secure world configuration required to complete the firmware update
operation. It is potentially a subset of AP_BL2 functionality.

SCP Firmware Update Config: SCP_BL2U (previously BL2-U0)

This image does the minimum necessary SCP secure world configuration required to complete the firmware update
operation. It is potentially a subset of SCP_BL2 functionality.

AP Firmware Updater: AP_NS_BL2U (previously BL3-U)

This is the 2nd stage AP normal world firmware updater. Its primary purpose is to load a new set of firmware images
from an external interface and write them into non-volatile storage.

2.6.4 Other Processor Firmware Images
Some systems may have additional processors to the AP and SCP. For example, a Management Control Processor

(MCP). Images for these processors should follow the same terminology, with the processor abbreviation prefix, fol-
lowed by underscore and the level of the firmware image.

For example,

MCP Boot ROM: MCP_BL1

MCP RAM Firmware: MCP_BL2

2.7 Porting Guide

2.7.1 Introduction

Porting Trusted Firmware-A (TF-A) to a new platform involves making some mandatory and optional modifications
for both the cold and warm boot paths. Modifications consist of:

* Implementing a platform-specific function or variable,

44 Chapter 2. Getting Started

Trusted Firmware-A

* Setting up the execution context in a certain way, or
* Defining certain constants (for example #defines).

The platform-specific functions and variables are declared in include/plat/common/platform.h. The firmware
provides a default implementation of variables and functions to fulfill the optional requirements. These implementa-
tions are all weakly defined; they are provided to ease the porting effort. Each platform port can override them with its
own implementation if the default implementation is inadequate.

Some modifications are common to all Boot Loader (BL) stages. Section 2 discusses these in detail. The subsequent
sections discuss the remaining modifications for each BL stage in detail.

Please refer to the Platform Compatibility Policy for the policy regarding compatibility and deprecation of these porting
interfaces.

Only Arm development platforms (such as FVP and Juno) may use the functions/definitions in include/plat/arm/
common,/ and the corresponding source files in plat/arm/common/. This is done so that there are no dependencies
between platforms maintained by different people/companies. If you want to use any of the functionality present in
plat/arm files, please create a pull request that moves the code to plat/common so that it can be discussed.

2.7.2 Common modifications

This section covers the modifications that should be made by the platform for each BL stage to correctly port the
firmware stack. They are categorized as either mandatory or optional.

2.7.3 Common mandatory modifications

A platform port must enable the Memory Management Unit (MMU) as well as the instruction and data caches for each
BL stage. Setting up the translation tables is the responsibility of the platform port because memory maps differ across
platforms. A memory translation library (see 1ib/xlat_tables/) is provided to help in this setup.

Note that although this library supports non-identity mappings, this is intended only for re-mapping peripheral physical
addresses and allows platforms with high I/O addresses to reduce their virtual address space. All other addresses
corresponding to code and data must currently use an identity mapping.

Also, the only translation granule size supported in TF-A is 4KB, as various parts of the code assume that is the case.
It is not possible to switch to 16 KB or 64 KB granule sizes at the moment.

In Arm standard platforms, each BL stage configures the MMU in the platform-specific architecture setup function,
blX_plat_arch_setup(), and uses an identity mapping for all addresses.

If the build option USE_COHERENT_MEM is enabled, each platform can allocate a block of identity mapped secure mem-
ory with Device-nGnRE attributes aligned to page boundary (4K) for each BL stage. All sections which allocate
coherent memory are grouped under coherent_ram. For ex: Bakery locks are placed in a section identified by name
bakery_lock inside coherent_ram so that its possible for the firmware to place variables in it using the following C
code directive:

__section("bakery_lock")

Or alternatively the following assembler code directive:

.section bakery_lock

The coherent_ram section is a sum of all sections like bakery_lock which are used to allocate any data structures
that are accessed both when a CPU is executing with its MMU and caches enabled, and when it’s running with its
MMU and caches disabled. Examples are given below.

The following variables, functions and constants must be defined by the platform for the firmware to work correctly.

2.7. Porting Guide 45

Trusted Firmware-A

File : platform_def.h [mandatory]

Each platform must ensure that a header file of this name is in the system include path with the following constants
defined. This will require updating the list of PLAT_INCLUDES in the platform.mk file.

Platform ports may optionally use the file include/plat/common/common_def.h, which provides typical values for
some of the constants below. These values are likely to be suitable for all platform ports.

#define : PLATFORM_LINKER_FORMAT

Defines the linker format used by the platform, for example el f64-1ittleaarch64.
#define : PLATFORM_LINKER_ARCH

Defines the processor architecture for the linker by the platform, for example aarch64.
#define : PLATFORM_STACK_SIZE

Defines the normal stack memory available to each CPU. This constant is used by plat/common/aarch64/
platform_mp_stack.S and plat/common/aarch64/platform_up_stack.S.

#define : CACHE_WRITEBACK_GRANULE

Defines the size in bits of the largest cache line across all the cache levels in the platform.
#define : FIRMWARE_WELCOME_STR

Defines the character string printed by BL1 upon entry into the b11_main() function.

#define : PLATFORM_CORE_COUNT

Defines the total number of CPUs implemented by the platform across all clusters in the system.
#define : PLAT_NUM_PWR_DOMAINS

Defines the total number of nodes in the power domain topology tree at all the power domain levels used by the
platform. This macro is used by the PSCI implementation to allocate data structures to represent power domain

topology.
#define : PLAT_MAX PWR_LVL

Defines the maximum power domain level that the power management operations should apply to. More often,
but not always, the power domain level corresponds to affinity level. This macro allows the PSCI implementation
to know the highest power domain level that it should consider for power management operations in the system
that the platform implements. For example, the Base AEM FVP implements two clusters with a configurable
number of CPUs and it reports the maximum power domain level as 1.

#define : PLAT_MAX_OFF_STATE

Defines the local power state corresponding to the deepest power down possible at every power domain level in
the platform. The local power states for each level may be sparsely allocated between O and this value with 0
being reserved for the RUN state. The PSCI implementation uses this value to initialize the local power states of
the power domain nodes and to specify the requested power state for a PSCI_CPU_OFF call.

#define : PLAT_MAX_RET_STATE

Defines the local power state corresponding to the deepest retention state possible at every power domain level
in the platform. This macro should be a value less than PLAT_MAX_OFF_STATE and greater than 0. It is
used by the PSCI implementation to distinguish between retention and power down local power states within
PSCI_CPU_SUSPEND call.

#define : PLAT MAX PWR_LVL_STATES

Defines the maximum number of local power states per power domain level that the platform supports. The
default value of this macro is 2 since most platforms just support a maximum of two local power states at each

46

Chapter 2. Getting Started

Trusted Firmware-A

power domain level (power-down and retention). If the platform needs to account for more local power states,
then it must redefine this macro.

Currently, this macro is used by the Generic PSCI implementation to size the array used for
PSCI_STAT_COUNT/RESIDENCY accounting.

o #define : BL1_RO_BASE
Defines the base address in secure ROM where BL1 originally lives. Must be aligned on a page-size boundary.
* #define : BL1_RO_LIMIT

Defines the maximum address in secure ROM that BL1’s actual content (i.e. excluding any data section allocated
at runtime) can occupy.

* #define : BL1_RW_BASE

Defines the base address in secure RAM where BL1’s read-write data will live at runtime. Must be aligned on a
page-size boundary.

¢ #define : BL1_RW_LIMIT
Defines the maximum address in secure RAM that BL1’s read-write data can occupy at runtime.
¢ #define : BL2_BASE

Defines the base address in secure RAM where BL1 loads the BL2 binary image. Must be aligned on a page-size
boundary. This constant is not applicable when BL2_IN_XIP_MEM is set to ‘1°.

* #define : BL2_LIMIT

Defines the maximum address in secure RAM that the BL2 image can occupy. This constant is not applicable
when BL2 IN_XIP_MEM is setto ‘1°.

¢ #define : BL2_RO_BASE

Defines the base address in secure XIP memory where BL2 RO section originally lives. Must be aligned on a
page-size boundary. This constant is only needed when BL2_IN_XIP_MEM is set to ‘1°.

e #define : BL2_RO_LIMIT

Defines the maximum address in secure XIP memory that BL2’s actual content (i.e. excluding any data section
allocated at runtime) can occupy. This constant is only needed when BL2_IN_XIP_MEM is set to ‘1°.

e #define : BL2_ RW_BASE

Defines the base address in secure RAM where BL2’s read-write data will live at runtime. Must be aligned on a
page-size boundary. This constant is only needed when BL2_IN_XIP_MEM is set to ‘1.

* #define : BL2_ RW_LIMIT

Defines the maximum address in secure RAM that BL2’s read-write data can occupy at runtime. This constant
is only needed when BL2_IN_XIP_MEM is set to ‘1°.

* #define : BL31_BASE

Defines the base address in secure RAM where BL2 loads the BL31 binary image. Must be aligned on a page-size
boundary.

¢ #define : BL31_LIMIT
Defines the maximum address in secure RAM that the BL31 image can occupy.

For every image, the platform must define individual identifiers that will be used by BL1 or BL2 to load the corre-
sponding image into memory from non-volatile storage. For the sake of performance, integer numbers will be used as
identifiers. The platform will use those identifiers to return the relevant information about the image to be loaded (file
handler, load address, authentication information, etc.). The following image identifiers are mandatory:

2.7. Porting Guide 47

Trusted Firmware-A

o #define : BL2_IMAGE_ID

BL2 image identifier, used by BL1 to load BL2.
e #define : BL31_IMAGE_ID

BL31 image identifier, used by BL2 to load BL31.
* #define : BL33_IMAGE_ID

BL33 image identifier, used by BL2 to load BL33.

If Trusted Board Boot is enabled, the following certificate identifiers must also be defined:

¢ #define : TRUSTED_BOOT_FW_CERT_ID
BL2 content certificate identifier, used by BL1 to load the BL2 content certificate.
¢ #define : TRUSTED_KEY_CERT_ID
Trusted key certificate identifier, used by BL2 to load the trusted key certificate.
* #define : SOC_FW_KEY_CERT_ID
BL31 key certificate identifier, used by BL2 to load the BL31 key certificate.
* #define : SOC_FW_CONTENT_CERT_ID
BL31 content certificate identifier, used by BL2 to load the BL31 content certificate.
¢ #define : NON_TRUSTED_FW_KEY_CERT_ID
BL33 key certificate identifier, used by BL2 to load the BL33 key certificate.
¢ #define : NON_TRUSTED_FW_CONTENT_CERT_ID
BL33 content certificate identifier, used by BL2 to load the BL33 content certificate.
* #define : FWU_CERT_ID
Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the FWU content certificate.

* #define : PLAT_CRYPTOCELL_BASE

This defines the base address of Arm® TrustZone® CryptoCell and must be defined if CryptoCell crypto driver
is used for Trusted Board Boot. For capable Arm platforms, this driver is used if ARM_CRYPTOCELL_INTEG is
set.

If the AP Firmware Updater Configuration image, BL2U is used, the following must also be defined:

¢ #define : BL2U_BASE

Defines the base address in secure memory where BL1 copies the BL2U binary image. Must be aligned on a
page-size boundary.

¢ #define : BL2U_LIMIT

Defines the maximum address in secure memory that the BL2U image can occupy.

* #define : BL2U_IMAGE_ID

BL2U image identifier, used by BL1 to fetch an image descriptor corresponding to BL2U.

If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following must also be defined:

¢ #define : SCP_BL2U_IMAGE_ID

SCP_BL2U image identifier, used by BL1 to fetch an image descriptor corresponding to SCP_BL2U.

48

Chapter 2. Getting Started

Trusted Firmware-A

Note: TF-A does not provide source code for this image.

If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must also be defined:
¢ #define : NS_BL1U_BASE

Defines the base address in non-secure ROM where NS_BL1U executes. Must be aligned on a page-size bound-
ary.

Note: TF-A does not provide source code for this image.

¢ #define : NS_BL1U_IMAGE_ID
NS_BL1U image identifier, used by BL1 to fetch an image descriptor corresponding to NS_BL1U.
If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also be defined:
* #define : NS_BL2U_BASE

Defines the base address in non-secure memory where NS_BL2U executes. Must be aligned on a page-size
boundary.

Note: TF-A does not provide source code for this image.

* #define : NS_BL2U_IMAGE_ID
NS_BL2U image identifier, used by BL1 to fetch an image descriptor corresponding to NS_BL2U.
For the the Firmware update capability of TRUSTED BOARD BOOT, the following macros may also be defined:
¢ #define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES

Total number of images that can be loaded simultaneously. If the platform doesn’t specify any value, it defaults
to 10.

If a SCP_BL2 image is supported by the platform, the following constants must also be defined:
* #define : SCP_BL2_IMAGE_ID

SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory from platform storage before
being transferred to the SCP.

¢ #define : SCP_FW_KEY_CERT_ID

SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key certificate (mandatory when Trusted
Board Boot is enabled).

o #define : SCP_FW_CONTENT_CERT_ID

SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2 content certificate (mandatory when
Trusted Board Boot is enabled).

If a BL32 image is supported by the platform, the following constants must also be defined:
o #define : BL32_IMAGE_ID
BL32 image identifier, used by BL2 to load BL32.
* #define : TRUSTED_OS_FW_KEY_CERT_ID

2.7. Porting Guide 49

Trusted Firmware-A

BL32 key certificate identifier, used by BL2 to load the BL32 key certificate (mandatory when Trusted Board
Boot is enabled).

#define : TRUSTED_OS_FW_CONTENT_CERT_ID

BL32 content certificate identifier, used by BL2 to load the BL32 content certificate (mandatory when Trusted
Board Boot is enabled).

#define : BL32_BASE

Defines the base address in secure memory where BL2 loads the BL32 binary image. Must be aligned on a
page-size boundary.

#define : BL32_LIMIT

Defines the maximum address that the BL32 image can occupy.

If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the platform, the following constants must
also be defined:

#define : TSP_SEC_MEM_BASE

Defines the base address of the secure memory used by the TSP image on the platform. This must be at the same
address or below BL32_BASE.

#define : TSP_SEC_MEM_SIZE

Defines the size of the secure memory used by the BL32 image on the platform. TSP_SEC_MEM_BASE and
TSP_SEC_MEM_SIZE must fully accommodate the memory required by the BL32 image, defined by BL32_BASE
and BL32_LIMIT.

#define : TSP_IRQ_SEC_PHY_TIMER

Defines the ID of the secure physical generic timer interrupt used by the TSP’s interrupt handling code.

If the platform port uses the translation table library code, the following constants must also be defined:

#define : PLAT _XLAT_TABLES_DYNAMIC

Optional flag that can be set per-image to enable the dynamic allocation of regions even when the MMU is
enabled. If not defined, only static functionality will be available, if defined and set to 1 it will also include the
dynamic functionality.

#define : MAX_XLAT _TABLES

Defines the maximum number of translation tables that are allocated by the translation table library code. To
minimize the amount of runtime memory used, choose the smallest value needed to map the required virtual ad-
dresses for each BL stage. If PLAT_XLAT_TABLES_DYNAMIC flag is enabled for a BL image, MAX_XLAT_TABLES
must be defined to accommodate the dynamic regions as well.

#define : MAX_MMAP_REGIONS

Defines the maximum number of regions that are allocated by the translation table library code. A region consists
of physical base address, virtual base address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure),
as defined in the mmap_region_t structure. The platform defines the regions that should be mapped. Then,
the translation table library will create the corresponding tables and descriptors at runtime. To minimize the
amount of runtime memory used, choose the smallest value needed to register the required regions for each BL
stage. If PLAT_XLAT_TABLES_DYNAMIC flag is enabled for a BL image, MAX_MMAP_REGIONS must be defined
to accommodate the dynamic regions as well.

#define : PLAT_VIRT_ADDR_SPACE_SIZE

Defines the total size of the virtual address space in bytes. For example, for a 32 bit virtual address space, this
value should be (1ULL << 32).

50

Chapter 2. Getting Started

Trusted Firmware-A

o #define : PLAT_PHY_ADDR_SPACE_SIZE

Defines the total size of the physical address space in bytes. For example, for a 32 bit physical address space,
this value should be (1ULL << 32).

If the platform port uses the 10 storage framework, the following constants must also be defined:
¢ #define : MAX _10_DEVICES

Defines the maximum number of registered IO devices. Attempting to register more devices than this value using
io_register_device() will fail with -ENOMEM.

e #define : MAX_10_HANDLES

Defines the maximum number of open IO handles. Attempting to open more IO entities than this value using
io_open() will fail with -ENOMEM.

* #define : MAX _10_BLOCK_DEVICES

Defines the maximum number of registered 10 block devices. Attempting to register more devices this
value using io_dev_open() will fail with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than
MAX_IO_DEVICES. With this macro, multiple block devices could be supported at the same time.

If the platform needs to allocate data within the per-cpu data framework in BL31, it should define the following macro.
Currently this is only required if the platform decides not to use the coherent memory section by undefining the
USE_COHERENT_MENM build flag. In this case, the framework allocates the required memory within the the per-cpu
data to minimize wastage.

* #define : PLAT_PCPU_DATA_SIZE
Defines the memory (in bytes) to be reserved within the per-cpu data structure for use by the platform layer.

The following constants are optional. They should be defined when the platform memory layout implies some image
overlaying like in Arm standard platforms.

* #define : BL31_PROGBITS_LIMIT
Defines the maximum address in secure RAM that the BL31’s progbits sections can occupy.
¢ #define : TSP_PROGBITS_LIMIT
Defines the maximum address that the TSP’s progbits sections can occupy.
If the platform port uses the PLO61 GPIO driver, the following constant may optionally be defined:

* PLAT_PL061_MAX_GPIOS Maximum number of GPIOs required by the platform. This allows control how
much memory is allocated for PLO61 GPIO controllers. The default value is

1. $(eval $(call add_define, PLAT_PL061_MAX_GPIOS))
If the platform port uses the partition driver, the following constant may optionally be defined:

* PLAT_PARTITION_MAX_ENTRIES Maximum number of partition entries required by the platform. This
allows control how much memory is allocated for partition entries. The default value is 128. For ex-
ample, define the build flag in platform.mk: PLAT_PARTITION_MAX_ENTRIES := 12 $(eval $(call
add_define, PLAT_PARTITION_MAX_ENTRIES))

e PLAT_PARTITION_BLOCK _SIZE The size of partition block. It could be either 512 bytes or
4096 bytes. The default value is 512. For example, define the build flag in platform.mk:
PLAT_PARTITION_BLOCK_SIZE := 4096 $(eval $(call add_define, PLAT_PARTITION_BLOCK_SIZE))

The following constant is optional. It should be defined to override the default behaviour of the assert () function
(for example, to save memory).

2.7. Porting Guide 51

Trusted Firmware-A

e PLAT_LOG_LEVEL_ASSERT If PLAT_LOG_LEVEL_ASSERT is higher or equal than LOG_LEVEL_VERBOSE,
assert () prints the name of the file, the line number and the asserted expression. Else if it is higher than
LOG_LEVEL_INFO, it prints the file name and the line number. Else if it is lower than LOG_LEVEL_INFO, it
doesn’t print anything to the console. If PLAT_LOG_LEVEL_ASSERT isn’t defined, it defaults to LOG_LEVEL.

If the platform port uses the Activity Monitor Unit, the following constant may be defined:

e PLAT_AMU_GROUP1_COUNTERS_MASK This mask reflects the set of group counters that should be
enabled. The maximum number of group | counters supported by AMUvI is 16 so the mask can be at most
Oxftff. If the platform does not define this mask, no group 1 counters are enabled.

File : plat_macros.S [mandatory]
Each platform must ensure a file of this name is in the system include path with the following macro defined. In the
Arm development platforms, this file is found in plat/arm/board/<plat_name>/include/plat_macros.S.

¢ Macro : plat_crash_print_regs

This macro allows the crash reporting routine to print relevant platform registers in case of an unhandled exception
in BL31. This aids in debugging and this macro can be defined to be empty in case register reporting is not
desired.

For instance, GIC or interconnect registers may be helpful for troubleshooting.

2.7.4 Handling Reset

BL1 by default implements the reset vector where execution starts from a cold or warm boot. BL31 can be optionally
set as a reset vector using the RESET_TO_BL31 make variable.

For each CPU, the reset vector code is responsible for the following tasks:
1. Distinguishing between a cold boot and a warm boot.

2. In the case of a cold boot and the CPU being a secondary CPU, ensuring that the CPU is placed in a platform-
specific state until the primary CPU performs the necessary steps to remove it from this state.

3. In the case of a warm boot, ensuring that the CPU jumps to a platform- specific address in the BL31 image in
the same processor mode as it was when released from reset.

The following functions need to be implemented by the platform port to enable reset vector code to perform the above
tasks.

Function : plat_get_my_entrypoint() [mnandatory when PROGRAMMABLE_RESET_ADDRESS == 0]

Argument : void
Return : uintptr_t

This function is called with the MMU and caches disabled (SCTLR_EL3.M = 0 and SCTLR_EL3.C = 0). The function
is responsible for distinguishing between a warm and cold reset for the current CPU using platform-specific means. If
it’s a warm reset, then it returns the warm reset entrypoint point provided to plat_setup_psci_ops() during BL31
initialization. If it’s a cold reset then this function must return zero.

This function does not follow the Procedure Call Standard used by the Application Binary Interface for the Arm 64-bit
architecture. The caller should not assume that callee saved registers are preserved across a call to this function.

This function fulfills requirement 1 and 3 listed above.

52 Chapter 2. Getting Started

Trusted Firmware-A

Note that for platforms that support programming the reset address, it is expected that a CPU will start executing code
directly at the right address, both on a cold and warm reset. In this case, there is no need to identify the type of reset
nor to query the warm reset entrypoint. Therefore, implementing this function is not required on such platforms.

Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]

Argument : void

This function is called with the MMU and data caches disabled. It is responsible for placing the executing secondary
CPU in a platform-specific state until the primary CPU performs the necessary actions to bring it out of that state and
allow entry into the OS. This function must not return.

In the Arm FVP port, when using the normal boot flow, each secondary CPU powers itself off. The primary CPU is
responsible for powering up the secondary CPUs when normal world software requires them. When booting an EL3
payload instead, they stay powered on and are put in a holding pen until their mailbox gets populated.

This function fulfills requirement 2 above.

Note that for platforms that can’t release secondary CPUs out of reset, only the primary CPU will execute the cold boot
code. Therefore, implementing this function is not required on such platforms.

Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]

Argument : void
Return : unsigned int

This function identifies whether the current CPU is the primary CPU or a secondary CPU. A return value of zero
indicates that the CPU is not the primary CPU, while a non-zero return value indicates that the CPU is the primary
CPU.

Note that for platforms that can’t release secondary CPUs out of reset, only the primary CPU will execute the cold boot
code. Therefore, there is no need to distinguish between primary and secondary CPUs and implementing this function
is not required.

Function : platform_mem_init() [mandatory]

Argument : void
Return : void

This function is called before any access to data is made by the firmware, in order to carry out any essential memory
initialization.

Function: plat_get_rotpk_info()

Argument : void *, void **, unsigned int *, unsigned int *
Return : int

This function is mandatory when Trusted Board Boot is enabled. It returns a pointer to the ROTPK stored in the
platform (or a hash of it) and its length. The ROTPK must be encoded in DER format according to the following
ASN.1 structure:

2.7. Porting Guide 53

Trusted Firmware-A

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL
}
SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING

In case the function returns a hash of the key:

DigestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier,
digest OCTET STRING

3

The function returns O on success. Any other value is treated as error by the Trusted Board Boot. The function also
reports extra information related to the ROTPK in the flags parameter:

ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
hash.

ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
verification while the platform ROTPK is not deployed.
When this flag is set, the function does not need to
return a platform ROTPK, and the authentication
framework uses the ROTPK in the certificate without
verifying it against the platform value. This flag
must not be used in a deployed production environment.

Function: plat_get_nv_ctr()

Argument : void *, unsigned int *
Return : int

This function is mandatory when Trusted Board Boot is enabled. It returns the non-volatile counter value stored in the
platform in the second argument. The cookie in the first argument may be used to select the counter in case the platform
provides more than one (for example, on platforms that use the default TBBR CoT, the cookie will correspond to the
OID values defined in TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).

The function returns O on success. Any other value means the counter value could not be retrieved from the platform.

Function: plat_set_nv_ctr()

Argument : void *, unsigned int
Return : int

This function is mandatory when Trusted Board Boot is enabled. It sets a new counter value in the platform. The
cookie in the first argument may be used to select the counter (as explained in plat_get_nv_ctr()). The second argument
is the updated counter value to be written to the NV counter.

The function returns 0 on success. Any other value means the counter value could not be updated.

54 Chapter 2. Getting Started

Trusted Firmware-A

Function: plat_set_nv_ctr2()

Argument : void *, const auth_img_desc_t *, unsigned int
Return : int

This function is optional when Trusted Board Boot is enabled. If this interface is defined, then plat_set_nv_ctr()
need not be defined. The first argument passed is a cookie and is typically used to differentiate between a Non Trusted
NV Counter and a Trusted NV Counter. The second argument is a pointer to an authentication image descriptor and
may be used to decide if the counter is allowed to be updated or not. The third argument is the updated counter value
to be written to the NV counter.

The function returns 0 on success. Any other value means the counter value either could not be updated or the authen-
tication image descriptor indicates that it is not allowed to be updated.

2.7.5 Common mandatory function modifications

The following functions are mandatory functions which need to be implemented by the platform port.

Function : plat_my_core_pos()

Argument : void
Return : unsigned int

This function returns the index of the calling CPU which is used as a CPU-specific linear index into blocks of memory
(for example while allocating per-CPU stacks). This function will be invoked very early in the initialization sequence
which mandates that this function should be implemented in assembly and should not rely on the availability of a C
runtime environment. This function can clobber x0 - x8 and must preserve x9 - x29.

This function plays a crucial role in the power domain topology framework in PSCI and details of this can be found in
PSCI Power Domain Tree Structure.

Function : plat_core_pos_by_mpidr()

Argument : u_register_t
Return : int

This function validates the MPIDR of a CPU and converts it to an index, which can be used as a CPU-specific linear
index into blocks of memory. In case the MPIDR is invalid, this function returns -1. This function will only be invoked
by BL31 after the power domain topology is initialized and can utilize the C runtime environment. For further details
about how TF-A represents the power domain topology and how this relates to the linear CPU index, please refer PSCI
Power Domain Tree Structure.

2.7. Porting Guide 55

Trusted Firmware-A

Function : plat_get _mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]

Arguments : void **heap_addr, size_t *heap_size
Return : int

This function is invoked during Mbed TLS library initialisation to get a heap, by means of a starting address and a size.
This heap will then be used internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS must be
able to provide a heap to it.

A helper function can be found in drivers/auth/mbedtls/mbedtls_common.c in which a heap is statically reserved during
compile time inside every image (i.e. every BL stage) that utilises Mbed TLS. In this default implementation, the func-
tion simply returns the address and size of this “pre-allocated” heap. For a platform to use this default implementation,
only a call to the helper from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.

However, by writting their own implementation, platforms have the potential to optimise memory usage. For example,
on some Arm platforms, the Mbed TLS heap is shared between BL1 and BL2 stages and, thus, the necessary space is
not reserved twice.

On success the function should return 0 and a negative error code otherwise.

Function : plat_get _enc_key_info() [when FW_ENC_STATUS == 0 or 1]

Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
size_t *key_len, unsigned int *flags, const uint8_t *img_id,
size_t img_id_len

Return : int

This function provides a symmetric key (either SSK or BSSK depending on fw_enc_status) which is invoked during
runtime decryption of encrypted firmware images. plat/common/plat_bl_common.c provides a dummy weak imple-
mentation for testing purposes which must be overridden by the platform trying to implement a real world firmware
encryption use-case.

It also allows the platform to pass symmetric key identifier rather than actual symmetric key which is useful in cases
where the crypto backend provides secure storage for the symmetric key. So in this case ENC_KEY_IS_IDENTIFIER
flag must be set in flags.

In addition to above a platform may also choose to provide an image specific symmetric key/identifier using img_id.
On success the function should return 0 and a negative error code otherwise.

Note that this API depends on DECRYPTION_SUPPORT build flag which is marked as experimental.

2.7.6 Common optional modifications

The following are helper functions implemented by the firmware that perform common platform-specific tasks. A
platform may choose to override these definitions.

56 Chapter 2. Getting Started

Trusted Firmware-A

Function : plat_set_my_stack()

Argument : void
Return : void

This function sets the current stack pointer to the normal memory stack that has been allocated for the current CPU.
For BL images that only require a stack for the primary CPU, the UP version of the function is used. The size of the
stack allocated to each CPU is specified by the platform defined constant PLATFORM_STACK_SIZE.

Common implementations of this function for the UP and MP BL images are provided in plat/common/aarch64/
platform_up_stack.S and plat/common/aarch64/platform_mp_stack.S

Function : plat_get_my_stack()

Argument : void
Return : uintptr_t

This function returns the base address of the normal memory stack that has been allocated for the current CPU. For
BL images that only require a stack for the primary CPU, the UP version of the function is used. The size of the stack
allocated to each CPU is specified by the platform defined constant PLATFORM_STACK_SIZE.

Common implementations of this function for the UP and MP BL images are provided in plat/common/aarch64/
platform_up_stack.S and plat/common/aarch64/platform_mp_stack.S

Function : plat_report_exception()

Argument : unsigned int
Return : void

A platform may need to report various information about its status when an exception is taken, for example the current
exception level, the CPU security state (secure/non-secure), the exception type, and so on. This function is called in
the following circumstances:

* In BL1, whenever an exception is taken.
* In BL2, whenever an exception is taken.

The default implementation doesn’t do anything, to avoid making assumptions about the way the platform displays its
status information.

For AArch64, this function receives the exception type as its argument. Possible values for exceptions types are listed
in the include/common/bl_common.h header file. Note that these constants are not related to any architectural
exception code; they are just a TF-A convention.

For AArch32, this function receives the exception mode as its argument. Possible values for exception modes are listed
in the include/lib/aarch32/arch.h header file.

2.7. Porting Guide 57

Trusted Firmware-A

Function : plat_reset_handler()

Argument : void
Return : void

A platform may need to do additional initialization after reset. This function allows the platform to do the platform
specific initializations. Platform specific errata workarounds could also be implemented here. The API should preserve
the values of callee saved registers x19 to x29.

The default implementation doesn’t do anything. If a platform needs to override the default implementation, refer to
the Firmware Design for general guidelines.

Function : plat_disable_acp()

Argument : void
Return : void

This API allows a platform to disable the Accelerator Coherency Port (if present) during a cluster power down sequence.
The default weak implementation doesn’t do anything. Since this API is called during the power down sequence, it has
restrictions for stack usage and it can use the registers x0 - x17 as scratch registers. It should preserve the value in x18
register as it is used by the caller to store the return address.

Function : plat_error_handler()

Argument : int
Return : void

This API is called when the generic code encounters an error situation from which it cannot continue. It allows the
platform to perform error reporting or recovery actions (for example, reset the system). This function must not return.

The parameter indicates the type of error using standard codes from errno.h. Possible errors reported by the generic
code are:

» -EAUTH: a certificate or image could not be authenticated (when Trusted Board Boot is enabled)
* -ENOENT: the requested image or certificate could not be found or an IO error was detected

e -ENOMEM: resources exhausted. TF-A does not use dynamic memory, so this error is usually an indication of an
incorrect array size

The default implementation simply spins.

Function : plat_panic_handler()

Argument : void
Return : void

This API is called when the generic code encounters an unexpected error situation from which it cannot recover. This
function must not return, and must be implemented in assembly because it may be called before the C environment is
initialized.

Note: The address from where it was called is stored in x30 (Link Register). The default implementation simply spins.

58 Chapter 2. Getting Started

Trusted Firmware-A

Function : plat_get bl _image_load_info()

Argument : void
Return : bl_load_info_t *

This function returns pointer to the list of images that the platform has populated to load. This function is invoked in
BL2 to load the BL3xx images.

Function : plat_get_next_bl_params()

Argument : void
Return : bl_params_t *

This function returns a pointer to the shared memory that the platform has kept aside to pass TF-A related information
that next BL image needs. This function is invoked in BL2 to pass this information to the next BL image.

Function : plat_get_stack_protector_canary()

Argument : void
Return : u_register_t

This function returns a random value that is used to initialize the canary used when the stack protector is enabled with
ENABLE_STACK_PROTECTOR. A predictable value will weaken the protection as the attacker could easily write
the right value as part of the attack most of the time. Therefore, it should return a true random number.

Warning: For the protection to be effective, the global data need to be placed at a lower address than the stack
bases. Failure to do so would allow an attacker to overwrite the canary as part of the stack buffer overflow attack.

Function : plat_flush_next_bl_params()

Argument : void
Return 1 void

This function flushes to main memory all the image params that are passed to next image. This function is invoked in
BL2 to flush this information to the next BL image.

Function : plat_log_get_prefix()

Argument : unsigned int
Return : const char *

This function defines the prefix string corresponding to the log_level to be prepended to all the log output from TF-
A. The log_level (argument) will correspond to one of the standard log levels defined in debug.h. The platform can
override the common implementation to define a different prefix string for the log output. The implementation should
be robust to future changes that increase the number of log levels.

2.7. Porting Guide 59

Trusted Firmware-A

Function : plat_get_soc_version()

Argument : void
Return : int32_t

This function returns soc version which mainly consist of below fields

soc_version[30:24] = JEP-106 continuation code for the SiP
soc_version[23:16] JEP-106 identification code with parity bit for the SiP
soc_version[15:0] Implementation defined SoC ID

Function : plat_get_soc_revision()

Argument : void
Return : int32_t

This function returns soc revision in below format

soc_revision[0:30] = SOC revision of specific SOC

Function : plat_is_smccc_feature_available()

Argument : u_register_t
Return : int32_t

This function returns SMC_ARCH_CALL_SUCCESS if the platform supports the SMCCC function specified in the
argument; otherwise returns SMC_ARCH_CALL_NOT_SUPPORTED.

2.7.7 Modifications specific to a Boot Loader stage

2.7.8 Boot Loader Stage 1 (BL1)

BL1 implements the reset vector where execution starts from after a cold or warm boot. For each CPU, BL1 is respon-
sible for the following tasks:

1. Handling the reset as described in section 2.2

2. Inthe case of a cold boot and the CPU being the primary CPU, ensuring that only this CPU executes the remaining
BL1 code, including loading and passing control to the BL2 stage.

3. Identifying and starting the Firmware Update process (if required).

4. Loading the BL2 image from non-volatile storage into secure memory at the address specified by the platform
defined constant BL2_BASE.

5. Populating a meminfo structure with the following information in memory, accessible by BL2 immediately upon
entry.

meminfo.total_base Base address of secure RAM visible to BL2
meminfo.total_size = Size of secure RAM visible to BL2

60 Chapter 2. Getting Started

Trusted Firmware-A

By default, BL1 places this meminfo structure at the end of secure memory visible to BL2.

It is possible for the platform to decide where it wants to place the meminfo structure for BL2
or restrict the amount of memory visible to BL2 by overriding the weak default implementation of
bll_plat_handle_post_image_load API

The following functions need to be implemented by the platform port to enable BL1 to perform the above tasks.

Function : bl1_early_platform_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.
On Arm standard platforms, this function:
* Enables a secure instance of SP805 to act as the Trusted Watchdog.
* Initializes a UART (PLO11 console), which enables access to the printf family of functions in BL1.

 Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to the CCI slave interface correspond-
ing to the cluster that includes the primary CPU.

Function : bl1_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function performs any platform-specific and architectural setup that the platform requires. Platform-specific setup
might include configuration of memory controllers and the interconnect.

In Arm standard platforms, this function enables the MMU.

This function helps fulfill requirement 2 above.

Function : bl1_platform_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches enabled. It is responsible for performing any remaining platform-
specific setup that can occur after the MMU and data cache have been enabled.

if support for multiple boot sources is required, it initializes the boot sequence used by plat_try_next_boot_source().
In Arm standard platforms, this function initializes the storage abstraction layer used to load the next bootloader image.

This function helps fulfill requirement 4 above.

2.7. Porting Guide 61

Trusted Firmware-A

Function : bl1_plat_sec_mem_layout() [mandatory]

Argument : void
Return : meminfo *

This function should only be called on the cold boot path. It executes with the MMU and data caches enabled. The
pointer returned by this function must point to a meminfo structure containing the extents and availability of secure
RAM for the BL1 stage.

meminfo.total_base = Base address of secure RAM visible to BL1
meminfo.total_size = Size of secure RAM visible to BL1

This information is used by BL1 to load the BL2 image in secure RAM. BL1 also populates a similar structure to tell
BL2 the extents of memory available for its own use.

This function helps fulfill requirements 4 and 5 above.

Function : bl1_plat_prepare_exit() [optional]

Argument : entry_point_info_t *
Return : void

This function is called prior to exiting BL1 in response to the BL1_SMC_RUN_IMAGE SMC request raised by BL2. It
should be used to perform platform specific clean up or bookkeeping operations before transferring control to the next
image. It receives the address of the entry_point_info_t structure passed from BL2. This function runs with MMU
disabled.

Function : bl1_plat_set_ep_info() [optional]

Argument : unsigned int image_id, entry_point_info_t *ep_info
Return : void

This function allows platforms to override ep_info for the given image_id.

The default implementation just returns.

Function : bl1_plat_get_next_image_id() [optional]

Argument : void
Return : unsigned int

This and the following function must be overridden to enable the FWU feature.

BLI1 calls this function after platform setup to identify the next image to be loaded and executed. If the platform returns
BL2_IMAGE_ID then BL1 proceeds with the normal boot sequence, which loads and executes BL2. If the platform
returns a different image id, BL1 assumes that Firmware Update is required.

The default implementation always returns BL2_IMAGE_ID. The Arm development platforms override this function to
detect if firmware update is required, and if so, return the first image in the firmware update process.

62 Chapter 2. Getting Started

Trusted Firmware-A

Function : bl1_plat_get_image_desc() [optional]

Argument : unsigned int image_id
Return . image_desc_t *

BLI calls this function to get the image descriptor information image_desc_t for the provided image_id from the
platform.

The default implementation always returns a common BL2 image descriptor. Arm standard platforms return an image
descriptor corresponding to BL2 or one of the firmware update images defined in the Trusted Board Boot Requirements
specification.

Function : bl1_plat_handle_pre_image_load() [optional]

Argument : unsigned int image_id
Return : int

This function can be used by the platforms to update/use image information corresponding to image_id. This function
is invoked in BL1, both in cold boot and FWU code path, before loading the image.

Function : bl1_plat_handle_post_image_load() [optional]

Argument : unsigned int image_id
Return :int

This function can be used by the platforms to update/use image information corresponding to image_id. This function
is invoked in BL1, both in cold boot and FWU code path, after loading and authenticating the image.

The default weak implementation of this function calculates the amount of Trusted SRAM that can be used by BL2
and allocates a meminfo_t structure at the beginning of this free memory and populates it. The address of meminfo_t
structure is updated in arg1 of the entrypoint information to BL2.

Function : bl1_plat_fwu_done() [optional]

Argument : unsigned int image_id, uintptr_t image_src,
unsigned int image_size
Return 1 void

BLI1 calls this function when the FWU process is complete. It must not return. The platform may override this function
to take platform specific action, for example to initiate the normal boot flow.

The default implementation spins forever.

2.7. Porting Guide 63

Trusted Firmware-A

Function : bl1_plat_mem_check() [mandatory]

Argument : uintptr_t mem_base, unsigned int mem_size,
unsigned int flags
Return : int

BL1 calls this function while handling FWU related SMCs, more specifically when copying or authenticating an image.
Its responsibility is to ensure that the region of memory identified by mem_base and mem_size is mapped in BL1, and
that this memory corresponds to either a secure or non-secure memory region as indicated by the security state of the
flags argument.

This function can safely assume that the value resulting from the addition of mem_base and mem_size fits into a
uintptr_t type variable and does not overflow.

This function must return 0 on success, a non-null error code otherwise.

The default implementation of this function asserts therefore platforms must override it when using the FWU feature.

2.7.9 Boot Loader Stage 2 (BL2)

The BL2 stage is executed only by the primary CPU, which is determined in BLI1 using the
platform_is_primary_cpu() function. BLI1 passed control to BL2 at BL2_BASE. BL2 executes in Secure
EL1 and and invokes plat_get_bl_image_load_info() to retrieve the list of images to load from non-volatile
storage to secure/non-secure RAM. After all the images are loaded then BL2 invokes plat_get_next_bl_params()
to get the list of executable images to be passed to the next BL image.

The following functions must be implemented by the platform port to enable BL2 to perform the above tasks.

Function : bl2_early_platform_setup2() [mandatory]

Argument : u_register_t, u_register_t, u_register_t, u_register_t
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. The 4 arguments
are passed by BL1 to BL2 and these arguments are platform specific.

On Arm standard platforms, the arguments received are :
arg0 - Points to load address of FW_CONFIG

argl - meminfo structure populated by BL1. The platform copies the contents of meminfo as it may be
subsequently overwritten by BL2.

On Arm standard platforms, this function also:
¢ Initializes a UART (PLO11 console), which enables access to the printf family of functions in BL2.

* Initializes the storage abstraction layer used to load further bootloader images. It is necessary to do this early
on platforms with a SCP_BL2 image, since the later b12_platform_setup must be done after SCP_BL2 is
loaded.

64 Chapter 2. Getting Started

Trusted Firmware-A

Function : bl2_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.
The purpose of this function is to perform any architectural initialization that varies across platforms.

On Arm standard platforms, this function enables the MMU.

Function : bl2_platform_setup() [mandatory]

Argument : void
Return : void

This function may execute with the MMU and data caches enabled if the platform port does the necessary initialization
in bl2_plat_arch_setup(). It is only called by the primary CPU.

The purpose of this function is to perform any platform initialization specific to BL2.

In Arm standard platforms, this function performs security setup, including configuration of the TrustZone controller
to allow non-secure masters access to most of DRAM. Part of DRAM is reserved for secure world use.

Function : bl2_plat_handle_pre_image_load() [optional]

Argument : unsigned int
Return : int

This function can be used by the platforms to update/use image information for given image_id. This function is
currently invoked in BL2 before loading each image.

Function : bl2_plat_handle_post_image_load() [optional]

Argument : unsigned int
Return : int

This function can be used by the platforms to update/use image information for given image_id. This function is
currently invoked in BL2 after loading each image.

Function : bl2_plat_preload_setup [optional]

Argument : void
Return : void

This optional function performs any BL2 platform initialization required before image loading, that is not done later
in bl2_platform_setup(). Specifically, if support for multiple boot sources is required, it initializes the boot sequence
used by plat_try_next_boot_source().

2.7. Porting Guide 65

Trusted Firmware-A

Function : plat_try_next_boot_source() [optional]

Argument : void
Return : int

This optional function passes to the next boot source in the redundancy sequence.

This function moves the current boot redundancy source to the next element in the boot sequence. If there are no more
boot sources then it must return 0, otherwise it must return 1. The default implementation of this always returns 0.

2.7.10 Boot Loader Stage 2 (BL2) at EL3

When the platform has a non-TF-A Boot ROM it is desirable to jump directly to BL2 instead of TF-A BLI. In this
case BL2 is expected to execute at EL3 instead of executing at EL1. Refer to the Firmware Design document for more
information.

All mandatory functions of BL2 must be implemented, except the functions bl2_early_platform_setup
and bl2_el3_plat_arch_setup, because their work is done now by bl2_el3_early_platform_setup and
bl2_el3_plat_arch_setup. These functions should generally implement the bll_plat_xxx() and bl2_plat_xxx()
functionality combined.

Function : bl2_el3_early_platform_setup() [mandatory]

Argument : u_register_t, u_register_t, u_register_t, u_register_t
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. This function
receives four parameters which can be used by the platform to pass any needed information from the Boot ROM to
BL2.

On Arm standard platforms, this function does the following:
¢ Initializes a UART (PLO11 console), which enables access to the printf family of functions in BL2.

* Initializes the storage abstraction layer used to load further bootloader images. It is necessary to do this early
on platforms with a SCP_BL2 image, since the later b12_platform_setup must be done after SCP_BL2 is
loaded.

* Initializes the private variables that define the memory layout used.

Function : bl2_el3_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.
The purpose of this function is to perform any architectural initialization that varies across platforms.

On Arm standard platforms, this function enables the MMU.

66 Chapter 2. Getting Started

Trusted Firmware-A

Function : bl2_el3_plat_prepare_exit() [optional]

Argument : void
Return : void

This function is called prior to exiting BL2 and run the next image. It should be used to perform platform specific clean
up or bookkeeping operations before transferring control to the next image. This function runs with MMU disabled.

2.7.11 FWU Boot Loader Stage 2 (BL2U)

The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU process and is executed only by the
primary CPU. BL1 passes control to BL2U at BL2U_BASE. BL2U executes in Secure-EL1 and is responsible for:

1. (Optional) Transferring the optional SCP_BL2U binary image from AP secure memory to SCP RAM. BL2U
uses the SCP_BL2U image_info passed by BL1. SCP_BL2U_BASE defines the address in AP secure memory
where SCP_BL2U should be copied from. Subsequent handling of the SCP_BL2U image is implemented by the
platform specific bl2u_plat_handle_scp_bl2u() function. If SCP_BL2U_BASE is not defined then this step
is not performed.

2. Any platform specific setup required to perform the FWU process. For example, Arm standard platforms initialize
the TZC controller so that the normal world can access DDR memory.

The following functions must be implemented by the platform port to enable BL2U to perform the tasks mentioned
above.

Function : bl2u_early_platform_setup() [mandatory]

Argument : meminfo *mem_info, void *plat_info
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. The arguments
to this function is the address of the meminfo structure and platform specific info provided by BLI.

The platform may copy the contents of the mem_info and plat_info into private storage as the original memory may
be subsequently overwritten by BL2U.

On Arm CSS platforms plat_info is interpreted as an image_info_t structure, to extract SCP_BL2U image infor-
mation, which is then copied into a private variable.

Function : bl2u_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.

The purpose of this function is to perform any architectural initialization that varies across platforms, for example
enabling the MMU (since the memory map differs across platforms).

2.7. Porting Guide 67

Trusted Firmware-A

Function : bl2u_platform_setup() [mandatory]

Argument : void
Return : void

This function may execute with the MMU and data caches enabled if the platform port does the necessary initialization
in bl2u_plat_arch_setup(). It is only called by the primary CPU.

The purpose of this function is to perform any platform initialization specific to BL2U.

In Arm standard platforms, this function performs security setup, including configuration of the TrustZone controller
to allow non-secure masters access to most of DRAM. Part of DRAM is reserved for secure world use.

Function : bl2u_plat_handle_scp_bl2u() [optional]

Argument : void
Return : int

This function is used to perform any platform-specific actions required to handle the SCP firmware. Typically it transfers
the image into SCP memory using a platform-specific protocol and waits until SCP executes it and signals to the
Application Processor (AP) for BL2U execution to continue.

This function returns 0 on success, a negative error code otherwise. This function is included if SCP_BL2U_BASE is
defined.

2.7.12 Boot Loader Stage 3-1 (BL31)

During cold boot, the BL31 stage is executed only by the primary CPU. This is determined in BL1 using the
platform_is_primary_cpu() function. BL1 passes control to BL31 at BL31_BASE. During warm boot, BL31 is
executed by all CPUs. BL31 executes at EL3 and is responsible for:

1. Re-initializing all architectural and platform state. Although BL1 performs some of this initialization, BL.31
remains resident in EL3 and must ensure that EL3 architectural and platform state is completely initialized. It
should make no assumptions about the system state when it receives control.

2. Passing control to a normal world BL image, pre-loaded at a platform- specific address by BL2. On ARM
platforms, BL31 uses the bl_params list populated by BL2 in memory to do this.

3. Providing runtime firmware services. Currently, BL31 only implements a subset of the Power State Coordination
Interface (PSCI) API as a runtime service. See Section 3.3 below for details of porting the PSCI implementation.

4. Optionally passing control to the BL.32 image, pre-loaded at a platform- specific address by BL2. BL31 exports
a set of APIs that allow runtime services to specify the security state in which the next image should be executed
and run the corresponding image. On ARM platforms, BL31 uses the bl_params list populated by BL2 in
memory to do this.

If BL31 is a reset vector, It also needs to handle the reset as specified in section 2.2 before the tasks described above.

The following functions must be implemented by the platform port to enable BL31 to perform the above tasks.

68 Chapter 2. Getting Started

Trusted Firmware-A

Function : bi31_early_platform_setup2() [mandatory]

Argument : u_register_t, u_register_t, u_register_t, u_register_t
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. BL2 can pass 4
arguments to BL31 and these arguments are platform specific.

In Arm standard platforms, the arguments received are :
arg0 - The pointer to the head of bl_params_t list which is list of executable images following BL31,

argl - Points to load address of SOC_FW_CONFIG if present except in case of Arm FVP and Juno
platform.

In case of Arm FVP and Juno platform, points to load address of FW_CONFIG.
arg2 - Points to load address of HW_CONFIG if present
arg3 - A special value to verify platform parameters from BL2 to BL31. Not used in release builds.

The function runs through the bl_param_t list and extracts the entry point information for BL32 and BL33. It also
performs the following:

* Initialize a UART (PLO11 console), which enables access to the printf family of functions in BL31.

* Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the CCI slave interface correspond-
ing to the cluster that includes the primary CPU.

Function : bl31_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.
The purpose of this function is to perform any architectural initialization that varies across platforms.

On Arm standard platforms, this function enables the MMU.

Function : bi31_platform_setup() [mandatory]

Argument : void
Return : void

This function may execute with the MMU and data caches enabled if the platform port does the necessary initialization
inbl31_plat_arch_setup(). It is only called by the primary CPU.

The purpose of this function is to complete platform initialization so that both BL31 runtime services and normal world
software can function correctly.

On Arm standard platforms, this function does the following:
* Initialize the generic interrupt controller.

Depending on the GIC driver selected by the platform, the appropriate GICv2 or GICv3 initialization will be
done, which mainly consists of:

— Enable secure interrupts in the GIC CPU interface.

2.7. Porting Guide 69

Trusted Firmware-A

Disable the legacy interrupt bypass mechanism.

Configure the priority mask register to allow interrupts of all priorities to be signaled to the CPU interface.

Mark SGIs 8-15 and the other secure interrupts on the platform as secure.

Target all secure SPIs to CPUO.

Enable these secure interrupts in the GIC distributor.

Configure all other interrupts as non-secure.

Enable signaling of secure interrupts in the GIC distributor.

» Enable system-level implementation of the generic timer counter through the memory mapped interface.
» Grant access to the system counter timer module

* Initialize the power controller device.

In particular, initialise the locks that prevent concurrent accesses to the power controller device.

Function : bl31_plat_runtime_setup() [optional]

Argument : void
Return : void

The purpose of this function is allow the platform to perform any BL31 runtime setup just prior to BL31 exit during
cold boot. The default weak implementation of this function will invoke console_switch_state() to switch console
output to consoles marked for use in the runtime state.

Function : bl31_plat_get_next_image_ep_info() [mandatory]

Argument : uint32_t
Return : entry_point_info *

This function may execute with the MMU and data caches enabled if the platform port does the necessary initializations
in bl31_plat_arch_setup().

This function is called by b131_main() to retrieve information provided by BL2 for the next image in the se-
curity state specified by the argument. BL31 uses this information to pass control to that image in the specified
security state. This function must return a pointer to the entry_point_info structure (that was copied during
bl31_early_platform_setup()) if the image exists. It should return NULL otherwise.

Function : bl31_plat_enable_mmu [optional]

Argument : uint32_t
Return 1 void

This function enables the MMU. The boot code calls this function with MMU and caches disabled. This function should
program necessary registers to enable translation, and upon return, the MMU on the calling PE must be enabled.

The function must honor flags passed in the first argument. These flags are defined by the translation library, and can
be found in the file include/lib/xlat_tables/xlat_mmu_helpers.h.

On DynamlIQ systems, this function must not use stack while enabling MMU, which is how the function in xlat table
library version 2 is implemented.

70 Chapter 2. Getting Started

Trusted Firmware-A

Function : plat_init_apkey [optional]

Argument : void
Return : uintl128_t

This function returns the 128-bit value which can be used to program ARMvS.3 pointer authentication keys.
The value should be obtained from a reliable source of randomness.

This function is only needed if ARMVS.3 pointer authentication is used in the Trusted Firmware by building with
BRANCH_PROTECTION option set to non-zero.

Function : plat_get_syscnt_freq2() [mandatory]

Argument : void
Return : unsigned int

This function is used by the architecture setup code to retrieve the counter frequency for the CPU’s generic timer. This
value will be programmed into the CNTFRQ_ELO register. In Arm standard platforms, it returns the base frequency of
the system counter, which is retrieved from the first entry in the frequency modes table.

Function : plat_arm_set_twedel_scr_el3() [optional]

Argument : void
Return : uint32_t

This function is used in v8.6+ systems to set the WFE trap delay value in SCR_EL3. If this function returns
TWED_DISABLED or is left unimplemented, this feature is not enabled. The only hook provided is to set the TWED
fields in SCR_ELS3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust the WFE trap delays
in lower ELs and these fields should be set by the appropriate EL2 or EL1 code depending on the platform configuration.

#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]

When USE_COHERENT_MEM = 0, this constant defines the total memory (in bytes) aligned to the cache line boundary
that should be allocated per-cpu to accommodate all the bakery locks.

If this constant is not defined when USE_COHERENT_MEM = O, the linker calculates the size of the bakery_lock input
section, aligns it to the nearest CACHE_WRITEBACK_GRANULE, multiplies it with PLATFORM_CORE_COUNT and stores
the result in a linker symbol. This constant prevents a platform from relying on the linker and provide a more efficient
mechanism for accessing per-cpu bakery lock information.

If this constant is defined and its value is not equal to the value calculated by the linker then a link time assertion is
raised. A compile time assertion is raised if the value of the constant is not aligned to the cache line boundary.

2.7. Porting Guide 71

Trusted Firmware-A

SDEI porting requirements

The SDEI dispatcher requires the platform to provide the following macros and functions, of which some are optional,
and some others mandatory.

Macros
Macro: PLAT_SDEI_NORMAL_PRI [mandatory]

This macro must be defined to the EL3 exception priority level associated with Normal SDEI events on the platform.
This must have a higher value (therefore of lower priority) than PLAT_SDEI_CRITICAL_PRI.

Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]

This macro must be defined to the EL3 exception priority level associated with Critical SDEI events on the platform.
This must have a lower value (therefore of higher priority) than PLAT_SDEI_NORMAL_PRI.

Note: SDEI exception priorities must be the lowest among Secure priorities. Among the SDEI exceptions, Critical
SDEI priority must be higher than Normal SDET priority.

Functions

Function: int plat_sdei_validate_entry_point() [optional]

Argument: uintptr_t ep, unsigned int client_mode
Return: int

This function validates the entry point address of the event handler provided by the client for both event registration
and Complete and Resume SDEI calls. The function ensures that the address is valid in the client translation regime.

The second argument is the exception level that the client is executing in. It can be Non-Secure EL1 or Non-Secure
EL2.

The function must return 0 for successful validation, or -1 upon failure.

The default implementation always returns 8. On Arm platforms, this function translates the entry point address within
the client translation regime and further ensures that the resulting physical address is located in Non-secure DRAM.

Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]

Argument: uint64_t
Argument: unsigned int
Return: void

SDEI specification requires that a PE comes out of reset with the events masked. The client therefore is expected to
call PE_UNMASK to unmask SDET events on the PE. No SDEI events can be dispatched until such time.

Should a PE receive an interrupt that was bound to an SDET event while the events are masked on the PE, the dispatcher
implementation invokes the function plat_sdei_handle_masked_trigger. The MPIDR of the PE that received the
interrupt and the interrupt ID are passed as parameters.

The default implementation only prints out a warning message.

72 Chapter 2. Getting Started

Trusted Firmware-A

TRNG porting requirements

The TRNG backend requires the platform to provide the following values and mandatory functions.
Values

value: uuid_t plat_trng_uuid [mandatory]

This value must be defined to the UUID of the TRNG backend that is specific to the hardware after plat_trng_setup
function is called. This value must conform to the SMCCC calling convention; The most significant 32 bits of the
UUID must not equal O0xf£ffffff or the signed integer -1 as this value in w0 indicates failure to get a TRNG source.

Functions

Function: void plat_entropy_setup(void) [mandatory]

Argument: none
Return: none

This function is expected to do platform-specific initialization of any TRNG hardware. This may include generating a
UUID from a hardware-specific seed.

Function: bool plat_get_entropy(uint64_t *out) [mandatory]

Argument: uint64_t *

Return: bool

Out : when the return value is true, the entropy has been written into the
storage pointed to

This function writes entropy into storage provided by the caller. If no entropy is available, it must return false and the
storage must not be written.

2.7.13 Power State Coordination Interface (in BL31)

The TF-A implementation of the PSCI API is based around the concept of a power domain. A power domain is a
CPU or a logical group of CPUs which share some state on which power management operations can be performed
as specified by PSCI. Each CPU in the system is assigned a cpu index which is a unique number between 0 and
PLATFORM_CORE_COUNT - 1. The power domains are arranged in a hierarchical tree structure and each power domain
can be identified in a system by the cpu index of any CPU that is part of that domain and a power domain level. A
processing element (for example, a CPU) is at level 0. If the power domain node above a CPU is a logical grouping
of CPUs that share some state, then level 1 is that group of CPUs (for example, a cluster), and level 2 is a group of
clusters (for example, the system). More details on the power domain topology and its organization can be found in
PSCI Power Domain Tree Structure.

BL31’s platform initialization code exports a pointer to the platform-specific power management operations required
for the PSCI implementation to function correctly. This information is populated in the plat_psci_ops structure.
The PSCI implementation calls members of the plat_psci_ops structure for performing power management oper-
ations on the power domains. For example, the target CPU is specified by its MPIDR in a PSCI CPU_ON call. The
pwr_domain_on() handler (if present) is called for the CPU power domain.

2.7. Porting Guide 73

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

Trusted Firmware-A

The power-state parameter of a PSCI CPU_SUSPEND call can be used to describe composite power states specific to
a platform. The PSCI implementation defines a generic representation of the power-state parameter, which is an array
of local power states where each index corresponds to a power domain level. Each entry contains the local power state
the power domain at that power level could enter. It depends on the validate_power_state() handler to convert
the power-state parameter (possibly encoding a composite power state) passed in a PSCI CPU_SUSPEND call to this
representation.

The following functions form part of platform port of PSCI functionality.

Function : plat_psci_stat_accounting_start() [optional]

Argument : const psci_power_state_t *
Return : void

This is an optional hook that platforms can implement for residency statistics accounting before entering a low power
state. The pwr_domain_state field of state_info (first argument) can be inspected if stat accounting is done
differently at CPU level versus higher levels. As an example, if the element at index 0 (CPU power level) in the
pwr_domain_state array indicates a power down state, special hardware logic may be programmed in order to keep
track of the residency statistics. For higher levels (array indices > 0), the residency statistics could be tracked in software
using PMF. If ENABLE_PUNF is set, the default implementation will use PMF to capture timestamps.

Function : plat_psci_stat_accounting_stop() [optional]

Argument : const psci_power_state_t *
Return : void

This is an optional hook that platforms can implement for residency statistics accounting after exiting from a low
power state. The pwr_domain_state field of state_info (first argument) can be inspected if stat accounting is
done differently at CPU level versus higher levels. As an example, if the element at index 0 (CPU power level) in
the pwr_domain_state array indicates a power down state, special hardware logic may be programmed in order to
keep track of the residency statistics. For higher levels (array indices > 0), the residency statistics could be tracked in
software using PMF. If ENABLE_PNF is set, the default implementation will use PMF to capture timestamps.

Function : plat_psci_stat_get_residency() [optional]

Argument : unsigned int, const psci_power_state_t *, unsigned int
Return : u_register_t

This is an optional interface that is is invoked after resuming from a low power state and provides the time spent resident
in that low power state by the power domain at a particular power domain level. When a CPU wakes up from suspend,
all its parent power domain levels are also woken up. The generic PSCI code invokes this function for each parent power
domain that is resumed and it identified by the 1v1 (first argument) parameter. The state_info (second argument)
describes the low power state that the power domain has resumed from. The current CPU is the first CPU in the power
domain to resume from the low power state and the last_cpu_idx (third parameter) is the index of the last CPU in
the power domain to suspend and may be needed to calculate the residency for that power domain.

74 Chapter 2. Getting Started

Trusted Firmware-A

Function : plat_get_target_pwr_state() [optional]

Argument : unsigned int, const plat_local_state_t *, unsigned int
Return : plat_local_state_t

The PSCI generic code uses this function to let the platform participate in state coordination during a power management
operation. The function is passed a pointer to an array of platform specific local power state states (second argument)
which contains the requested power state for each CPU at a particular power domain level 1v1 (first argument) within the
power domain. The function is expected to traverse this array of upto ncpus (third argument) and return a coordinated
target power state by the comparing all the requested power states. The target power state should not be deeper than
any of the requested power states.

A weak definition of this API is provided by default wherein it assumes that the platform assigns a local state value in
order of increasing depth of the power state i.e. for two power states X & Y, if X < Y then X represents a shallower
power state than Y. As a result, the coordinated target local power state for a power domain will be the minimum of the
requested local power state values.

Function : plat_get_power_domain_tree_desc() [mandatory]

Argument : void
Return : const unsigned char *

This function returns a pointer to the byte array containing the power domain topology tree description. The format
and method to construct this array are described in PSCI Power Domain Tree Structure. The BL31 PSCI initialization
code requires this array to be described by the platform, either statically or dynamically, to initialize the power domain
topology tree. In case the array is populated dynamically, then plat_core_pos_by_mpidr() and plat_my_core_pos()
should also be implemented suitably so that the topology tree description matches the CPU indices returned by these
APIs. These APIs together form the platform interface for the PSCI topology framework.

Function : plat_setup_psci_ops() [mandatory]

Argument : uintptr_t, const plat_psci_ops **
Return : int

This function may execute with the MMU and data caches enabled if the platform port does the necessary initializations
inbl31_plat_arch_setup(). It is only called by the primary CPU.

This function is called by PSCI initialization code. Its purpose is to let the platform layer know about the warm
boot entrypoint through the sec_entrypoint (first argument) and to export handler routines for platform-specific
psci power management actions by populating the passed pointer with a pointer to BL31’s private plat_psci_ops
structure.

A description of each member of this structure is given below. Please refer to the Arm FVP specific implementation of
these handlers in plat/arm/board/fvp/fvp_pm.c as an example. For each PSCI function that the platform wants
to support, the associated operation or operations in this structure must be provided and implemented (Refer section 4
of Firmware Design for the PSCI API supported in TF-A). To disable a PSCI function in a platform port, the operation
should be removed from this structure instead of providing an empty implementation.

2.7. Porting Guide 75

Trusted Firmware-A

plat_psci_ops.cpu_standby()

Perform the platform-specific actions to enter the standby state for a cpu indicated by the passed argument. This
provides a fast path for CPU standby wherein overheads of PSCI state management and lock acquisition is avoided.
For this handler to be invoked by the PSCI CPU_SUSPEND API implementation, the suspend state type specified in the
power-state parameter should be STANDBY and the target power domain level specified should be the CPU. The
handler should put the CPU into a low power retention state (usually by issuing a wfi instruction) and ensure that it can
be woken up from that state by a normal interrupt. The generic code expects the handler to succeed.

plat_psci_ops.pwr_domain_on()

Perform the platform specific actions to power on a CPU, specified by the MPIDR (first argument). The generic code
expects the platform to return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.

plat_psci_ops.pwr_domain_off()

Perform the platform specific actions to prepare to power off the calling CPU and its higher parent power domain levels
as indicated by the target_state (first argument). It is called by the PSCI CPU_OFF API implementation.

The target_state encodes the platform coordinated target local power states for the CPU power domain and its
parent power domain levels. The handler needs to perform power management operation corresponding to the local
state at each power level.

For this handler, the local power state for the CPU power domain will be a power down state where as it could be either
power down, retention or run state for the higher power domain levels depending on the result of state coordination.
The generic code expects the handler to succeed.

plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]

This optional function may be used as a performance optimization to replace or complement pwr_domain_suspend()
on some platforms. Its calling semantics are identical to pwr_domain_suspend(), except the PSCI implementation only
calls this function when suspending to a power down state, and it guarantees that data caches are enabled.

When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches before calling
pwr_domain_suspend(). If the target_state corresponds to a power down state and it is safe to perform some or all
of the platform specific actions in that function with data caches enabled, it may be more efficient to move those actions
to this function. When HW_ASSISTED_COHERENCY = 1, data caches remain enabled throughout, and so there is
no advantage to moving platform specific actions to this function.

plat_psci_ops.pwr_domain_suspend()

Perform the platform specific actions to prepare to suspend the calling CPU and its higher parent power domain levels
as indicated by the target_state (first argument). It is called by the PSCI CPU_SUSPEND API implementation.

The target_state has a similar meaning as described in the pwr_domain_off () operation. It encodes the platform
coordinated target local power states for the CPU power domain and its parent power domain levels. The handler needs
to perform power management operation corresponding to the local state at each power level. The generic code expects
the handler to succeed.

The difference between turning a power domain off versus suspending it is that in the former case, the power domain is
expected to re-initialize its state when it is next powered on (see pwr_domain_on_finish()). In the latter case, the

76 Chapter 2. Getting Started

Trusted Firmware-A

power domain is expected to save enough state so that it can resume execution by restoring this state when its powered
on (see pwr_domain_suspend_finish()).

When suspending a core, the platform can also choose to power off the GICv3 Redistributor and ITS through an
implementation-defined sequence. To achieve this safely, the ITS context must be saved first. The architectural part
is implemented by the gicv3_its_save_disable() helper, but most of the needed sequence is implementation
defined and it is therefore the responsibility of the platform code to implement the necessary sequence. Then the GIC
Redistributor context can be saved using the gicv3_rdistif_save() helper. Powering off the Redistributor requires
the implementation to support it and it is the responsibility of the platform code to execute the right implementation
defined sequence.

When a system suspend is requested, the platform can also make use of the gicv3_distif_save() helper to save
the context of the GIC Distributor after it has saved the context of the Redistributors and ITS of all the cores in the
system. The context of the Distributor can be large and may require it to be allocated in a special area if it cannot
fit in the platform’s global static data, for example in DRAM. The Distributor can then be powered down using an
implementation-defined sequence.

plat_psci_ops.pwr_domain_pwr_down_wfi()

This is an optional function and, if implemented, is expected to perform platform specific actions including the wfi
invocation which allows the CPU to powerdown. Since this function is invoked outside the PSCI locks, the actions
performed in this hook must be local to the CPU or the platform must ensure that races between multiple CPUs cannot
occur.

The target_state has a similar meaning as described in the pwr_domain_off () operation and it encodes the plat-
form coordinated target local power states for the CPU power domain and its parent power domain levels. This function
must not return back to the caller.

If this function is not implemented by the platform, PSCI generic implementation invokes psci_power_down_wfi()
for power down.

plat_psci_ops.pwr_domain_on_finish()

This function is called by the PSCI implementation after the calling CPU is powered on and released from reset in
response to an earlier PSCI CPU_ON call. It performs the platform-specific setup required to initialize enough state for
this CPU to enter the normal world and also provide secure runtime firmware services.

The target_state (first argument) is the prior state of the power domains immediately before the CPU was turned
on. It indicates which power domains above the CPU might require initialization due to having previously been in low
power states. The generic code expects the handler to succeed.

plat_psci_ops.pwr_domain_on_finish_late() [optional]

This optional function is called by the PSCI implementation after the calling CPU is fully powered on with respective
data caches enabled. The calling CPU and the associated cluster are guaranteed to be participating in coherency. This
function gives the flexibility to perform any platform-specific actions safely, such as initialization or modification of
shared data structures, without the overhead of explicit cache maintainace operations.

The target_state has a similar meaning as described in the pwr_domain_on_finish() operation. The generic
code expects the handler to succeed.

2.7. Porting Guide 77

Trusted Firmware-A

plat_psci_ops.pwr_domain_suspend_finish()

This function is called by the PSCI implementation after the calling CPU is powered on and released from reset in
response to an asynchronous wakeup event, for example a timer interrupt that was programmed by the CPU during the
CPU_SUSPEND call or SYSTEM_SUSPEND call. It performs the platform-specific setup required to restore the saved state
for this CPU to resume execution in the normal world and also provide secure runtime firmware services.

The target_state (first argument) has a similar meaning as described in the pwr_domain_on_finish() operation.
The generic code expects the platform to succeed.

If the Distributor, Redistributors or ITS have been powered off as part of a suspend, their context must be restored in
this function in the reverse order to how they were saved during suspend sequence.

plat_psci_ops.system_off()

This function is called by PSCI implementation in response to a SYSTEM_OFF call. It performs the platform-specific
system poweroff sequence after notifying the Secure Payload Dispatcher.

plat_psci_ops.system_reset()

This function is called by PSCI implementation in response to a SYSTEM_RESET call. It performs the platform-specific
system reset sequence after notifying the Secure Payload Dispatcher.

plat_psci_ops.validate_power_state()

This function is called by the PSCI implementation during the CPU_SUSPEND call to validate the power_state param-
eter of the PSCI API and if valid, populate it in req_state (second argument) array as power domain level specific
local states. If the power_state is invalid, the platform must return PSCI_E_INVALID_PARAMS as error, which is
propagated back to the normal world PSCI client.

plat_psci_ops.validate_ns_entrypoint()

This function is called by the PSCI implementation during the CPU_SUSPEND, SYSTEM_SUSPEND and CPU_ON calls
to validate the non-secure entry_point parameter passed by the normal world. If the entry_point is invalid, the
platform must return PSCI_E_INVALID_ADDRESS as error, which is propagated back to the normal world PSCI
client.

plat_psci_ops.get_sys_suspend_power_state()

This function is called by the PSCI implementation during the SYSTEM_SUSPEND call to get the req_state parameter
from platform which encodes the power domain level specific local states to suspend to system affinity level. The
req_state will be utilized to do the PSCI state coordination and pwr_domain_suspend () will be invoked with the
coordinated target state to enter system suspend.

78 Chapter 2. Getting Started

Trusted Firmware-A

plat_psci_ops.get_pwr_lvl_state_idx()

This is an optional function and, if implemented, is invoked by the PSCI implementation to convert the local_state
(first argument) at a specified pwr_1v1 (second argument) to an index between O and PLAT_MAX_PWR_LVL_STATES -
1. This function is only needed if the platform supports more than two local power states at each power domain level,
that is PLAT_MAX_PWR_LVL_STATES is greater than 2, and needs to account for these local power states.

plat_psci_ops.translate_power_state_by mpidr()

This is an optional function and, if implemented, verifies the power_state (second argument) parameter of the PSCI
API corresponding to a target power domain. The target power domain is identified by using both MPIDR (first argument)
and the power domain level encoded in power_state. The power domain level specific local states are to be extracted
from power_state and be populated in the output_state (third argument) array. The functionality is similar to the
validate_power_state function described above and is envisaged to be used in case the validity of power_state
depend on the targeted power domain. If the power_state is invalid for the targeted power domain, the platform must
return PSCI_E_INVALID_PARAMS as error. If this function is not implemented, then the generic implementation
relies on validate_power_state function to translate the power_state.

This function can also be used in case the platform wants to support local power state encoding for power_state
parameter of PSCI_STAT_COUNT/RESIDENCY APIs as described in Section 5.18 of PSCI.

plat_psci_ops.get_node_hw_state()

This is an optional function. If implemented this function is intended to return the power state of a node (identified by
the first parameter, the MPIDR) in the power domain topology (identified by the second parameter, power_level), as
retrieved from a power controller or equivalent component on the platform. Upon successful completion, the imple-
mentation must map and return the final status among HW_ON, HW_OFF or HW_STANDBY. Upon encountering failures, it
must return either PSCI_E_INVALID_PARAMS or PSCI_E_NOT_SUPPORTED as appropriate.

Implementations are not expected to handle power_levels greater than PLAT_MAX_PWR_LVL.

plat_psci_ops.system_reset2()

This is an optional function. If implemented this function is called during the SYSTEM_RESET2 call to perform a reset
based on the first parameter reset_type as specified in PSCI. The parameter cookie can be used to pass additional
reset information. If the reset_type is not supported, the function must return PSCI_E_NOT_SUPPORTED. For archi-
tectural resets, all failures must return PSCI_E_INVALID_PARAMETERS and vendor reset can return other PSCI error
codes as defined in PSCI. On success this function will not return.

plat_psci_ops.write_mem_protect()

This is an optional function. If implemented it enables or disables the MEM_PROTECT functionality based on the value
of val. A non-zero value enables MEM_PROTECT and a value of zero disables it. Upon encountering failures it must
return a negative value and on success it must return 0.

2.7. Porting Guide 79

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

Trusted Firmware-A

plat_psci_ops.read_mem_protect()

This is an optional function. If implemented it returns the current state of MEM_PROTECT via the val parameter. Upon
encountering failures it must return a negative value and on success it must return 0.

plat_psci_ops.mem_protect_chk()

This is an optional function. If implemented it checks if a memory region defined by a base address base and with a
size of 1length bytes is protected by MEM_PROTECT. If the region is protected then it must return 0, otherwise it must
return a negative number.

2.7.14 Interrupt Management framework (in BL31)

BL31 implements an Interrupt Management Framework (IMF) to manage interrupts generated in either security state
and targeted to EL1 or EL2 in the non-secure state or EL3/S-EL1 in the secure state. The design of this framework is
described in the Interrupt Management Framework

A platform should export the following APIs to support the IMF. The following text briefly describes each API and
its implementation in Arm standard platforms. The API implementation depends upon the type of interrupt controller
present in the platform. Arm standard platform layer supports both Arm Generic Interrupt Controller version 2.0
(GICv2) and 3.0 (GICv3). Juno builds the Arm platform layer to use GICv2 and the FVP can be configured to use
either GICv2 or GICv3 depending on the build flag FVP_USE_GIC_DRIVER (See Arm FVP Platform Specific Build
Options for more details).

See also: Interrupt Controller Abstraction APIs.

Function : plat_interrupt_type_to_line() [mandatory]

Argument : uint32_t, uint32_t
Return : uint32_t

The Arm processor signals an interrupt exception either through the IRQ or FIQ interrupt line. The specific line that
is signaled depends on how the interrupt controller (IC) reports different interrupt types from an execution context in
either security state. The IMF uses this API to determine which interrupt line the platform IC uses to signal each type
of interrupt supported by the framework from a given security state. This API must be invoked at EL3.

The first parameter will be one of the INTR_TYPE_* values (see Interrupt Management Framework) indicating the
target type of the interrupt, the second parameter is the security state of the originating execution context. The return
result is the bit position in the SCR_EL3 register of the respective interrupt trap: IRQ=1, FIQ=2.

In the case of Arm standard platforms using GICv2, S-EL1 interrupts are configured as FIQs and Non-secure interrupts
as IRQs from either security state.

In the case of Arm standard platforms using GICv3, the interrupt line to be configured depends on the security state of
the execution context when the interrupt is signalled and are as follows:

* The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in NS-EL0/1/2 context.
* The Non secure interrupts are signaled as FIQ in S-ELO/1 context and as IRQ in the NS-EL0/1/2 context.
* The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2 context.

80 Chapter 2. Getting Started

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html

Trusted Firmware-A

Function : plat_ic_get_pending_interrupt_type() [mandatory]

Argument : void
Return : uint32_t

This API returns the type of the highest priority pending interrupt at the platform IC. The IMF uses the interrupt type
to retrieve the corresponding handler function. INTR_TYPE_INVAL is returned when there is no interrupt pending.
The valid interrupt types that can be returned are INTR_TYPE_EL3, INTR_TYPE_S_EL1 and INTR_TYPE_NS. This API
must be invoked at EL3.

In the case of Arm standard platforms using GICv2, the Highest Priority Pending Interrupt Register (GICC_HPPIR) is
read to determine the id of the pending interrupt. The type of interrupt depends upon the id value as follows.

1. id < 1022 is reported as a S-EL1 interrupt
2. id = 1022 is reported as a Non-secure interrupt.
3. id = 1023 is reported as an invalid interrupt type.

In the case of Arm standard platforms using GICv3, the system register ICC_HPPIRO_EL1, Highest Priority Pending
group 0 Interrupt Register, is read to determine the id of the pending interrupt. The type of interrupt depends upon the
id value as follows.

1. id = PENDING_G1S_INTID (1020) is reported as a S-EL1 interrupt
2. id = PENDING_GINS_INTID (1021) is reported as a Non-secure interrupt.
3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt type.

4. All other interrupt id’s are reported as EL3 interrupt.

Function : plat_ic_get_pending_interrupt_id() [mandatory]

Argument : void
Return : uint32_t

This API returns the id of the highest priority pending interrupt at the platform IC. INTR_ID_UNAVAILABLE is returned
when there is no interrupt pending.

In the case of Arm standard platforms using GICv2, the Highest Priority Pending Interrupt Register (GICC_HPPIR) is
read to determine the id of the pending interrupt. The id that is returned by API depends upon the value of the id read
from the interrupt controller as follows.

1. id < 1022. id is returned as is.

2. id = 1022. The Aliased Highest Priority Pending Interrupt Register (GICC_AHPPIR) is read to determine the id
of the non-secure interrupt. This id is returned by the API.

3. id = 1023. INTR_ID_UNAVAILABLE is returned.

In the case of Arm standard platforms using GICv3, if the API is invoked from EL3, the system register
ICC_HPPIR®_EL1, Highest Priority Pending Interrupt group 0O Register, is read to determine the id of the pending
interrupt. The id that is returned by API depends upon the value of the id read from the interrupt controller as follows.

1. id < PENDING_G1S_INTID (1020). id is returned as is.

2. id = PENDING_G1S_INTID (1020) or PENDING_GINS_INTID (1021). The system register ICC_HPPIR1_EL1,
Highest Priority Pending Interrupt group 1 Register is read to determine the id of the group 1 interrupt. This id
is returned by the API as long as it is a valid interrupt id

3. If the id is any of the special interrupt identifiers, INTR_ID_UNAVAILABLE is returned.

2.7. Porting Guide 81

Trusted Firmware-A

When the API invoked from S-EL1 for GICv3 systems, the id read from system register ICC_HPPIR1_EL1, Highest
Priority Pending group 1 Interrupt Register, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
INTR_ID_UNAVAILABLE is returned.

Function : plat_ic_acknowledge_interrupt() [mandatory]

Argument : void
Return : uint32_t

This API is used by the CPU to indicate to the platform IC that processing of the highest pending inter-
rupt has begun. It should return the raw, unmodified value obtained from the interrupt controller when ac-
knowledging an interrupt. The actual interrupt number shall be extracted from this raw value using the API
plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>.

This function in Arm standard platforms using GICv2, reads the Interrupt Acknowledge Register (GICC_IAR). This
changes the state of the highest priority pending interrupt from pending to active in the interrupt controller. It returns
the value read from the GICC_IAR, unmodified.

In the case of Arm standard platforms using GICv3, if the API is invoked from EL3, the function reads the system
register ICC_TARO_EL1, Interrupt Acknowledge Register group 0. If the API is invoked from S-EL1, the function reads
the system register ICC_TAR1_EL1, Interrupt Acknowledge Register group 1. The read changes the state of the highest
pending interrupt from pending to active in the interrupt controller. The value read is returned unmodified.

The TSP uses this API to start processing of the secure physical timer interrupt.

Function : plat_ic_end_of _interrupt() [mandatory]

Argument : uint32_t
Return 1 void

This API is used by the CPU to indicate to the platform IC that processing of the interrupt correspond-
ing to the id (passed as the parameter) has finished. The id should be the same as the id returned by the
plat_ic_acknowledge_interrupt() APIL

Arm standard platforms write the id to the End of Interrupt Register (GICC_EOIR) in case of GICv2, and to
ICC_EOIRO_EL1 or ICC_EOIR1_EL1 system register in case of GICv3 depending on where the API is invoked from,
EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt controller.

The TSP uses this API to finish processing of the secure physical timer interrupt.

Function : plat_ic_get_interrupt_type() [mandatory]

Argument : uint32_t
Return : uint32_t

This API returns the type of the interrupt id passed as the parameter. INTR_TYPE_INVAL is returned if the id is invalid.
If the id is valid, a valid interrupt type (one of INTR_TYPE_EL3, INTR_TYPE_S_EL1 and INTR_TYPE_NS) is returned
depending upon how the interrupt has been configured by the platform IC. This API must be invoked at EL3.

Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts and Non-secure interrupts as
Groupl interrupts. It reads the group value corresponding to the interrupt id from the relevant Interrupt Group Register
(GICD_IGROUPRn). It uses the group value to determine the type of interrupt.

82 Chapter 2. Getting Started

Trusted Firmware-A

In the case of Arm standard platforms using GICv3, both the Interrupt Group Register (GICD_IGROUPRn) and Inferrupt
Group Modifier Register (GLICD_IGRPMODRn) is read to figure out whether the interrupt is configured as Group 0 secure
interrupt, Group 1 secure interrupt or Group 1 NS interrupt.

2.7.15 Crash Reporting mechanism (in BL31)

BL31 implements a crash reporting mechanism which prints the various registers of the CPU to enable quick
crash analysis and debugging. This mechanism relies on the platform implementing plat_crash_console_init,
plat_crash_console_putc and plat_crash_console_flush.

The file plat/common/aarch64/crash_console_helpers.S contains sample implementation of all of them. Plat-
forms may include this file to their makefiles in order to benefit from them. By default, they will cause the crash output
to be routed over the normal console infrastructure and get printed on consoles configured to output in crash state.
console_set_scope() can be used to control whether a console is used for crash output.

Note: Platforms are responsible for making sure that they only mark consoles for use in the crash scope that are able
to support this, i.e. that are written in assembly and conform with the register clobber rules for putc() (x0-x2, x16-x17)
and flush() (x0-x3, x16-x17) crash callbacks.

In some cases (such as debugging very early crashes that happen before the normal boot console can be set up), platforms
may want to control crash output more explicitly. These platforms may instead provide custom implementations for
these. They are executed outside of a C environment and without a stack. Many console drivers provide functions
named console_xxx_core_init/putc/flush that are designed to be used by these functions. See Arm platforms
(like juno) for an example of this.

Function : plat_crash_console_init [mandatory]

Argument : void
Return : int

This API is used by the crash reporting mechanism to initialize the crash console. It must only use the general purpose
registers X0 through x7 to do the initialization and returns 1 on success.

Function : plat_crash_console_putc [mandatory]

Argument : int
Return : int

This API is used by the crash reporting mechanism to print a character on the designated crash console. It must only
use general purpose registers x1 and x2 to do its work. The parameter and the return value are in general purpose
register x0.

2.7. Porting Guide 83

Trusted Firmware-A

Function : plat_crash_console_flush [mandatory]

Argument : void
Return : void

This API is used by the crash reporting mechanism to force write of all buffered data on the designated crash console.
It should only use general purpose registers x0 through x5 to do its work.

2.7.16 External Abort handling and RAS Support

Function : plat_ea_handler

Argument : int
Argument : uint64_t
Argument : void *
Argument : void *
Argument : uint64_t
Return : void

This function is invoked by the RAS framework for the platform to handle an External Abort received at EL3. The
intention of the function is to attempt to resolve the cause of External Abort and return; if that’s not possible, to initiate
orderly shutdown of the system.

The first parameter (int ea_reason) indicates the reason for External Abort. Its value is one of ERROR_EA_* con-
stants defined in ea_handle.h.

The second parameter (uint64_t syndrome) is the respective syndrome presented to EL3 after having received the
External Abort. Depending on the nature of the abort (as can be inferred from the ea_reason parameter), this can be
the content of either ESR_EL3 or DISR_EL1.

The third parameter (void *cookie) is unused for now. The fourth parameter (void *handle) is a pointer to the
preempted context. The fifth parameter (uint64_t flags) indicates the preempted security state. These parameters
are received from the top-level exception handler.

If RAS_EXTENSION is set to 1, the default implementation of this function iterates through RAS handlers registered by
the platform. If any of the RAS handlers resolve the External Abort, no further action is taken.

If RAS_EXTENSION is set to ®, or if none of the platform RAS handlers could resolve the External Abort, the default
implementation prints an error message, and panics.

Function : plat_handle_uncontainable_ea

Argument : int
Argument : uint64_t
Return : void

This function is invoked by the RAS framework when an External Abort of Uncontainable type is received at EL3.
Due to the critical nature of Uncontainable errors, the intention of this function is to initiate orderly shutdown of the
system, and is not expected to return.

This function must be implemented in assembly.
The first and second parameters are the same as that of plat_ea_handler.

The default implementation of this function calls report_unhandled_exception.

84 Chapter 2. Getting Started

Trusted Firmware-A

Function : plat_handle_double_fault

Argument : int
Argument : uint64_t
Return : void

This function is invoked by the RAS framework when another External Abort is received at EL3 while one is already
being handled. L.e., a call to plat_ea_handler is outstanding. Due to its critical nature, the intention of this function
is to initiate orderly shutdown of the system, and is not expected recover or return.

This function must be implemented in assembly.
The first and second parameters are the same as that of plat_ea_handler.

The default implementation of this function calls report_unhandled_exception.

Function : plat_handle_el3_ea

Return : void

This function is invoked when an External Abort is received while executing in EL3. Due to its critical nature, the
intention of this function is to initiate orderly shutdown of the system, and is not expected recover or return.

This function must be implemented in assembly.

The default implementation of this function calls report_unhandled_exception.

2.7.17 Build flags

There are some build flags which can be defined by the platform to control inclusion or exclusion of certain BL stages
from the FIP image. These flags need to be defined in the platform makefile which will get included by the build system.

 NEED_BL33 By default, this flag is defined yes by the build system and BL33 build option should be supplied
as a build option. The platform has the option of excluding the BL33 image in the £fip image by defining this
flag to no. If any of the options EL3_PAYLOAD_BASE or PRELOADED_BL33_BASE are used, this flag will be set
to no automatically.

2.7.18 Platform include paths

Platforms are allowed to add more include paths to be passed to the compiler. The PLAT_INCLUDES variable is used
for this purpose. This is needed in particular for the file platform_def.h.

Example:

PLAT_INCLUDES += -Iinclude/plat/myplat/include

2.7. Porting Guide 85

Trusted Firmware-A

2.7.19 C Library

To avoid subtle toolchain behavioral dependencies, the header files provided by the compiler are not used. The software
is built with the -nostdinc flag to ensure no headers are included from the toolchain inadvertently. Instead the required
headers are included in the TF-A source tree. The library only contains those C library definitions required by the local
implementation. If more functionality is required, the needed library functions will need to be added to the local
implementation.

Some C headers have been obtained from FreeBSD and SCC, while others have been written specifically for TF-A.
Some implementation files have been obtained from FreeBSD, others have been written specifically for TF-A as well.
The files can be found in include/1ib/libc and 1ib/libc.

SCC can be found in http://www.simple-cc.org/. A copy of the FreeBSD sources can be obtained from http://github.
com/freebsd/freebsd.

2.7.20 Storage abstraction layer

In order to improve platform independence and portability a storage abstraction layer is used to load data from non-
volatile platform storage. Currently storage access is only required by BL1 and BL2 phases and performed inside the
load_image () function in bl_common. c.

86 Chapter 2. Getting Started

https://www.freebsd.org
http://www.simple-cc.org/
https://www.freebsd.org
http://www.simple-cc.org/
https://www.freebsd.org
http://github.com/freebsd/freebsd
http://github.com/freebsd/freebsd

Trusted Firmware-A

arm_io_storage | | io_storage | ‘ bll_main | | 00 bll_setup | | plat_bll_commeon |

| | e ——— N | | |
IPlatﬁ:)rm Setup F

E E i bl1_platform_setup() !

plat_arm_io_setup()

1 arm_io_setup()

io device registration

I I
I I
I I
ref ' '
I I
I I
I I

Get Image

IGet Imaae |
[———

:bll_p\at_get_ne)ft_\mage_\d() !

BL2_IMAGE_ID

CbIL Joad_biz()
o

bll_plat_get_image_desc(BL2_IMAGE_ID)

| BL2_IMAGE_DESC

bI17p\atihamdleiprsiwmagsjoa‘d(BLzJMAGEJD)

load_suth_image(BL2_IMAGE_ID, image_info)

load_auth_image_internal(BL2_IMAGE_ID, image_info, is_parent_image)

|
load_image(BL2_IMAGE_ID, image_info) |
|
|
|
|

plat_get_image_source(BL2_IMAGE_ID, &dev_handle, &image_spec)

ref
| init and check device (BL2_IMAGE_ID) |

e dev_handle

io_openldev_handle, image_spec, &image_handle)

} ref
! io_open() on fip device|

|
io_size() on fip device

image_handle
<

io_size(image_handle, &image_size)

io_read(image_handle, image_base, image_size, &bytes_read)

io_read() on fip device|

io_close(image_handle)

ig_dev_close(dev_handle)

| io_dev_close() on fip dewce|

—
Prepare Next Image

—

i i bIlﬁp\atfhandlefpcstf\magef\céd(BinlMAGEJD)

— i i i
Ijum|:) to next Image F

| arm_lo_storage | | lo_storage | ‘ bll_main | | o bll_setup | | plat_bll_common |

It is mandatory to implement at least one storage driver. For the Arm development platforms the Firmware Image
Package (FIP) driver is provided as the default means to load data from storage (see Firmware Image Package (FIP)).
The storage layer is described in the header file include/drivers/io/io_storage.h. The implementation of the
common library is in drivers/io/io_storage.c and the driver files are located in drivers/io/.

2.7. Porting Guide 87

Trusted Firmware-A

armjoistorage\

@ arm_io_storage

fip_dev_con : lo_dev_connector t+

© plat_io_policy

fip_dev_handle T uintptr_t

dev_handle : uintptr_t¢
image_spec : uintptr_t

memmap_dev_handle T uinfptr_t
fip_block_spec: io_block_spec_t

)

check() : fetotr

policies | plat_io_policy[1_.*¥]

memmap_dev_con - io_dev_cannector_t#

m open_fipl)

= open_memmapl)
© arm_To_setup()

J © plat_get_image_sourcel)

|

|
©BL2_\MAGE_ID

@x}«_IMAGE_\D

@ FIP_IMAGE_ID

fip_dev_handle
biZ_uuid_spec

fip_dev_handle
s00c_uuid_spec

memmap_dev_handle
fip_block_spec

open_fipl]

open_fip(]

open_memmapl)

© io_storage

io_dev_opent()
o dev init()
io_dev_close()
synchronous operations
ia_openi]

io_seekl)

io reqister_devicel]

@ io_driver

io_entity_t
io_dev_info_t
io_dev_connector t interface
dev_open()
io_dev_funcs_t interface
typel)
open()
seek(]
sizel)
readi)
write()
closel)
dev_initl)
dev_closel)
io_register_devicel)

@ io_memmap

@ io_fip

register_io_dev_memmapl()

io_dev_funcs_t interface
memmap_dev_funcs - io_dev_funcs_t

reqister_io_dev_fipl)

fip_dev_funcs - jo_dev_funcs_t

io_dev_funcs_t interface

Each 10 driver must provide io_dev_* structures, as described in drivers/io/io_driver.h. These are returned
via a mandatory registration function that is called on platform initialization. The semi-hosting driver implementation
in io_semihosting. c can be used as an example.

Each platform should register devices and their drivers via the storage abstraction layer. These drivers then need to be

initialized by bootloader phases as required in their respective blx_platform_setup() functions.

arm_io_storage

arm_io_setup() _1
e

| io_fip | ‘ io_memmap

io dev registration)/

register_io_dev_fip(&fip_dev_cen)

_io_register_device(&dev_info_pool[]

)

devices[dev_count] = (fip_)dev_info_pool
dev_count++

register_io_dev_memmap(&memmap_dev_con)

T

a

io_register_device(&memmap_dev_irfo)

devices[dev_count] = memmap_dev_info
dev_count++

]

io_dev_open(fip_dev_con, NULL, fip_dev_handle)

.

dev_openldev_con, dev_spec, handle)

opt [dev_openl) on fip devicel

fip_dev_openldev_spec, dev_info)

oy
>

dev_info = one of the
"fip_dewv_info" from
dev_info_pool[]

-
io_dev_open{memmap_dev_con, NULL, memmap_dev_handle] _
>

' dev_open(dev_con, dev_spec, handle)

opt [dev_open() on memmap devicel

memmap_dev_open(dev_spec, dev_irffo)

| dev_info = memmap_dev_info 'ﬁ

arm_io_storage

i orage

1 1
| io_fip | ‘ io_memmap |

The storage abstraction layer provides mechanisms (io_dev_init ()) to initialize storage devices before 10 operations
are called.

88

Chapter 2. Getting Started

Trusted Firmware-A

arm_io_storage io_storage

plat_get_image_sourcelimage_id, &dev_handle, &image_spec) |

-
>

init and check device (image_id) /

alt [image_id = BL2_IMAGE_ID]

get BL2_IMAGE_ID policy: T

-fip_dev_handle
- open_fip()

1
oet / [policy-=check(}]

| open_fip(spec)

<

io_dev_init(fip_dev_handle, FIP_IMAGE_ID)

ref
dev_init(} on fip device

io_openlfip_dev_handle, spec, &local_image_handle) i [[r

Fot]

ref
io_open() on fip device

io_closellocal_image_handle) ! [[[

ref
io_closel) onfip device

fip_dev_handle ready>

O 0 T L.
[image_id = FIP_IMAGE_ID]

get FIP_IMAGE_ID policy: T

- memmap_dev_handle
- open_memmap(}

opt / [policy->check()]

i open_memmapl{spec)

Lo
<

io_dev_init{memmap_dev_handle, NULL)

L

ref
dev_init() on memmap device
1
io_open(memmap_dev_handle, spec, &local_image_handle) _! [[r
ref
io_open() on memmap device
io_closellocal_image_handle) o [[r
I Catl
! ref /
! io_closel) on memmap device

memmap_dev_handle ready>

arm_io_storage io_storage

The basic operations supported by the layer include open(), close(), read(), write(), size() and seek().
Drivers do not have to implement all operations, but each platform must provide at least one driver for a device capable
of supporting generic operations such as loading a bootloader image.

The current implementation only allows for known images to be loaded by the firmware. These images are specified by
using their identifiers, as defined in include/plat/common/common_def.h (or a separate header file included from
there). The platform layer (plat_get_image_source()) then returns a reference to a device and a driver-specific
spec which will be understood by the driver to allow access to the image data.

The layer is designed in such a way that is it possible to chain drivers with other drivers. For example, file-system drivers
may be implemented on top of physical block devices, both represented by IO devices with corresponding drivers. In
such a case, the file-system “binding” with the block device may be deferred until the file-system device is initialised.

The abstraction currently depends on structures being statically allocated by the drivers and callers, as the system does
not yet provide a means of dynamically allocating memory. This may also have the affect of limiting the amount of
open resources per driver.

2.7. Porting Guide 89

Trusted Firmware-A

Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.

2.8 PSCI Library Integration guide for Armv8-A AArch32 systems

This document describes the PSCI library interface with a focus on how to integrate with a suitable Trusted OS for an
Armv8-A AArch32 system. The PSCI Library implements the PSCI Standard as described in PSCI spec and is meant
to be integrated with EL3 Runtime Software which invokes the PSCI Library interface appropriately. EL3 Runtime
Software refers to software executing at the highest secure privileged mode, which is EL3 in AArch64 or Secure SVC/
Monitor mode in AArch32, and provides runtime services to the non-secure world. The runtime service request is
made via SMC (Secure Monitor Call) and the call must adhere to SMCCC. In AArch32, EL3 Runtime Software may
additionally include Trusted OS functionality. A minimal AArch32 Secure Payload, SP-MIN, is provided in Trusted
Firmware-A (TF-A) to illustrate the usage and integration of the PSCI library. The description of PSCI library interface
and its integration with EL.3 Runtime Software in this document is targeted towards AArch32 systems.

2.8.1 Generic call sequence for PSCI Library interface (AArch32)
The generic call sequence of PSCI Library interfaces (see PSCI Library Interface) during cold boot in AArch32 system
is described below:

1. After cold reset, the EL3 Runtime Software performs its cold boot initialization including the PSCI library pre-
requisites mentioned in PSCI Library Interface, and also the necessary platform setup.

2. Call psci_setup() in Monitor mode.

3. Optionally call psci_register_spd_pm_hook () to register callbacks to do bookkeeping for the EL3 Runtime
Software during power management.

4. Call psci_prepare_next_non_secure_ctx() to initialize the non-secure CPU context.

5. Get the non-secure cpu_context_t for the current CPU by calling cm_get_context() , then programming
the registers in the non-secure context and exiting to non-secure world. If the EL3 Runtime Software needs
additional configuration to be set for non-secure context, like routing FIQs to the secure world, the values of the
registers can be modified prior to programming. See PSCI CPU context management for more details on CPU
context management.

The generic call sequence of PSCI library interfaces during warm boot in AArch32 systems is described below:

1. After warm reset, the EL3 Runtime Software performs the necessary warm boot initialization including the PSCI
library pre-requisites mentioned in PSCI Library Interface (Note that the Data cache must not be enabled).

2. Call psci_warmboot_entrypoint () in Monitor mode. This interface initializes/restores the non-secure CPU
context as well.

3. Do step 5 of the cold boot call sequence described above.

The generic call sequence of PSCI library interfaces on receipt of a PSCI SMC on an AArch32 system is described
below:

1. On receipt of an SMC, save the register context as per SMCCC.

2. If the SMC function identifier corresponds to a SMC32 PSCI API, construct the appropriate arguments and call
the psci_smc_handler() interface. The invocation may or may not return back to the caller depending on
whether the PSCI API resulted in power down of the CPU.

3. If psci_smc_handler () returns, populate the return value in RO (AArch32)/ X0 (AArch64) and restore other
registers as per SMCCC.

90 Chapter 2. Getting Started

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

2.8.2 PSCI CPU context management

PSClI library is in charge of initializing/restoring the non-secure CPU system registers according to PSCI specification
during cold/warm boot. This is referred to as PSCI CPU Context Management. Registers that need to be preserved
across CPU power down/power up cycles are maintained in cpu_context_t data structure. The initialization of other
non-secure CPU system registers which do not require coordination with the EL3 Runtime Software is done directly
by the PSCI library (see cm_prepare_el3_exit()).

The EL3 Runtime Software is responsible for managing register context during switch between Normal and Secure
worlds. The register context to be saved and restored depends on the mechanism used to trigger the world switch.
For example, if the world switch was triggered by an SMC call, then the registers need to be saved and restored ac-
cording to SMCCC. In AArch64, due to the tight integration with BL31, both BL31 and PSCI library use the same
cpu_context_t data structure for PSCI CPU context management and register context management during world
switch. This cannot be assumed for AArch32 EL3 Runtime Software since most AArch32 Trusted OSes already im-
plement a mechanism for register context management during world switch. Hence, when the PSCI library is integrated
with a AArch32 EL3 Runtime Software, the cpu_context_t is stripped down for just PSCI CPU context management.

During cold/warm boot, after invoking appropriate PSCI library interfaces, it is expected that the EL3 Runtime Software
will query the cpu_context_t and write appropriate values to the corresponding system registers. This mechanism
resolves 2 additional problems for AArch32 EL3 Runtime Software:

1. Values for certain system registers like SCR and SCTLR cannot be unilaterally determined by PSCI library and
need inputs from the EL3 Runtime Software. Using cpu_context_t as an intermediary data store allows EL3
Runtime Software to modify the register values appropriately before programming them.

2. The PSCI library provides appropriate LR and SPSR values (entrypoint information) for exit into non-secure
world. Using cpu_context_t as an intermediary data store allows the EL3 Runtime Software to store these
values safely until it is ready for exit to non-secure world.

Currently the cpu_context_t data structure for AArch32 stores the following registers: RO - R3, LR (R14), SCR,
SPSR, SCTLR.

The EL3 Runtime Software must implement accessors to get/set pointers to CPU context cpu_context_t data and
these are described in CPU Context management API.

2.8.3 PSCI Library Interface

The PSCI library implements the PSCI Specification. The interfaces to this library are declared in psci_lib.h and
are as listed below:

u_register_t psci_smc_handler(uint32_t smc_fid, u_register_t x1,
u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags);

int psci_setup(const psci_lib_args_t *lib_args);

void psci_warmboot_entrypoint(void);

void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) ;

void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info);

The CPU context data ‘cpu_context_t’ is programmed to the registers differently when PSCI is integrated with an
AArch32 EL3 Runtime Software compared to when the PSCI is integrated with an AArch64 EL3 Runtime Software
(BL31). For example, in the case of AArch64, there is no need to retrieve cpu_context_t data and program the
registers as it will done implicitly as part of el3_exit. The description below of the PSCI interfaces is targeted at
integration with an AArch32 EL3 Runtime Software.

The PSCI library is responsible for initializing/restoring the non-secure world to an appropriate state after boot and
may choose to directly program the non-secure system registers. The PSCI generic code takes care not to directly

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 91

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
https://developer.arm.com/docs/den0028/latest
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

Trusted Firmware-A

modify any of the system registers affecting the secure world and instead returns the values to be programmed to these
registers via cpu_context_t. The EL3 Runtime Software is responsible for programming those registers and can use
the proposed values provided in the cpu_context_t, modifying the values if required.

PSCI library needs the flexibility to access both secure and non-secure copies of banked registers. Hence it needs to
be invoked in Monitor mode for AArch32 and in EL3 for AArch64. The NS bit in SCR (in AArch32) or SCR_ELS3 (in
AArch64) must be set to 0. Additional requirements for the PSCI library interfaces are:

* Instruction cache must be enabled

* Both IRQ and FIQ must be masked for the current CPU

* The page tables must be setup and the MMU enabled

e The C runtime environment must be setup and stack initialized

e The Data cache must be enabled prior to invoking any of the PSCI library interfaces except
for psci_warmboot_entrypoint(). For psci_warmboot_entrypoint(), if the build option
HW_ASSISTED_COHERENCY is enabled however, data caches are expected to be enabled.

Further requirements for each interface can be found in the interface description.

Interface : psci_setup()

Argument : const psci_lib_args_t *lib_args
Return : void

This function is to be called by the primary CPU during cold boot before any other interface to the PSCI library. It takes
lib_args, a const pointer to psci_lib_args_t, as the argument. The psci_lib_args_t is a versioned structure
and is declared in psci_lib.h header as follows:

typedef struct psci_lib_args {
/* The version information of PSCI Library Interface */
param_header_t h;
/* The warm boot entrypoint function */
mailbox_entrypoint_t mailbox_ep;

} psci_lib_args_t;

The first field h, of param_header_t type, provides the version information. The second field mailbox_ep is the warm
boot entrypoint address and is used to configure the platform mailbox. Helper macros are provided in psci_lib.h
to construct the 1ib_args argument statically or during runtime. Prior to calling the psci_setup() interface, the
platform setup for cold boot must have completed. Major actions performed by this interface are:

e Initializes architecture.
¢ Initializes PSCI power domain and state coordination data structures.
e Calls plat_setup_psci_ops() with warm boot entrypoint mailbox_ep as argument.

e Calls cm_set_context_by_index() (see CPU Context management API) for all the CPUs in the platform

92 Chapter 2. Getting Started

Trusted Firmware-A

Interface : psci_prepare_next_non_secure_ctx()

Argument : entry_point_info_t *next_image_info
Return : void

After psci_setup() and prior to exit to the non-secure world, this function must be called by the EL3 Runtime
Software to initialize the non-secure world context. The non-secure world entrypoint information next_image_info
(first argument) will be used to determine the non-secure context. After this function returns, the EL.3 Runtime Software
must retrieve the cpu_context_t (using cm_get_context()) for the current CPU and program the registers prior to exit
to the non-secure world.

Interface : psci_register_spd_pm_hook()

Argument : const spd_pm_ops_t *
Return : void

As explained in Secure payload power management callback, the EL3 Runtime Software may want to perform some
bookkeeping during power management operations. This function is used to register the spd_pm_ops_t (first argu-
ment) callbacks with the PSCI library which will be called appropriately during power management. Calling this
function is optional and need to be called by the primary CPU during the cold boot sequence after psci_setup() has
completed.

Interface : psci_smc_handler()

Argument : uint32_t smc_fid, u_register_t x1,
u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags

Return : u_register_t

This function is the top level handler for SMCs which fall within the PSCI service range specified in SMCCC. The
function ID smc_fid (first argument) determines the PSCI API to be called. The x1 to x4 (2nd to 5th arguments),
are the values of the registers r1 - r4 (in AArch32) or x1 - x4 (in AArch64) when the SMC is received. These are the
arguments to PSCI API as described in PSCI spec. The ‘flags’ (8th argument) is a bit field parameter and is detailed
in ‘smcce.h’ header. It includes whether the call is from the secure or non-secure world. The cookie (6th argument)
and the handle (7th argument) are not used and are reserved for future use.

The return value from this interface is the return value from the underlying PSCI API corresponding to smc_£id. This
function may not return back to the caller if PSCI API causes power down of the CPU. In this case, when the CPU
wakes up, it will start execution from the warm reset address.

Interface : psci_warmboot_entrypoint()

Argument : void
Return : void

This function performs the warm boot initialization/restoration as mandated by PSCI spec. For AArch32, on wakeup
from power down the CPU resets to secure SVC mode and the EL3 Runtime Software must perform the prerequisite
initializations mentioned at top of this section. This function must be called with Data cache disabled (unless build
option HW_ASSISTED_COHERENCY is enabled) but with MMU initialized and enabled. The major actions performed
by this function are:

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 93

https://developer.arm.com/docs/den0028/latest
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

Trusted Firmware-A

* Invalidates the stack and enables the data cache.

* Initializes architecture and PSCI state coordination.

* Restores/Initializes the peripheral drivers to the required state via appropriate plat_psci_ops_t hooks
* Restores the EL3 Runtime Software context via appropriate spd_pm_ops_t callbacks.

» Restores/Initializes the non-secure context and populates the cpu_context_t for the current CPU.

Upon the return of this function, the EL3 Runtime Software must retrieve the non-secure cpu_context_t using
cm_get_context () and program the registers prior to exit to the non-secure world.

2.8.4 EL3 Runtime Software dependencies

The PSCI Library includes supporting frameworks like context management, cpu operations (cpu_ops) and per-cpu
data framework. Other helper library functions like bakery locks and spin locks are also included in the library. The
dependencies which must be fulfilled by the EL3 Runtime Software for integration with PSCI library are described
below.

General dependencies
The PSClI library being a Multiprocessor (MP) implementation, EL3 Runtime Software must provide an SMC handling
framework capable of MP adhering to SMCCC specification.

The EL3 Runtime Software must also export cache maintenance primitives and some helper utilities for assert, print
and memory operations as listed below. The TF-A source tree provides implementations for all these functions but the
EL3 Runtime Software may use its own implementation.

Functions : assert(), memcpy(), memset(), printf()
These must be implemented as described in ISO C Standard.

Function : flush_dcache_range()

Argument : uintptr_t addr, size_t size
Return : void

This function cleans and invalidates (flushes) the data cache for memory at address addr (first argument) address and
of size size (second argument).

Function : inv_dcache_range()

Argument : uintptr_t addr, size_t size
Return : void

This function invalidates (flushes) the data cache for memory at address addr (first argument) address and of size size
(second argument).

Function : do_panic()

Argument : void
Return : void

This function will be called by the PSCI library on encountering a critical failure that cannot be recovered from. This
function must not return.

94 Chapter 2. Getting Started

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

CPU Context management API

The CPU context management data memory is statically allocated by PSCI library in BSS section. The PSCI library
requires the EL3 Runtime Software to implement APIs to store and retrieve pointers to this CPU context data. SP-
MIN demonstrates how these APIs can be implemented but the EL3 Runtime Software can choose a more optimal
implementation (like dedicating the secure TPIDRPRW system register (in AArch32) for storing these pointers).

Function : cm_set_context_by_index()

Argument : unsigned int cpu_idx, void *context, unsigned int security_state
Return : void

This function is called during cold boot when the psci_setup() PSCI library interface is called.

This function must store the pointer to the CPU context data, context (2nd argument), for the specified
security_state (3rd argument) and CPU identified by cpu_idx (first argument). The security_state will al-
ways be non-secure when called by PSCI library and this argument is retained for compatibility with BL31. The
cpu_idx will correspond to the index returned by the plat_core_pos_by_mpidr () for mpidr of the CPU.

The actual method of storing the context pointers is implementation specific. For example, SP-MIN stores the pointers
in the array sp_min_cpu_ctx_ptr declared in sp_min_main.c.

Function : cm_get_context()

Argument : uint32_t security_state
Return : void *

This function must return the pointer to the cpu_context_t structure for the specified security_state (first argu-
ment) for the current CPU. The caller must ensure that cm_set_context_by_index is called first and the appropriate
context pointers are stored prior to invoking this API. The security_state will always be non-secure when called
by PSCI library and this argument is retained for compatibility with BL31.

Function : cm_get_context_by_index()

Argument : unsigned int cpu_idx, unsigned int security_state
Return : void *

This function must return the pointer to the cpu_context_t structure for the specified security_state (second argu-
ment) for the CPU identified by cpu_idx (first argument). The caller must ensure that cm_set_context_by_index
is called first and the appropriate context pointers are stored prior to invoking this API. The security_state will
always be non-secure when called by PSCI library and this argument is retained for compatibility with BL31. The
cpu_idx will correspond to the index returned by the plat_core_pos_by_mpidr () for mpidr of the CPU.

Platform API
The platform layer abstracts the platform-specific details from the generic PSCI library. The following platform
APIs/macros must be defined by the EL3 Runtime Software for integration with the PSCI library.
The mandatory platform APIs are:
* plat_my_core_pos
* plat_core_pos_by_mpidr
* plat_get_syscnt_freq2
* plat_get_power_domain_tree_desc

* plat_setup_psci_ops

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 95

Trusted Firmware-A

* plat_reset_handler
e plat_panic_handler
* plat_get_my_stack
The mandatory platform macros are:
* PLATFORM_CORE_COUNT
e PLAT_MAX_PWR_LVL
« PLAT_NUM_PWR_DOMAINS
* CACHE_WRITEBACK_GRANULE
* PLAT_MAX_OFF_STATE
e PLAT_MAX_RET_STATE
* PLAT_MAX_PWR_LVL_STATES (optional)
* PLAT_PCPU_DATA_SIZE (optional)
The details of these APIs/macros can be found in the Porting Guide.

All platform specific operations for power management are done via plat_psci_ops_t callbacks registered
by the platform when plat_setup_psci_ops() API is called. The description of each of the callbacks in
plat_psci_ops_t can be found in PSCI section of the Porting Guide. If any these callbacks are not registered,
then the PSCI API associated with that callback will not be supported by PSCI library.

Secure payload power management callback

During PSCI power management operations, the EL3 Runtime Software may need to perform some bookkeeping, and
PSCI library provides spd_pm_ops_t callbacks for this purpose. These hooks must be populated and registered by
using psci_register_spd_pm_hook() PSCI library interface.

Typical bookkeeping during PSCI power management calls include save/restore of the EL3 Runtime Software con-
text. Also if the EL3 Runtime Software makes use of secure interrupts, then these interrupts must also be managed
appropriately during CPU power down/power up. Any secure interrupt targeted to the current CPU must be disabled
or re-targeted to other running CPU prior to power down of the current CPU. During power up, these interrupt can be
enabled/re-targeted back to the current CPU.

typedef struct spd_pm_ops {
void (*svc_on) (u_register_t target_cpu);
int32_t (*svc_off) (u_register_t __unused);
void (*svc_suspend) (u_register_t max_off_pwrlvl);
void (*svc_on_finish) (u_register_t __unused);
void (*svc_suspend_finish) (u_register_t max_off_pwrlvl);
int32_t (*svc_migrate) (u_register_t from_cpu, u_register_t to_cpu);
int32_t (*svc_migrate_info) (u_register_t *resident_cpu);
void (*svc_system_off) (void);
void (*svc_system_reset) (void);

} spd_pm_ops_t;

A brief description of each callback is given below:
e svc_on, svc_off, svc_on_finish

The svc_on, svc_off callbacks are called during PSCI_CPU_ON, PSCI_CPU_OFF APIs respectively.
The svc_on_finish is called when the target CPU of PSCI_CPU_ON API powers up and executes the
psci_warmboot_entrypoint () PSCI library interface.

96 Chapter 2. Getting Started

Trusted Firmware-A

* svc_suspend, svc_suspend_finish

The svc_suspend callback is called during power down bu either PSCI_SUSPEND or
PSCI_SYSTEM_SUSPEND APIs. The svc_suspend_finish is called when the CPU wakes up from
suspend and executes the psci_warmboot_entrypoint() PSCI library interface. The max_off pwrlvl
(first parameter) denotes the highest power domain level being powered down to or woken up from suspend.

* svc_system_off, svc_system_reset
These callbacks are called during PSCI_SYSTEM_OFF and PSCI_SYSTEM_RESET PSCI APIs respectively.
¢ svc_migrate_info

This callback is called in response to PSCI_MIGRATE_INFO_TYPE or PSCI_MIGRATE_INFO_UP_CPU
APIs. The return value of this callback must correspond to the return value of PSCI_MIGRATE_INFO_TYPE
API as described in PSCI spec. If the secure payload is a Uniprocessor (UP) implementation, then it must update
the mpidr of the CPU it is resident in via resident_cpu (first argument). The updates to resident_cpu is
ignored if the secure payload is a multiprocessor (MP) implementation.

* svc_migrate

This callback is only relevant if the secure payload in EL3 Runtime Software is a Uniprocessor (UP) implemen-
tation and supports migration from the current CPU from_cpu (first argument) to another CPU to_cpu (second
argument). This callback is called in response to PSCI_MIGRATE API. This callback is never called if the
secure payload is a Multiprocessor (MP) implementation.

CPU operations

The CPU operations (cpu_ops) framework implement power down sequence specific to the CPU and the details of
which can be found at CPU specific operations framework. The TF-A tree implements the cpu_ops for various
supported CPUs and the EL3 Runtime Software needs to include the required cpu_ops in its build. The start and
end of the cpu_ops descriptors must be exported by the EL3 Runtime Software via the __CPU_OPS_START__ and
__CPU_OPS_END__ linker symbols.

The cpu_ops descriptors also include reset sequences and may include errata workarounds for the CPU. The EL3
Runtime Software can choose to call this during cold/warm reset if it does not implement its own reset sequence/errata
workarounds.

Copyright (¢) 2016-2020, Arm Limited and Contributors. All rights reserved.

2.9 EL3 Runtime Service Writer’s Guide

2.9.1 Introduction

This document describes how to add a runtime service to the EL3 Runtime Firmware component of Trusted Firmware-A
(TF-A), BL31.

Software executing in the normal world and in the trusted world at exception levels lower than EL3 will request runtime
services using the Secure Monitor Call (SMC) instruction. These requests will follow the convention described in the
SMC Calling Convention PDD (SMCCC). The SMCCC assigns function identifiers to each SMC request and describes
how arguments are passed and results are returned.

SMC Functions are grouped together based on the implementor of the service, for example a subset of the Function
IDs are designated as “OEM Calls” (see SMCCC for full details). The EL3 runtime services framework in BL31
enables the independent implementation of services for each group, which are then compiled into the BL31 image.

2.9. EL3 Runtime Service Writer’s Guide 97

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

This simplifies the integration of common software from Arm to support PSCI, Secure Monitor for a Trusted OS and
SoC specific software. The common runtime services framework ensures that SMC Functions are dispatched to their
respective service implementation - the Firmware Design document provides details of how this is achieved.

The interface and operation of the runtime services depends heavily on the concepts and definitions described in the
SMCCC, in particular SMC Function IDs, Owning Entity Numbers (OEN), Fast and Standard calls, and the SMC32
and SMC64 calling conventions. Please refer to that document for a full explanation of these terms.

2.9.2 Owning Entities, Call Types and Function IDs

The SMC Function Identifier includes a OEN field. These values and their meaning are described in SMCCC and
summarized in table 1 below. Some entities are allocated a range of of OENs. The OEN must be interpreted in
conjunction with the SMC call type, which is either Fast or Yielding. Fast calls are uninterruptible whereas Yielding
calls can be pre-empted. The majority of Owning Entities only have allocated ranges for Fast calls: Yielding calls
are reserved exclusively for Trusted OS providers or for interoperability with legacy 32-bit software that predates the
SMCCC.

Type OEN Service

Fast 0 Arm Architecture calls

Fast 1 CPU Service calls

Fast 2 SiP Service calls

Fast 3 OEM Service calls

Fast 4 Standard Service calls

Fast 5-47 Reserved for future use

Fast 48-49 Trusted Application calls

Fast 50-63 Trusted 0S calls

Yielding 0- 1 Reserved for existing Armv7-A calls

Yielding 2-63 Trusted OS Standard Calls

Table 1: Service types and their corresponding Owning Entity Numbers

Each individual entity can allocate the valid identifiers within the entity range as they need - it is not necessary to
coordinate with other entities of the same type. For example, two SoC providers can use the same Function ID within
the SiP Service calls OEN range to mean different things - as these calls should be specific to the SoC. The Standard
Runtime Calls OEN is used for services defined by Arm standards, such as PSCI.

The SMC Function ID also indicates whether the call has followed the SMC32 calling convention, where all parameters
are 32-bit, or the SMC64 calling convention, where the parameters are 64-bit. The framework identifies and rejects
invalid calls that use the SMC64 calling convention but that originate from an AArch32 caller.

The EL3 runtime services framework uses the call type and OEN to identify a specific handler for each SMC call, but
it is expected that an individual handler will be responsible for all SMC Functions within a given service type.

2.9.3 Getting started

TF-A has a services directory in the source tree under which each owning entity can place the implementation of its
runtime service. The PSCI implementation is located here in the 1ib/psci directory.

Runtime service sources will need to include the runtime_svc.h header file.

98 Chapter 2. Getting Started

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

Trusted Firmware-A

2.9.4 Registering a runtime service

A runtime service is registered using the DECLARE_RT_SVC() macro, specifying the name of the service, the range of
OENSs covered, the type of service and initialization and call handler functions.

#define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch)

* _name is used to identify the data structure declared by this macro, and is also used for diagnostic purposes
e _start and _end values must be based on the OEN_* values defined in smccc.h
e _type must be one of SMC_TYPE_FAST or SMC_TYPE_YIELD

* _setup is the initialization function with the rt_svc_init signature:

typedef int32_t (*rt_svc_init) (void);

_smch is the SMC handler function with the rt_svc_handle signature:

typedef uintptr_t (*rt_svc_handle_t) (uint32_t smc_fid,
u_register_t x1, u_register_t x2,
u_register_t x3, u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);

Details of the requirements and behavior of the two callbacks is provided in the following sections.

During initialization the services framework validates each declared service to ensure that the following conditions are
met:

1. The _start OEN is not greater than the _end OEN

2. The _end OEN does not exceed the maximum OEN value (63)
3. The _type is one of SMC_TYPE_FAST or SMC_TYPE_YIELD

4. _setup and _smch routines have been specified

std_svc_setup.c provides an example of registering a runtime service:

/% Register Standard Service Calls as runtime service */
DECLARE_RT_SVC(

std_svc,

OEN_STD_START,

OEN_STD_END,

SMC_TYPE_FAST,

std_svc_setup,

std_svc_smc_handler

2.9. EL3 Runtime Service Writer’s Guide 99

Trusted Firmware-A

2.9.5 Initializing a runtime service

Runtime services are initialized once, during cold boot, by the primary CPU after platform and architectural initial-
ization is complete. The framework performs basic validation of the declared service before calling the service ini-
tialization function (_setup in the declaration). This function must carry out any essential EL3 initialization prior to
receiving a SMC Function call via the handler function.

On success, the initialization function must return 0. Any other return value will cause the framework to issue a
diagnostic:

Error initializing runtime service <name of the service>

and then ignore the service - the system will continue to boot but SMC calls will not be passed to the service handler
and instead return the Unknown SMC Function ID result OXFFFFFFFF.

If the system must not be allowed to proceed without the service, the initialization function must itself cause the firmware
boot to be halted.

If the service uses per-CPU data this must either be initialized for all CPUs during this call, or be done lazily when a
CPU first issues an SMC call to that service.

2.9.6 Handling runtime service requests

SMC calls for a service are forwarded by the framework to the service’s SMC handler function (_smch in the service
declaration). This function must have the following signature:

typedef uintptr_t (*rt_svc_handle_t) (uint32_t smc_fid,
u_register_t x1, u_register_t x2,
u_register_t x3, u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);

The handler is responsible for:

1. Determining that smc_fid is a valid and supported SMC Function ID, otherwise completing the request with
the Unknown SMC Function ID:

SMC_RET1(handle, SMC_UNK);

2. Determining if the requested function is valid for the calling security state. SMC Calls can be made from both
the normal and trusted worlds and the framework will forward all calls to the service handler.

The flags parameter to this function indicates the caller security state in bit[0], where a value of 1 indicates
a non-secure caller. The is_caller_secure(flags) and is_caller_non_secure(flags) can be used to
test this condition.

If invalid, the request should be completed with:

SMC_RET1(handle, SMC_UNK);

3. Truncating parameters for calls made using the SMC32 calling convention. Such calls can be determined by
checking the CC field in bit[30] of the smc_£fid parameter, for example by using:

if (GET_SMC_CC(smc_fid) == SMC_32)

100 Chapter 2. Getting Started

Trusted Firmware-A

For such calls, the upper bits of the parameters x1-x4 and the saved parameters X5-X7 are UNDEFINED and must
be explicitly ignored by the handler. This can be done by truncating the values to a suitable 32-bit integer type
before use, for example by ensuring that functions defined to handle individual SMC Functions use appropriate
32-bit parameters.

4. Providing the service requested by the SMC Function, utilizing the immediate parameters x1-x4 and/or the ad-
ditional saved parameters X5-X7. The latter can be retrieved using the SMC_GET_GP (handle, ref) function,
supplying the appropriate CTX_GPREG_Xn reference, e.g.

uint64_t x6 = SMC_GET_GP(handle, CTX_GPREG_X6);

5. Implementing the standard SMC32 Functions that provide information about the implementation of the service.
These are the Call Count, Implementor UID and Revision Details for each service documented in section 6 of
the SMCCC.

TF-A expects owning entities to follow this recommendation.

6. Returning the result to the caller. Based on SMCCC spec, results are returned in WO-W7(X0-X7) registers
for SMC32(SMC64) calls from AArch64 state. Results are returned in RO-R7 registers for SMC32 calls from
AArch32 state. The framework provides a family of macros to set the multi-register return value and complete
the handler:

AArch64 state:

SMC_RET1(handle, x0);

SMC_RET2 (handle, x0, x1);

SMC_RET3 (handle, x0, x1, x2);

SMC_RET4 (handle, x0, x1, x2, x3);

SMC_RET5 Chandle, x0, x1, x2, x3, x4);
SMC_RET6(handle, x0, x1, x2, x3, x4, x5);
SMC_RET7 (handle, x0, x1, x2, x3, x4, x5, x6);
SMC_RET8 thandle, x0, x1, x2, x3, x4, x5, x6, X7);

AArch32 state:

SMC_RET1 (handle, r®);

SMC_RET2 (handle, r®, rl);

SMC_RET3 (handle, r®, r1, r2);

SMC_RET4 (handle, r®, ri1, r2, r3);

SMC_RET5 Chandle, r®, rl, r2, r3, r4);
SMC_RET6(Chandle, r®, rl, r2, r3, r4, r5);
SMC_RET7 ¢thandle, r®, rl1, r2, r3, r4, r5, r6);
SMC_RET8 thandle, r®, r1, r2, r3, r4, r5, r6, r7);

The cookie parameter to the handler is reserved for future use and can be ignored. The handle is returned by the
SMC handler - completion of the handler function must always be via one of the SMC_RETn () macros.

Note: The PSCI and Test Secure-EL1 Payload Dispatcher services do not follow all of the above requirements yet.

2.9. EL3 Runtime Service Writer’s Guide 101

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

2.9.7 Services that contain multiple sub-services

It is possible that a single owning entity implements multiple sub-services. For example, the Standard calls service han-
dles 0x84000000-0x8400FFFF and 0xC4000000-0xC400FFFF functions. Within that range, the PSCI service handles
the 0x84000000-0x8400001F and 0xC4000000-0xC400001F functions. In that respect, PSCI is a ‘sub-service’ of
the Standard calls service. In future, there could be additional such sub-services in the Standard calls service which
perform independent functions.

In this situation it may be valuable to introduce a second level framework to enable independent implementation of sub-
services. Such a framework might look very similar to the current runtime services framework, but using a different
part of the SMC Function ID to identify the sub-service. TF-A does not provide such a framework at present.

2.9.8 Secure-EL1 Payload Dispatcher service (SPD)

Services that handle SMC Functions targeting a Trusted OS, Trusted Application, or other Secure-EL1 Payload are
special. These services need to manage the Secure-EL1 context, provide the Secure Monitor functionality of switching
between the normal and secure worlds, deliver SMC Calls through to Secure-EL1 and generally manage the Secure-EL1
Payload through CPU power-state transitions.

TODO: Provide details of the additional work required to implement a SPD and the BL31 support for these services.
Or a reference to the document that will provide this information....

Copyright (c) 2014-2020, Arm Limited and Contributors. All rights reserved.

Copyright (¢) 2019, Arm Limited. All rights reserved.

102 Chapter 2. Getting Started

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

CHAPTER
THREE

PROCESSES & POLICIES

3.1 Security Handling

3.1.1 Security Disclosures

We disclose all security vulnerabilities we find, or are advised about, that are relevant to Trusted Firmware-A. We
encourage responsible disclosure of vulnerabilities and inform users as best we can about all possible issues.

We disclose TF-A vulnerabilities as Security Advisories, all of which are listed at the bottom of this page. Any new
ones will, additionally, be announced as issues in the project’s issue tracker with the security-advisory tag. You can
receive notification emails for these by watching the “Trusted Firmware-A” project at https://developer.trustedfirmware.
org/.

3.1.2 Found a Security Issue?

Although we try to keep TF-A secure, we can only do so with the help of the community of developers and security
researchers.

Warning: If you think you have found a security vulnerability, please do not report it in the issue tracker or on
the mailing list. Instead, please follow the TrustedFirmware.org security incident process.

One of the goals of this process is to ensure providers of products that use TF-A have a chance to consider the impli-
cations of the vulnerability and its remedy before it is made public. As such, please follow the disclosure plan outlined
in the process. We do our best to respond and fix any issues quickly.

Afterwards, we encourage you to write-up your findings about the TF-A source code.

3.1.3 Attribution

We will name and thank you in the Change Log & Release Notes distributed with the source code and in any published
security advisory.

103

https://developer.trustedfirmware.org/project/board/1/
https://developer.trustedfirmware.org/
https://developer.trustedfirmware.org/
https://developer.trustedfirmware.org/project/board/1/
https://lists.trustedfirmware.org/mailman/listinfo/tf-a
https://developer.trustedfirmware.org/w/collaboration/security_center/

Trusted Firmware-A

3.1.4 Security Advisories

ID

Title

Advisory TFV-1 (CVE-2016-10319)

Malformed Firmware Update SMC can result in copy of unexpectedly
large data into secure memory

Advisory TFV-2 (CVE-2017-7564)

Enabled secure self-hosted invasive debug interface can allow normal
world to panic secure world

Advisory TFV-3 (CVE-2017-7563)

RO memory is always executable at AArch64 Secure EL1

Advisory TFV-4 (CVE-2017-9607)

Malformed Firmware Update SMC can result in copy or authentication
of unexpected data in secure memory in AArch32 state

Advisory TFV-5 (CVE-2017-15031)

Not initializing or saving/restoring PMCR_ELO can leak secure world
timing information

Advisory TFV-6 (CVE-2017-5753,
CVE-2017-5715, CVE-2017-5754)

Trusted Firmware-A exposure to speculative processor vulnerabilities
using cache timing side-channels

Advisory TFV-7 (CVE-2018-3639)

Trusted Firmware-A exposure to cache speculation vulnerability Variant
4

Advisory TFV-8 (CVE-2018-19440)

Not saving x0 to x3 registers can leak information from one Normal
World SMC client to another

Copyright (c¢) 2019-2020, Arm Limited. All rights reserved.

3.2 Platform Compatibility Policy

3.2.1 Introduction

This document clarifies the project’s policy around compatibility for upstream platforms.

3.2.2 Platform compatibility policy

Platform compatibility is mainly affected by changes to Platform APIs (as documented in the Porting Guide), driver
APIs (like the GICv3 drivers) or library interfaces (like xlat_table library). The project will try to maintain compatibility
for upstream platforms. Due to evolving requirements and enhancements, there might be changes affecting platform
compatibility which means the previous interface needs to be deprecated and a new interface introduced to replace it.
In case the migration to the new interface is trivial, the contributor of the change is expected to make good effort to
migrate the upstream platforms to the new interface.

The deprecated interfaces are listed inside Release Processes as well as the release after which each one will be removed.
When an interface is deprecated, the page must be updated to indicate the release after which the interface will be
removed. This must be at least 1 full release cycle in future. For non-trivial interface changes, an email should be sent
out to the TF-A public mailing list to notify platforms that they should migrate away from the deprecated interfaces.
Platforms are expected to migrate before the removal of the deprecated interface.

Copyright (¢) 2018-2019, Arm Limited and Contributors. All rights reserved.

104

Chapter 3. Processes & Policies

https://lists.trustedfirmware.org/mailman/listinfo/tf-a

Trusted Firmware-A

3.3 Coding Style

The following sections outline the 7F-A coding style for C code. The style is based on the Linux kernel coding style,
with a few modifications.

The style should not be considered set in stone. Feel free to provide feedback and suggestions.

Note: You will almost certainly find code in the 7F-A repository that does not follow the style. The intent is for all
code to do so eventually.

3.3.1 File Encoding

The source code must use the UTF-8 character encoding. Comments and documentation may use non-ASCII characters
when required (e.g. Greek letters used for units) but code itself is still limited to ASCII characters.

Newlines must be in Unix style, which means that only the Line Feed (LF) character is used to break a line and reset to
the first column.

3.3.2 Language
The primary language for comments and naming must be International English. In cases where there is a conflict
between the American English and British English spellings of a word, the American English spelling is used.

Exceptions are made when referring directly to something that does not use international style, such as the name of a
company. In these cases the existing name should be used as-is.

3.3.3 C Language Standard

The C language mode used for TF-A is GNU99. This is the “GNU dialect of ISO C99”, which implies the ISO C99
standard with GNU extensions.

Both GCC and Clang compiler toolchains have support for GNU99 mode, though Clang does lack support for a small
number of GNU extensions. These missing extensions are rarely used, however, and should not pose a problem.

3.3.4 MISRA Compliance

TF-A attempts to comply with the MISRA C:2012 Guidelines. Coverity Static Analysis is used to regularly generate a
report of current MISRA defects and to prevent the addition of new ones.

It is not possible for the project to follow all MISRA guidelines. We maintain a spreadsheet that lists all rules and
directives and whether we aim to comply with them or not. A rationale is given for each deviation.

Note: Enforcing a rule does not mean that the codebase is free of defects of that rule, only that they would ideally be
removed.

Note: Third-party libraries are not considered in our MISRA analysis and we do not intend to modify them to make
them MISRA compliant.

3.3. Coding Style 105

https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx
https://developer.trustedfirmware.org/file/download/lamajxif3w7c4mpjeoo5/PHID-FILE-fp7c7acszn6vliqomyhn/MISRA-and-TF-Analysis-v1.3.ods

Trusted Firmware-A

3.3.5 Indentation

Use tabs for indentation. The use of spaces for indentation is forbidden except in the case where a term is being indented
to a boundary that cannot be achieved using tabs alone.

Tab spacing should be set to 8 characters.

Trailing whitespace is not allowed and must be trimmed.

3.3.6 Spacing

Single spacing should be used around most operators, including:
* Arithmetic operators (+, -, /, *)
* Assignment operators (=, +=, etc)
* Boolean operators (&&, | |)
* Comparison operators (<, >, ==, etc)

A space should also be used to separate parentheses and braces when they are not already separated by a newline, such
as for the if statement in the following example:

int function_foo(bool bar)
{
if (bar) {
function_baz();
}
}

Note that there is no space between the name of a function and the following parentheses.

Control statements (if, for, switch, while, etc) must be separated from the following open parenthesis by a single
space. The previous example illustrates this for an if statement.

3.3.7 Line Length

Line length should be at most 80 characters. This limit does not include non-printing characters such as the line feed.

This rule is a should, not a must, and it is acceptable to exceed the limit slightly where the readability of the code would
otherwise be significantly reduced. Use your judgement in these cases.

3.3.8 Blank Lines

Functions are usually separated by a single blank line. In certain cases it is acceptable to use additional blank lines for
clarity, if required.

The file must end with a single newline character. Many editors have the option to insert this automatically and to trim
multiple blank lines at the end of the file.

106 Chapter 3. Processes & Policies

Trusted Firmware-A

3.3.9 Braces

Opening Brace Placement

Braces follow the Kernighan and Ritchie (K&R) style, where the opening brace is not placed on a new line.

Example for a while loop:

while (condition) {
foo(Q);
bar(Q;

}

This style applies to all blocks except for functions which, following the Linux style, do place the opening brace on a
new line.

Example for a function:

int my_function(void)

{
int a;
a=1;
return a;
}

Conditional Statement Bodies

Where conditional statements (such as if, for, while and do) are used, braces must be placed around the statements
that form the body of the conditional. This is the case regardless of the number of statements in the body.

Note: This is a notable departure from the Linux coding style that has been adopted to follow MISRA guidelines more
closely and to help prevent errors.

For example, use the following style:

if (condition) {
foo++;

}

instead of omitting the optional braces around a single statement:

/* This is violating MISRA C 2012: Rule 15.6 */
if (condition)
foo++;

The reason for this is to prevent accidental changes to control flow when modifying the body of the conditional. For
example, at a quick glance it is easy to think that the value of bar is only incremented if condition evaluates to true
but this is not the case - bar will always be incremented regardless of the condition evaluation. If the developer forgets
to add braces around the conditional body when adding the bar++; statement then the program execution will not
proceed as intended.

3.3. Coding Style 107

Trusted Firmware-A

/% This is violating MISRA C 2012: Rule 15.6 */
if (condition)

foo++;

bar++;

3.3.10 Naming

Functions

Use lowercase for function names, separating multiple words with an underscore character (_). This is sometimes

referred to as Snake Case. An example is given below:

void bl2_arch_setup(void)
{

}

Local Variables and Parameters

Local variables and function parameters use the same format as function names: lowercase with underscore separation

between multiple words. An example is given below:

static void set_scr_el3_from_rm(uint32_t type,
uint32_t interrupt_type_flags,
uint32_t security_state)

uint32_t flag, bit_pos;

Preprocessor Macros

Identifiers that are defined using preprocessor macros are written in all uppercase text.

#define BUFFER_SIZE_BYTES 64

3.3.11 Function Attributes

Place any function attributes after the function type and before the function name.

void __init plat_arm_interconnect_init(void);

108 Chapter 3.

Processes & Policies

Trusted Firmware-A

3.3.12 Alignment
Alignment should be performed primarily with tabs, adding spaces if required to achieve a granularity that is smaller

than the tab size. For example, with a tab size of eight columns it would be necessary to use one tab character and two
spaces to indent text by ten columns.

Switch Statement Alignment

When using switch statements, align each case statement with the switch so that they are in the same column.

switch (condition) {
case A:
foo();
case B:
bar();
default:
baz(Q);

Pointer Alignment

The reference and dereference operators (ampersand and pointer star) must be aligned with the name of the object on
which they are operating, as opposed to the type of the object.

uint8_t *foo;

foo = &bar;

3.3.13 Comments

The general rule for comments is that the double-slash style of comment (//) is not allowed. Examples of the allowed
comment formats are shown below:

/7':

* This example illustrates the first allowed style for multi-line comments.

* Blank lines within multi-lines are allowed when they add clarity or when
* they separate multiple contexts.

:’.-/

* This is the second allowed style for multi-line comments.

* In this style, the first and last lines use asterisks that run the full
* width of the comment at its widest point.

* This style can be used for additional emphasis.

8l S e o/

3.3. Coding Style 109

Trusted Firmware-A

/% Single line comments can use this format */

/7’:"‘""
* This alternative single-line comment style can also be used for emphasis.

% ,-/

3.3.14 Headers and inclusion

Header guards

For a header file called “some_driver.h” the style used by 7F-A is:

#ifndef SOME_DRIVER_H
#define SOME_DRIVER_H

<header content>

#endif /* SOME_DRIVER_H */

Include statement ordering
All header files that are included by a source file must use the following, grouped ordering. This is to improve readability
(by making it easier to quickly read through the list of headers) and maintainability.

1. System includes: Header files from the standard C library, such as stddef.h and string.h.

2. Project includes: Header files under the include/ directory within 7F-A are project includes.

3. Platform includes: Header files relating to a single, specific platform, and which are located under the plat/
<platform_name> directory within 7F-A, are platform includes.

Within each group, #include statements must be in alphabetical order, taking both the file and directory names into
account.

Groups must be separated by a single blank line for clarity.

The example below illustrates the ordering rules using some contrived header file names; this type of name reuse should
be otherwise avoided.

#include <string.h>

#include <a_dir/example/a_header.h>
#include <a_dir/example/b_header.h>
#include <a_dir/test/a_header.h>

#include <b_dir/example/a_header.h>

#include "a_header.h"

110 Chapter 3. Processes & Policies

Trusted Firmware-A

Include statement variants

Two variants of the #include directive are acceptable in the 7F-A codebase. Correct use of the two styles improves
readability by suggesting the location of the included header and reducing ambiguity in cases where generic and
platform-specific headers share a name.

For header files that are in the same directory as the source file that is including them, use the "..." variant.
For header files that are not in the same directory as the source file that is including them, use the <. . .> variant.

Example (bll_fwu.c):

#include <assert.h>
#include <errno.h>
#include <string.h>

#include "bll_private.h"

3.3.15 Typedefs

Avoid anonymous typedefs of structs/enums in headers

For example, the following definition:

typedef struct {
int argl;
int arg2;
} my_struct_t;

is better written as:

struct my_struct {
int argl;
int arg2;
};

This allows function declarations in other header files that depend on the struct/enum to forward declare the struct/enum
instead of including the entire header:

struct my_struct;
void my_func(struct my_struct *arg);

instead of:

#include <my_struct.h>
void my_func(my_struct_t *arg);

Some TF definitions use both a struct/enum name and a typedef name. This is discouraged for new definitions as it
makes it difficult for TF to comply with MISRA rule 8.3, which states that “All declarations of an object or function
shall use the same names and type qualifiers”.

The Linux coding standards also discourage new typedefs and checkpatch emits a warning for this.

Existing typedefs will be retained for compatibility.

Copyright (c) 2020, Arm Limited. All rights reserved.

3.3. Coding Style 111

Trusted Firmware-A

3.4 Coding Guidelines

This document provides some additional guidelines to consider when writing 7F-A code. These are not intended to be
strictly-enforced rules like the contents of the Coding Style.

3.4.1 Automatic Editor Configuration

Many of the rules given below (such as indentation size, use of tabs, and newlines) can be set automatically using the
EditorConfig configuration file in the root of the repository: .editorconfig. With a supported editor, the rules set
out in this file can be automatically applied when you are editing files in the 7F-A repository.

Several editors include built-in support for EditorConfig files, and many others support its functionality through plugins.

Use of the EditorConfig file is suggested but is not required.
3.4.2 Automatic Compliance Checking
To assist with coding style compliance, the project Makefile contains two targets which both utilise the checkpatch.pl

script that ships with the Linux source tree. The project also defines certain checkpatch options in the . checkpatch.
conf file in the top-level directory.

Note: Checkpatch errors will gate upstream merging of pull requests. Checkpatch warnings will not gate merging but
should be reviewed and fixed if possible.

To check the entire source tree, you must first download copies of checkpatch.pl, spelling.txt and
const_structs.checkpatch available in the Linux master tree scripts directory, then set the CHECKPATCH envi-
ronment variable to point to checkpatch.pl (with the other 2 files in the same directory) and build the checkcodebase
target:

make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and the remote master, use:

make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master, set the BASE_COMMIT variable to your
desired branch. By default, BASE_COMMIT is set to origin/master.

Ignored Checkpatch Warnings

Some checkpatch warnings in the TF codebase are deliberately ignored. These include:

e **JARNING: line over 80 characters**: Although the codebase should generally conform to the 80 char-
acter limit this is overly restrictive in some cases.

o **[JARNING: Use of volatile is usually wrong: see Why the “volatile” type class should not be used
. Although this document contains some very useful information, there are several legimate uses of the volatile
keyword within the TF codebase.

112 Chapter 3. Processes & Policies

http://editorconfig.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Trusted Firmware-A

3.4.3 Performance considerations

Avoid printf and use logging macros

debug.h provides logging macros (for example, WARN and ERROR) which wrap tf_log and which allow the logging
call to be compiled-out depending on the make command. Use these macros to avoid print statements being compiled
unconditionally into the binary.

Each logging macro has a numerical log level:

#define LOG_LEVEL_NONE 0
#define LOG_LEVEL_ERROR 10
#define LOG_LEVEL_NOTICE 20
#define LOG_LEVEL_WARNING 30
#define LOG_LEVEL_INFO 40
#define LOG_LEVEL_VERBOSE 50

By default, all logging statements with a log level <= LOG_LEVEL_INFO will be compiled into debug builds and all
statements with a log level <= LOG_LEVEL_NOTICE will be compiled into release builds. This can be overridden from
the command line or by the platform makefile (although it may be necessary to clean the build directory first).

For example, to enable VERBOSE logging on FVP:

make PLAT=fvp LOG_LEVEL=50 all

Use const data where possible

For example, the following code:

struct my_struct {
int argl;
int arg2;
3

void init(struct my_struct *ptr);

void main(void)

{
struct my_struct x;
x.argl = 1;
X.arg2 = 2;
init(&x);

}

is better written as:

struct my_struct {
int argl;
int arg2;

};
void init(const struct my_struct *ptr);

void main(void)

(continues on next page)

3.4. Coding Guidelines 113

Trusted Firmware-A

(continued from previous page)

const struct my_struct x = { 1, 2 };
init(&x);

This allows the linker to put the data in a read-only data section instead of a writeable data section, which may result
in a smaller and faster binary. Note that this may require dependent functions (init() in the above example) to have
const arguments, assuming they don’t need to modify the data.

3.4.4 Libc functions that are banned or to be used with caution

Below is a list of functions that present security risks and either must not be used (Banned) or are discouraged from
use and must be used with care (Caution).

libc function Status | Comments

strcpy, wcscpy, strncpy | Banned | use strlcpy instead

strcat, wcscat, strncat | Banned | use strlcat instead

sprintf, vsprintf Banned | use snprintf, vsnprintf instead

snprintf Caution | ensure result fits in buffer i.e : snprintf(buf,size...) < size
vsnprintf Caution | inspect va_list match types specified in format string
strtok Banned | use strtok_r or strsep instead

strtok_r, strsep Caution | inspect for terminated input buffer

ato* Banned | use equivalent strto* functions

*toa Banned | Use snprintf instead

The libc component in the codebase will not add support for the banned APIs.

3.4.5 Error handling and robustness

Using CASSERT to check for compile time data errors

Where possible, use the CASSERT macro to check the validity of data known at compile time instead of checking validity
at runtime, to avoid unnecessary runtime code.

For example, this can be used to check that the assembler’s and compiler’s views of the size of an array is the same.

#include <cassert.h>
define MY_STRUCT_SIZE 8 /* Used by assembler source files */
struct my_struct {

uint32_t argl;

uint32_t arg2;
};

CASSERT(MY_STRUCT_SIZE == sizeof(struct my_struct), assert_my_struct_size_mismatch);

If MY_STRUCT_SIZE in the above example were wrong then the compiler would emit an error like this:

my_struct.h:10:1: error: size of array ‘assert_my_struct_size_mismatch’ is negative

114 Chapter 3. Processes & Policies

Trusted Firmware-A

Using assert() to check for programming errors

In general, each secure world TF image (BL1, BL2, BL31 and BL32) should be treated as a tightly integrated package;
the image builder should be aware of and responsible for all functionality within the image, even if code within that
image is provided by multiple entities. This allows us to be more aggressive in interpreting invalid state or bad function
arguments as programming errors using assert(), including arguments passed across platform porting interfaces.
This is in contrast to code in a Linux environment, which is less tightly integrated and may attempt to be more defensive
by passing the error back up the call stack.

Where possible, badly written TF code should fail early using assert (). This helps reduce the amount of untested
conditional code. By default these statements are not compiled into release builds, although this can be overridden
using the ENABLE_ASSERTIONS build flag.

Examples:
* Bad argument supplied to library function
* Bad argument provided by platform porting function

* Internal secure world image state is inconsistent

Handling integration errors
Each secure world image may be provided by a different entity (for example, a Trusted Boot vendor may provide the
BL2 image, a TEE vendor may provide the BL.32 image and the OEM/SoC vendor may provide the other images).

An image may contain bugs that are only visible when the images are integrated. The system integrator may not even
have access to the debug variants of all the images in order to check if asserts are firing. For example, the release variant
of BL1 may have already been burnt into the SoC. Therefore, TF code that detects an integration error should _not_
consider this a programming error, and should always take action, even in release builds.

If an integration error is considered non-critical it should be treated as a recoverable error. If the error is considered
critical it should be treated as an unexpected unrecoverable error.

Handling recoverable errors

The secure world must not crash when supplied with bad data from an external source. For example, data from the
normal world or a hardware device. Similarly, the secure world must not crash if it detects a non-critical problem within
itself or the system. It must make every effort to recover from the problem by emitting a WARN message, performing
any necessary error handling and continuing.

Examples:
» Secure world receives SMC from normal world with bad arguments.
» Secure world receives SMC from normal world at an unexpected time.
e BL31 receives SMC from BL32 with bad arguments.
* BL31 receives SMC from BL32 at unexpected time.
 Secure world receives recoverable error from hardware device. Retrying the operation may help here.

» Non-critical secure world service is not functioning correctly.

BL31 SPD discovers minor configuration problem with corresponding SP.

3.4. Coding Guidelines 115

Trusted Firmware-A

Handling unrecoverable errors

In some cases it may not be possible for the secure world to recover from an error. This situation should be handled in
one of the following ways:

1. If the unrecoverable error is unexpected then emit an ERROR message and call panic (). This will end up calling
the platform-specific function plat_panic_handler().

2. If the unrecoverable error is expected to occur in certain circumstances, then emit an ERROR message and call
the platform-specific function plat_error_handler().

Cases 1 and 2 are subtly different. A platform may implement plat_panic_handler and plat_error_handler in
the same way (for example, by waiting for a secure watchdog to time-out or by invoking an interface on the platform’s
power controller to reset the platform). However, plat_error_handler may take additional action for some errors
(for example, it may set a flag so the platform resets into a different mode). Also, plat_panic_handler() may
implement additional debug functionality (for example, invoking a hardware breakpoint).

Examples of unexpected unrecoverable errors:

* BL32 receives an unexpected SMC response from BL31 that it is unable to recover from.

BL31 Trusted OS SPD code discovers that BL2 has not loaded the corresponding Trusted OS, which is critical
for platform operation.

* Secure world discovers that a critical hardware device is an unexpected and unrecoverable state.
» Secure world receives an unexpected and unrecoverable error from a critical hardware device.
 Secure world discovers that it is running on unsupported hardware.

Examples of expected unrecoverable errors:
* BLI1/BL2 fails to load the next image due to missing/corrupt firmware on disk.
* BL1/BL2 fails to authenticate the next image due to an invalid certificate.

 Secure world continuously receives recoverable errors from a hardware device but is unable to proceed without
a valid response.

Handling critical unresponsiveness

If the secure world is waiting for a response from an external source (for example, the normal world or a hardware
device) which is critical for continued operation, it must not wait indefinitely. It must have a mechanism (for example,
a secure watchdog) for resetting itself and/or the external source to prevent the system from executing in this state
indefinitely.

Examples:

e BLI is waiting for the normal world to raise an SMC to proceed to the next stage of the secure firmware update
process.

* A Trusted OS is waiting for a response from a proxy in the normal world that is critical for continued operation.

* Secure world is waiting for a hardware response that is critical for continued operation.

116 Chapter 3. Processes & Policies

Trusted Firmware-A

3.4.6 Use of built-in C and libc data types

The TF-A codebase should be kept as portable as possible, especially since both 64-bit and 32-bit platforms are sup-
ported. To help with this, the following data type usage guidelines should be followed:

Where possible, use the built-in C data types for variable storage (for example, char, int, long long, etc)
instead of the standard C99 types. Most code is typically only concerned with the minimum size of the data
stored, which the built-in C types guarantee.

Avoid using the exact-size standard C99 types in general (for example, uint16_t, uint32_t, uint64_t, etc)
since they can prevent the compiler from making optimizations. There are legitimate uses for them, for example
to represent data of a known structure. When using them in struct definitions, consider how padding in the struct
will work across architectures. For example, extra padding may be introduced in AArch32 systems if a struct
member crosses a 32-bit boundary.

Use int as the default integer type - it’s likely to be the fastest on all systems. Also this can be assumed to be
32-bit as a consequence of the Procedure Call Standard for the Arm Architecture and the Procedure Call Standard
for the Arm 64-bit Architecture .

Avoid use of short as this may end up being slower than int in some systems. If a variable must be exactly
16-bit, use int16_t or uint16_t.

Avoid use of long. This is guaranteed to be at least 32-bit but, given that int is 32-bit on Arm platforms, there
is no use for it. For integers of at least 64-bit, use long long.

Use char for storing text. Use uint8_t for storing other 8-bit data.

Use unsigned for integers that can never be negative (counts, indices, sizes, etc). TF intends to comply with
MISRA “essential type” coding rules (10.X), where signed and unsigned types are considered different essential
types. Choosing the correct type will aid this. MISRA static analysers will pick up any implicit signed/unsigned
conversions that may lead to unexpected behaviour.

For pointer types:

— If an argument in a function declaration is pointing to a known type then simply use a pointer to that type
(for example: struct my_struct *).

— If a variable (including an argument in a function declaration) is pointing to a general, memory-mapped
address, an array of pointers or another structure that is likely to require pointer arithmetic then use
uintptr_t. This will reduce the amount of casting required in the code. Avoid using unsigned long or
unsigned long long for this purpose; it may work but is less portable.

— For other pointer arguments in a function declaration, use void *. This includes pointers to types that
are abstracted away from the known API and pointers to arbitrary data. This allows the calling function to
pass a pointer argument to the function without any explicit casting (the cast to void * is implicit). The
function implementation can then do the appropriate casting to a specific type.

— Avoid pointer arithmetic generally (as this violates MISRA C 2012 rule 18.4) and especially on void pointers
(as this is only supported via language extensions and is considered non-standard). In TF-A, setting the
W build flag to W=3 enables the -Wpointer-arith compiler flag and this will emit warnings where pointer
arithmetic is used.

— Use ptrdiff_t to compare the difference between 2 pointers.
Use size_t when storing the sizeof () something.

Use ssize_t when returning the sizeof() something from a function that can also return an error code; the
signed type allows for a negative return code in case of error. This practice should be used sparingly.

Use u_register_t when it’s important to store the contents of a register in its native size (32-bit in AArch32 and
64-bit in AArch64). This is not a standard C99 type but is widely available in libc implementations, including the
FreeBSD version included with the TF codebase. Where possible, cast the variable to a more appropriate type

3.4. Coding Guidelines 117

https://developer.arm.com/docs/ihi0042/latest/
https://developer.arm.com/docs/ihi0055/latest/
https://developer.arm.com/docs/ihi0055/latest/

Trusted Firmware-A

before interpreting the data. For example, the following struct in ep_info.h could use this type to minimize the
storage required for the set of registers:

typedef struct aapcs64_params {
u_register_t arg®;
u_register_t argl;
u_register_t arg2;
u_register_t arg3;
u_register_t arg4;
u_register_t arg5;
u_register_t arg6;
u_register_t arg7;

} aapcs64_params_t;

If some code wants to operate on arg® and knows that it represents a 32-bit unsigned integer on all systems, cast it to
unsigned int.

These guidelines should be updated if additional types are needed.

3.4.7 Favor C language over assembly language
Generally, prefer code written in C over assembly. Assembly code is less portable, harder to understand, maintain and
audit security wise. Also, static analysis tools generally don’t analyze assembly code.
There are, however, legitimate uses of assembly language. These include:
* Early boot code executed before the C runtime environment is setup.
* Exception handling code.

* Low-level code where the exact sequence of instructions executed on the CPU matters, such as CPU reset se-
quences.

* Low-level code where specific system-level instructions must be used, such as cache maintenance operations.

Copyright (c) 2020, Arm Limited and Contributors. All rights reserved.

3.5 Contributor’s Guide

3.5.1 Getting Started

* Make sure you have a Github account and you are logged on both developer.trustedfirmware.org and re-
view.trustedfirmware.org.

* If you plan to contribute a major piece of work, it is usually a good idea to start a discussion around it on the
mailing list. This gives everyone visibility of what is coming up, you might learn that somebody else is already
working on something similar or the community might be able to provide some early input to help shaping the
design of the feature.

If you intend to include Third Party IP in your contribution, please mention it explicitly in the email thread and
ensure that the changes that include Third Party IP are made in a separate patch (or patch series).

* Clone Trusted Firmware-A on your own machine as described in Getting the TF-A Source.

* Create a local topic branch based on the Trusted Firmware-A master branch.

118 Chapter 3. Processes & Policies

https://developer.trustedfirmware.org
https://review.trustedfirmware.org
https://review.trustedfirmware.org
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git

Trusted Firmware-A

3.5.2 Making Changes

* Make commits of logical units. See these general Git guidelines for contributing to a project.

 Ensure your commit messages comply with the Conventional Commits specification:

<type>[optional scope]: <description>
[optional body]

[optional footer(s)]

You can use the tooling installed by the optional steps in the prerequisites guide to validate this locally.

¢ Keep the commits on topic. If you need to fix another bug or make another enhancement, please address it on a
separate topic branch.

* Split the patch in manageable units. Small patches are usually easier to review so this will speed up the review
process.

* Avoid long commit series. If you do have a long series, consider whether some commits should be squashed
together or addressed in a separate topic.

* Ensure that each commit in the series has at least one Signed-off-by: line, using your real name and email
address. The names in the Signed-off-by: and Commit: lines must match. By adding this line the contributor
certifies the contribution is made under the terms of the Developer Certificate of Origin.

There might be multiple Signed-off-by: lines, depending on the history of the patch.
More details may be found in the Gerrit Signed-off-by Lines guidelines.

* Ensure that each commit also has a unique Change-Id: line. If you have cloned the repository with the “Clone
with commit-msg hook” clone method (following the Prerequisites document), this should already be the case.

More details may be found in the Gerrit Change-Ids documentation.

* Write informative and comprehensive commit messages. A good commit message provides all the background
information needed for reviewers to understand the intent and rationale of the patch. This information is also
useful for future reference.

For example:

What does the patch do?

‘What motivated it?

What impact does it have?

How was it tested?

Have alternatives been considered? Why did you choose this approach over another one?
— If it fixes an issue, include a reference.
* Follow the Coding Style and Coding Guidelines.

— Use the checkpatch.pl script provided with the Linux source tree. A Makefile target is provided for conve-
nience, see this section for more details.

* Where appropriate, please update the documentation.

— Consider whether the Porting Guide, Firmware Design document or other in-source documentation needs
updating.

3.5. Contributor’s Guide 119

http://git-scm.com/book/ch5-2.html
https://www.conventionalcommits.org/en/v1.0.0
https://review.trustedfirmware.org/Documentation/user-signedoffby.html
https://review.trustedfirmware.org/Documentation/user-changeid.html
https://developer.trustedfirmware.org/project/board/1/

Trusted Firmware-A

— If you are submitting new files that you intend to be the code owner for (for example, a new platform port),
then also update the Code owners file.

— For topics with multiple commits, you should make all documentation changes (and nothing else) in the
last commit of the series. Otherwise, include the documentation changes within the single commit.

* Ensure that each changed file has the correct copyright and license information. Files that entirely consist of
contributions to this project should have a copyright notice and BSD-3-Clause SPDX license identifier of the
form as shown in License. Files that contain changes to imported Third Party IP files should retain their original
copyright and license notices.

For significant contributions you may add your own copyright notice in the following format:

Portions copyright (c) [XXXX-]YYYY, <OWNER>. All rights reserved.

where XXXX is the year of first contribution (if different to YYYY) and YYYY is the year of most recent
contribution. <OWNER> is your name or your company name.

» Ensure that each patch in the patch series compiles in all supported configurations. Patches which do not compile
will not be merged.

* Please test your changes. As a minimum, ensure that Linux boots on the Foundation FVP. See Arm Fixed Virtual
Platforms (FVP) for more information. For more extensive testing, consider running the TF-A Tests against your
patches.

* Ensure that all CI automated tests pass. Failures should be fixed. They might block a patch, depending on how
critical they are.

3.5.3 Submitting Changes

* Submit your changes for review at https://review.trustedfirmware.org targeting the integration branch.
* Add reviewers for your patch:

— At least one code owner for each module modified by the patch. See the list of modules and their Code
OwWners.

— At least one maintainer. See the list of Maintainers.

— If some module has no code owner, try to identify a suitable (non-code owner) reviewer. Running git
blame on the module’s source code can help, as it shows who has been working the most recently on this
area of the code.

Alternatively, if it is impractical to identify such a reviewer, you might send an email to the TF-A mailing
list to broadcast your review request to the community.

Note that self-reviewing a patch is prohibited, even if the patch author is the only code owner of a module
modified by the patch. Getting a second pair of eyes on the code is essential to keep up with the quality standards
the project aspires to.

* The changes will then undergo further review by the designated people. Any review comments will be made
directly on your patch. This may require you to do some rework. For controversial changes, the discussion might
be moved to the TF-A mailing list to involve more of the community.

Refer to the Gerrit Uploading Changes documentation for more details.
* The patch submission rules are the following. For a patch to be approved and merged in the tree, it must get:
— One Code-Owner-Review+1 for each of the modules modified by the patch.

— A Maintainer-Review+l1.

120 Chapter 3. Processes & Policies

https://trustedfirmware-a-tests.readthedocs.io
https://review.trustedfirmware.org
https://lists.trustedfirmware.org/mailman/listinfo/tf-a
https://lists.trustedfirmware.org/mailman/listinfo/tf-a
https://lists.trustedfirmware.org/mailman/listinfo/tf-a
https://review.trustedfirmware.org/Documentation/user-upload.html

Trusted Firmware-A

In the case where a code owner could not be found for a given module, Code-Owner-Review+1 is substituted
by Code-Review+1.

In addition to these various code review labels, the patch must also get a Verified+1. This is usually set by
the Continuous Integration (CI) bot when all automated tests passed on the patch. Sometimes, some of these
automated tests may fail for reasons unrelated to the patch. In this case, the maintainers might (after analysis of
the failures) override the CI bot score to certify that the patch has been correctly tested.

In the event where the CI system lacks proper tests for a patch, the patch author or a reviewer might agree to
perform additional manual tests in their review and the reviewer incorporates the review of the additional testing
in the Code-Review+1 or Code-Owner-Review+1 as applicable to attest that the patch works as expected.
Where possible additional tests should be added to the CI system as a follow up task. For example, for a platform-
dependent patch where the said platform is not available in the CI system’s board farm.

* When the changes are accepted, the Maintainers will integrate them.
— Typically, the Maintainers will merge the changes into the integration branch.

— If the changes are not based on a sufficiently-recent commit, or if they cannot be automatically rebased,
then the Maintainers may rebase it on the integration branch or ask you to do so.

— After final integration testing, the changes will make their way into the master branch. If a problem is
found during integration, the Maintainers will request your help to solve the issue. They may revert your
patches and ask you to resubmit a reworked version of them or they may ask you to provide a fix-up patch.

3.5.4 Binary Components

¢ Platforms may depend on binary components submitted to the Trusted Firmware binary repository if they require
code that the contributor is unable or unwilling to open-source. This should be used as a rare exception.

» All binary components must follow the contribution guidelines (in particular licensing rules) outlined in the
readme.rst file of the binary repository.

* Binary components must be restricted to only the specific functionality that cannot be open-sourced and must
be linked into a larger open-source platform port. The majority of the platform port must still be implemented
in open source. Platform ports that are merely a thin wrapper around a binary component that contains all the
actual code will not be accepted.

* Only platform port code (i.e. in the plat/<vendor> directory) may rely on binary components. Generic code
must always be fully open-source.

Copyright (¢) 2013-2020, Arm Limited and Contributors. All rights reserved.

3.6 Code Review Guidelines

This document provides TF-A specific details about the project’s code review process. It should be read in conjunction
with the Project Maintenance Process, which it supplements.

3.6. Code Review Guidelines 121

https://review.trustedfirmware.org/admin/repos/tf-binaries
https://git.trustedfirmware.org/tf-binaries.git/tree/readme.rst
https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/

Trusted Firmware-A

3.6.1 Why do we do code reviews?

The main goal of code reviews is to improve the code quality. By reviewing each other’s code, we can help catch
issues that were missed by the author before they are integrated in the source tree. Different people bring different
perspectives, depending on their past work, experiences and their current use cases of TF-A in their products.

Code reviews also play a key role in sharing knowledge within the community. People with more expertise in one area
of the code base can help those that are less familiar with it.

Code reviews are meant to benefit everyone through team work. It is not about unfairly criticizing or belittling the work
of any contributor.

3.6.2 Good practices

To ensure the code review gives the greatest possible benefit, participants in the project should:

* Be considerate of other people and their needs. Participants may be working to different timescales, and have
different priorities. Keep this in mind - be gracious while waiting for action from others, and timely in your
actions when others are waiting for you.

* Review other people’s patches where possible. The more active reviewers there are, the more quickly new patches
can be reviewed and merged. Contributing to code review helps everyone in the long run, as it creates a culture
of participation which serves everyone’s interests.

3.6.3 Guidelines for patch contributors

In addition to the rules outlined in the Contributor’s Guide, as a patch contributor you are expected to:
* Answer all comments from people who took the time to review your patches.

* Be patient and resilient. It is quite common for patches to go through several rounds of reviews and rework before
they get approved, especially for larger features.

In the event that a code review takes longer than you would hope for, you may try the following actions to speed
it up:

* Ping the reviewers on Gerrit or on the mailing list. If it is urgent, explain why. Please remain courteous and do
not abuse this.

¢ If one code owner has become unresponsive, ask the other code owners for help progressing the patch.
* If there is only one code owner and they have become unresponsive, ask one of the project maintainers for help.
* Do the right thing for the project, not the fastest thing to get code merged.

For example, if some existing piece of code - say a driver - does not quite meet your exact needs, go the extra
mile and extend the code with the missing functionality you require - as opposed to copying the code into some
other directory to have the freedom to change it in any way. This way, your changes benefit everyone and will be
maintained over time.

122 Chapter 3. Processes & Policies

Trusted Firmware-A

3.6.4 Guidelines for all reviewers

There are no good or bad review comments. If you have any doubt about a patch or need some clarifications, it’s better
to ask rather than letting a potential issue slip. Examples of review comments could be:

Questions (“Why do you need to do this?”, “What if X happens?”’)
Bugs (“I think you need a logical || rather than a bitwise |.”)
Design issues (“This won’t scale well when we introduce feature X.”)

Improvements (“Would it be better if we did Y instead?”)

3.6.5 Guidelines for code owners

Code owners are listed on the Project Maintenance page, along with the module(s) they look after.

When reviewing a patch, code owners are expected to check the following:

The patch looks good from a technical point of view. For example:

The structure of the code is clear.

It complies with the relevant standards or technical documentation (where applicable).
It leverages existing interfaces rather than introducing new ones unnecessarily.

It fits well in the design of the module.

It adheres to the security model of the project. In particular, it does not increase the attack surface (e.g. new

SMCs) without justification.

The patch adheres to the TF-A Coding Style. The CI system should help catch coding style violations.

(Only applicable to generic code) The code is MISRA-compliant (see MISRA Compliance). The CI system

should help catch violations.

Documentation is provided/updated (where applicable).

The patch has had an appropriate level of testing. Testing details are expected to be provided by the patch author.

If they are not, do not hesitate to request this information.

All CT automated tests pass.

If a code owner is happy with a patch, they should give their approval through the Code-Owner-Review+1 la-
bel in Gerrit. If instead, they have concerns, questions, or any other type of blocking comment, they should set
Code-Owner-Review-1.

Code owners are expected to behave professionally and responsibly. Here are some guidelines for them:

* Once you are engaged in a review, make sure you stay involved until the patch is merged. Rejecting a patch and
going away is not very helpful. You are expected to monitor the patch author’s answers to your review comments,

answer back if needed and review new revisions of their patch.

* Provide constructive feedback. Just saying, “This is wrong, you should do X instead.” is usually not very helpful.
The patch author is unlikely to understand why you are requesting this change and might feel personally attacked.

* Be mindful when reviewing a patch. As a code owner, you are viewed as the expert for the relevant module. By
approving a patch, you are partially responsible for its quality and the effects it has for all TF-A users. Make sure

you fully understand what the implications of a patch might be.

3.6. Code Review Guidelines

123

Trusted Firmware-A

3.6.6 Guidelines for maintainers

Maintainers are listed on the Project Maintenance page.

When reviewing a patch, maintainers are expected to check the following:

* The general structure of the patch looks good. This covers things like:

Code organization.

Files and directories, names and locations.

For example, platform code should be added under the plat/ directory.

Naming conventions.
For example, platform identifiers should be properly namespaced to avoid name clashes with generic code.

API design.

Interaction of the patch with other modules in the code base.
The patch aims at complying with any standard or technical documentation that applies.

New files must have the correct license and copyright headers. See this paragraph for more information. The CI
system should help catch files with incorrect or no copyright/license headers.

There is no third party code or binary blobs with potential IP concerns. Maintainers should look for copyright
or license notices in code, and use their best judgement. If they are unsure about a patch, they should ask other
maintainers for help.

Generally speaking, new driver code should be placed in the generic layer. There are cases where a driver has to
stay into the platform layer but this should be the exception, rather than the rule.

Existing common drivers (in particular for Arm IPs like the GIC driver) should not be copied into the platform
layer to cater for platform quirks. This type of code duplication hurts the maintainability of the project. The
duplicate driver is less likely to benefit from bug fixes and future enhancements. In most cases, it is possible to
rework a generic driver to make it more flexible and fit slightly different use cases. That way, these enhancements
benefit everyone.

When a platform specific driver really is required, the burden lies with the patch author to prove the need for it.
A detailed justification should be posted via the commit message or on the mailing list.

Before merging a patch, verify that all review comments have been addressed. If this is not the case, encourage
the patch author and the relevant reviewers to resolve these together.

If a maintainer is happy with a patch, they should give their approval through the Maintainer-Review+1 la-
bel in Gerrit. If instead, they have concerns, questions, or any other type of blocking comment, they should set
Maintainer-Review-1.

Copyright (¢) 2020, Arm Limited. All rights reserved.

124

Chapter 3. Processes & Policies

Trusted Firmware-A

3.7 Frequently-Asked Questions (FAQ)

3.7.1 How do | update my changes?

Often it is necessary to update your patch set before it is merged. Refer to the Gerrit Upload Patch Set documentation
on how to do so.

If you need to modify an existing patch set with multiple commits, refer to the Gerrit Replace Changes documentation.

3.7.2 How long will my changes take to merge into integration?

This can vary a lot, depending on:

* How important the patch set is considered by the TF maintainers. Where possible, you should indicate the
required timescales for merging the patch set and the impact of any delay. Feel free to add a comment to your
patch set to get an estimate of when it will be merged.

* The quality of the patch set. Patches are likely to be merged more quickly if they follow the coding guidelines,
have already had some code review, and have been appropriately tested.

* The impact of the patch set. For example, a patch that changes a key generic API is likely to receive much greater
scrutiny than a local change to a specific platform port.

* How much opportunity for external review is required. For example, the TF maintainers may not wait for external
review comments to merge trivial bug-fixes but may wait up to a week to merge major changes, or ones requiring
feedback from specific parties.

* How many other patch sets are waiting to be integrated and the risk of conflict between the topics.

* If there is a code freeze in place in preparation for the release. Please refer the Release Processes document for
more details.

¢ The workload of the TF maintainers.

3.7.3 How long will it take for my changes to go from integration to master?

This depends on how many concurrent patches are being processed at the same time. In simple cases where all potential
regressions have already been tested, the delay will be less than 1 day. If the TF maintainers are trying to merge several
things over the course of a few days, it might take up to a week. Typically, it will be 1-2 days.

The worst case is if the TF maintainers are trying to make a release while also receiving patches that will not be merged
into the release. In this case, the patches will be merged onto integration, which will temporarily diverge from the
release branch. The integration branch will be rebased onto master after the release, and then master will be
fast-forwarded to integration 1-2 days later. This whole process could take up 4 weeks. Please refer to the Release
Processes document for code freeze dates. The TF maintainers will inform the patch owner if this is going to happen.

It is OK to create a patch based on commits that are only available in integration or another patch set, rather than
master. There is a risk that the dependency commits will change (for example due to patch set rework or integration
problems). If this happens, the dependent patch will need reworking.

3.7. Frequently-Asked Questions (FAQ) 125

https://review.trustedfirmware.org/Documentation/intro-user.html#upload-patch-set
https://review.trustedfirmware.org/Documentation/user-upload.html#push_replace

Trusted Firmware-A

3.7.4 What are these strange comments in my changes?

All the comments from ci-bot-user are associated with Continuous Integration infrastructure. The links published
on the comment are not currently accessible, but would be after the CI has been transitioned to trustedfirmware.org.

Copyright (c) 2019-2020, Arm Limited. All rights reserved.

3.8 Secure Development Guidelines

This page contains guidance on what to check for additional security measures, including build options that can be
modified to improve security or catch issues early in development.

3.8.1 Security considerations

Part of the security of a platform is handling errors correctly, as described in the previous section. There are several
other security considerations covered in this section.

Do not leak secrets to the normal world

The secure world must not leak secrets to the normal world, for example in response to an SMC.

Handling Denial of Service attacks

The secure world should never crash or become unusable due to receiving too many normal world requests (a Denial
of Service or DoS attack). It should have a mechanism for throttling or ignoring normal world requests.

Preventing Secure-world timing information leakage via PMU counters

The Secure world needs to implement some defenses to prevent the Non-secure world from making it leak timing
information. In general, higher privilege levels must defend from those below when the PMU is treated as an attack
vector.

Refer to the Performance Monitoring Unit guide for detailed information on the PMU registers.

Timing leakage attacks from the Non-secure world

Since the Non-secure world has access to the PMCR register, it can configure the PMU to increment counters at any
exception level and in both Secure and Non-secure state. Thus, it attempts to leak timing information from the Secure
world.

Shown below is an example of such a configuration:

* PMEVTYPERO_ELO and PMCCFILTR_ELO:

Set P to 0.

Set NSK to 1.
Set Mto 0.

Set NSH to 0.

126 Chapter 3. Processes & Policies

https://www.trustedfirmware.org/

Trusted Firmware-A

— Set SHto 1.

e PMCNTENSET_ELO:
— Set P[0] to 1.
— SetCto 1.

¢ PMCR_ELQ:
— SetDP to 0.
— SetEto 1.

This configuration instructs PMEVCNTRO_EL® and PMCCNTR_EL® to increment at Secure EL1, Secure EL2 (if imple-
mented) and EL3.

Since the Non-secure world has fine-grained control over where (at which exception levels) it instructs counters to
increment, obtaining event counts would allow it to carry out side-channel timing attacks against the Secure world.
Examples include Spectre, Meltdown, as well as extracting secrets from cryptographic algorithms with data-dependent
variations in their execution time.

Secure world mitigation strategies

The MDCR_EL3 register allows EL3 to configure the PMU (among other things). The Arm ARM details all of the bit
fields in this register, but for the PMU there are two bits which determine the permissions of the counters:

* SPME for the programmable counters.
* SCCD for the cycle counter.

Depending on the implemented features, the Secure world can prohibit counting in AArch64 state via the following:
* ARMvVS8.2-Debug not implemented:

— Prohibit general event counters and the cycle counter: MDCR_EL3.SPME == 0 && PMCR_EL®.DP ==
&& !ExternalSecureNoninvasiveDebugEnabled().

% MDCR_EL3. SPME resets to 0, so by default general events should not be counted in the Secure world.

* The PMCR_EL®.DP bit therefore needs to be set to 1 when EL3 is entered and PMCR_ELO needs to be
saved and restored in EL3.

% ExternalSecureNoninvasiveDebugEnabled() is an authentication interface which is
implementation-defined unless ARMv8.4-Debug is implemented. The Arm ARM has detailed
information on this topic.

— The only other way is to disable the PMCR_EL®. E bit upon entering EL3, which disables counting altogether.
* ARMvS.2-Debug implemented:
— Prohibit general event counters: MDCR_EL3.SPME == 0.

— Prohibit cycle counter: MDCR_EL3.SPME == 0 &% PMCR_ELO.DP == 1. PMCR_EL@ therefore needs to
be saved and restored in EL3.

* ARMv8.5-PMU implemented:
— Prohibit general event counters: as in ARMv8.2-Debug.
— Prohibit cycle counter: MDCR_EL3.SCCD == 1

In Aarch32 execution state the MDCR_EL3 alias is the SDCR register, which has some of the bit fields of MDCR_EL3, most
importantly the SPME and SCCD bits.

3.8. Secure Development Guidelines 127

https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/docs/ddi0487/latest

Trusted Firmware-A

3.8.2 Build options

Several build options can be used to check for security issues. Refer to the Build Options for detailed information on

these.

e The BRANCH_PROTECTION build flag can be used to enable Pointer Authentication and Branch Target Identifica-

tion.

e The ENABLE_STACK_PROTECTOR build flag can be used to identify buffer overflows.

e The W build flag can be used to enable a number of compiler warning options to detect potentially incorrect code.

W=0 (default value)
The Wunused with Wno-unused-parameter, Wdisabled-optimization and Wvla flags are enabled.

The Wunused-but-set-variable, Wmaybe-uninitialized and Wpacked-bitfield-compat are
GCC specific flags that are also enabled.

W=1

Adds Wextra, Wmissing-format-attribute, Wmissing-prototypes, Wold-style-definition
and Wunused-const-variable.

Ww=2
Adds Waggregate-return, Wcast-align, Winested-externs, Wshadow, Wlogical-op.
w=3

Adds Wbad-function-cast, Wcast-qual, Wconversion, Wpacked, Wpointer-arith,
Wredundant-decls and Wswitch-default.

Refer to the GCC or Clang documentation for more information on the individual options: https://gcc.gnu.org/
onlinedocs/gcc/Warning-Options.html and https://clang.llvm.org/docs/DiagnosticsReference.html.

NB: The Werror flag is enabled by default in TF-A and can be disabled by setting the E build flag to 0.

References

e Arm ARM

Copyright (c) 2019-2020, Arm Limited. All rights reserved.

128

Chapter 3. Processes & Policies

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://developer.arm.com/docs/ddi0487/latest

CHAPTER
FOUR

COMPONENTS

4.1 Secure Payload Dispatcher (SPD)

4.1.1 OP-TEE Dispatcher

OP-TEE OS is a Trusted OS running as Secure EL1.
To build and execute OP-TEE follow the instructions at OP-TEE build.git

Copyright (c) 2014-2018, Arm Limited and Contributors. All rights reserved.

4.1.2 Trusted Little Kernel (TLK) Dispatcher

TLK dispatcher (TLK-D) adds support for NVIDIA’s Trusted Little Kernel (TLK) to work with Trusted Firmware-A
(TF-A). TLK-D can be compiled by including it in the platform’s makefile. TLK is primarily meant to work with Tegra
SoCs, so while TF-A only supports TLK on Tegra, the dispatcher code can only be compiled for other platforms.

In order to compile TLK-D, we need a BL32 image to be present. Since, TLKD just needs to compile, any BL32 image
would do. To use TLK as the BL32, please refer to the “Build TLK” section.

Once a BL32 is ready, TLKD can be included in the image by adding “SPD=tlkd” to the build command.

Trusted Little Kernel (TLK)

TLK is a Trusted OS running as Secure EL1. It is a Free Open Source Software (FOSS) release of the NVIDIA®
Trusted Little Kernel (TLK) technology, which extends technology made available with the development of the Little
Kernel (LK). You can download the LK modular embedded preemptive kernel for use on Arm, x86, and AVR32 systems
from https://github.com/travisg/lk

NVIDIA implemented its Trusted Little Kernel (TLK) technology, designed as a free and open-source trusted execution
environment (OTE).

TLK features include:
e Small, pre-emptive kernel
 Supports multi-threading, IPCs, and thread scheduling
* Added TrustZone features
¢ Added Secure Storage
Under MIT/FreeBSD license

129

https://github.com/OP-TEE/build
https://github.com/OP-TEE/build
https://github.com/travisg/lk

Trusted Firmware-A

NVIDIA extensions to Little Kernel (LK) include:
» User mode
* Address-space separation for TAs
e TLK Client Application (CA) library
e TLK TA library
* Crypto library (encrypt/decrypt, key handling) via OpenSSL
* Linux kernel driver
* Cortex A9/A15 support
* Power Management
* TrustZone memory carve-out (reconfigurable)
» Page table management
* Debugging support over UART (USB planned)

TLK is hosted by NVIDIA on http://nv-tegra.nvidia.com under the 3rdparty/ote_partner/tlk.git repository. Detailed
information about TLK and OTE can be found in the Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf manual
located under the “documentation” directory_.

Build TLK

To build and execute TLK, follow the instructions from “Building a TLK Device” section from
Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf manual.

Input parameters to TLK

TLK expects the TZDRAM size and a structure containing the boot arguments. BL2 passes this information to the EL3
software as members of the bl32_ep_info struct, where bl32_ep_info is part of bl31_params_t (passed by BL2 in X0)

Example

b132_ep_info->args.arg® = TZDRAM size available for BL32
bl32_ep_info->args.argl = unused (used only on Armv7-A)
bl32_ep_info->args.arg2 = pointer to boot args

4.1.3 Trusty Dispatcher
Trusty is a a set of software components, supporting a Trusted Execution Environment (TEE) on mobile devices,
published and maintained by Google.

Detailed information and build instructions can be found on the Android Open Source Project (AOSP) webpage for
Trusty hosted at https://source.android.com/security/trusty

130 Chapter 4. Components

http://nv-tegra.nvidia.com
https://source.android.com/security/trusty

Trusted Firmware-A

Boot parameters

Custom boot parameters can be passed to Trusty by providing a platform specific function:

void plat_trusty_set_boot_args(aapcs64_params_t *args)

If this function is provided args->arg® must be set to the memory size allocated to trusty. If the platform does
not provide this function, but defines TSP_SEC_MEM_SIZE, a default implementation will pass the memory size from
TSP_SEC_MEM_SIZE. args->argl can be set to a platform specific parameter block, and args->arg2 should then be
set to the size of that block.

Supported platforms

Out of all the platforms supported by Trusted Firmware-A, Trusty is only verified and supported by NVIDIA’s Tegra
SoCs.

4.2 Arm SiP Services

This document enumerates and describes the Arm SiP (Silicon Provider) services.

SiP services are non-standard, platform-specific services offered by the silicon implementer or platform provider. They
are accessed via SMC (“SMC calls”) instruction executed from Exception Levels below EL3. SMC calls for SiP services:

* Follow SMC Calling Convention;

* Use SMC function IDs that fall in the SiP range, which are 0xc2000000 - 0xc200ffff for 64-bit calls, and
0x82000000 - 0x8200ffff for 32-bit calls.

The Arm SiP implementation offers the following services:
¢ Performance Measurement Framework (PMF)
» Execution State Switching service
* DebugFS interface

Source definitions for Arm SiP service are located in the arm_sip_svc.h header file.

4.2.1 Performance Measurement Framework (PMF)

The Performance Measurement Framework allows callers to retrieve timestamps captured at various paths in TF-A
execution.

4.2.2 Execution State Switching service

Execution State Switching service provides a mechanism for a non-secure lower Exception Level (either EL2, or NS
EL1 if EL2 isn’t implemented) to request to switch its execution state (a.k.a. Register Width), either from AArch64 to
AArch32, or from AArch32 to AArch64, for the calling CPU. This service is only available when Trusted Firmware-A
(TF-A) is built for AArch64 (i.e. when build option ARCH is set to aarch64).

4.2. Arm SiP Services 131

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

ARM_STP_SVC_EXE_STATE_SWITCH

Arguments:
uint32_t Function ID
uint32_t PC hi
uint32_t PC lo
uint32_t Cookie hi
uint32_t Cookie lo

Return:
uint32_t

The function ID parameter must be 0x82000020. It uniquely identifies the Execution State Switching service being
requested.

The parameters PC hi and PC lo defines upper and lower words, respectively, of the entry point (physical address) at
which execution should start, after Execution State has been switched. When calling from AArch64, PC hi must be 0.

When execution starts at the supplied entry point after Execution State has been switched, the parameters Cookie hi
and Cookie lo are passed in CPU registers 0 and 1, respectively. When calling from AArch64, Cookie hi must be 0.

This call can only be made on the primary CPU, before any secondaries were brought up with CPU_ON PSCI call.
Otherwise, the call will always fail.

The effect of switching execution state is as if the Exception Level were entered for the first time, following power on.
This means CPU registers that have a defined reset value by the Architecture will assume that value. Other registers
should not be expected to hold their values before the call was made. CPU endianness, however, is preserved from the
previous execution state. Note that this switches the execution state of the calling CPU only. This is not a substitute for
PSCI SYSTEM_RESET.

The service may return the following error codes:
e STATE_SW_E_PARANM: If any of the parameters were deemed invalid for a specific request.
e STATE_SW_E_DENIED: If the call is not successful, or when TF-A is built for AArch32.

If the call is successful, the caller wouldn’t observe the SMC returning. Instead, execution starts at the supplied entry
point, with the CPU registers 0 and 1 populated with the supplied Cookie hi and Cookie lo values, respectively.

4.2.3 DebugFsS interface

The optional DebugFS interface is accessed through an SMC SiP service. Refer to the component documentation for
details.

String parameters are passed through a shared buffer using a specific union:

union debugfs_parms {
struct {
char fname[MAX_PATH_LEN];
} open;

struct mount {
char srv[MAX_PATH_LEN];
char where[MAX_PATH_LEN];
char spec[MAX_PATH_LEN];
} mount;

(continues on next page)

132 Chapter 4. Components

Trusted Firmware-A

(continued from previous page)

struct {

char path[MAX_PATH_LEN];

dir_t dir;

} stat;

struct {

char oldpath[MAX_PATH_LEN];
char newpath[MAX_PATH_LEN];

} bind;
1

Format of the dir_t structure as such:

typedef struct {

char name [NAMELEN] ;

long length;

unsigned char mode;

unsigned char index;

unsigned char dev;

gid_t qid;

} dir_t;

¢ Identifiers
SMC_OK 0
SMC_UNK -1
DEBUGFS_E_INVALID_PARAMS | -2

MOUNT

Description

MOUNT
CREATE
OPEN
CLOSE
READ
WRITE
SEEK
BIND
STAT
INIT
VERSION

—| =00l AN W | W= O

Il K=}

This operation mounts a blob of data pointed to by path stored in src, at filesystem location pointed to by path stored
in where, using driver pointed to by path in spec.

4.2. Arm SiP Services

133

Trusted Firmware-A

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)

uint32_t | MOUNT

Return values

int32_t | w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if mount operation failed
OPEN
Description

This operation opens the file path pointed to by fname.

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)

uint32 t | OPEN

uint32_t | mode

mode can be one of:

enum mode {
O_READ
O_WRITE
O_RDWR
O_BIND
0_DIR
O_STAT

3

= = = = e

0
1
<< 2,
3
4
5

Return values

int32_t w(0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if open operation failed
uint32_t | wl: file descriptor id on success.
134 Chapter 4. Components

Trusted Firmware-A

CLOSE

Description

This operation closes a file described by a file descriptor obtained by a previous call to OPEN.

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)
uint32_t | CLOSE
uint32_t | File descriptor id returned by OPEN

Return values

int32_t | w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if close operation failed

READ

Description

This operation reads a number of bytes from a file descriptor obtained by a previous call to OPEN.

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)
uint32 t | READ

uint32_t | File descriptor id returned by OPEN
uint32_t | Number of bytes to read

Return values

On success, the read data is retrieved from the shared buffer after the operation.

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if read operation failed

uint32_t | wl: number of bytes read on success.

4.2. Arm SiP Services

135

Trusted Firmware-A

SEEK

Description

Move file pointer for file described by given file descriptor of given offset related to whence.

Parameters

uint32_t

FunctionID (0x82000030 / 0xC2000030)

uint32 _t

SEEK

uint32_t

File descriptor id returned by OPEN

sint32_t

offset in the file relative to whence

uint32_t

whence

whence can be one of:

Return values

KSEEK_SET | 0
KSEEK_CUR
KSEEK_END | 2

—_

int32_t | w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if seek operation failed

BIND

Description

Create a link from oldpath to newpath.

Parameters

uint32_t

FunctionID (0x82000030 / 0xC2000030)

uint32_t

BIND

136

Chapter 4. Components

Trusted Firmware-A

Return values

int32_t | w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if bind operation failed

STAT

Description

Perform a stat operation on provided file name and returns the directory entry statistics into dir.

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)
uint32_t | STAT

Return values

int32_t | w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if stat operation failed

INIT

Description

Initial call to setup the shared exchange buffer. Notice if successful once, subsequent calls fail after a first initializa-
tion. The caller maps the same page frame in its virtual space and uses this buffer to exchange string parameters with
filesystem primitives.

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)
uint32_t | INIT
uint64_t | Physical address of the shared buffer.

4.2. Arm SiP Services 137

Trusted Firmware-A

Return values

int32_t| w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if already initialized, or internal error occurred.

VERSION

Description

Returns the debugfs interface version if implemented in TF-A.

Parameters

uint32_t | FunctionID (0x82000030 / 0xC2000030)
uint32_t | VERSION

Return values

int32_t | w0 == SMC_OK on success

w0 == SMC_UNK if interface is not implemented

uint32_t wl: On success, debugfs interface version, 32 bits value with major version number in upper 16 bits and
minor version in lower 16 bits.

* CREATE(1) and WRITE (5) command identifiers are unimplemented and return SMC_UNK.

Copyright (c¢) 2017-2020, Arm Limited and Contributors. All rights reserved.

4.3 Debug FS

Contents

* Debug FS

— Overview

Virtual filesystem
% Namespace

* 9p interface

SMC interface

Security considerations

Limitations

Applications

138 Chapter 4. Components

Trusted Firmware-A

4.3.1 Overview

The DebugFS feature is primarily aimed at exposing firmware debug data to higher SW layers such as a non-secure
component. Such component can be the TFTF test payload or a Linux kernel module.

4.3.2 Virtual filesystem
The core functionality lies in a virtual file system based on a 9p file server interface (Notes on the Plan 9 Kernel Source

and Linux 9p remote filesystem protocol). The implementation permits exposing virtual files, firmware drivers, and
file blobs.

Namespace

Two namespaces are exposed:
* #is used as root for drivers (e.g. #t0 is the first uart)

* /is used as root for virtual “files” (e.g. /fip, or /dev/uart)

9p interface

The associated primitives are:

¢ Unix-like:

open(): create a file descriptor that acts as a handle to the file passed as an argument.

close(): close the file descriptor created by open().

read(): read from a file to a buffer.

write(): write from a buffer to a file.

seek(): set the file position indicator of a file descriptor either to a relative or an absolute offset.

stat(): get information about a file (type, mode, size, ...).

int open(const char *name, int flags);
int close(int fd);

int read(int fd, void *buf, int n);
int write(int fd, void *buf, int n);
int seek(int fd, long off, int whence);
int stat(char *path, dir_t *dir);

* Specific primitives :
— mount(): create a link between a driver and spec.
— create(): create a file in a specific location.

— bind(): expose the content of a directory to another directory.

int mount(char *srv, char *mnt, char *spec);
int create(const char *name, int flags);
int bind(char *path, char *where);

This interface is embedded into the BL31 run-time payload when selected by build options. The interface multiplexes
drivers or emulated “files”:

4.3. Debug FS 139

http://lsub.org/who/nemo/9.pdf
https://www.kernel.org/doc/Documentation/filesystems/9p.txt

Trusted Firmware-A

Debug data can be partitioned into different virtual files e.g. expose PMF measurements through a file, and
internal firmware state counters through another file.

This permits direct access to a firmware driver, mainly for test purposes (e.g. a hardware device that may not be
accessible to non-privileged/ non-secure layers, or for which no support exists in the NS side).

4.3.3 SMC interface

The communication with the 9p layer in BL31 is made through an SMC conduit (SMC Calling Convention), using a
specific SiP Function Id. An NS shared buffer is used to pass path string parameters, or e.g. to exchange data on a read
operation. Refer to ARM SiP Services for a description of the SMC interface.

4.3.4 Security considerations

Due to the nature of the exposed data, the feature is considered experimental and importantly shall only be used
in debug builds.

Several primitive imply string manipulations and usage of string formats.

Special care is taken with the shared buffer to avoid TOCTOU attacks.

4.3.5 Limitations

In order to setup the shared buffer, the component consuming the interface needs to allocate a physical page
frame and transmit its address.

In order to map the shared buffer, BL31 requires enabling the dynamic xlat table option.

Data exchange is limited by the shared buffer length. A large read operation might be split into multiple read
operations of smaller chunks.

On concurrent access, a spinlock is implemented in the BL31 service to protect the internal work buffer, and
re-entrancy into the filesystem layers.

Notice, a physical device driver if exposed by the firmware may conflict with the higher level OS if the latter
implements its own driver for the same physical device.

4.3.6 Applications

The SMC interface is accessible from an NS environment, that is:

a test payload, bootloader or hypervisor running at NS-EL2
a Linux kernel driver running at NS-EL1

a Linux userspace application through the kernel driver

Copyright (¢) 2019-2020, Arm Limited and Contributors. All rights reserved.

140

Chapter 4. Components

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

4.4 Exception Handling Framework

This document describes various aspects of handling exceptions by Runtime Firmware (BL31) that are targeted at EL3,
other than SMCs. The EHF takes care of the following exceptions when targeted at EL3:

¢ Interrupts
* Synchronous External Aborts
* Asynchronous External Aborts

TF-A’s handling of synchronous SMC exceptions raised from lower ELs is described in the Firmware Design document.
However, the EHF changes the semantics of Interrupt handling and synchronous exceptions other than SMCs.

The EHF is selected by setting the build option EL3_EXCEPTION_HANDLING to 1, and is only available for AArch64
systems.

4.4.1 Introduction

Through various control bits in the SCR_EL3 register, the Arm architecture allows for asynchronous exceptions to be
routed to EL3. As described in the Interrupt Management Framework document, depending on the chosen interrupt
routing model, TF-A appropriately sets the FIQ and IRQ bits of SCR_EL3 register to effect this routing. For most use
cases, other than for the purpose of facilitating context switch between Normal and Secure worlds, FIQs and IRQs
routed to EL3 are not required to be handled in EL3.

However, the evolving system and standards landscape demands that various exceptions are targeted at and handled in
EL3. For instance:

* Starting with ARMvS.2 architecture extension, many RAS features have been introduced to the Arm architecture.
With RAS features implemented, various components of the system may use one of the asynchronous exceptions
to signal error conditions to PEs. These error conditions are of critical nature, and it’s imperative that corrective or
remedial actions are taken at the earliest opportunity. Therefore, a Firmware-first Handling approach is generally
followed in response to RAS events in the system.

* The Arm SDEI specification defines interfaces through which Normal world interacts with the Runtime Firmware
in order to request notification of system events. The SDEI specification requires that these events are notified
even when the Normal world executes with the exceptions masked. This too implies that firmware-first handling
is required, where the events are first received by the EL3 firmware, and then dispatched to Normal world through
purely software mechanism.

For TF-A, firmware-first handling means that asynchronous exceptions are suitably routed to EL3, and the Runtime
Firmware (BL31) is extended to include software components that are capable of handling those exceptions that target
EL3. These components—referred to as dispatchers' in general—may choose to:

* Receive and handle exceptions entirely in EL3, meaning the exceptions handling terminates in EL3.

* Receive exceptions, but handle part of the exception in EL3, and delegate the rest of the handling to a dedicated
software stack running at lower Secure ELs. In this scheme, the handling spans various secure ELs.

* Receive exceptions, but handle part of the exception in EL3, and delegate processing of the error to dedicated
software stack running at lower secure ELs (as above); additionally, the Normal world may also be required
to participate in the handling, or be notified of such events (for example, as an SDEI event). In this scheme,
exception handling potentially and maximally spans all ELs in both Secure and Normal worlds.

On any given system, all of the above handling models may be employed independently depending on platform choice
and the nature of the exception received.

! Not to be confused with Secure Payload Dispatcher, which is an EL3 component that operates in EL3 on behalf of Secure OS.

4.4. Exception Handling Framework 141

http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf

Trusted Firmware-A

4.4.2 The role of Exception Handling Framework

Corollary to the use cases cited above, the primary role of the EHF is to facilitate firmware-first handling of exceptions
on Arm systems. The EHF thus enables multiple exception dispatchers in runtime firmware to co-exist, register for, and
handle exceptions targeted at EL3. This section outlines the basics, and the rest of this document expands the various
aspects of the EHF.

In order to arbitrate exception handling among dispatchers, the EHF operation is based on a priority scheme. This pri-
ority scheme is closely tied to how the Arm GIC architecture defines it, although it’s applied to non-interrupt exceptions
too (SErrors, for example).

The platform is required to partition the Secure priority space into priority levels as applicable for the Secure software
stack. It then assigns the dispatchers to one or more priority levels. The dispatchers then register handlers for the
priority levels at runtime. A dispatcher can register handlers for more than one priority level.

A priority level is active when a handler at that priority level is currently executing in EL3, or has delegated the execution
to a lower EL. For interrupts, this is implicit when an interrupt is targeted and acknowledged at EL3, and the priority of
the acknowledged interrupt is used to match its registered handler. The priority level is likewise implicitly deactivated
when the interrupt handling concludes by EOling the interrupt.

Non-interrupt exceptions (SErrors, for example) don’t have a notion of priority. In order for the priority arbitration to
work, the EHF provides APIs in order for these non-interrupt exceptions to assume a priority, and to interwork with
interrupts. Dispatchers handling such exceptions must therefore explicitly activate and deactivate the respective priority
level as and when they’re handled or delegated.

Because priority activation and deactivation for interrupt handling is implicit and involves GIC priority masking, it’s
impossible for a lower priority interrupt to preempt a higher priority one. By extension, this means that a lower priority
dispatcher cannot preempt a higher-priority one. Priority activation and deactivation for non-interrupt exceptions,
however, has to be explicit. The EHF therefore disallows for lower priority level to be activated whilst a higher priority
level is active, and would result in a panic. Likewise, a panic would result if it’s attempted to deactivate a lower priority
level when a higher priority level is active.

In essence, priority level activation and deactivation conceptually works like a stack—priority levels stack up in strictly
increasing fashion, and need to be unstacked in strictly the reverse order. For interrupts, the GIC ensures this is the
case; for non-interrupts, the EHF monitors and asserts this. See Transition of priority levels.

4.4.3 Interrupt handling

The EHF is a client of Interrupt Management Framework, and registers the top-level handler for interrupts that target
EL3, as described in the Interrupt Management Framework document. This has the following implications:

¢ On GICv3 systems, when executing in S-EL1, pending Non-secure interrupts of sufficient priority are signalled
as FIQs, and therefore will be routed to EL3. As a result, S-EL1 software cannot expect to handle Non-secure
interrupts at S-EL1. Essentially, this deprecates the routing mode described as CSS=0, TEL3=0.

In order for S-EL1 software to handle Non-secure interrupts while having EHF enabled, the dispatcher must
adopt a model where Non-secure interrupts are received at EL3, but are then synchronously handled over to
S-EL1.

* On GICv2 systems, it’s required that the build option GICV2_GO_FOR_EL3 is set to 1 so that Group 0 interrupts
target EL3.

* While executing in Secure world, EHF sets GIC Priority Mask Register to the lowest Secure priority. This means
that no Non-secure interrupts can preempt Secure execution. See Effect on SMC calls for more details.

As mentioned above, with EHF, the platform is required to partition Group 0 interrupts into distinct priority levels. A
dispatcher that chooses to receive interrupts can then own one or more priority levels, and register interrupt handlers
for them. A given priority level can be assigned to only one handler. A dispatcher may register more than one priority
level.

142 Chapter 4. Components

Trusted Firmware-A

Dispatchers are assigned interrupt priority levels in two steps:

Partitioning priority levels

Interrupts are associated to dispatchers by way of grouping and assigning interrupts to a priority level. In other words,
all interrupts that are to target a particular dispatcher should fall in a particular priority level. For priority assignment:

* Of the 8 bits of priority that Arm GIC architecture permits, bit 7 must be O (secure space).

* Depending on the number of dispatchers to support, the platform must choose to use the top n of the 7 remaining
bits to identify and assign interrupts to individual dispatchers. Choosing n bits supports up to 2" distinct dis-
patchers. For example, by choosing 2 additional bits (i.e., bits 6 and 5), the platform can partition into 4 secure
priority ranges: 0x0, 0x20, 0x40, and 0x60. See /nterrupt handling example.

Note: The Arm GIC architecture requires that a GIC implementation that supports two security states must implement
at least 32 priority levels; i.e., at least 5 upper bits of the 8 bits are writeable. In the scheme described above, when
choosing n bits for priority range assignment, the platform must ensure that at least n+1 top bits of GIC priority are
writeable.

The priority thus assigned to an interrupt is also used to determine the priority of delegated execution in lower ELs.
Delegated execution in lower EL is associated with a priority level chosen with ehf_activate_priority() API
(described later). The chosen priority level also determines the interrupts masked while executing in a lower EL,
therefore controls preemption of delegated execution.

The platform expresses the chosen priority levels by declaring an array of priority level descriptors. Each entry in
the array is of type ehf_pri_desc_t, and declares a priority level, and shall be populated by the EHF_PRI_DESC()
macro.

Warning: The macro EHF_PRI_DESC() installs the descriptors in the array at a computed index, and not neces-
sarily where the macro is placed in the array. The size of the array might therefore be larger than what it appears to
be. The ARRAY_SIZE() macro therefore should be used to determine the size of array.

Finally, this array of descriptors is exposed to EHF via the EHF_REGISTER_PRIORITIES () macro.

Refer to the Interrupt handling example for usage. See also: Interrupt Prioritisation Considerations.

Programming priority
The text in Partitioning priority levels only describes how the platform expresses the required levels of priority. It
however doesn’t choose interrupts nor program the required priority in GIC.

The Firmware Design guide explains methods for configuring secure interrupts. EHF requires the platform to enumer-
ate interrupt properties (as opposed to just numbers) of Secure interrupts. The priority of secure interrupts must match
that as determined in the Partitioning priority levels section above.

See Limitations, and also refer to Interrupt handling example for illustration.

4.4. Exception Handling Framework 143

Trusted Firmware-A

4.4.4 Registering handler

Dispatchers register handlers for their priority levels through the following API:

int ehf_register_priority_handler(int pri, ehf_handler_t handler)

The API takes two arguments:
* The priority level for which the handler is being registered;
* The handler to be registered. The handler must be aligned to 4 bytes.
If a dispatcher owns more than one priority levels, it has to call the API for each of them.
The API will succeed, and return 0, only if:
 There exists a descriptor with the priority level requested.
* There are no handlers already registered by a previous call to the APL
Otherwise, the API returns -1.

The interrupt handler should have the following signature:

typedef int (*ehf_handler_t) (uint32_t intr_raw, uint32_t flags, void *handle,
void *cookie);

The parameters are as obtained from the top-level EL3 interrupt handler.

The SDEI dispatcher, for example, expects the platform to allocate two different priority levels—
PLAT_SDEI_CRITICAL_PRI, and PLAT_SDEI_NORMAL_PRI —and registers the same handler to handle both
levels.

4.4.5 Interrupt handling example

The following annotated snippet demonstrates how a platform might choose to assign interrupts to fictitious dispatchers:

#include <common/interrupt_props.h>
#include <drivers/arm/gic_common.h>
#include <exception_mgmt.h>

/:’:
* This platform uses 2 bits for interrupt association. In total, 3 upper
* bits are in use.
765 3 0
10/b[b] 0 l
:’:/
#define PLAT_PRI_BITS 2

/% Priorities for individual dispatchers */
#define DISPO_PRIO 0x00 /* Not used */
#define DISPI1_PRIO 0x20

(continues on next page)

144 Chapter 4. Components

Trusted Firmware-A

(continued from previous page)

#define DISP2_PRIO 0x40
#define DISP3_PRIO 0x60

/% Install priority level descriptors for each dispatcher */

ehf_pri_desc_t plat_exceptions[] = {
EHF_PRI_DESC(PLAT_PRI_BITS, DISP1_PRIO),
EHF_PRI_DESC(PLAT_PRI_BITS, DISP2_PRIO),
EHF_PRI_DESC(PLAT_PRI_BITS, DISP3_PRIO),

};

/* Expose priority descriptors to Exception Handling Framework */
EHF_REGISTER_PRIORITIES(plat_exceptions, ARRAY_SIZE(plat_exceptions),
PLAT_PRI_BITS);

/% List interrupt properties for GIC driver. All interrupts target EL3 */

const interrupt_prop_t plat_interrupts[] = {
/% Dispatcher 1 owns interrupts d1_0 and dl_1, so assigns priority DISP1_PRIO */
INTR_PROP_DESC(d1_0, DISP1_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d1_1, DISP1_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),

/* Dispatcher 2 owns interrupts d2_0 and d2_1, so assigns priority DISP2_PRIO */
INTR_PROP_DESC(d2_0®, DISP2_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d2_1, DISP2_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),

/* Dispatcher 3 owns interrupts d3_0 and d3_1, so assigns priority DISP3_PRIO */
INTR_PROP_DESC(d3_0, DISP3_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d3_1, DISP3_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),

/* Dispatcher 1 registers its handler */
ehf register_priority_handler(DISP1_PRIO, displ_handler);

/% Dispatcher 2 registers its handler */
ehf_register_priority_handler(DISP2_PRIO, disp2_handler);

/* Dispatcher 3 registers its handler */
ehf register_priority_handler(DISP3_PRIO, disp3_handler);

See also the Build-time flow and the Run-time flow.

4.4. Exception Handling Framework 145

Trusted Firmware-A

4.4.6 Activating and Deactivating priorities

A priority level is said to be active when an exception of that priority is being handled: for interrupts, this is implied
when the interrupt is acknowledged; for non-interrupt exceptions, such as SErrors or SDE/ explicit dispatches, this has
to be done via calling ehf_activate_priority(). See Run-time flow.

Conversely, when the dispatcher has reached a logical resolution for the cause of the exception, the corresponding
priority level ought to be deactivated. As above, for interrupts, this is implied when the interrupt is EOId in the GIC;
for other exceptions, this has to be done via calling ehf_deactivate_priority().

Thanks to different provisions for exception delegation, there are potentially more than one work flow for deactivation:

» The dispatcher has addressed the cause of the exception, and decided to take no further action. In this case,
the dispatcher’s handler deactivates the priority level before returning to the EHF. Runtime firmware, upon exit
through an ERET, resumes execution before the interrupt occurred.

* The dispatcher has to delegate the execution to lower ELs, and the cause of the exception can be considered
resolved only when the lower EL returns signals complete (via an SMC) at a future point in time. The following
sequence ensues:

1. The dispatcher calls setjmp () to setup a jump point, and arranges to enter a lower EL upon the next ERET.
2. Through the ensuing ERET from runtime firmware, execution is delegated to a lower EL.
3. The lower EL completes its execution, and signals completion via an SMC.

4. The SMC is handled by the same dispatcher that handled the exception previously. Noticing the conclusion
of exception handling, the dispatcher does longjmp () to resume beyond the previous jump point.

As mentioned above, the EHF provides the following APIs for activating and deactivating interrupt:

e ehf activate_priority() activates the supplied priority level, but only if the current active priority is higher
than the given one; otherwise panics. Also, to prevent interruption by physical interrupts of lower priority, the
EHF programs the Priority Mask Register corresponding to the PE to the priority being activated. Dispatchers
typically only need to call this when handling exceptions other than interrupts, and it needs to delegate execution
to a lower EL at a desired priority level.

* ehf deactivate_priority() deactivates a given priority, but only if the current active priority is equal to
the given one; otherwise panics. EHF also restores the Priority Mask Register corresponding to the PE to
the priority before the call to ehf_activate_priority(). Dispatchers typically only need to call this after
handling exceptions other than interrupts.

The calling of APIs are subject to allowed rransitions. See also the Run-time flow.

4.4.7 Transition of priority levels
The EHF APIs ehf_activate_priority() and ehf_deactivate_priority() can be called to transition the cur-
rent priority level on a PE. A given sequence of calls to these APIs are subject to the following conditions:

* For activation, the EHF only allows for the priority to increase (i.e. numeric value decreases);

¢ For deactivation, the EHF only allows for the priority to decrease (i.e. numeric value increases). Additionally,
the priority being deactivated is required to be the current priority.

If these are violated, a panic will result.

146 Chapter 4. Components

Trusted Firmware-A

4.4.8 Effect on SMC calls

In general, Secure execution is regarded as more important than Non-secure execution. As discussed elsewhere in this
document, EL3 execution, and any delegated execution thereafter, has the effect of raising GIC’s priority mask—either
implicitly by acknowledging Secure interrupts, or when dispatchers call ehf_activate_priority(). As a result,
Non-secure interrupts cannot preempt any Secure execution.

SMCs from Non-secure world are synchronous exceptions, and are mechanisms for Non-secure world to request Secure
services. They’re broadly classified as Fast or Yielding (see SMCCC).

e Fast SMCs are atomic from the caller’s point of view. Le., they return to the caller only when the Secure world
has finished serving the request. Any Non-secure interrupts that become pending meanwhile cannot preempt
Secure execution.

* Yielding SMCs carry the semantics of a preemptible, lower-priority request. A pending Non-secure interrupt
can preempt Secure execution handling a Yielding SMC. Le., the caller might observe a Yielding SMC returning
when either:

1. Secure world completes the request, and the caller would find SMC_OK as the return code.

2. A Non-secure interrupt preempts Secure execution. Non-secure interrupt is handled, and Non-secure exe-
cution resumes after SMC instruction.

The dispatcher handling a Yielding SMC must provide a different return code to the Non-secure caller to dis-
tinguish the latter case. This return code, however, is not standardised (unlike SMC_UNKNOWN or SMC_OK, for
example), so will vary across dispatchers that handle the request.

For the latter case above, dispatchers before EHF expect Non-secure interrupts to be taken to S-EL17, so would get a
chance to populate the designated preempted error code before yielding to Non-secure world.

The introduction of EHF changes the behaviour as described in Interrupt handling.

When EHF is enabled, in order to allow Non-secure interrupts to preempt Yielding SMC handling, the dispatcher must
call ehf_allow_ns_preemption() APIL The API takes one argument, the error code to be returned to the Non-secure
world upon getting preempted.

4.4.9 Build-time flow

Please refer to the figure above.
The build-time flow involves the following steps:

1. Platform assigns priorities by installing priority level descriptors for individual dispatchers, as described in Par-
titioning priority levels.

2. Platform provides interrupt properties to GIC driver, as described in Programming priority.
3. Dispatcher calling ehf_register_priority_handler () to register an interrupt handler.

Also refer to the Interrupt handling example.

2 In case of GICv2, Non-secure interrupts while in S-EL1 were signalled as IRQs, and in case of GICv3, FIQs.

4.4. Exception Handling Framework 147

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

4.4.10 Run-time flow

The following is an example flow for interrupts:

1. The GIC driver, during initialization, iterates through the platform-supplied interrupt properties (see Program-
ming priority), and configures the interrupts. This programs the appropriate priority and group (Group 0) on
interrupts belonging to different dispatchers.

2. The EHF, during its initialisation, registers a top-level interrupt handler with the Interrupt Management Frame-
work for EL3 interrupts. This also results in setting the routing bits in SCR_EL3.

3. When an interrupt belonging to a dispatcher fires, GIC raises an EL3/Group O interrupt, and is taken to EL3.

4. The top-level EL3 interrupt handler executes. The handler acknowledges the interrupt, reads its Running Priority,
and from that, determines the dispatcher handler.

5. The EHF programs the Priority Mask Register of the PE to the priority of the interrupt received.
6. The EHF marks that priority level active, and jumps to the dispatcher handler.

7. Once the dispatcher handler finishes its job, it has to immediately deactivate the priority level before returning
to the EHF . See deactivation workflows.

The following is an example flow for exceptions that targets EL3 other than interrupt:
1. The platform provides handlers for the specific kind of exception.
2. The exception arrives, and the corresponding handler is executed.

3. The handler calls ehf_activate_priority() to activate the required priority level. This also has the effect
of raising GIC priority mask, thus preventing interrupts of lower priority from preempting the handling. The
handler may choose to do the handling entirely in EL3 or delegate to a lower EL.

4. Once exception handling concludes, the handler calls ehf_deactivate_priority() to deactivate the priority
level activated earlier. This also has the effect of lowering GIC priority mask to what it was before.

4.4.11 Interrupt Prioritisation Considerations

The GIC priority scheme, by design, prioritises Secure interrupts over Normal world ones. The platform further assigns
relative priorities amongst Secure dispatchers through EHF .

As mentioned in Partitioning priority levels, interrupts targeting distinct dispatchers fall in distinct priority levels.
Because they’re routed via the GIC, interrupt delivery to the PE is subject to GIC prioritisation rules. In particular,
when an interrupt is being handled by the PE (i.e., the interrupt is in Active state), only interrupts of higher priority are
signalled to the PE, even if interrupts of same or lower priority are pending. This has the side effect of one dispatcher
being starved of interrupts by virtue of another dispatcher handling its (higher priority) interrupts.

The EHF doesn’t enforce a particular prioritisation policy, but the platform should carefully consider the assignment
of priorities to dispatchers integrated into runtime firmware. The platform should sensibly delineate priority to various
dispatchers according to their nature. In particular, dispatchers of critical nature (RAS, for example) should be assigned
higher priority than others (SDEI, for example); and within SDEI, Critical priority SDEI should be assigned higher
priority than Normal ones.

148 Chapter 4. Components

Trusted Firmware-A

4.4.12 Limitations

The EHF has the following limitations:

* Although there could be up to 128 Secure dispatchers supported by the GIC priority scheme, the size of descriptor
array exposed with EHF_REGISTER_PRIORITIES () macro is currently limited to 32. This serves most expected
use cases. This may be expanded in the future, should use cases demand so.

e The platform must ensure that the priority assigned to the dispatcher in the exception descriptor and the pro-
grammed priority of interrupts handled by the dispatcher match. The EHF cannot verify that this has been
followed.

Copyright (¢) 2018-2020, Arm Limited and Contributors. All rights reserved.

4.5 Firmware Configuration Framework

This document provides an overview of the FCONF framework.

4.5.1 Introduction

The Firmware CONfiguration Framework (FCONF) is an abstraction layer for platform specific data, allowing a “prop-
erty” to be queried and a value retrieved without the requesting entity knowing what backing store is being used to hold
the data.

It is used to bridge new and old ways of providing platform-specific data. Today, information like the Chain of Trust
is held within several, nested platform-defined tables. In the future, it may be provided as part of a device blob, along
with the rest of the information about images to load. Introducing this abstraction layer will make migration easier and
will preserve functionality for platforms that cannot / don’t want to use device tree.

4.5.2 Accessing properties
Properties defined in the FCONF are grouped around namespaces and sub-namespaces: a.b.property. Examples names-
pace can be:
e (TBBR) Chain of Trust data: tbbr.cot.trusted_boot_fw_cert
* (TBBR) dynamic configuration info: tbbr.dyn_config.disable_auth
* Arm io policies: arm.io_policies.bl2_image
* GICv3 properties: hw_config.gicv3_config.gicr_base
Properties can be accessed with the FCONF_GET_PROPERTY (a, b, property) macro.

4.5. Firmware Configuration Framework 149

Trusted Firmware-A

4.5.3 Defining properties

Properties composing the FCONF have to be stored in C structures. If properties originate from a different backend
source such as a device tree, then the platform has to provide a populate() function which essentially captures the
property and stores them into a corresponding FCONF based C structure.

Such a populate () function is usually platform specific and is associated with a specific backend source. For example,
a populator function which captures the hardware topology of the platform from the HW_CONFIG device tree. Hence
each populate() function must be registered with a specific config_type identifier. It broadly represents a logical
grouping of configuration properties which is usually a device tree file.

Example:
* FW_CONFIG: properties related to base address, maximum size and image id of other DTBs etc.
* TB_FW: properties related to trusted firmware such as IO policies, mbedtls heap info etc.

* HW_CONFIG: properties related to hardware configuration of the SoC such as topology, GIC controller,
PSCI hooks, CPU ID etc.

Hence the populate() callback must be registered to the (FCONF) framework with the
FCONF_REGISTER_POPULATOR() macro. This ensures that the function would be called inside the generic
fconf_populate() function during initialization.

int fconf_populate_topology(uintptr_t config)

{
/* read hw config dtb and fill soc_topology struct */

¥

FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);

Then, a wrapper has to be provided to match the FCONF_GET_PROPERTY () macro:

/* generic getter */
#define FCONF_GET_PROPERTY(a,b,property) a##__##b##_getter(property)

/% my specific getter */
#define hw_config__topology_getter(prop) soc_topology.prop

This second level wrapper can be used to remap the FCONF_GET_PROPERTY () to anything appropriate: structure, array,
function, etc..

To ensure a good interpretation of the properties, this documentation must explain how the properties are described for
a specific backend. Refer to the Properties binding information section for more information and example.

4.5.4 Loading the property device tree

The fconf_load_config(image_id) must be called to load fw_config and tb_fw_config devices tree containing the
properties’ values. This must be done after the io layer is initialized, as the DTB is stored on an external device (FIP).

150 Chapter 4. Components

Trusted Firmware-A

BLI common code arm platform code platform common code

‘bllimam | ‘blicommom | ‘Npib\l

setup " ‘armibllisetup n ‘armiioistorage n ‘ plat_bll_common | feonf_dyn_cfg_getter
T T

T T
| bI1_platfarm_setup()

arm_bl1_platform_setup()
T2 PO SER

plat_arm_io_setup()

>
register and setup fip j

set_fiw_config_info(fw_donfig_basg, max_size
i

feonf load_config(Fw_CONFIG_ID

CPNF_GET_PROPERTY(dyn_cfg, dtb, FW_CONFIG_ID)
)

dyn_cfg_dtb_info_getter(Fw_CONFIG_ID)

fw_config_info

T
j

i

i

i

i

1

|

i

|

i

i

i

i

I

T

]

' set fw_config infermation
i (address, size, image_id)
! in global dtb_infos array.
i

|

1

T

i

i

I

I

|

.

h

|

h

load [auth_image(Fw_CONFIG_ID, &image_info)

i
load and auth image from fip
with info from plat_io_policy

]

I i
FCONF_GET_PROPERTY(arm, arm_io_policies, FW_CONFIG_ID)

use statically defined policies in bl1

mage |nfo

get fw_cenfig_dtb from image_info

FcoNF,GET,PROPERT\%(dyn,cfg, ith, FW_CONFIG_ID)

dyn_cfg_dtb_info_getter(Fw_CONFIG_ID)

fw_config_info

T
populate_dtb_registry{lintptr_t dfb)

]
i
i
i
I
I
1
i
i
i
i
I
i
I
i
]
i
I
i
i
I
r
|
i
i
I
\
h
.
;
L_feenf load_config(TB_FW_CONFIG ID)
=

CPNF_GET_PROPERTY(dyn_cfg, dtb, TB_LFW_CONFIG_ID)
)

dyn_cfg_dtb_info_getter(TB_FW_CONFIG_ID)

th_fw_config_info

i
load [auth_imajge(TB_FW_CONFIG_ID, &imagg_info)
]

o)

i
load and auth image fre
with info from plat_io_p

‘
‘
‘
‘
‘
‘
‘
‘
!
‘ ‘
‘ ‘
‘ ‘
‘ ‘
‘ ‘
‘ ‘
:
‘
‘
‘
‘
‘
:
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
:
‘
‘
‘
‘
‘
‘
‘

FCOINF_GET_PROPERTY(arm, arm_io_policies, TB_FW_CONFIG_ID)

use statically defined policies in bl1

I
|
I
I
|
i
I
i
|
0
I
T
I
|
r
|
|
1
I
I
|
I
L
I
0
I
I
I
I
b
I
I
L
I
I
L
I
i
|
0
I
I
!
&
i
I
I
I
I
|
i
0
I
I
"
i
|
0
I
I
I
I
I
|
I
I

i
I
i
i
I
I
i
I i
I I
i i
i i i
I I I
1 1 |
I I I
ke ‘ T
i T i i 1
1 1 1 ' [get tb_fw_config_dtb from image_info ™)
1 1 1 :
I I I I i
! ! i bl1 plat_get image désc(BL2 IMAGE ID) _ !
i i i i i
' ' ! BL2 IMAGE DESC | '
I I I | i i
| | | set ep_info args.argo of BL2_IMAGE_DESC “| 0
i i i to FW_CONFIG base address I i
I I I T I I
I I I I I
1 1 L L L {10ad & auth, prepare and jump to BL2 |-
j j j j j T T
; ; ; ; : 1 i 1
‘bllimam | ‘blicommom | ‘Npib\lisetup " ‘armibllisetup n ‘armiioistorage mH plat_bll_common | ‘fconfﬁdymicfgigetter
I

4.5.5 Populating the properties

Once a valid device tree is available, the fconf_populate(config) function can be used to fill the C data structure
with the data from the config D7B. This function will call all the populate () callbacks which have been registered
with FCONF_REGISTER_POPULATOR() as described above.

4.5. Firmware Configuration Framework 151

Trusted Firmware-A

!
bl2_egrly_platform_setup2(

BL2 common code platform common code arm platform code
bl2_entrypoint l ‘ bl2_main [|fc0nf l fconf_tbbr_getter l ‘ fconf_dyn_cfg_getter l ‘ arm_bl2_setup arm_io_storage l ‘ arm_fconf_io
| | | | |
—
L L bi2 setup |5 L
i i — i
I ' '
! bl2_setup() ! !
AT
'
"
'
1

arg0, argl, arg2, arg3)
T

arg0 = fw_config
argl = mem_layout
| arm_bl2_early_platform_setup(|
' fw_config, mem_layout)
I

feonf_populate("Fw_CONFIG*, fw_config)

populate_dtb_registry(uintptr_t dtb)

read dtb_registry properties from dtb Iﬁ

NFIG_ID)

dyn_cfg_dtb_info_getter(TB_FW_CONFIG_ID)

th_fw_config| info

RO RV = SpRpRppos | R ISRSRORRRRRREIS ORISR) IV

feonf_populate("TB_FW_CONFIG", tb_fw_config)}

T
feonf_populate_tbbr_dyn_configluintptr_t dtb) |
i

read thbr properties from dtb 'ﬁ

conf_populate_arm_io_policies(uintptr_t dtb)

‘ read arm io propeties from dth Iﬁ

lat_arm_io_setup()

i
use populated properties 0

61z main |
Ibl2 main F

bl2_entrypoint bl2_main feconf fconf_tbbr_getter l ‘ fconf_dyn_cfg_getter l ‘ arm_bl2_setup [| arm_io_storage l ‘ arm_fconf_io l

|
i
i
|
i
i
|
i
i
|
i
i
|
i
|
i
i
i
i
i
i
|
i
|
i
|
i
|
i
i
i
|
| FCONF_GET_PROPERTY(dyn_cfg, dth, TB_FW_C|
i
|
i
|
i
i
i
i
i
i
|
i
|
i
|
i
|
i
i
i
i
i
i
|
i
|
i
|
i
i
i
i
T
|

4.5.6 Namespace guidance
As mentioned above, properties are logically grouped around namespaces and sub-namespaces. The following concepts
should be considered when adding new properties/namespaces. The framework differentiates two types of properties:
* Properties used inside common code.
* Properties used inside platform specific code.

The first category applies to properties being part of the firmware and shared across multiple platforms. They should
be globally accessible and defined inside the 1ib/fconf directory. The namespace must be chosen to reflect the
feature/data abstracted.

Example:
* TBBR related properties: tbbr.cot.bl2_id
* Dynamic configuration information: dyn_cfg.dtb_info.hw_config_id

The second category should represent the majority of the properties defined within the framework: Platform specific
properties. They must be accessed only within the platform API and are defined only inside the platform scope. The
namespace must contain the platform name under which the properties defined belong.

Example:

¢ Arm io framework: arm.io_policies.bl31_id

152 Chapter 4. Components

Trusted Firmware-A

4.5.7 Properties binding information

DTB binding for FCONF properties

This document describes the device tree format of FCONF properties. These properties are not related to a specific
platform and can be queried from common code.

Dynamic configuration

The FCONF framework expects a dtb-registry node with the following field:
¢ compatible [mandatory]
— value type: <string>
— Must be the string “fconf,dyn_cfg-dtb_registry”.

Then a list of subnodes representing a configuration D7B, which can be used by FCONF. Each subnode should be
named according to the information it contains, and must be formed with the following fields:

* load-address [mandatory]

— value type: <u64>

— Physical loading base address of the configuration.
* max-size [mandatory]

— value type: <u32>

— Maximum size of the configuration.
¢ id [mandatory]

— value type: <u32>

— Image ID of the configuration.

4.6 Firmware Update (FWU)

4.6.1 Introduction

This document describes the design of the Firmware Update (FWU) feature, which enables authenticated firmware to
update firmware images from external interfaces such as USB, UART, SD-eMMC, NAND, NOR or Ethernet to SoC
Non-Volatile memories such as NAND Flash, LPDDR2-NVM or any memory determined by the platform. This feature
functions even when the current firmware in the system is corrupt or missing; it therefore may be used as a recovery
mode. It may also be complemented by other, higher level firmware update software.

FWU implements a specific part of the Trusted Board Boot Requirements (TBBR) specification, Arm DENO0OO6C-1. It
should be used in conjunction with the Trusted Board Boot design document, which describes the image authentication
parts of the Trusted Firmware-A (TF-A) TBBR implementation.

4.6. Firmware Update (FWU) 153

Trusted Firmware-A

Scope

This document describes the secure world FWU design. It is beyond its scope to describe how normal world FWU
images should operate. To implement normal world FWU images, please refer to the “Non-Trusted Firmware Updater”
requirements in the TBBR.

4.6.2 FWU Overview

The FWU boot flow is primarily mediated by BL.1. Since BL1 executes in ROM, and it is usually desirable to minimize
the amount of ROM code, the design allows some parts of FWU to be implemented in other secure and normal world
images. Platform code may choose which parts are implemented in which images but the general expectation is:

e BL1 handles:

Detection and initiation of the FWU boot flow.

Copying images from non-secure to secure memory

FWU image authentication

Context switching between the normal and secure world during the FWU process.
 Other secure world FWU images handle platform initialization required by the FWU process.
* Normal world FWU images handle loading of firmware images from external interfaces to non-secure memory.
The primary requirements of the FWU feature are:
1. Export a BL1 SMC interface to interoperate with other FWU images executing at other Exception Levels.

2. Export a platform interface to provide FWU common code with the information it needs, and to enable platform
specific FWU functionality. See the Porting Guide for details of this interface.

TF-A uses abbreviated image terminology for FWU images like for other TF-A images. See the /mage Terminology
document for an explanation of these terms.

The following diagram shows the FWU boot flow for Arm development platforms. Arm CSS platforms like Juno have
a System Control Processor (SCP), and these use all defined FWU images. Other platforms may use a subset of these.

154 Chapter 4. Components

Trusted Firmware-A

Firmware Update Boot Flow for ARM Development Platforms

/
I

to ARM CSS platforms only.

\
\

| Watchdog Reset/
N~

S/

|
i
|
Gten ‘
(ystem) |
|
\Reset |
|
|
|
i
|
s B I - ™
(BLI i /~ NS_BL1U \
I {)
" (EL3) // 3 \(ELZ/NS-ELl)//
FWU Start —— ——ERET(NS| BL1U)
T
|
SMC(FWU_COPY, FWU_CERT)
Copy & ERET(NS_BL1U, result) Load
Authenticate i FWU_CERT
FWU_CERT k———SMC(FWU_AUTH, FWU_CERT)
Secure ERET(NS_BL1U, result) Normal
|
|
World : World
k———SMC(FWU_CORY, SCP_BL2U)
Copy & _ ERET(NS_BLilU result) Load
Authenticate | SCP BL2U
SCP_BL2U SMC(FWU_AUTH, SCP_BL2U)
— ERET(NS_BL1U, result)
|
SMC(FWU_COPY, BL2U)
ERET(NS_BL1U, result)
Copy, I Load BL2U
Authenticate & SMC(FWU_AUTH, BL2U)
Execute BL2U ERET(NS_BL1U, result)
|
|
SMC(FWU_EXECUTE, BL2U)
- |
— \ I
/oBL2U ‘
(————ERET(BL2U, SCP_RL2U info) |
N (S-EL1) / I
_ SMC(FWU_SEC_DONE) !
|
ERET(NSLBLIU)
Transfer SCP_BL2U to I
SCP RAM and wait for !
ACK from SCP. Authenticate SMC(FWU_AUTH, NS_BL2U) Load
NS_BL2U ERET(NS_BL1U, result) NS_BL2U
I
|
|
1 /7 NS_BL2U
|
P Jump to NS_BL2U———3 i)
TZC initialization 3 \(ELZ/NS—ELl) /,
! ! 2
|
|
i
- SMC(FWU_DONE) Update FIP Image
|
Lines & Text marked with this v 3
colour means they are applicable e RN !
|
|
|
|
|
|

4.6.3 Image ldentification

Each FWU image and certificate is identified by a unique ID, defined by the platform, which BL1 uses to fetch an
image descriptor (image_desc_t) viaa call to bl1l_plat_get_image_desc(). The same ID is also used to prepare
the Chain of Trust (Refer to the Authentication Framework & Chain of Trust document for more information).

The image descriptor includes the following information:

» Executable or non-executable image. This indicates whether the normal world is permitted to request execution
of a secure world FWU image (after authentication). Secure world certificates and non-AP images are examples
of non-executable images.

 Secure or non-secure image. This indicates whether the image is authenticated/executed in secure or non-secure
memory.

* Image base address and size.

4.6. Firmware Update (FWU) 155

Trusted Firmware-A

* Image entry point configuration (an entry_point_info_t).
* FWU image state.
BL1 uses the FWU image descriptors to:
* Validate the arguments of FWU SMCs
* Manage the state of the FWU process

* Initialize the execution state of the next FWU image.

4.6.4 FWU State Machine

BL1 maintains state for each FWU image during FWU execution. FWU images at lower Exception Levels raise SMCs
to invoke FWU functionality in BL1, which causes BL1 to update its FWU image state. The BL1 image states and
valid state transitions are shown in the diagram below. Note that secure images have a more complex state machine
than non-secure images.

FWU State Machine

Secure Images Non-Secure Images

b
m B L
o T o g Z
: / ™\ o -
& / \ / A
i / \ > >
- [. \ c c
8 /Authentlcatedj 7 2
m NG \ /
E\‘&’C\) //
oo AN ’
e N ~ ,,/‘/ o y
T RN RN
/ N / \ / \
/ - IMAGE_RESUME > \ / \
| Executed | | Interrupted ,\ |Authenticated |
o IMAGE_RESUME \ / \ /
h ~_ /// \\ e - . - 4

—_— > SMCs from normal world
——» SMCs from secure world

The following is a brief description of the supported states:

* RESET: This is the initial state of every image at the start of FWU. Authentication failure also leads to this
state. A secure image may yield to this state if it has completed execution. It can also be reached by using
FWU_SMC_IMAGE_RESET.

¢ COPYING: This is the state of a secure image while BL1 is copying it in blocks from non-secure to secure
memory.

156 Chapter 4. Components

Trusted Firmware-A

COPIED: This is the state of a secure image when BL1 has completed copying it to secure memory.

* AUTHENTICATED: This is the state of an image when BL1 has successfully authenticated it.

world execution.

4.6.5 BL1 SMC Interface

BL1_SMC_CALL_COUNT

EXECUTED: This is the state of a secure, executable image when BL1 has passed execution control to it.

INTERRUPTED: This is the state of a secure, executable image after it has requested BL1 to resume normal

Arguments:
uint32_t function ID : 0x0

Return:
uint32_t

This SMC returns the number of SMCs supported by BL1.

BL1_SMC_UID

Arguments:
uint32_t function ID : 0x1

Return:

UUID : 32 bits in each of w®-w3 (or r®-r3 for AArch32 callers)

This SMC returns the 128-bit Universally Unique Identifier for the BL1 SMC service.

BL1_SMC_VERSION

Argument:
uint32_t function ID : 0x3

Return:
uint32_t : Bits [31:16] Major Version
Bits [15:0] Minor Version

This SMC returns the current version of the BL1 SMC service.

BL1_SMC_RUN_IMAGE

Arguments:
uint32_t function ID : 0x4
entry_point_info_t *ep_info

Return:
void

(continues on next page)

4.6. Firmware Update (FWU)

157

https://tools.ietf.org/rfc/rfc4122.txt

Trusted Firmware-A

(continued from previous page)

Pre-conditions:
if (normal world caller) synchronous exception
if (ep_info not EL3) synchronous exception

This SMC passes execution control to an EL3 image described by the provided entry_point_info_t structure. In
the normal TF-A boot flow, BL2 invokes this SMC for BL1 to pass execution control to BL31.

FWU_SMC_IMAGE_COPY

Arguments:
uint32_t function ID : 0x10
unsigned int image_id
uintptr_t image_addr

unsigned int block_size
unsigned int image_size

Return:
int : 0 (Success)
-ENOMEM
-EPERM

Pre-conditions:
if (image_id is invalid) return -EPERM
if (image_id is non-secure image) return -EPERM
if (image_id state is not (RESET or COPYING)) return -EPERM
if (secure world caller) return -EPERM
if (image_addr + block_size overflows) return -ENOMEM
if (image destination address + image_size overflows) return -ENOMEM
if (source block is in secure memory) return -ENOMEM
if (source block is not mapped into BL1) return -ENOMEM
if (image_size > free secure memory) return -ENOMEM
if (image overlaps another image) return -EPERM

This SMC copies the secure image indicated by image_id from non-secure memory to secure memory for later au-
thentication. The image may be copied in a single block or multiple blocks. In either case, the total size of the image
must be provided in image_size when invoking this SMC for the first time for each image; it is ignored in subsequent
calls (if any) for the same image.

The image_addr and block_size specify the source memory block to copy from. The destination address is provided
by the platform code.

If block_size is greater than the amount of remaining bytes to copy for this image then the former is truncated to
the latter. The copy operation is then considered as complete and the FWU state machine transitions to the “COPIED”
state. If there is still more to copy, the FWU state machine stays in or transitions to the COPYING state (depending on
the previous state).

When using multiple blocks, the source blocks do not necessarily need to be in contiguous memory.

Once the SMC is handled, BL1 returns from exception to the normal world caller.

158 Chapter 4. Components

Trusted Firmware-A

FWU_SMC_IMAGE_AUTH

Arguments:
uint32_t function ID : 0x11
unsigned int image_id
uintptr_t image_addr

unsigned int image_size

Return:
int : O (Success)
-ENOMEM
-EPERM
-EAUTH

Pre-conditions:
if (image_id is invalid) return -EPERM
if (secure world caller)
if (image_id state is not RESET) return -EPERM
if (image_addr/image_size is not mapped into BL1) return -ENOMEM
else // normal world caller
if (image_id is secure image)
if (image_id state is not COPIED) return -EPERM
else // image_id is non-secure image
if (image_id state is not RESET) return -EPERM
if (image_addr/image_size is in secure memory) return -ENOMEM
if (image_addr/image_size not mapped into BL1) return -ENOMEM

This SMC authenticates the image specified by image_id. If the image is in the RESET state, BL1 authenticates the
image in place using the provided image_addr and image_size. If the image is a secure image in the COPIED state,
BL1 authenticates the image from the secure memory that BL1 previously copied the image into.

BLI returns from exception to the caller. If authentication succeeds then BL1 sets the image state to AUTHENTI-
CATED. If authentication fails then BL1 returns the -EAUTH error and sets the image state back to RESET.

FWU_SMC_IMAGE_EXECUTE

Arguments:
uint32_t function ID : 0x12
unsigned int image_id

Return:
int : 0 (Success)
-EPERM

Pre-conditions:
if (image_id is invalid) return -EPERM
if (secure world caller) return -EPERM
if (image_id is non-secure image) return -EPERM
if (image_id is non-executable image) return -EPERM
if (image_id state is not AUTHENTICATED) return -EPERM

This SMC initiates execution of a previously authenticated image specified by image_id, in the other security world to
the caller. The current implementation only supports normal world callers initiating execution of a secure world image.

4.6. Firmware Update (FWU) 159

Trusted Firmware-A

BL1 saves the normal world caller’s context, sets the secure image state to EXECUTED, and returns from exception to
the secure image.

FWU_SMC_IMAGE_RESUME

Arguments:
uint32_t function ID : 0x13
register_t image_param

Return:
register_t : image_param (Success)
-EPERM

Pre-conditions:
if (normal world caller and no INTERRUPTED secure image) return -EPERM

This SMC resumes execution in the other security world while there is a secure image in the EXE-
CUTED/INTERRUPTED state.

For normal world callers, BL1 sets the previously interrupted secure image state to EXECUTED. For secure world
callers, BL1 sets the previously executing secure image state to INTERRUPTED. In either case, BL1 saves the calling
world’s context, restores the resuming world’s context and returns from exception into the resuming world. If the call is
successful then the caller provided image_param is returned to the resumed world, otherwise an error code is returned
to the caller.

FWU_SMC_SEC_IMAGE_DONE

Arguments:
uint32_t function ID : 0x14

Return:
int : 0 (Success)
-EPERM

Pre-conditions:
if (normal world caller) return -EPERM

This SMC indicates completion of a previously executing secure image.

BLI sets the previously executing secure image state to the RESET state, restores the normal world context and returns
from exception into the normal world.

FWU_SMC_UPDATE_DONE

Arguments:
uint32_t function ID : 0x15
register_t client_cookie

Return:
N/A

160 Chapter 4. Components

Trusted Firmware-A

This SMC completes the firmware update process. BL1 calls the platform specific function bl11_plat_fwu_done,
passing the optional argument client_cookie as a void *. The SMC does not return.

FWU_SMC_IMAGE_RESET

Arguments:
uint32_t function ID : 0x16
unsigned int image_id

Return:
int : 0 (Success)
: -EPERM

Pre-conditions:
if (secure world caller) return -EPERM
if (image in EXECUTED) return -EPERM

This SMC sets the state of an image to RESET and zeroes the memory used by it.

This is only allowed if the image is not being executed.

Copyright (c¢) 2015-2019, Arm Limited and Contributors. All rights reserved.

4.7 Measured Boot Driver (MBD)

4.7.1 Properties binding information

DTB binding for Event Log properties

This document describes the device tree format of Event Log properties. These properties are not related to a specific
platform and can be queried from common code.

Dynamic configuration for Event Log

Measured Boot driver expects a tpm_event_log node with the following field in ‘nt_fw_config’ and ‘tsp_fw_config’
DTS files:

* compatible [mandatory]
— value type: <string>
— Must be the string “arm,tpm_event_log”.

Then a list of properties representing Event Log configuration, which can be used by Measured Boot driver. Each
property is named according to the information it contains:

¢ tpm_event_log_sm_addr [fvp_nt_fw_config.dts with OP-TEE]
— value type: <u64>

— Event Log base address in secure memory.

4.7. Measured Boot Driver (MBD) 161

Trusted Firmware-A

Note. Currently OP-TEE does not support reading DTBs from Secure memory and this property should be removed
when this feature is supported.

* tpm_event_log_addr [mandatory]

— value type: <u64>

— Event Log base address in non-secure memory.
* tpm_event_log_size [mandatory]

— value type: <u32>

— Event Log size.

4.8 Platform Interrupt Controller API

This document lists the optional platform interrupt controller API that abstracts the runtime configuration and control
of interrupt controller from the generic code. The mandatory APIs are described in the Porting Guide.

4.8.1 Function: unsigned int plat_ic_get_running_priority(void); [optional]

Argument : void
Return : unsigned int

This API should return the priority of the interrupt the PE is currently servicing. This must be be called only after an
interrupt has already been acknowledged via plat_ic_acknowledge_interrupt.

In the case of Arm standard platforms using GIC, the Running Priority Register is read to determine the priority of the
interrupt.

4.8.2 Function: int plat_ic_is_spi(unsigned int id); [optional]

Argument : unsigned int
Return : int

The API should return whether the interrupt ID (first parameter) is categorized as a Shared Peripheral Interrupt. Shared
Peripheral Interrupts are typically associated to system-wide peripherals, and these interrupts can target any PE in the
system.

4.8.3 Function: int plat_ic_is_ppi(unsigned int id); [optional]

Argument : unsigned int
Return : int

The API should return whether the interrupt ID (first parameter) is categorized as a Private Peripheral Interrupt. Pri-
vate Peripheral Interrupts are typically associated with peripherals that are private to each PE. Interrupts from private
peripherals target to that PE only.

162 Chapter 4. Components

Trusted Firmware-A

4.8.4 Function: int plat_ic_is_sgi(unsigned int id); [optional]

Argument : unsigned int
Return : int

The API should return whether the interrupt ID (first parameter) is categorized as a Software Generated Interrupt.
Software Generated Interrupts are raised by explicit programming by software, and are typically used in inter-PE com-
munication. Secure SGIs are reserved for use by Secure world software.

4.8.5 Function: unsigned int plat_ic_get_interrupt_active(unsigned int id); [op-
tional]

Argument : unsigned int
Return : int

This API should return the active status of the interrupt ID specified by the first parameter, id.

In case of Arm standard platforms using GIC, the implementation of the API reads the GIC Set Active Register to read
and return the active status of the interrupt.

4.8.6 Function: void plat_ic_enable_interrupt(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should enable the interrupt ID specified by the first parameter, id. PEs in the system are expected to receive
only enabled interrupts.

In case of Arm standard platforms using GIC, the implementation of the API inserts barrier to make memory updates
visible before enabling interrupt, and then writes to GIC Setr Enable Register to enable the interrupt.

4.8.7 Function: void plat_ic_disable_interrupt(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should disable the interrupt ID specified by the first parameter, id. PEs in the system are not expected to
receive disabled interrupts.

In case of Arm standard platforms using GIC, the implementation of the API writes to GIC Clear Enable Register to
disable the interrupt, and inserts barrier to make memory updates visible afterwards.

4.8. Platform Interrupt Controller API 163

Trusted Firmware-A

4.8.8 Function: void plat_ic_set_interrupt_priority(unsigned int id, unsigned int pri-
ority); [optional]

Argument : unsigned int
Argument : unsigned int
Return : void

This API should set the priority of the interrupt specified by first parameter id to the value set by the second parameter
priority.

In case of Arm standard platforms using GIC, the implementation of the API writes to GIC Priority Register set
interrupt priority.

4.8.9 Function: int plat_ic_has_interrupt_type(unsigned int type); [optional]

Argument : unsigned int
Return : int

This API should return whether the platform supports a given interrupt type. The parameter type shall be one of
INTR_TYPE_EL3, INTR_TYPE_S_EL1, or INTR_TYPE_NS.

In case of Arm standard platforms using GICv3, the implementation of the API returns 1 for all interrupt types.

In case of Arm standard platforms using GICv2, the API always return 1 for INTR_TYPE_NS. Return value for other
types depends on the value of build option GICV2_GO_FOR_EL3:

* For interrupt type INTR_TYPE_EL3:
— When GICV2_GO_FOR_EL3 is 0, it returns 0, indicating no support for EL3 interrupts.
— When GICV2_GO_FOR_EL3 is 1, it returns 1, indicating support for EL3 interrupts.
* For interrupt type INTR_TYPE_S_EL1:
— When GICV2_GO_FOR_EL3 is 0, it returns 1, indicating support for Secure EL1 interrupts.
— When GICV2_GO_FOR_EL3 is 1, it returns 0, indicating no support for Secure EL1 interrupts.

4.8.10 Function: void plat_ic_set_interrupt_type(unsigned int id, unsigned int
type); [optional]

Argument : unsigned int
Argument : unsigned int
Return : void

This API should set the interrupt specified by first parameter id to the type specified by second parameter type. The
type parameter can be one of:

» INTR_TYPE_NS: interrupt is meant to be consumed by the Non-secure world.
e INTR_TYPE_S_EL1: interrupt is meant to be consumed by Secure EL1.
e INTR_TYPE_EL3: interrupt is meant to be consumed by EL3.

In case of Arm standard platforms using GIC, the implementation of the API writes to the GIC Group Register and
Group Modifier Register (only GICv3) to assign the interrupt to the right group.

For GICv3:

164 Chapter 4. Components

Trusted Firmware-A

e INTR_TYPE_NS maps to Group 1 interrupt.

e INTR_TYPE_S_EL1 maps to Secure Group 1 interrupt.

* INTR_TYPE_EL3 maps to Secure Group O interrupt.
For GICv2:

e INTR_TYPE_NS maps to Group 1 interrupt.

* When the build option GICV2_GO_FOR_EL3 is set to O (the default), INTR_TYPE_S_EL1 maps to Group 0. Oth-
erwise, INTR_TYPE_EL3 maps to Group O interrupt.

4.8.11 Function: void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target); [op-
tional]

Argument : int
Argument : u_register_t
Return : void

This API should raise an EL3 SGI. The first parameter, sgi_num, specifies the ID of the SGI. The second parameter,
target, must be the MPIDR of the target PE.

In case of Arm standard platforms using GIC, the implementation of the API inserts barrier to make memory updates
visible before raising SGI, then writes to appropriate SGI Register in order to raise the EL3 SGI.

4.8.12 Function: void plat_ic_set_spi_routing(unsigned int id, unsigned int rout-
ing_mode, u_register_t mpidr); [optional]

Argument : unsigned int
Argument : unsigned int
Argument : u_register_t
Return : void

This API should set the routing mode of Share Peripheral Interrupt (SPI) specified by first parameter id to that specified
by the second parameter routing_mode.

The routing_mode parameter can be one of:

e INTR_ROUTING_MODE_ANY means the interrupt can be routed to any PE in the system. The mpidr parameter is
ignored in this case.

e INTR_ROUTING_MODE_PE means the interrupt is routed to the PE whose MPIDR value is specified by the pa-
rameter mpidr.

In case of Arm standard platforms using GIC, the implementation of the API writes to the GIC Target Register (GICv2)
or Route Register (GICv3) to set the routing.

4.8. Platform Interrupt Controller API 165

Trusted Firmware-A

4.8.13 Function: void plat_ic_set_interrupt_pending(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should set the interrupt specified by first parameter id to Pending.

In case of Arm standard platforms using GIC, the implementation of the API inserts barrier to make memory updates
visible before setting interrupt pending, and writes to the GIC Set Pending Register to set the interrupt pending status.

4.8.14 Function: void plat_ic_clear_interrupt_pending(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should clear the Pending status of the interrupt specified by first parameter id.

In case of Arm standard platforms using GIC, the implementation of the API writes to the GIC Clear Pending Register
to clear the interrupt pending status, and inserts barrier to make memory updates visible afterwards.

4.8.15 Function: unsigned int plat_ic_set_priority_mask(unsigned int id); [optional]

Argument : unsigned int
Return : int

This API should set the priority mask (first parameter) in the interrupt controller such that only interrupts of higher
priority than the supplied one may be signalled to the PE. The API should return the current priority value that it’s
overwriting.

In case of Arm standard platforms using GIC, the implementation of the API inserts to order memory updates before
updating mask, then writes to the GIC Priority Mask Register, and make sure memory updates are visible before
potential trigger due to mask update.

4.8.16 Function: unsigned int plat_ic_get_interrupt_id(unsigned int raw); [optional]

Argument : unsigned int
Return : unsigned int

This API should extract and return the interrupt number from the raw value obtained by the acknowledging the in-
terrupt (read using plat_ic_acknowledge_interrupt()). If the interrupt ID is invalid, this API should return
INTR_ID_UNAVAILABLE.

In case of Arm standard platforms using GIC, the implementation of the API masks out the interrupt ID field from the
acknowledged value from GIC.

Copyright (c) 2017-2019, Arm Limited and Contributors. All rights reserved.

166 Chapter 4. Components

Trusted Firmware-A

4.9 Reliability, Availability, and Serviceability (RAS) Extensions

This document describes 7F-A support for Arm Reliability, Availability, and Serviceability (RAS) extensions. RAS is
a mandatory extension for Armv8.2 and later CPUs, and also an optional extension to the base Armv8.0 architecture.

In conjunction with the EHF, support for RAS extension enables firmware-first paradigm for handling platform er-
rors: exceptions resulting from errors are routed to and handled in EL3. Said errors are Synchronous External Abort
(SEA), Asynchronous External Abort (signalled as SErrors), Fault Handling and Error Recovery interrupts. The EHF
document mentions various error handling use-cases .

For the description of Arm RAS extensions, Standard Error Records, and the precise definition of RAS terminology,
please refer to the Arm Architecture Reference Manual. The rest of this document assumes familiarity with architecture
and terminology.

4.9.1 Overview

As mentioned above, the RAS support in 7F-A enables routing to and handling of exceptions resulting from platform
errors in EL3. It allows the platform to define an External Abort handler, and to register RAS nodes and interrupts.
RAS framework also provides helpers for accessing Standard Error Records as introduced by the RAS extensions.

The build option RAS_EXTENSTION when set to 1 includes the RAS in run time firmware; EL3_EXCEPTION_HANDLING
and HANDLE_EA_EL3_FIRST must also be set 1. RAS_TRAP_LOWER_EL_ERR_ACCESS controls the access to the RAS
error record registers from lower ELs.

See more on Engaging the RAS framework.

4.9.2 Platform APIs

The RAS framework allows the platform to define handlers for External Abort, Uncontainable Errors, Double Fault,
and errors rising from EL3 execution. Please refer to RAS Porting Guide.

4.9.3 Registering RAS error records

RAS nodes are components in the system capable of signalling errors to PEs through one one of the notification mecha-
nisms—SEAs, SErrors, or interrupts. RAS nodes contain one or more error records, which are registers through which
the nodes advertise various properties of the signalled error. Arm recommends that error records are implemented
in the Standard Error Record format. The RAS architecture allows for error records to be accessible via system or
memory-mapped registers.

The platform should enumerate the error records providing for each of them:
* A handler to probe error records for errors;
* When the probing identifies an error, a handler to handle it;

» For memory-mapped error record, its base address and size in KB; for a system register-accessed record, the start
index of the record and number of continuous records from that index;

* Any node-specific auxiliary data.

With this information supplied, when the run time firmware receives one of the notification mechanisms, the RAS
framework can iterate through and probe error records for error, and invoke the appropriate handler to handle it.

4.9. Reliability, Availability, and Serviceability (RAS) Extensions 167

Trusted Firmware-A

The RAS framework provides the macros to populate error record information. The macros are versioned, and the latest
version as of this writing is 1. These macros create a structure of type struct err_record_info from its arguments,
which are later passed to probe and error handlers.

For memory-mapped error records:

ERR_RECORD_MEMMAP_V1(base_addr, size_num_k, probe, handler, aux)

And, for system register ones:

ERR_RECORD_SYSREG_V1(idx_start, num_idx, probe, handler, aux)

The probe handler must have the following prototype:

typedef int (*err_record_probe_t) (const struct err_record_info *info,
int *probe_data);

The probe handler must return a non-zero value if an error was detected, or 0 otherwise. The probe_data output
parameter can be used to pass any useful information resulting from probe to the error handler (see below). For example,
it could return the index of the record.

The error handler must have the following prototype:

typedef int (*err_record_handler_t) (const struct err_record_info *info,
int probe_data, const struct err_handler_data *const data);

The data constant parameter describes the various properties of the error, including the reason for the error, exception
syndrome, and also flags, cookie, and handle parameters from the rop-level exception handler.

The platform is expected populate an array using the macros above, and register the it with the RAS framework using
the macro REGISTER_ERR_RECORD_INFO(), passing it the name of the array describing the records. Note that the
macro must be used in the same file where the array is defined.

Standard Error Record helpers

The TF-A RAS framework provides probe handlers for Standard Error Records, for both memory-mapped and System
Register accesses:

int ras_err_ser_probe_memmap(const struct err_record_info *info,
int *probe_data);

int ras_err_ser_probe_sysreg(const struct err_record_info *info,
int *probe_data);

When the platform enumerates error records, for those records in the Standard Error Record format, these helpers
maybe used instead of rolling out their own. Both helpers above:

¢ Return non-zero value when an error is detected in a Standard Error Record;

» Set probe_data to the index of the error record upon detecting an error.

168 Chapter 4. Components

Trusted Firmware-A

4.9.4 Registering RAS interrupts

RAS nodes can signal errors to the PE by raising Fault Handling and/or Error Recovery interrupts. For the firmware-
first handling paradigm for interrupts to work, the platform must setup and register with EHF. See Interaction with
Exception Handling Framework.

For each RAS interrupt, the platform has to provide structure of type struct ras_interrupt:
* Interrupt number;
* The associated error record information (pointer to the corresponding struct err_record_info);
* Optionally, a cookie.

The platform is expected to define an array of struct ras_interrupt, and register it with the RAS framework using
the macro REGISTER_RAS_INTERRUPTS (), passing it the name of the array. Note that the macro must be used in the
same file where the array is defined.

The array of struct ras_interrupt must be sorted in the increasing order of interrupt number. This allows for fast
look of handlers in order to service RAS interrupts.

4.9.5 Double-fault handling

A Double Fault condition arises when an error is signalled to the PE while handling of a previously signalled error is
still underway. When a Double Fault condition arises, the Arm RAS extensions only require for handler to perform
orderly shutdown of the system, as recovery may be impossible.

The RAS extensions part of Armv8.4 introduced new architectural features to deal with Double Fault conditions, specif-
ically, the introduction of NMEA and EASE bits to SCR_EL3 register. These were introduced to assist EL3 software
which runs part of its entry/exit routines with exceptions momentarily masked—meaning, in such systems, External
Aborts/SErrors are not immediately handled when they occur, but only after the exceptions are unmasked again.

TF-A, for legacy reasons, executes entire EL3 with all exceptions unmasked. This means that all exceptions routed to
EL3 are handled immediately. 7F-A thus is able to detect a Double Fault conditions in software, without needing the
intended advantages of Armv8.4 Double Fault architecture extensions.

Double faults are fatal, and terminate at the platform double fault handler, and doesn’t return.

4.9.6 Engaging the RAS framework

Enabling RAS support is a platform choice constructed from three distinct, but related, build options:
e RAS_EXTENSION=1 includes the RAS framework in the run time firmware;

* EL3_EXCEPTION_HANDLING=1 enables handling of exceptions at EL3. See Interaction with Exception Handling
Framework;

e HANDLE_EA_EL3_FIRST=1 enables routing of External Aborts and SErrors to EL3.

The RAS support in TF-A introduces a default implementation of plat_ea_handler, the External Abort handler
in EL3. When RAS_EXTENSION is set to 1, it’ll first call ras_ea_handler () function, which is the top-level RAS
exception handler. ras_ea_handler is responsible for iterating to through platform-supplied error records, probe
them, and when an error is identified, look up and invoke the corresponding error handler.

Note that, if the platform chooses to override the plat_ea_handler function and intend to use the RAS framework,
it must explicitly call ras_ea_handler () from within.

Similarly, for RAS interrupts, the framework defines ras_interrupt_handler(). The RAS framework arranges
for it to be invoked when a RAS interrupt taken at EL3. The function bisects the platform-supplied sorted array of

4.9. Reliability, Availability, and Serviceability (RAS) Extensions 169

Trusted Firmware-A

interrupts to look up the error record information associated with the interrupt number. That error handler for that
record is then invoked to handle the error.

4.9.7 Interaction with Exception Handling Framework

As mentioned in earlier sections, RAS framework interacts with the EHF to arbitrate handling of RAS exceptions with
others that are routed to EL3. This means that the platform must partition a priority level for handling RAS exceptions.
The platform must then define the macro PLAT_RAS_PRI to the priority level used for RAS exceptions. Platforms
would typically want to allocate the highest secure priority for RAS handling.

Handling of both inferrupt and non-interrupt exceptions follow the sequences outlined in the EHF documentation. Le.,
for interrupts, the priority management is implicit; but for non-interrupt exceptions, they’re explicit using EHF APIs.

Copyright (c¢) 2018-2019, Arm Limited and Contributors. All rights reserved.

4.10 Library at ROM

This document provides an overview of the “library at ROM” implementation in Trusted Firmware-A (TF-A).

4.10.1 Introduction

The “library at ROM” feature allows platforms to build a library of functions to be placed in ROM. This reduces SRAM
usage by utilising the available space in ROM. The “library at ROM” contains a jump table with the list of functions
that are placed in ROM. The capabilities of the “library at ROM” are:

1. Functions can be from one or several libraries.
2. Functions can be patched after they have been programmed into ROM.
3. Platform-specific libraries can be placed in ROM.

4. Functions can be accessed by one or more BL images.

170 Chapter 4. Components

Trusted Firmware-A

4.10.2 Index file

ROM RAM
BL1
ROMLIE
jmptable Blx
b printr puts.o (patch)
b puts <
B pute puts:
_ jmptable_base
printf.o
printf:
puts.o
BLx.o
puts:
bl printf
putc.o bl puts
putc: printf.o (wrapper)
printf:
b jmptable base[0]

Library at ROM is described by an index file with the list of functions to be placed in ROM. The index file is platform
specific and its format is:

1lib function [patchl]

lib -- Name of the library the function belongs to
function -- Name of the function to be placed in library at ROM
[patch] -- Option to patch the function

Itis also possible to insert reserved spaces in the list by using the keyword “reserved” rather than the “lib” and “function”
names as shown below:

reserved

The reserved spaces can be used to add more functions in the future without affecting the order and location of functions
already existing in the jump table. Also, for additional flexibility and modularity, the index file can include other index
files.

For an index file example, refer to 1ib/romlib/jmptbl.i.

4.10. Library at ROM 171

Trusted Firmware-A

4.10.3 Wrapper functions

stdio.a
printf.o
printf:
stdio.a (wrapper)
puts.o
printf.o
puts:
jmptbl.i printf:
putc.o printf b jmptable_base[0]
. reserved jf——
putc: pUte putc.o
putc:
b jmptable_base[2]

When invoking a function of the “library at ROM”, the calling sequence is as follows:
BL image —> wrapper function —> jump table entry —> library at ROM

The index file is used to create a jump table which is placed in ROM. Then, the wrappers refer to the jump table to
call the “library at ROM” functions. The wrappers essentially contain a branch instruction to the jump table entry
corresponding to the original function. Finally, the original function in the BL image(s) is replaced with the wrapper
function.

The “library at ROM” contains a necessary init function that initialises the global variables defined by the functions
inside “library at ROM”.

4.10.4 Script

There is a romlib_generate.py Python script that generates the necessary files for the “library at ROM” to work. It
implements multiple functions:

1. romlib_generate.py gentbl [args] - Generates the jump table by parsing the index file.

2. romlib_generator.py genvar [args] - Generates the jump table global variable (not the jump table itself)
with the absolute address in ROM. This global variable is, basically, a pointer to the jump table.

3. romlib_generator.py genwrappers [args] - Generates a wrapper function for each entry in the index file
except for the ones that contain the keyword patch. The generated wrapper file is called <fn_name>.s.

4. romlib_generator.py pre [args] - Preprocesses the index file which means it resolves all the include com-
mands in the file recursively. It can also generate a dependency file of the included index files which can be
directly used in makefiles.

Each romlib_generate.py function has its own manual which is accessible by runing romlib_generator.py
[function] --help.

romlib_generate.py requires Python 3 environment.

172 Chapter 4. Components

Trusted Firmware-A

4.10.5 Patching of functions in library at ROM

The romlib_generator.py genwrappers does not generate wrappers for the entries in the index file that contain
the keyword patch. Thus, it allows calling the function from the actual library by breaking the link to the “library at
ROM?” version of this function.

The calling sequence for a patched function is as follows:

BL image —> function

4.10.6 Memory impact

Using library at ROM will modify the memory layout of the BL images:

* The ROM library needs a page aligned RAM section to hold the RW data. This section is defined by the ROM-
LIB_RW_BASE and ROMLIB_RW_END macros. On Arm platforms a section of 1 page (0x1000) is allocated
at the top of SRAM. This will have for effect to shift down all the BL images by 1 page.

¢ Depending on the functions moved to the ROM library, the size of the BL images will be reduced. For example:
moving MbedTLS function into the ROM library reduces BL1 and BL2, but not BL31.

» This change in BL images size can be taken into consideration to optimize the memory layout when defining the
BLx_BASE macros.

4.10.7 Build library at ROM
The environment variable CROSS_COMPILE must be set appropriately. Refer to Performing an Initial Build for more
information about setting this variable.

In the below example the usage of ROMLIB together with mbed TLS is demonstrated to showcase the benefits of library
at ROM - it’s not mandatory.

make PLAT=fvp

MBEDTLS_DIR=</path/to/mbedtls/>

TRUSTED_BOARD_BOOT=1 GENERATE_COT=1
ARM_ROTPK_LOCATION=devel_rsa
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem
BL33=</path/to/bl33.bin>

USE_ROMLIB=1

all fip

A A

Copyright (c) 2019, Arm Limited. All rights reserved.

4.11 SDEI: Software Delegated Exception Interface

This document provides an overview of the SDEI dispatcher implementation in Trusted Firmware-A (TF-A).

4.11. SDEI: Software Delegated Exception Interface 173

Trusted Firmware-A

4.11.1 Introduction

Software Delegated Exception Interface (SDET) is an Arm specification for Non-secure world to register handlers
with firmware to receive notifications about system events. Firmware will first receive the system events by way of
asynchronous exceptions and, in response, arranges for the registered handler to execute in the Non-secure EL.

Normal world software that interacts with the SDEI dispatcher (makes SDEI requests and receives notifications) is
referred to as the SDEI Client. A client receives the event notification at the registered handler even when it was
executing with exceptions masked. The list of SDEI events available to the client are specific to the platform'. See also
Determining client EL.

The following figure depicts a general sequence involving SDEI client executing at EL2 and an event dispatch resulting
from the triggering of a bound interrupt. A commentary is provided below:

! Except event 0, which is defined by the SDEI specification as a standard event.

174 Chapter 4. Components

Trusted Firmware-A

SDEIl client EL3 SDEl interrupt source
1

[1] SDEI_INTERRUPT_BIND(irg)

[2] event number: ev

[3] SDEI_EVENT REGISTER(ev, handler, ...)

-
4
< [4] success
[5]1 SDEI_EVENT ENABLE(ev) >
6
< [6] success
[7]1 SDEI_PE_UNMASK() >

[8] 1
-
<<BuUsiness as usual>x>

Prepare SDE| dispatch B]

[10] dispatch

SDEIl handler I\‘\]

H[ll] SDEI_EVENT COMPLETE() S

Complete SDEI dispatch b]

[12] ECI

.............................)
" [13] resumes preempted execution T

: <<=MNormal execution resumes::-:f-
ik i i
SDEIl client EL3 SDEl interrupt source

As part of initialisation, the SDEI client binds a Non-secure interrupt [1], and the SDEI dispatcher returns a platform
dynamic event number [2]. The client then registers a handler for that event [3], enables the event [5], and unmasks all
events on the current PE [7]. This sequence is typical of an SDEI client, but it may involve additional SDEI calls.

At a later point in time, when the bound interrupt triggers [9], it’s trapped to EL3. The interrupt is handed over to the
SDEI dispatcher, which then arranges to execute the registered handler [10]. The client terminates its execution with
SDEI_EVENT_COMPLETE [11], following which the dispatcher resumes the original EL2 execution [13]. Note that the
SDEI interrupt remains active until the client handler completes, at which point EL3 does EOI [12].

Other than events bound to interrupts, as depicted in the sequence above, SDEI events can be explicitly dispatched
in response to other exceptions, for example, upon receiving an SError or Synchronous External Abort. See Explicit
dispatch of events.

4.11. SDEI: Software Delegated Exception Interface 175

Trusted Firmware-A

The remainder of this document only discusses the design and implementation of SDEI dispatcher in TF-A, and assumes
that the reader is familiar with the SDEI specification, the interfaces, and their requirements.

4.11.2 Defining events
A platform choosing to include the SDEI dispatcher must also define the events available on the platform, along with
their attributes.

The platform is expected to provide two arrays of event descriptors: one for private events, and another for shared
events. The SDEI dispatcher provides SDEI_PRIVATE_EVENT () and SDEI_SHARED_EVENT () macros to populate the
event descriptors. Both macros take 3 arguments:

* The event number: this must be a positive 32-bit integer.

* For an event that has a backing interrupt, the interrupt number the event is bound to:
— Ifit’s not applicable to an event, this shall be left as 0.
— If the event is dynamic, this should be specified as SDEI_DYN_TIRQ.

* A bit map of Event flags.

To define event 0, the macro SDEI_DEFINE_EVENT_O0 () should be used. This macro takes only one parameter: an SGI
number to signal other PEs.

To define an event that’s meant to be explicitly dispatched (i.e., not as a result of receiving an SDEI interrupt), the
macro SDEI_EXPLICIT_EVENT() should be used. It accepts two parameters:

¢ The event number (as above);
* Event priority: SDEI_MAPF_CRITICAL or SDEI_MAPF_NORMAL, as described below.

Once the event descriptor arrays are defined, they should be exported to the SDEI dispatcher using the
REGISTER_SDEI_MAP () macro, passing it the pointers to the private and shared event descriptor arrays, respectively.
Note that the REGISTER_SDEI_MAP () macro must be used in the same file where the arrays are defined.

Regarding event descriptors:
* For Event 0:
— There must be exactly one descriptor in the private array, and none in the shared array.
— The event should be defined using SDEI_DEFINE_EVENT_0().
— Must be bound to a Secure SGI on the platform.
» Explicit events should only be used in the private array.

* Statically bound shared and private interrupts must be bound to shared and private interrupts on the platform,
respectively. See the section on Configuration within Exception Handling Framework.

* Both arrays should be one-dimensional. The REGISTER_SDEI_MAP () macro takes care of replicating private
events for each PE on the platform.

* Both arrays must be sorted in the increasing order of event number.

The SDEI specification doesn’t have provisions for discovery of available events on the platform. The list of events
made available to the client, along with their semantics, have to be communicated out of band; for example, through
Device Trees or firmware configuration tables.

See also Event definition example.

176 Chapter 4. Components

Trusted Firmware-A

Event flags
Event flags describe the properties of the event. They are bit maps that can be ORed to form parameters to macros that
define events (see Defining events).

e SDEI_MAPF_DYNAMIC: Marks the event as dynamic. Dynamic events can be bound to (or released from) any
Non-secure interrupt at runtime via the SDEI_INTERRUPT_BIND and SDEI_INTERRUPT_RELEASE calls.

» SDEI_MAPF_BOUND: Marks the event as statically bound to an interrupt. These events cannot be re-bound at
runtime.

e SDEI_MAPF_NORMAL: Marks the event as having Normal priority. This is the default priority.
e SDEI_MAPF_CRITICAL: Marks the event as having Critical priority.

4.11.3 Event definition example

static sdei_ev_map_t plat_private_sdei[] = {
/* Event 0 definition */
SDEI_DEFINE_EVENT_0(8),

/7’: PPI :':/
SDEI_PRIVATE_EVENT(8, 23, SDEI_MAPF_BOUND),

/* Dynamic private events */
SDEI_PRIVATE_EVENT (100, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIQC),
SDEI_PRIVATE_EVENT (101, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC)

/* Events for explicit dispatch */
SDEI_EXPLICIT_EVENT (2000, SDEI_MAPF_NORMAL);
SDEI_EXPLICIT_EVENT(2000, SDEI_MAPF_CRITICAL);

};

/* Shared event mappings */
static sdei_ev_map_t plat_shared_sdei[] = {
SDEI_SHARED_EVENT (804, ®, SDEI_MAPF_DYNAMIOQ),

/* Dynamic shared events */

SDEI_SHARED_EVENT (3000, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC),

SDEI_SHARED_EVENT (3001, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC)
b

/* Export SDEI events */
REGISTER_SDEI_MAP(plat_private_sdei, plat_shared_sdei);

4.11. SDEI: Software Delegated Exception Interface 177

Trusted Firmware-A

4.11.4 Configuration within Exception Handling Framework
The SDEI dispatcher functions alongside the Exception Handling Framework. This means that the platform must assign
priorities to both Normal and Critical SDEI interrupts for the platform:

* Install priority descriptors for Normal and Critical SDEI interrupts.

* For those interrupts that are statically bound (i.e. events defined as having the SDEI_MAPF_BOUND property),
enumerate their properties for the GIC driver to configure interrupts accordingly.

The interrupts must be configured to target EL3. This means that they should be configured as Group 0. Addi-
tionally, on GICv2 systems, the build option GICV2_GO_FOR_EL3 must be set to 1.

See also SDEI porting requirements.

4.11.5 Determining client EL
The SDEI specification requires that the physical SDEI client executes in the highest Non-secure EL implemented on
the system. This means that the dispatcher will only allow SDEI calls to be made from:

» EL2, if EL2 is implemented. The Hypervisor is expected to implement a virtual SDEI dispatcher to support
SDEI clients in Guest Operating Systems executing in Non-secure EL1.

* Non-secure EL1, if EL2 is not implemented or disabled.

See the function sdei_client_el() in sdei_private.h.

4.11.6 Explicit dispatch of events

Typically, an SDEI event dispatch is caused by the PE receiving interrupts that are bound to an SDEI event. However,
there are cases where the Secure world requires dispatch of an SDEI event as a direct or indirect result of a past activity,
such as receiving a Secure interrupt or an exception.

The SDEI dispatcher implementation provides sdei_dispatch_event() API for this purpose. The API has the
following signature:

int sdei_dispatch_event(int ev_num);

The parameter ev_num is the event number to dispatch. The API returns 0 on success, or -1 on failure.

The following figure depicts a scenario involving explicit dispatch of SDEI event. A commentary is provided below:

178 Chapter 4. Components

Trusted Firmware-A

SDE! client EL3 SDE RAS Driver
L

[1] SDEI_EVENT REGISTER(ev, handler, ...) 5
[2] success

[3] SDEI_EVENT EMNABLE(ev] >
[4] success

[5] SDEI_PE UNMASK() >
[6]1

<<Business as ysualm»=>

P.{.?l _t.iii.l_rl.@ﬁgﬁif.ﬁw_r __

| Critical event triage B]

[8] disgatch to handle

1
i Critical event handling B]

[9] sdei_dispatch_event(ev)
r_i(..
Prepare SDEI dispatch B]

__[10] dispatch

SDEI handleri

|-|[11] SDEI_EVENT _COMPLETE()

L.
-

Complete SDEI dispatch Il‘]

12] return

..).
_ [13] grror handling done H

[14] resurmes preempted execution ‘

: <<Normal execution iresumes:é:\- :
i i i i
SDEI client EL3 SDEI RAS Driver

As part of initialisation, the SDEI client registers a handler for a platform event [1], enables the event [3], and unmasks
the current PE [5]. Note that, unlike in general SDEI dispatch, this doesn’t involve interrupt binding, as bound or
dynamic events can’t be explicitly dispatched (see the section below).

At a later point in time, a critical event” is trapped into EL3 [7]. EL3 performs a first-level triage of the event, and
a RAS component assumes further handling [8]. The dispatch completes, but intends to involve Non-secure world in
further handling, and therefore decides to explicitly dispatch an event [10] (which the client had already registered for
[1]). The rest of the sequence is similar to that in the general SDEI dispatch: the requested event is dispatched to the
client (assuming all the conditions are met), and when the handler completes, the preempted execution resumes.

2 Examples of critical events are SError, Synchronous External Abort, Fault Handling interrupt or Error Recovery interrupt from one of RAS
nodes in the system.

4.11. SDEI: Software Delegated Exception Interface 179

Trusted Firmware-A

Conditions for event dispatch

All of the following requirements must be met for the API to return 0 and event to be dispatched:

SDEI events must be unmasked on the PE. L.e. the client must have called PE_UNMASK beforehand.
Event 0 can’t be dispatched.

The event must be declared using the SDEI_EXPLICIT_EVENT () macro described above.

The event must be private to the PE.

The event must have been registered for and enabled.

A dispatch for the same event must not be outstanding. L.e. it hasn’t already been dispatched and is yet to be
completed.

The priority of the event (either Critical or Normal, as configured by the platform at build-time) shouldn’t cause
priority inversion. This means:

— Ifit’s of Normal priority, neither Normal nor Critical priority dispatch must be outstanding on the PE.

— If it’s of a Critical priority, no Critical priority dispatch must be outstanding on the PE.

Further, the caller should be aware of the following assumptions made by the dispatcher:

The caller of the API is a component running in EL3; for example, a RAS driver.

The requested dispatch will be permitted by the Exception Handling Framework. L.e. the caller must make sure
that the requested dispatch has sufficient priority so as not to cause priority level inversion within Exception
Handling Framework.

The caller must be prepared for the SDEI dispatcher to restore the Non-secure context, and mark that the active
context.

The call will block until the SDEI client completes the event (i.e. when the client calls either
SDEI_EVENT_COMPLETE or SDEI_COMPLETE_AND_RESUME).

The caller must be prepared for this API to return failure and handle accordingly.

4.11.7 Porting requirements

The porting requirements of the SDEI dispatcher are outlined in the Porting Guide.

4.11.8 Note on writing SDEI event handlers

This section pertains to SDEI event handlers in general, not just when using the TF-A SDEI dispatcher.

The SDEI specification requires that event handlers preserve the contents of all registers except x0 to x17. This has
significance if event handler is written in C: compilers typically adjust the stack frame at the beginning and end of C
functions. For example, AArch64 GCC typically produces the following function prologue and epilogue:

c_event_handler:

stp x29, x30, [sp,#-32]!
mov x29, sp
bl

(continues on next page)

180

Chapter 4. Components

Trusted Firmware-A

(continued from previous page)

1dp x29, x30, [sp]l,#32
ret

The register x29 is used as frame pointer in the prologue. Because neither a valid SDEI_EVENT_COMPLETE nor
SDEI_EVENT_COMPLETE_AND_RESUME calls return to the handler, the epilogue never gets executed, and registers x29
and x30 (in the case above) are inadvertently corrupted. This violates the SDEI specification, and the normal execution
thereafter will result in unexpected behaviour.

To work this around, it’s advised that the top-level event handlers are implemented in assembly, following a similar
pattern as below:

asm_event_handler:
/* Save link register whilst maintaining stack alignment */
stp xzr, x30, [sp, #-16]!
bl c_event_handler

/% Restore link register */
ldp xzr, x30, [sp]l, #16

/* Complete call */

ldr x0, =SDEI_EVENT_COMPLETE
smc #0
b

Copyright (c¢) 2017-2019, Arm Limited and Contributors. All rights reserved.

4.12 Secure Partition Manager

Contents

» Secure Partition Manager
— Acronyms

Foreword

* Terminology

* Support for legacy platforms

Sample reference stack

TF-A build options

FVP model invocation

Boot process

* Loading Hafnium and secure partitions in the secure world

% Booting through TF-A

4.12. Secure Partition Manager 181

Trusted Firmware-A

- SP manifests
- Secure Partition packages
- Describing secure partitions
- SPMC manifest
- SPMC boot
- Loading of SPs
- Secure boot

— Hafnium in the secure world

% General considerations

- Build platform for the secure world
- Secure partitions CPU scheduling

- Platform topology

*

Parsing SP partition manifests

*

Passing boot data to the SP
* SP Boot order
% Boot phases
- Primary core boot-up
- Secondary cores boot-up
* Mandatory interfaces
- FFA_VERSION
- FFA_FEATURES
- FFA_RXTX_MAP/FFA_RXTX_UNMAP
- FFA_PARTITION_INFO_GET
- FFA_ID_GET
- FFA_MSG_SEND_DIRECT_REQ/FFA_MSG_SEND_DIRECT_RESP
% SPMC-SPMD direct requests/responses
% PE MMU configuration
% Interrupt management
- GIC ownership
- Non-secure interrupt handling
- Secure interrupt handling
* Power management
— SMMUv3 support in Hafnium
¥ SMMUV3 features

% SMMUv3 Programming Interfaces

182 Chapter 4. Components

Trusted Firmware-A

* Peripheral device manifest

* SMMUVv3 driver limitations

— References

4.12.1 Acronyms

CoT Chain of Trust
DMA Direct Memory Access
DTB Device Tree Blob

DTS Device Tree Source

EC Execution Context

FIP Firmware Image Package

FF-A Firmware Framework for Armv8-A
TIPA Intermediate Physical Address

Nwd Normal World
ODM Original Design Manufacturer
OEM Original Equipment Manufacturer

PA Physical Address
PE Processing Element
PM Power Management

PVM Primary VM
SMMU | System Memory Management Unit

Sp Secure Partition
SPD Secure Payload Dispatcher
SPM Secure Partition Manager

SPMC | SPM Core

SPMD | SPM Dispatcher

SiP Silicon Provider

Swd Secure World

TLV Tag-Length-Value

TOS Trusted Operating System
VM Virtual Machine

4.12.2 Foreword

Two implementations of a Secure Partition Manager co-exist in the TF-A codebase:

* SPM based on the FF-A specification [/].

* SPM based on the MM interface to communicate with an S-ELO partition [2].
Both implementations differ in their architectures and only one can be selected at build time.
This document:

¢ describes the FF-A implementation where the Secure Partition Manager resides at EL3 and S-EL2 (or EL3 and
S-EL1).

* is not an architecture specification and it might provide assumptions on sections mandated as implementation-
defined in the specification.

4.12. Secure Partition Manager 183

Trusted Firmware-A

e covers the implications to TF-A used as a bootloader, and Hafnium used as a reference code base for an S-
EL2 secure firmware on platforms implementing the FEAT_SEL?2 (formerly Armv8.4 Secure EL2) architecture
extension.

Terminology
* The term Hypervisor refers to the NS-EL2 component managing Virtual Machines (or partitions) in the normal
world.

* The term SPMC refers to the S-EL2 component managing secure partitions in the secure world when the
FEAT_SEL?2 architecture extension is implemented.

* Alternatively, SPMC can refer to an S-EL1 component, itself being a secure partition and implementing the FF-A
ABI on platforms not implementing the FEAT_SEL2 architecture extension.

* The term VM refers to a normal world Virtual Machine managed by an Hypervisor.

e The term SP refers to a secure world “Virtual Machine” managed by an SPMC.

Support for legacy platforms

In the implementation, the SPM is split into SPMD and SPMC components. The SPMD is located at EL3 and mainly
relays FF-A messages from NWd (Hypervisor or OS kernel) to SPMC located either at S-EL1 or S-EL2.

Hence TF-A supports both cases where the SPMC is located either at:

* S-EL1 supporting platforms not implementing the FEAT_SEL?2 architecture extension. The SPMD relays the
FF-A protocol from EL3 to S-EL1.

e or S-EL2 supporting platforms implementing the FEAT_SEL?2 architecture extension. The SPMD relays the
FF-A protocol from EL3 to S-EL2.

The same TF-A SPMD component is used to support both configurations. The SPMC exception level is a build time
choice.

184 Chapter 4. Components

Trusted Firmware-A

4.12.3 Sample reference stack

The following diagram illustrates a possible configuration when the FEAT_SEL2 architecture extension is imple-
mented, showing the SPMD and SPMC, one or multiple secure partitions, with an optional Hypervisor:

VM endpoint SP endpoint

ELO Client app.

Kernel
EL1 TEE drv

‘ FF-A driver

EL2

Hypervisor (opt.) SPMC (Hafnium)

EL3

PE s-eL2, mmu, siMDisvE, GIC SMMU 1z

BTIPACIMTE

(*) e.g. OP-TEE

4.12.4 TF-A build options

This section explains the TF-A build options involved in building with support for an FF-A based SPM where the
SPMD is located at EL3 and the SPMC located at S-EL1 or S-EL2:

e SPD=spmd: this option selects the SPMD component to relay the FF-A protocol from NWd to SWd back and
forth. It is not possible to enable another Secure Payload Dispatcher when this option is chosen.

e SPMD_SPM_AT_SEL2: this option adjusts the SPMC exception level to being S-EL1 or S-EL2. It defaults to
enabled (value 1) when SPD=spmd is chosen.

 CTX_INCLUDE_EL2_REGS: this option permits saving (resp. restoring) the EL2 system register context
before entering (resp. after leaving) the SPMC. It is mandatorily enabled when SPMD_SPM_AT_SEL2 is enabled.
The context save/restore routine and exhaustive list of registers is visible at /4].

4.12. Secure Partition Manager 185

Trusted Firmware-A

e SP_LAYOUT_FILE: this option specifies a text description file providing paths to SP binary images and man-
ifests in DTS format (see Describing secure partitions). It is required when SPMD_SPM_AT_SEL?2 is enabled
hence when multiple secure partitions are to be loaded on behalf of the SPMC.

CTX_INCLUDE_EL2_REGS

SPMD_SPM_AT_SEL2

SPMC at S-EL1 0

0

SPMC at S-EL2 1

1 (default when SPD=spmd)

Other combinations of such build options either break the build or are not supported.

Notes:

* Only Arm’s FVP platform is supported to use with the TF-A reference software stack.

 The reference software stack uses FEAT_PAuth (formerly Armv8.3-PAuth) and FEAT_BTI (formerly Armv8.5-

BTI) architecture extensions by default at EL3 and S-EL2.

e The CTX_INCLUDE_EL2_REGS option provides the generic support for barely saving/restoring EL2 registers from
an Arm arch perspective. As such it is decoupled from the SPD=spmd option.

* BL32 option is re-purposed to specify the SPMC image. It can specify either the Hafnium binary path (built for
the secure world) or the path to a TEE binary implementing FF-A interfaces.

* BL33 option can specify the TFTF binary or a normal world loader such as U-Boot or the UEFI framework.

Sample TF-A build command line when SPMC is located at S-EL1 (e.g. when the FEAT_EL2 architecture extension

is not implemented):

make \
CROSS_COMPILE=aarch64-none-elf- \
SPD=spmd \

SPMD_SPM_AT_SEL2=0 \
BL32=<path-to-tee-binary> \
BL33=<path-to-bl33-binary> \
PLAT=fvp \

all fip

Sample TF-A build command line for a FEAT_SEL?2 enabled system where the SPMC is located at S-EL2:

make \
CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \

SPD=spmd \
CTX_INCLUDE_EL2_REGS=1 \
ARM_ARCH_MINOR=5 \
BRANCH_PROTECTION=1 \
CTX_INCLUDE_PAUTH_REGS=1 \
BL32=<path-to-hafnium-binary> \
BL33=<path-to-bl33-binary> \
SP_LAYOUT_FILE=sp_layout.json \
all fip

Same as above with enabling secure boot in addition:

186

Chapter 4. Components

Trusted Firmware-A

make \
CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \

SPD=spmd \

CTX_INCLUDE_EL2_REGS=1 \
ARM_ARCH_MINOR=5 \
BRANCH_PROTECTION=1 \
CTX_INCLUDE_PAUTH_REGS=1 \
BL32=<path-to-hafnium-binary> \
BL33=<path-to-bl33-binary> \
SP_LAYOUT_FILE=sp_layout.json \
MBEDTLS_DIR=<path-to-mbedtls-1lib> \
TRUSTED_BOARD_BOOT=1 \

COT=dualroot \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
GENERATE_COT=1 \

all fip

4.12.5 FVP model invocation

The FVP command line needs the following options to exercise the S-EL2 SPMC:

Implements FEAT_SEL2, FEAT _PAuth, and

¢ clusterO.has_arm_v8-5=1 FEAT BTL

¢ clusterl.has_arm_v8-5=1

P t ired for the SMMUv3.2 modeling.
e pci.pci_smmuv3.mmu.SMMU_AIDR=2 arameters requirec for the V2.~ modeling

¢ pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B
* pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002
* pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714
* pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF047p
¢ pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002
* pci.pci_smmuv3.mmu.SMMU_S_IDR2=0
¢ pci.pci_smmuv3.mmu.SMMU_S_IDR3=0

Impl ts FEAT_BTL
e cluster(O.has_branch_target_exception=1 fpements -

* clusterl.has_branch_target_exception=1

. . . Required by the EL2 context save/restore routine.
e clusterQ.restriction_on_speculative_execution=2

* clusterl.restriction_on_speculative_execution=2

Sample FVP command line invocation:

<path-to-fvp-model>/FVP_Base_RevC-2xAEMv8A -C pctl.startup=0.0.0.0

-C cluster®.NUM_CORES=4 -C clusterl.NUM_CORES=4 -C bp.secure_memory=1 \

-C bp.secureflashloader. fname=trusted-firmware-a/build/fvp/debug/bll.bin \

-C bp.flashloader®. fname=trusted-firmware-a/build/fvp/debug/fip.bin \

-C bp.pl®11_uart®.out_file=fvp-uart®.log -C bp.pl®1ll_uartl.out_file=fvp-uartl.log \

(continues on next page)

4.12. Secure Partition Manager 187

Trusted Firmware-A

(continued from previous page)

-C bp.pl®11_uart2.out_file=fvp-uart2.log \

-C cluster®.has_arm_v8-5=1 -C clusterl.has_arm_v8-5=1 -C pci.pci_smmuv3.mmu.SMMU_AIDR=2 \
-C pci.pci_smmuv3.mmu.SMMU_IDRO=0x0046123B -C pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 \
-C pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714 -C pci.pci_smmuv3.mmu.SMMU_IDR5=0XFFFF0472 \

-C pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002 -C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 \

-C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0 \

-C cluster®.has_branch_target_exception=1 \

-C clusterl.has_branch_target_exception=1 \

-C cluster®.restriction_on_speculative_execution=2 \

-C clusterl.restriction_on_speculative_execution=2

4.12.6 Boot process

Loading Hafnium and secure partitions in the secure world

TF-A BL2 is the bootlader for the SPMC and SPs in the secure world.

SPs may be signed by different parties (SiP, OEM/ODM, TOS vendor, etc.). Thus they are supplied as distinct signed
entities within the FIP flash image. The FIP image itself is not signed hence this provides the ability to upgrade SPs in
the field.

Booting through TF-A

SP manifests

An SP manifest describes SP attributes as defined in //] (partition manifest at virtual FF-A instance) in DTS format.
It is represented as a single file associated with the SP. A sample is provided by /5/. A binding document is provided

by [6].
Secure Partition packages

Secure partitions are bundled as independent package files consisting of:
* a header
*« aDTB
 an image payload

The header starts with a magic value and offset values to SP DTB and image payload. Each SP package is loaded
independently by BL2 loader and verified for authenticity and integrity.

The SP package identified by its UUID (matching FF-A uuid property) is inserted as a single entry into the FIP at end
of the TF-A build flow as shown:

Trusted Boot Firmware BL2: offset=0x1F0®, size=0x8AE1l, cmdline="--tb-fw"

EL3 Runtime Firmware BL31: offset=0x8CD1, size=0x13000, cmdline="--soc-fw"

Secure Payload BL32 (Trusted 0S): offset=0x1BCD1, size=0x15270, cmdline="--tos-fuw"
Non-Trusted Firmware BL33: offset=0x30F41, size=0x92E®, cmdline="--nt-fw"
HW_CONFIG: offset=0x3A221, size=0x2348, cmdline="--hw-config"

TB_FW_CONFIG: offset=0x3C569, size=0x37A, cmdline="--tb-fw-config"

SOC_FW_CONFIG: offset=0x3C8E3, size=0x48, cmdline="--soc-fw-config"

(continues on next page)

188 Chapter 4. Components

Trusted Firmware-A

(continued from previous page)

TOS_FW_CONFIG: offset=0x3C92B, size=0x427, cmdline="--tos-fw-config"

NT_FW_CONFIG: offset=0x3CD52, size=0x48, cmdline="--nt-fw-config"
B4B5671E-4A90-4FE1-B81F-FB13DAE1DACB: offset=0x3CD9A, size=0xC168, cmdline="--blob"
D1582309-F023-47B9-827C-4464F5578FC8: offset=0x48F02, size=0xC168, cmdline="--blob"

4.12. Secure Partition Manager

189

Trusted Firmware-A

SP_vendor_1 \

SP_vendor_2 \

sp_manifest_1

1)

UUID = ¢
load_address = Oxaaa
owner = "Sip*

— /
— G«
fiptool

fip.bin

th_fw_config.dtb (signed)

spl.pkg (signed & SiP owned)

sp2.pkg (signed & Platform owned)

sp_manifest_2 b
UUID = yyy : o o
load_address = 0xbbb R IR 2 crtool
owner = "Plat"
Y /‘1
N -
"~ | sP_LAYOUT json Bf.-
path to sp_binary_1
path to sp_manifest_1
path to sp_binary 2
path to sp_manifest 2
sp_mk_generator
th_fw_config.dts B
D) secure-partitions
Sp_gen.mk spkg_1 UUID
FDT_SOURCE = ... spkg_1 load_address
et e we
CRT ARGS = .. spkg_2 load_address
Il
/| ..<rest of the nodes>
|
/|
/
[Q
J-" sptool dtc
[
II
|
sp2.pkg & spl.pkg &)
header header)
manifest manifest T G} i
binary binary
“‘H\\A
i
rt_gres
|
|
spl pkg (signed)B sp2.pkg (signed)[B
\ header header
\ manifest manifest l tb_fw_config.dtb (signed)B
\ binary binary
signature signature

Chapter 4. Components

190

Trusted Firmware-A

Describing secure partitions

A json-formatted description file is passed to the build flow specifying paths to the SP binary image and associated
DTS partition manifest file. The latter is processed by the dtc compiler to generate a DTB fed into the SP package.
This file also specifies the SP owner (as an optional field) identifying the signing domain in case of dual root CoT. The
SP owner can either be the silicon or the platform provider. The corresponding “owner” field value can either take the
value of “SiP” or “Plat”. In absence of “owner” field, it defaults to “SiP” owner.

{
"teel" : {
"image": "teel.bin",
"pm": "teel.dts",
"owner": "SiP"
1,
"tee2" : {
"image": "tee2.bin",
"pm": "tee2.dts",
"owner": "Plat"
}
}

SPMC manifest

This manifest contains the SPMC attribute node consumed by the SPMD at boot time. It implements //] (SP manifest
at physical FF-A instance) and serves two different cases:

e The SPMC resides at S-EL1: the SPMC manifest is used by the SPMD to setup a SP that co-resides with the
SPMC and executes at S-EL.1 or Secure Supervisor mode.

* The SPMC resides at S-EL2: the SPMC manifest is used by the SPMD to setup the environment required by the
SPMC to run at S-EL2. SPs run at S-EL.1 or S-ELO.

attribute {
spmc_id = <0x8000>;
maj_ver = <0x1>;
min_ver = <0x0>;
exec_state = <0x0>;
load_address = <0x0 0x6000000>;
entrypoint = <0x0 0x6000000>;
binary_ size = <0x60000>;

» spmc_id defines the endpoint ID value that SPMC can query through FFA_ID_GET.
* maj_ver/min_ver. SPMD checks provided version versus its internal version and aborts if not matching.

* exec_state defines the SPMC execution state (AArch64 or AArch32). Notice Hafnium used as a SPMC only
supports AArch64.

* load_address and binary_size are mostly used to verify secondary entry points fit into the loaded binary image.

* entrypoint defines the cold boot primary core entry point used by SPMD (currently matches BL32_BASE) to enter
the SPMC.

Other nodes in the manifest are consumed by Hafnium in the secure world. A sample can be found at [7]:

4.12. Secure Partition Manager 191

Trusted Firmware-A

* The hypervisor node describes SPs. is_ffa_partition boolean attribute indicates a FF-A compliant SP. The
load_address field specifies the load address at which TF-A loaded the SP package.

* cpus node provide the platform topology and allows MPIDR to VMPIDR mapping. Note the primary core is
declared first, then secondary core are declared in reverse order.

* The memory node provides platform information on the ranges of memory available to the SPMC.

SPMC boot

The SPMC is loaded by BL2 as the BL.32 image.
The SPMC manifest is loaded by BL2 as the TOS_FW_CONFIG image.
BL2 passes the SPMC manifest address to BL31 through a register.

At boot time, the SPMD in BL31 runs from the primary core, initializes the core contexts and launches the SPMC
(BL32) passing the SPMC manifest address through a register.

Loading of SPs

At boot time, BL2 loads SPs sequentially in addition to the SPMC as depicted below:

bl1 FIP
T T

| read(FW_CONFIG) _ 1
—_—— e T

1 load Ly FW_CONFIGI

' read(bl2)

load : S| bl2

hand off (Fw_ CONFIG) . '
.. I)-:

read _node(SPKs)

loo E / [for each spkg subnode] :

read(UUID)

i read(load_address)

_ read(spkg@uuiD)

: : : ! load SPKG

_read_node(TOS_FW_CONFIG) |

! load | TOS_FW_CONFIG
i load ! ! ol spmc l
' load | | ! | bl31 l

hand off (Tos FW_i COI\IFIG)

| | Pt S Su b ut e et Sttt SOOI USSR,):
| | ! | ¢ hand off (TOS_Fw_CONFIG) |

_ read(b|32':fSPMC)

_ read(bl31)

bl1 FIP FW_CONFIG bl2 ‘ SPKG | ‘TOS_FW_CONFIG | ‘ SPMC | bl31

192 Chapter 4. Components

Trusted Firmware-A

Note this boot flow is an implementation sample on Arm’s FVP platform. Platforms not using TF-A’s Firmware
CONFiguration framework would adjust to a different implementation.

Secure boot

The SP content certificate is inserted as a separate FIP item so that BL2 loads SPMC, SPMC manifest, secure partitions
and verifies them for authenticity and integrity. Refer to TBBR specification /3].

The multiple-signing domain feature (in current state dual signing domain /8/) allows the use of two root keys namely
S-ROTPK and NS-ROTPK:

e SPMC (BL32) and SPMC manifest are signed by the SiP using the S-ROTPK.
* BL33 may be signed by the OEM using NS-ROTPK.
* An SP may be signed either by SiP (using S-ROTPK) or by OEM (using NS-ROTPK).

Also refer to Describing secure partitions and TF-A build options sections.

4.12.7 Hafnium in the secure world
General considerations

Build platform for the secure world

In the Hafnium reference implementation specific code parts are only relevant to the secure world. Such portions are
isolated in architecture specific files and/or enclosed by a SECURE_WORLD macro.

Secure partitions CPU scheduling

The FF-A v1.0 specification [/] provides two ways to relinquinsh CPU time to secure partitions. For this a VM
(Hypervisor or OS kernel), or SP invokes one of:

¢ the FFA_MSG_SEND_DIRECT_REQ interface.
¢ the FFA_RUN interface.

Platform topology

The execution-ctx-count SP manifest field can take the value of one or the total number of PEs. The FF-A v1.0 speci-
fication [/] recommends the following SP types:

* Pinned MP SPs: an execution context matches a physical PE. MP SPs must implement the same number of ECs
as the number of PEs in the platform.

» Migratable UP SPs: a single execution context can run and be migrated on any physical PE. Such SP declares a
single EC in its SP manifest. An UP SP can receive a direct message request originating from any physical core
targeting the single execution context.

4.12. Secure Partition Manager 193

Trusted Firmware-A

Parsing SP partition manifests

Hafnium consumes SP manifests as defined in //] and SP manifests. Note the current implementation may not imple-
ment all optional fields.

The SP manifest may contain memory and device regions nodes. In case of an S-EL2 SPMC:

* Memory regions are mapped in the SP EL1&0 Stage-2 translation regime at load time (or EL1&0 Stage-1 for an
S-EL1 SPMC). A memory region node can specify RX/TX buffer regions in which case it is not necessary for
an SP to explicitly invoke the FFA_RXTX_MAP interface.

* Device regions are mapped in the SP EL1&0 Stage-2 translation regime (or EL1&0 Stage-1 for an S-EL1 SPMC)
as peripherals and possibly allocate additional resources (e.g. interrupts).

For the S-EL2 SPMC, base addresses for memory and device region nodes are IPAs provided the SPMC identity maps
IPAs to PAs within SP EL1&0 Stage-2 translation regime.

Note: in the current implementation both VTTBR_EL2 and VSTTBR_EL2 point to the same set of page tables. Itis still
open whether two sets of page tables shall be provided per SP. The memory region node as defined in the specification
provides a memory security attribute hinting to map either to the secure or non-secure EL1&0 Stage-2 table if it exists.

Passing boot data to the SP
In /1], the “Protocol for passing data” section defines a method for passing boot data to SPs (not currently imple-
mented).

Provided that the whole secure partition package image (see Secure Partition packages) is mapped to the SP secure
EL1&0 Stage-2 translation regime, an SP can access its own manifest DTB blob and extract its partition manifest
properties.

SP Boot order
SP manifests provide an optional boot order attribute meant to resolve dependencies such as an SP providing a service
required to properly boot another SP.

It is possible for an SP to call into another SP through a direct request provided the latter SP has already been booted.

Boot phases

Primary core boot-up

Upon boot-up, BL31 hands over to the SPMC (BL32) on the primary boot physical core. The SPMC performs its
platform initializations and registers the SPMC secondary physical core entry point physical address by the use of the
FFA_SECONDARY_EP_REGISTER interface (SMC invocation from the SPMC to the SPMD at secure physical FF-A
instance). This interface is implementation-defined in context of FF-A v1.0.

The SPMC then creates secure partitions based on SP packages and manifests. Each secure partition is launched in
sequence (SP Boot order) on their “primary” execution context. If the primary boot physical core linear id is N, an MP
SP is started using EC[N] on PE[N] (see Platform topology). If the partition is a UP SP, it is started using its unique
ECO on PE[N].

The SP primary EC (or the EC used when the partition is booted as described above):

* Performs the overall SP boot time initialization, and in case of a MP SP, prepares the SP environment for other
execution contexts.

194 Chapter 4. Components

Trusted Firmware-A

¢ In the case of a MP SP, it invokes the FFA_SECONDARY_EP_REGISTER at secure virtual FF-A instance (SMC
invocation from SP to SPMC) to provide the IPA entry point for other execution contexts.

* Exits through FFA_MSG_WAIT to indicate successful initialization or FFA_ERROR in case of failure.

Secondary cores boot-up

Once the system is started and NWd brought up, a secondary physical core is woken up by the PSCI_CPU_ON service
invocation. The TF-A SPD hook mechanism calls into the SPMD on the newly woken up physical core. Then the
SPMC is entered at the secondary physical core entry point.

In the current implementation, the first SP is resumed on the coresponding EC (the virtual CPU which matches the
physical core). The implication is that the first SP must be a MP SP.

In a linux based system, once secure and normal worlds are booted but prior to a NWd FF-A driver has been loaded:

¢ The first SP has initialized all its ECs in response to primary core boot up (at system initialization) and secondary
core boot up (as a result of linux invoking PSCI_CPU_ON for all secondary cores).

* Other SPs have their first execution context initialized as a result of secure world initialization on the primary
boot core. Other ECs for those SPs have to be run first through ffa_run to complete their initialization (which
results in the EC completing with FFA_MSG_WAIT).

Refer to Power management for further details.

Mandatory interfaces

The following interfaces are exposed to SPs:
* FFA_VERSION
* FFA_FEATURES
e FFA_RX_RELEASE
¢ FFA_RXTX_MAP
e FFA_RXTX_UNMAP (not implemented)
e FFA_PARTITION_INFO_GET
e FFA_ID_GET
e FFA_MSG_WAIT
¢ FFA_MSG_SEND_DIRECT_REQ
e FFA_MSG_SEND_DIRECT_RESP
e FFA_MEM_DONATE
e FFA_MEM_LEND
* FFA_MEM_SHARE
e FFA_MEM_RETRIEVE_REQ
* FFA_MEM_RETRIEVE_RESP
* FFA_MEM_RELINQUISH
e FFA_MEM_RECLAIM
e FFA_SECONDARY_EP_REGISTER

4.12. Secure Partition Manager 195

Trusted Firmware-A

FFA_VERSION

FFA_VERSION requires a requested_version parameter from the caller. The returned value depends on the caller:
* Hypervisor or OS kernel in NS-EL1/EL2: the SPMD returns the SPMC version specified in the SPMC manifest.
* SP: the SPMC returns its own implemented version.

e SPMC at S-EL1/S-EL2: the SPMD returns its own implemented version.

FFA_FEATURES

FF-A features supported by the SPMC may be discovered by secure partitions at boot (that is prior to NWd is booted)
or run-time.

The SPMC calling FFA_FEATURES at secure physical FF-A instance always get FFA_SUCCESS from the SPMD.
The request made by an Hypervisor or OS kernel is forwarded to the SPMC and the response relayed back to the NWd.

FFA_RXTX_MAP/FFA_RXTX_UNMAP

When invoked from a secure partition FFA_RXTX_MAP maps the provided send and receive buffers described by
their IPAs to the SP EL1&0 Stage-2 translation regime as secure buffers in the MMU descriptors.

When invoked from the Hypervisor or OS kernel, the buffers are mapped into the SPMC EL2 Stage-1 translation regime
and marked as NS buffers in the MMU descriptors.

Note:
* FFA_RXTX_UNMAP is not implemented.

FFA_PARTITION_INFO_GET

Partition info get call can originate:
* from SP to SPMC
» from Hypervisor or OS kernel to SPMC. The request is relayed by the SPMD.

FFA_ID_GET

The FF-A id space is split into a non-secure space and secure space:
» FF-A ID with bit 15 clear relates to VMs.
* FF-A ID with bit 15 set related to SPs.
» FF-A IDs 0, Oxffff, 0x8000 are assigned respectively to the Hypervisor, SPMD and SPMC.
The SPMD returns:
* The default zero value on invocation from the Hypervisor.
* The spmc_id value specified in the SPMC manifest on invocation from the SPMC (see SPMC manifest)

This convention helps the SPMC to determine the origin and destination worlds in an FF-A ABl invocation. In particular
the SPMC shall filter unauthorized transactions in its world switch routine. It must not be permitted for a VM to use a
secure FF-A ID as origin world by spoofing:

196 Chapter 4. Components

Trusted Firmware-A

* A VM-to-SP direct request/response shall set the origin world to be non-secure (FF-A ID bit 15 clear) and
destination world to be secure (FF-A ID bit 15 set).

 Similarly, an SP-to-SP direct request/response shall set the FF-A ID bit 15 for both origin and destination IDs.

An incoming direct message request arriving at SPMD from NWd is forwarded to SPMC without a specific check. The
SPMC is resumed through eret and “knows” the message is coming from normal world in this specific code path. Thus
the origin endpoint ID must be checked by SPMC for being a normal world ID.

An SP sending a direct message request must have bit 15 set in its origin endpoint ID and this can be checked by the
SPMC when the SP invokes the ABI.

The SPMC shall reject the direct message if the claimed world in origin endpoint ID is not consistent:
e It is either forwarded by SPMD and thus origin endpoint ID must be a “normal world ID”,

* or initiated by an SP and thus origin endpoint ID must be a “secure world ID”.

FFA_MSG_SEND_DIRECT_REQ/FFA_MSG_SEND_DIRECT_RESP

This is a mandatory interface for secure partitions consisting in direct request and responses with the following rules:
* An SP can send a direct request to another SP.
* An SP can receive a direct request from another SP.
* An SP can send a direct response to another SP.
* An SP cannot send a direct request to an Hypervisor or OS kernel.
* An Hypervisor or OS kernel can send a direct request to an SP.

* An SP can send a direct response to an Hypervisor or OS kernel.

SPMC-SPMD direct requests/responses
Implementation-defined FF-A IDs are allocated to the SPMC and SPMD. Using those IDs in source/destination fields
of a direct request/response permits SPMD to SPMC communication and either way.

e SPMC to SPMD direct request/response uses SMC conduit.

* SPMD to SPMC direct request/response uses ERET conduit.

PE MMU configuration
With secure virtualization enabled, two IPA spaces are output from the secure EL.1&0 Stage-1 translation (secure and
non-secure). The EL1&0 Stage-2 translation hardware is fed by:

* A single secure IPA space when the SP EL1&0 Stage-1 MMU is disabled.

» Two IPA spaces (secure and non-secure) when the SP EL.1&0 Stage-1 MMU is enabled.

VTCR_EL2 and VSTCR_EL2 provide configuration bits for controlling the N'S/S IPA translations. VSTCR_EL2.SW = 0,
VSTCR_EL2.SA=0,"VTCR_EL2.NSW™ =0, VTCR_EL2.NSA = 1:

* Stage-2 translations for the NS IPA space access the NS PA space.
* Stage-2 translation table walks for the N'S IPA space are to the secure PA space.

Secure and non-secure IPA regions use the same set of Stage-2 page tables within a SP.

4.12. Secure Partition Manager 197

Trusted Firmware-A

Interrupt management

GIC ownership

The SPMC owns the GIC configuration. Secure and non-secure interrupts are trapped at S-EL2. The SPMC manages
interrupt resources and allocates interrupt IDs based on SP manifests. The SPMC acknowledges physical interrupts
and injects virtual interrupts by setting the use of VIRQ/VFIQ bits before resuming a SP.

Non-secure interrupt handling

The following illustrate the scenarios of non secure physical interrupts trapped by the SPMC:

* The SP handles a managed exit operation:

|
1 Secure Partition
VM endpoint]
|
ELO Client app. |
1
|
[| 4. Get and ack managed
EL1 Kernel 1 exit interrupt id (**)
1
. 2. EJQ lraps . ‘,fNFJQ (*)
_ managed 5. DIRECT_MSG_RESP
_6. E’%}r?s in Nwd and 1 exit starts managed exit ends
is handle]
EL2
1 SPMC
|

(*) HCR_EL2.VF (*) HF_INTERRUPT_GET hvc

* The SP is pre-empted without managed exit:

198 Chapter 4. Components

Trusted Firmware-A

1 Secure Partition
1
VM endpoint |
|
ELO Client app. .
|
|
R N T
EL1 Kernel w 4 IRQtrapsin NwWdand 1§
is handled 1
1
|
EL2 1 SPMC
5. SWd is resumed by 1
EFA RUN
I 3. FFA_INTERRUPT
EL3

Secure interrupt handling

The current implementation does not support handling of secure interrupts trapped by the SPMC at S-EL2. This is
work in progress planned for future releases.

Power management

In platforms with or without secure virtualization:
* The NWd owns the platform PM policy.
» The Hypervisor or OS kernel is the component initiating PSCI service calls.
e The EL3 PSCI library is in charge of the PM coordination and control (eventually writing to platform registers).

* While coordinating PM events, the PSCI library calls backs into the Secure Payload Dispatcher for events the
latter has statically registered to.

When using the SPMD as a Secure Payload Dispatcher:
¢ A power management event is relayed through the SPD hook to the SPMC.
¢ In the current implementation only cpu on (svc_on_finish) and cpu off (svc_off) hooks are registered.

* The behavior for the cpu on event is described in Secondary cores boot-up. The SPMC is entered through its
secondary physical core entry point.

* The cpu off event occurs when the NWd calls PSCI_CPU_OFF. The method by which the PM event is conveyed
to the SPMC is implementation-defined in context of FF-A v1.0 (SPMC-SPMD direct requests/responses). It
consists in a SPMD-to-SPMC direct request/response conveying the PM event details and SPMC response. The
SPMD performs a synchronous entry into the SPMC. The SPMC is entered and updates its internal state to reflect
the physical core is being turned off. In the current implementation no SP is resumed as a consequence. This
behavior ensures a minimal support for CPU hotplug e.g. when initiated by the NWd linux userspace.

4.12. Secure Partition Manager 199

Trusted Firmware-A

4.12.8 SMMUv3 support in Hafnium

An SMMU is analogous to an MMU in a CPU. It performs address translations for Direct Memory Access (DMA)
requests from system I/O devices. The responsibilities of an SMMU include:

e Translation: Incoming DMA requests are translated from bus address space to system physical address space
using translation tables compliant to Armv8/Armv7 VMSA descriptor format.

* Protection: An I/O device can be prohibited from read, write access to a memory region or allowed.

¢ Isolation: Traffic from each individial device can be independently managed. The devices are differentiated from
each other using unique translation tables.

The following diagram illustrates a typical SMMU IP integrated in a SoC with several I/O devices along with Inter-
connect and Memory system.

'O coherent Other PCle master with
masters master ATS
/_I I
Fully coherent -
rt?nasiers Processor J Processor J GPU CareLink
MMU-E00
Lt
DTI-TBU DTI-ATS DTI-TBU
DTI
CorelLink Cache Coherent Interconnect
| | | | | |
Slaves { Memory system Peripheral ‘ Peripheral

SMMU has several versions including SMMUv1, SMMUv2 and SMMUv3. Hafnium provides support for SMMUv3
driver in both normal and secure world. A brief introduction of SMMUV3 functionality and the corresponding software
support in Hafnium is provided here.

SMMUv3 features

* SMMUVv3 provides Stagel, Stage? translation as well as nested (Stagel + Stage2) translation support. It can
either bypass or abort incoming translations as well.

e Traffic (memory transactions) from each upstream I/O peripheral device, referred to as Stream, can be inde-
pendently managed using a combination of several memory based configuration structures. This allows the
SMMUV3 to support a large number of streams with each stream assigned to a unique translation context.

* Support for Armv8.1 VMSA where the SMMU shares the translation tables with a Processing Element.
AArch32(LPAE) and AArch64 translation table format are supported by SMMUV3.

* SMMUV3 offers non-secure stream support with secure stream support being optional. Logically, SMMUV3
behaves as if there is an indepdendent SMMU instance for secure and non-secure stream support.

* It also supports sub-streams to differentiate traffic from a virtualized peripheral associated with a VM/SP.

200 Chapter 4. Components

Trusted Firmware-A

* Additionally, SMMUv3.2 provides support for PEs implementing Armv8.4-A extensions. Consequently, SPM
depends on Secure EL2 support in SMMUvV3.2 for providing Secure Stage2 translation support to upstream
peripheral devices.

SMMUv3 Programming Interfaces
SMMUV3 has three software interfaces that are used by the Hafnium driver to configure the behaviour of SMMUv3
and manage the streams.

* Memory based data strutures that provide unique translation context for each stream.

¢ Memory based circular buffers for command queue and event queue.

* A large number of SMMU configuration registers that are memory mapped during boot time by Hafnium driver.
Except a few registers, all configuration registers have independent secure and non-secure versions to configure
the behaviour of SMMUv3 for translation of secure and non-secure streams respectively.

Peripheral device manifest

Currently, SMMUv3 driver in Hafnium only supports dependent peripheral devices. These devices are dependent on PE
endpoint to initiate and receive memory management transactions on their behalf. The acccess to the MMIO regions of
any such device is assigned to the endpoint during boot. Moreover, SMMUV3 driver uses the same stage 2 translations
for the device as those used by partition manager on behalf of the PE endpoint. This ensures that the peripheral device
has the same visibility of the physical address space as the endpoint. The device node of the corresponding partition
manifest (refer to [/] section 3.2) must specify these additional properties for each peripheral device in the system :

» smmu-id: This field helps to identify the SMMU instance that this device is upstream of.

* stream-ids: List of stream IDs assigned to this device.

smmuv3-testengine {
base-address = <0x00000000 0x2bfe®000>;
pages-count = <32>;
attributes = <0x3>;
smmu-id = <0>;
stream-ids = <0x0 0x1>;
interrupts = <0x2 0x3>, <0x4 0x5>;
exclusive-access;

SMMUv3 driver limitations

The primary design goal for the Hafnium SMMU driver is to support secure streams.
¢ Currently, the driver only supports Stage2 translations. No support for Stagel or nested translations.
* Supports only AArch64 translation format.

» No support for features such as PCI Express (PASIDs, ATS, PRI), MSI, RAS, Fault handling, Performance
Monitor Extensions, Event Handling, MPAM.

* No support for independent peripheral devices.

4.12. Secure Partition Manager 201

Trusted Firmware-A

4.12.9 References

[1] Arm Firmware Framework for Armv8-A

[2] Secure Partition Manager using MM interface

[3] Trusted Boot Board Requirements Client

[4] https://git.trustedfirmware.org/TF- A/trusted-firmware-a.git/tree/lib/el3_runtime/aarch64/context.S#n45
[5] https://git.trustedfirmware.org/ TF- A/tf-a-tests.git/tree/spm/cactus/plat/arm/fvp/fdts/cactus.dts

[6] https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html

[7] https://git.trustedfirmware.org/ TF- A/trusted- firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_spmc_manifest.dts
[

8] https://lists.trustedfirmware.org/pipermail/tf-a/2020-February/000296.html

Copyright (c¢) 2020-2021, Arm Limited and Contributors. All rights reserved.

4.13 Secure Partition Manager (MM)

4.13.1 Foreword

Two implementations of a Secure Partition Manager co-exist in the TF-A codebase:
* SPM based on the FF-A specification (Secure Partition Manager).
* SPM based on the MM interface.
Both implementations differ in their architectures and only one can be selected at build time.

This document describes the latter implementation where the Secure Partition Manager resides at EL3 and manage-
ment services run from isolated Secure Partitions at S-EL0O. The communication protocol is established through the
Management Mode (MM) interface.

4.13.2 Background

In some market segments that primarily deal with client-side devices like mobile phones, tablets, STBs and embedded
devices, a Trusted OS instantiates trusted applications to provide security services like DRM, secure payment and au-
thentication. The Global Platform TEE Client API specification defines the API used by Non-secure world applications
to access these services. A Trusted OS fulfils the requirements of a security service as described above.

Management services are typically implemented at the highest level of privilege in the system, i.e. EL3 in Trusted
Firmware-A (TF-A). The service requirements are fulfilled by the execution environment provided by TF-A.

The following diagram illustrates the corresponding software stack:

202 Chapter 4. Components

https://developer.arm.com/docs/den0077/latest
https://developer.arm.com/documentation/den0006/d/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/lib/el3_runtime/aarch64/context.S#n45
https://git.trustedfirmware.org/TF-A/tf-a-tests.git/tree/spm/cactus/plat/arm/fvp/fdts/cactus.dts
https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_spmc_manifest.dts
https://lists.trustedfirmware.org/pipermail/tf-a/2020-February/000296.html

Trusted Firmware-A

Platform Controller Platform Controller

Normal World Secure World
ELO ELO S-ELO S-ELO
App App App App 0
3
=
S
EL1 S-EL1 -
oS Trusted OS

EL2

Hypervisor

Application Processor

In other market segments that primarily deal with server-side devices (e.g. data centres and enterprise servers) the
secure software stack typically does not include a Global Platform Trusted OS. Security functions are accessed through
other interfaces (e.g. ACPI TCG TPM interface, UEFI runtime variable service).

Placement of management and security functions with diverse requirements in a privileged Exception Level (i.e. EL3
or S-EL1) makes security auditing of firmware more difficult and does not allow isolation of unrelated services from
each other either.

4.13.3 Introduction

A Secure Partition is a software execution environment instantiated in S-ELO that can be used to implement simple
management and security services. Since S-ELO is an unprivileged Exception Level, a Secure Partition relies on privi-
leged firmware (i.e. TF-A) to be granted access to system and processor resources. Essentially, it is a software sandbox
in the Secure world that runs under the control of privileged software, provides one or more services and accesses the
following system resources:

* Memory and device regions in the system address map.

* PE system registers.

* A range of synchronous exceptions (e.g. SMC function identifiers).
Note that currently TF-A only supports handling one Secure Partition.

A Secure Partition enables TF-A to implement only the essential secure services in EL3 and instantiate the rest in a
partition in S-ELO. Furthermore, multiple Secure Partitions can be used to isolate unrelated services from each other.

4.13. Secure Partition Manager (MM) 203

Trusted Firmware-A

The following diagram illustrates the place of a Secure Partition in a typical Armv8-A software stack. A single or
multiple Secure Partitions provide secure services to software components in the Non-secure world and other Secure
Partitions.

Platform Controller Platform Controller

Normal World Secure World

ELO ELO S-ELO S-ELO
App App Secure Secure g
Partition Partition g
=
-
T

EL1
oS

EL2

Hypervisor

Application Processor

The TF-A build system is responsible for including the Secure Partition image in the FIP. During boot, BL2 includes
support to authenticate and load the Secure Partition image. A BL31 component called Secure Partition Manager
(SPM) is responsible for managing the partition. This is semantically similar to a hypervisor managing a virtual
machine.

The SPM is responsible for the following actions during boot:
* Allocate resources requested by the Secure Partition.
* Perform architectural and system setup required by the Secure Partition to fulfil a service request.
* Implement a standard interface that is used for initialising a Secure Partition.
The SPM is responsible for the following actions during runtime:
* Implement a standard interface that is used by a Secure Partition to fulfil service requests.

* Implement a standard interface that is used by the Non-secure world for accessing the services exported by a
Secure Partition. A service can be invoked through a SMC.

Alternatively, a partition can be viewed as a thread of execution running under the control of the SPM. Hence common
programming concepts described below are applicable to a partition.

204 Chapter 4. Components

Trusted Firmware-A

4.13.4 Description

The previous section introduced some general aspects of the software architecture of a Secure Partition. This section
describes the specific choices made in the current implementation of this software architecture. Subsequent revisions
of the implementation will include a richer set of features that enable a more flexible architecture.

Building TF-A with Secure Partition support

SPM is supported on the Arm FVP exclusively at the moment. The current implementation supports inclusion of only
a single Secure Partition in which a service always runs to completion (e.g. the requested services cannot be preempted
to give control back to the Normal world).

It is not currently possible for BL31 to integrate SPM support and a Secure Payload Dispatcher (SPD) at the same time;
they are mutually exclusive. In the SPM bootflow, a Secure Partition image executing at S-ELO replaces the Secure
Payload image executing at S-EL1 (e.g. a Trusted OS). Both are referred to as BL32.

A working prototype of a SP has been implemented by re-purposing the EDK2 code and tools, leveraging the concept
of the Standalone Management Mode (MM) in the UEFI specification (see the PI v1.6 Volume 4: Management Mode
Core Interface). This will be referred to as the Standalone MM Secure Partition in the rest of this document.

To enable SPM support in TF-A, the source code must be compiled with the build flag SPM_MM=1, along with
EL3_EXCEPTION_HANDLING=1. On Arm platforms the build option ARM_BL31_IN_DRAM must be set to 1. Also,
the location of the binary that contains the BL.32 image (BL32=path/to/image.bin) must be specified.

First, build the Standalone MM Secure Partition. To build it, refer to the instructions in the EDK2 repository.
Then build TF-A with SPM support and include the Standalone MM Secure Partition image in the FIP:

BL32=path/to/standalone/mm/sp BL33=path/to/bl33.bin \
make PLAT=fvp SPM_MM=1 EL3_EXCEPTION_HANDLING=1 ARM_BL31_IN_DRAM=1 all fip

Describing Secure Partition resources

TF-A exports a porting interface that enables a platform to specify the system resources required by the Secure Partition.
Some instructions are given below. However, this interface is under development and it may change as new features
are implemented.

* A Secure Partition is considered a BL32 image, so the same defines that apply to BL32 images apply to a Secure
Partition: BL32_BASE and BL32_LIMIT.

* The following defines are needed to allocate space for the translation tables used by the Secure Partition:
PLAT_SP_TIMAGE_MMAP_REGIONS and PLAT_SP_IMAGE_MAX_XLAT_TABLES.

* The functions plat_get_secure_partition_mmap() and plat_get_secure_partition_boot_info()
have to be implemented. The file plat/arm/board/fvp/fvp_common.c can be used as an example. It uses
the defines in include/plat/arm/common/arm_spm_def.h.

— plat_get_secure_partition_mmap() returns an array of mmap regions that describe the memory re-
gions that the SPM needs to allocate for a Secure Partition.

— plat_get_secure_partition_boot_info() returns a spm_mm_boot_info_t struct that is populated
by the platform with information about the memory map of the Secure Partition.

For an example of all the changes in context, you may refer to commit e29efeblb4, in which the port for FVP was
introduced.

4.13. Secure Partition Manager (MM) 205

https://github.com/tianocore/edk2-staging/blob/AArch64StandaloneMm/HowtoBuild.MD

Trusted Firmware-A

Accessing Secure Partition services

The SMC Calling Convention (Arm DEN 0028B) describes SMCs as a conduit for accessing services implemented
in the Secure world. The MM_COMMUNICATE interface defined in the Management Mode Interface Specification (Arm
DEN 0060A) is used to invoke a Secure Partition service as a Fast Call.

The mechanism used to identify a service within the partition depends on the service implementation. It is assumed
that the caller of the service will be able to discover this mechanism through standard platform discovery mechanisms
like ACPI and Device Trees. For example, Volume 4: Platform Initialisation Specification v1.6. Management Mode
Core Interface specifies that a GUID is used to identify a management mode service. A client populates the GUID
in the EFI_MM_COMMUNICATE_HEADER. The header is populated in the communication buffer shared with the Secure
Partition.

A Fast Call appears to be atomic from the perspective of the caller and returns when the requested operation has
completed. A service invoked through the MM_COMMUNICATE SMC will run to completion in the partition on a given
CPU. The SPM is responsible for guaranteeing this behaviour. This means that there can only be a single outstanding
Fast Call in a partition on a given CPU.

Exchanging data with the Secure Partition

The exchange of data between the Non-secure world and the partition takes place through a shared memory region.
The location of data in the shared memory area is passed as a parameter to the MM_COMMUNICATE SMC. The shared
memory area is statically allocated by the SPM and is expected to be either implicitly known to the Non-secure world
or discovered through a platform discovery mechanism e.g. ACPI table or device tree. It is possible for the Non-secure
world to exchange data with a partition only if it has been populated in this shared memory area. The shared memory
area is implemented as per the guidelines specified in Section 3.2.3 of the Management Mode Interface Specification
(Arm DEN 0060A).

The format of data structures used to encapsulate data in the shared memory is agreed between the Non-secure world
and the Secure Partition. For example, in the Management Mode Interface specification (Arm DEN 0060A), Section
4 describes that the communication buffer shared between the Non-secure world and the Management Mode (MM)
in the Secure world must be of the type EFI_MM_COMMUNICATE_HEADER. This data structure is defined in Volume 4:
Platform Initialisation Specification v1.6. Management Mode Core Interface. Any caller of a MM service will have to
use the EFI_MM_COMMUNICATE_HEADER data structure.

4.13.5 Runtime model of the Secure Partition

This section describes how the Secure Partition interfaces with the SPM.

Interface with SPM
In order to instantiate one or more secure services in the Secure Partition in S-ELO, the SPM should define the following
types of interfaces:

* Interfaces that enable access to privileged operations from S-ELO. These operations typically require access to
system resources that are either shared amongst multiple software components in the Secure world or cannot be
directly accessed from an unprivileged Exception Level.

* Interfaces that establish the control path between the SPM and the Secure Partition.

This section describes the APIs currently exported by the SPM that enable a Secure Partition to initialise itself and
export its services in S-ELO. These interfaces are not accessible from the Non-secure world.

206 Chapter 4. Components

https://developer.arm.com/docs/den0028/latest
http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf

Trusted Firmware-A

Conduit

The SMC Calling Convention (Arm DEN 0028B) specification describes the SMC and HVC conduits for accessing
firmware services and their availability depending on the implemented Exception levels. In S-ELO, the Supervisor
Call exception (SVC) is the only architectural mechanism available for unprivileged software to make a request for an
operation implemented in privileged software. Hence, the SVC conduit must be used by the Secure Partition to access
interfaces implemented by the SPM.

A SVC causes an exception to be taken to S-EL1. TF-A assumes ownership of S-EL1 and installs a simple exception
vector table in S-EL1 that relays a SVC request from a Secure Partition as a SMC request to the SPM in EL3. Upon
servicing the SMC request, Trusted Firmware-A returns control directly to S-ELO through an ERET instruction.

Calling conventions

The SMC Calling Convention (Arm DEN 0028B) specification describes the 32-bit and 64-bit calling conventions for
the SMC and HVC conduits. The SVC conduit introduces the concept of SVC32 and SVC64 calling conventions.
The SVC32 and SVC64 calling conventions are equivalent to the 32-bit (SMC32) and the 64-bit (SMC64) calling
conventions respectively.

Communication initiated by SPM

A service request is initiated from the SPM through an exception return instruction (ERET) to S-ELO. Later, the Secure
Partition issues an SVC instruction to signal completion of the request. Some example use cases are given below:

* A request to initialise the Secure Partition during system boot.

* A request to handle a runtime service request.

Communication initiated by Secure Partition

A request is initiated from the Secure Partition by executing a SVC instruction. An ERET instruction is used by TF-A
to return to S-ELO with the result of the request.

For instance, a request to perform privileged operations on behalf of a partition (e.g. management of memory attributes
in the translation tables for the Secure EL1&0 translation regime).

Interfaces

The current implementation reserves function IDs for Fast Calls in the Standard Secure Service calls range (see SMC
Calling Convention (Arm DEN 0028B) specification) for each API exported by the SPM. This section defines the
function prototypes for each function ID. The function IDs specify whether one or both of the SVC32 and SVC64
calling conventions can be used to invoke the corresponding interface.

4.13. Secure Partition Manager (MM) 207

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

Secure Partition Event Management

The Secure Partition provides an Event Management interface that is used by the SPM to delegate service requests to
the Secure Partition. The interface also allows the Secure Partition to:

Register with the SPM a service that it provides.

Indicate completion of a service request delegated by the SPM

Miscellaneous interfaces

SPM_MM_VERSION_AARCH32

Description
Returns the version of the interface exported by SPM.
Parameters
— uint32 - Function ID
% SVC32 Version: 0x84000060
Return parameters
— int32 - Status
On success, the format of the value is as follows:
* Bit [31]: Must be 0
% Bits [30:16]: Major Version. Must be 0 for this revision of the SPM interface.
% Bits [15:0]: Minor Version. Must be 1 for this revision of the SPM interface.
On error, the format of the value is as follows:
% NOT_SUPPORTED: SPM interface is not supported or not available for the client.
Usage

This function returns the version of the Secure Partition Manager implementation. The major version is 0 and
the minor version is 1. The version number is a 31-bit unsigned integer, with the upper 15 bits denoting the major
revision, and the lower 16 bits denoting the minor revision. The following rules apply to the version numbering:

— Different major revision values indicate possibly incompatible functions.

— For two revisions, A and B, for which the major revision values are identical, if the minor revision value
of revision B is greater than the minor revision value of revision A, then every function in revision A must
work in a compatible way with revision B. However, it is possible for revision B to have a higher function
count than revision A.

Implementation responsibilities

If this function returns a valid version number, all the functions that are described subsequently must be imple-
mented, unless it is explicitly stated that a function is optional.

See Error Codes for integer values that are associated with each return code.

208

Chapter 4. Components

Trusted Firmware-A

Secure Partition Initialisation

The SPM is responsible for initialising the architectural execution context to enable initialisation of a service in
S-ELO. The responsibilities of the SPM are listed below. At the end of initialisation, the partition issues a
MM_SP_EVENT_COMPLETE_AARCHG64 call (described later) to signal readiness for handling requests for services im-
plemented by the Secure Partition. The initialisation event is executed as a Fast Call.

Entry point invocation

The entry point for service requests that should be handled as Fast Calls is used as the target of the ERET instruction
to start initialisation of the Secure Partition.

Architectural Setup

At cold boot, system registers accessible from S-ELO will be in their reset state unless otherwise specified. The SPM
will perform the following architectural setup to enable execution in S-ELO

MMU setup

The platform port of a Secure Partition specifies to the SPM a list of regions that it needs access to and their attributes.
The SPM validates this resource description and initialises the Secure EL1&0 translation regime as follows.

1. Device regions are mapped with nGnRE attributes and Execute Never instruction access permissions.

2. Code memory regions are mapped with RO data and Executable instruction access permissions.

3. Read Only data memory regions are mapped with RO data and Execute Never instruction access permissions.
4. Read Write data memory regions are mapped with RW data and Execute Never instruction access permissions.
5

. If the resource description does not explicitly describe the type of memory regions then all memory regions will
be marked with Code memory region attributes.

6. The UXN and PXN bits are set for regions that are not executable by S-ELO or S-EL1.

System Register Setup

System registers that influence software execution in S-ELOQ are setup by the SPM as follows:
1. SCTLR_EL1

e UCI=1
e EOE=0
e WXN=1
e nTWE=1
e nTWI=1
e UCT=1
e DZE=1
e I=1

* UMA=0

4.13. Secure Partition Manager (MM) 209

Trusted Firmware-A

e SAQ=1
e C=1
e A=1
° M=1
2. CPACR_EL1
e FPEN=b'11
3. PSTATE
*D,A,I,F=1
e CurrentEL=0 (ELO)
¢ SpSel=0 (Thread mode)
e NRW=0 (AArch64)

General Purpose Register Setup

SPM will invoke the entry point of a service by executing an ERET instruction. This transition into S-ELO is special
since it is not in response to a previous request through a SVC instruction. This is the first entry into S-ELO. The general
purpose register usage at the time of entry will be as specified in the “Return State” column of Table 3-1 in Section 3.1
“Register use in AArch64 SMC calls” of the SMC Calling Convention (Arm DEN 0028B) specification. In addition,
certain other restrictions will be applied as described below.

1. SP_ELO®
A non-zero value will indicate that the SPM has initialised the stack pointer for the current CPU.
The value will be 0 otherwise.
2. X4-X30
The values of these registers will be 0.
3. X0-X3
Parameters passed by the SPM.

* XO: Virtual address of a buffer shared between EL3 and S-ELO. The buffer will be mapped in the Secure
EL1&0 translation regime with read-only memory attributes described earlier.

e X1: Size of the buffer in bytes.
e X2: Cookie value IMPLEMENTATION DEFINED).
¢ X3: Cookie value IMPLEMENTATION DEFINED).

210 Chapter 4. Components

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

Runtime Event Delegation

The SPM receives requests for Secure Partition services through a synchronous invocation (i.e. a SMC from
the Non-secure world). These requests are delegated to the partition by programming a return from the last
MM_SP_EVENT_COMPLETE_AARCHG64 call received from the partition. The last call was made to signal either com-
pletion of Secure Partition initialisation or completion of a partition service request.

MM_SP_EVENT_COMPLETE_AARCH64

* Description
Signal completion of the last SP service request.
* Parameters
— uint32 - Function ID
% SVC64 Version: 0xC4000061
— int32 - Event Status Code

Zero or a positive value indicates that the event was handled successfully. The values depend upon the
original event that was delegated to the Secure partition. They are described as follows.

SUCCESS : Used to indicate that the Secure Partition was initialised or a runtime request was handled
successfully.

* Any other value greater than 0 is used to pass a specific Event Status code in response to a runtime
event.

A negative value indicates an error. The values of Event Status code depend on the original event.
* Return parameters
— int32 - Event ID/Return Code
Zero or a positive value specifies the unique ID of the event being delegated to the partition by the SPM.

In the current implementation, this parameter contains the function ID of the MM_COMMUNICATE SMC. This
value indicates to the partition that an event has been delegated to it in response to an MM_COMMUNICATE
request from the Non-secure world.

A negative value indicates an error. The format of the value is as follows:
NOT_SUPPORTED: Function was called from the Non-secure world.
See Error Codes for integer values that are associated with each return code.
— uint32 - Event Context Address

Address of a buffer shared between the SPM and Secure Partition to pass event specific information. The
format of the data populated in the buffer is implementation defined.

The buffer is mapped in the Secure EL1&0 translation regime with read-only memory attributes described
earlier.

For the SVC64 version, this parameter is a 64-bit Virtual Address (VA).
For the SVC32 version, this parameter is a 32-bit Virtual Address (VA).
— uint32 - Event context size

Size of the memory starting at Event Address.

4.13. Secure Partition Manager (MM) 211

Trusted Firmware-A

— uint32/uint64 - Event Cookie
This is an optional parameter. If unused its value is SBZ.
» Usage

This function signals to the SPM that the handling of the last event delegated to a partition has completed. The
partition is ready to handle its next event. A return from this function is in response to the next event that will be
delegated to the partition. The return parameters describe the next event.

* Caller responsibilities

A Secure Partition must only call MM_SP_EVENT_COMPLETE_AARCH64 to signal completion of a request that was
delegated to it by the SPM.

* Callee responsibilities

When the SPM receives this call from a Secure Partition, the corresponding syndrome information can be used
to return control through an ERET instruction, to the instruction immediately after the call in the Secure Partition
context. This syndrome information comprises of general purpose and system register values when the call was
made.

The SPM must save this syndrome information and use it to delegate the next event to the Secure Partition. The
return parameters of this interface must specify the properties of the event and be populated in X0-X3/W0-W3
registers.

Secure Partition Memory Management

A Secure Partition executes at S-ELO, which is an unprivileged Exception Level. The SPM is responsible for enabling
access to regions of memory in the system address map from a Secure Partition. This is done by mapping these
regions in the Secure EL1&0 Translation regime with appropriate memory attributes. Attributes refer to memory type,
permission, cacheability and shareability attributes used in the Translation tables. The definitions of these attributes
and their usage can be found in the Armv8-A ARM (Arm DDI 0487).

All memory required by the Secure Partition is allocated upfront in the SPM, even before handing over to the Secure
Partition for the first time. The initial access permissions of the memory regions are statically provided by the platform
port and should allow the Secure Partition to run its initialisation code.

However, they might not suit the final needs of the Secure Partition because its final memory layout might not be
known until the Secure Partition initialises itself. As the Secure Partition initialises its runtime environment it might,
for example, load dynamically some modules. For instance, a Secure Partition could implement a loader for a standard
executable file format (e.g. an PE-COFF loader for loading executable files at runtime). These executable files will be a
part of the Secure Partition image. The location of various sections in an executable file and their permission attributes
(e.g. read-write data, read-only data and code) will be known only when the file is loaded into memory.

In this case, the Secure Partition needs a way to change the access permissions of its memory regions. The SPM
provides this feature through the MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64 SVC interface. This interface is avail-
able to the Secure Partition during a specific time window: from the first entry into the Secure Partition up to the
first SP_EVENT_COMPLETE call that signals the Secure Partition has finished its initialisation. Once the initialisation is
complete, the SPM does not allow changes to the memory attributes.

This section describes the standard SVC interface that is implemented by the SPM to determine and change permission
attributes of memory regions that belong to a Secure Partition.

212 Chapter 4. Components

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Trusted Firmware-A

MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64

* Description
Request the permission attributes of a memory region from S-ELO.
e Parameters
— uint32 Function ID
SVC64 Version: 0xC4000064
— uint64 Base Address
This parameter is a 64-bit Virtual Address (VA).

There are no alignment restrictions on the Base Address. The permission attributes of the translation gran-
ule it lies in are returned.

e Return parameters
— int32 - Memory Attributes/Return Code
On success the format of the Return Code is as follows:
% Bits[1:0] : Data access permission
- b’00 : No access
- b’01 : Read-Write access
- b’10 : Reserved
- b’11 : Read-only access
% Bit[2]: Instruction access permission
- b’0 : Executable
- b’1 : Non-executable
* Bit[30:3] : Reserved. SBZ.
* Bit[31] : Must be O
On failure the following error codes are returned:

% INVALID_PARAMETERS: The Secure Partition is not allowed to access the memory region the Base
Address lies in.

* NOT_SUPPORTED : The SPM does not support retrieval of attributes of any memory page that is acces-
sible by the Secure Partition, or the function was called from the Non-secure world. Also returned if
it is used after MM_SP_EVENT_COMPLETE_AARCH64.

See Error Codes for integer values that are associated with each return code.
» Usage

This function is used to request the permission attributes for S-ELO on a memory region accessible from a Secure
Partition. The size of the memory region is equal to the Translation Granule size used in the Secure EL1&0
translation regime. Requests to retrieve other memory region attributes are not currently supported.

* Caller responsibilities

The caller must obtain the Translation Granule Size of the Secure EL1&0 translation regime from the SPM
through an implementation defined method.

4.13. Secure Partition Manager (MM) 213

Trusted Firmware-A

* Callee responsibilities

The SPM must not return the memory access controls for a page of memory that is not accessible from a Secure
Partition.

MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64

* Description
Set the permission attributes of a memory region from S-ELO.
* Parameters
uint32 - Function ID
* SVC64 Version: 0xC4000065
— uint64 - Base Address
This parameter is a 64-bit Virtual Address (VA).

The alignment of the Base Address must be greater than or equal to the size of the Translation Granule Size
used in the Secure EL1&0 translation regime.

— uint32 - Page count

Number of pages starting from the Base Address whose memory attributes should be changed. The page
size is equal to the Translation Granule Size.

— uint32 - Memory Access Controls

% Bits[1:0] : Data access permission
- b’00 : No access
- b’01 : Read-Write access
- b’10 : Reserved
- b’11 : Read-only access

% Bit[2] : Instruction access permission
- b’0 : Executable
- b’1 : Non-executable

% Bits[31:3] : Reserved. SBZ.

A combination of attributes that mark the region with RW and Executable permissions is prohibited. A
request to mark a device memory region with Executable permissions is prohibited.

e Return parameters
— int32 - Return Code
% SUCCESS: The Memory Access Controls were changed successfully.

DENIED: The SPM is servicing a request to change the attributes of a memory region that overlaps with
the region specified in this request.

% INVALID_PARAMETER:An invalid combination of Memory Access Controls has been specified. The
Base Address is not correctly aligned. The Secure Partition is not allowed to access part or all of the
memory region specified in the call.

214 Chapter 4. Components

Trusted Firmware-A

% NO_MEMORY: The SPM does not have memory resources to change the attributes of the memory region
in the translation tables.

NOT_SUPPORTED: The SPM does not permit change of attributes of any memory region that is acces-
sible by the Secure Partition. Function was called from the Non-secure world. Also returned if it is
used after MM_SP_EVENT_COMPLETE_AARCH64.

See Error Codes for integer values that are associated with each return code.
* Usage

This function is used to change the permission attributes for S-EL0O on a memory region accessible from a Secure
Partition. The size of the memory region is equal to the Translation Granule size used in the Secure EL1&0
translation regime. Requests to change other memory region attributes are not currently supported.

This function is only available at boot time. This interface is revoked after the Secure Partition sends the first
MM_SP_EVENT_COMPLETE_AARCH64 to signal that it is initialised and ready to receive run-time requests.

Caller responsibilities

The caller must obtain the Translation Granule Size of the Secure EL1&0 translation regime from the SPM
through an implementation defined method.

Callee responsibilities

The SPM must preserve the original memory access controls of the region of memory in case of an unsuccessful
call. The SPM must preserve the consistency of the S-EL1 translation regime if this function is called on different
PEs concurrently and the memory regions specified overlap.

Error Codes

Name Value
SUCCESS 0
NOT_SUPPORTED -1
INVALID_PARAMETER | -2
DENIED -3
NO_MEMORY -5
NOT_PRESENT -7

Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.

4.14 FF-A manifest binding to device tree

This document defines the nodes and properties used to define a partition, according to the FF-A specification.

4.14. FF-A manifest binding to device tree

215

Trusted Firmware-A

4.14.1 Version 1.0

Partition Properties

* compatible [mandatory]
— value type: <string>

— Must be the string “arm,ffa-manifest-X.Y”” which specifies the major and minor versions of the device
tree binding for the FFA manifest represented by this node. The minor number is incremented if the
binding changes in a backwards compatible manner.

% X is an integer representing the major version number of this document.
% Y is an integer representing the minor version number of this document.
¢ ffa-version [mandatory]
— value type: <u32>
— Must be two 16 bits values (X, Y), concatenated as 31:16 -> X, 15:0 -> Y, where:
% X is the major version of FF-A expected by the partition at the FFA instance it will execute.
Y is the minor version of FF-A expected by the partition at the FFA instance it will execute.

¢ uuid [mandatory]

value type: <prop-encoded-array>

An array consisting of 4 <u32> values, identifying the UUID of the service implemented by this par-
tition. The UUID format is described in RFC 4122.

value type: <u32>

Pre-allocated partition ID.
* auxiliary-id
— value type: <u32>
— Pre-allocated ID that could be used in memory management transactions.
* description
— value type: <string>
— Name of the partition e.g. for debugging purposes.
* execution-ctx-count [mandatory]
— value type: <u32>
— Number of vCPUs that a VM or SP wants to instantiate.

In the absence of virtualization, this is the number of execution contexts that a partition imple-
ments.

% If value of this field = 1 and number of PEs > 1 then the partition is treated as UP & migrate
capable.

% If the value of this field > 1 then the partition is treated as a MP capable partition irrespective of
the number of PEs.

* exception-level [mandatory]

216 Chapter 4. Components

Trusted Firmware-A

— value type: <u32>
— The target exception level for the partition:
% 0x0: EL1
Ox1: S_ELO
+ 0x2: S_ELI
* execution-state [mandatory]
— value type: <u32>
— The target execution state of the partition:
* 0: AArch64
#* 1: AArch32
* load-address
— value type: <u64>

— Physical base address of the partition in memory. Absence of this field indicates that the partition is
position independent and can be loaded at any address chosen at boot time.

 entrypoint-offset
— value type: <u64>

— Offset from the base of the partition’s binary image to the entry point of the partition. Absence of this
field indicates that the entry point is at offset 0x0 from the base of the partition’s binary.

* xlat-granule [mandatory]
— value type: <u32>
— Translation granule used with the partition:
* 0x0: 4k
% Ox1: 16k
* 0x2: 64k
* boot-order
— value type: <u32>

— A unique number amongst all partitions that specifies if this partition must be booted before others.
The partition with the smaller number will be booted first.

* rx-tx-buffer
— value type: “memory-regions” node

— Specific “memory-regions” nodes that describe the RX/TX buffers expected by the partition. The
“compatible” must be the string “arm,ffa-manifest-rx_tx-buffer”.

¢ messaging-method [mandatory]
— value type: <u32>
— Specifies which messaging methods are supported by the partition:
% 0x0: direct messaging method

% 0x1: indirect messaging method

4.14. FF-A manifest binding to device tree 217

Trusted Firmware-A

% 0x2: both direct and indirect messaging methods
* 0x3: direct messaging method with managed exit support
0x4: both messaging methods with managed exit support
 has-primary-scheduler
— value type: <empty>

— Presence of this field indicates that the partition implements the primary scheduler. If so, run-time EL
must be EL1.

* run-time-model
— value type: <u32>
— Run time model that the SPM must enforce for this SP:
0x0: Run to completion
Ox1: Preemptible
* time-slice-mem
— value type: <empty>

— Presence of this field indicates that the partition doesn’t expect the partition manager to time slice long
running memory management functions.

* gp-register-num
— value type: <u32>

— Presence of this field indicates that the partition expects the ffa_init_info structure to be passed in
via the specified general purpose register. The field specifies the general purpose register number but
not its width. The width is derived from the partition’s execution state, as specified in the partition
properties. For example, if the number value is 1 then the general-purpose register used will be x1 in
AArch64 state and wl in AArch32 state.

 stream-endpoint-ids
— value type: <prop-encoded-array>

— List of <u32> tuples, identifying the IDs this partition is acting as proxy for.

4.14.2 Memory Regions

¢ compatible [mandatory]
— value type: <string>
— Must be the string “arm,ffa-manifest-memory-regions”.
¢ description
— value type: <string>
— Name of the memory region e.g. for debugging purposes.
* pages-count [mandatory]
— value type: <u32>
— Count of pages of memory region as a multiple of the translation granule size

* attributes [mandatory]

218 Chapter 4. Components

Trusted Firmware-A

— value type: <u32>
— Mapping modes: ORed to get required permission
% 0x1: Read
0x2: Write
0x4: Execute
* base-address
— value type: <u64>

— Base address of the region. The address must be aligned to the translation granule size. The address
given may be a Physical Address (PA), Virtual Address (VA), or Intermediate Physical Address (IPA).
Refer to the FFA specification for more information on the restrictions around the address type. If the
base address is omitted then the partition manager must map a memory region of the specified size
into the partition’s translation regime and then communicate the region properties (including the base
address chosen by the partition manager) to the partition.

4.14.3 Device Regions

* compatible [mandatory]
— value type: <string>
— Must be the string “arm,ffa-manifest-device-regions”.
* description
— value type: <string>
— Name of the device region e.g. for debugging purposes.
* reg [mandatory]
— value type: <prop-encoded-array>
— A (address, num-pages) pair describing the device, where:
% address: The physical base address <u64> value of the device MMIO region.

* num-pages: The <u32> number of pages of the region. The total size of the region is this value
multiplied by the translation granule size.

« attributes [mandatory]
— value type: <u32>
— Mapping modes: ORed to get required permission
% 0x1: Read
% 0x2: Write
% 0x4: Execute
* smmu-id
— value type: <u32>

— On systems with multiple System Memory Management Units (SMMUSs) this identifier is used to
inform the partition manager which SMMU the device is upstream of. If the field is omitted then it is
assumed that the device is not upstream of any SMMU.

¢ stream-ids

4.14. FF-A manifest binding to device tree 219

Trusted Firmware-A

— value type: <prop-encoded-array>
— A list of (id, mem-manage) pair, where:

id: A unique <u32> value amongst all devices assigned to the partition.

¢ interrupts [mandatory]

— value type: <prop-encoded-array>
— Alist of (id, attributes) pair describing the device interrupts, where:
% id: The <u32> interrupt IDs.
% attributes: A <u32> value, containing the attributes for each interrupt ID:
- Interrupt type: SPI, PPI, SGI
- Interrupt configuration: Edge triggered, Level triggered
- Interrupt security state: Secure, Non-secure
- Interrupt priority value

- Target execution context/vCPU for each SPI

¢ exclusive-access

— value type: <empty>

— Presence of this field implies that this endpoint must be granted exclusive access and ownership of this
device’s MMIO region.

Copyright (c) 2019-2021, Arm Limited and Contributors. All rights reserved.

4.15 Translation (XLAT) Tables Library

This document describes the design of the translation tables library (version 2) used by Trusted Firmware-A (TF-A).
This library provides APIs to create page tables based on a description of the memory layout, as well as setting up
system registers related to the Memory Management Unit (MMU) and performing the required Translation Lookaside
Buffer (TLB) maintenance operations.

More specifically, some use cases that this library aims to support are:

1.

Statically allocate translation tables and populate them (at run-time) based on a description of the memory layout.
The memory layout is typically provided by the platform port as a list of memory regions;

Support for generating translation tables pertaining to a different translation regime than the exception level the
library code is executing at;

Support for dynamic mapping and unmapping of regions, even while the MMU is on. This can be used to
temporarily map some memory regions and unmap them later on when no longer needed;

Support for non-identity virtual to physical mappings to compress the virtual address space;

Support for changing memory attributes of memory regions at run-time.

220

Chapter 4. Components

Trusted Firmware-A

4.15.1 About version 1 and version 2

This document focuses on version 2 of the library, whose sources are available in the 1ib/x1lat_tables_v2 directory.
Version 1 of the library can still be found in 1ib/x1lat_tables directory but it is less flexible and doesn’t support
dynamic mapping. Although potential bug fixes will be applied to both versions, future features enhancements will
focus on version 2 and might not be back-ported to version 1. Therefore, it is recommended to use version 2, especially
for new platform ports.

However, please note that version 2 is still in active development and is not considered stable yet. Hence, compatibility
breaks might be introduced.

From this point onwards, this document will implicitly refer to version 2 of the library.

4.15.2 Design concepts and interfaces

This section presents some of the key concepts and data structures used in the translation tables library.

mmap regions
An mmap_region is an abstract, concise way to represent a memory region to map. It is one of the key interfaces to
the library. It is identified by:
* its physical base address;
¢ its virtual base address;
* jts size;
* its attributes;
* its mapping granularity (optional).
See the struct mmap_region type in xlat_tables_v2.h.

The user usually provides a list of such mmap regions to map and lets the library transpose that in a set of translation
tables. As a result, the library might create new translation tables, update or split existing ones.

The region attributes specify the type of memory (for example device or cached normal memory) as well as the memory
access permissions (read-only or read-write, executable or not, secure or non-secure, and so on). In the case of the
EL1&0 translation regime, the attributes also specify whether the region is a User region (ELO) or Privileged region
(EL1). See the MT_xxx definitions in xlat_tables_v2.h. Note that for the EL1&0 translation regime the Execute
Never attribute is set simultaneously for both EL1 and ELO.

The granularity controls the translation table level to go down to when mapping the region. For example, assuming the
MMU has been configured to use a 4KB granule size, the library might map a 2MB memory region using either of the
two following options:

* using a single level-2 translation table entry;
* using a level-2 intermediate entry to a level-3 translation table (which contains 512 entries, each mapping 4KB).

The first solution potentially requires less translation tables, hence potentially less memory. However, if part of this
2MB region is later remapped with different memory attributes, the library might need to split the existing page tables
to refine the mappings. If a single level-2 entry has been used here, a level-3 table will need to be allocated on the fly
and the level-2 modified to point to this new level-3 table. This has a performance cost at run-time.

If the user knows upfront that such a remapping operation is likely to happen then they might enforce a 4KB mapping
granularity for this 2MB region from the beginning; remapping some of these 4KB pages on the fly then becomes a
lightweight operation.

4.15. Translation (XLAT) Tables Library 221

Trusted Firmware-A

The region’s granularity is an optional field; if it is not specified the library will choose the mapping granularity for
this region as it sees fit (more details can be found in The memory mapping algorithm section below).

Translation Context

The library can create or modify translation tables pertaining to a different translation regime than the exception level
the library code is executing at. For example, the library might be used by EL3 software (for instance BL31) to create
translation tables pertaining to the S-EL1&0 translation regime.

This flexibility comes from the use of translation contexts. A translation context constitutes the superset of information
used by the library to track the status of a set of translation tables for a given translation regime.

The library internally allocates a default translation context, which pertains to the translation regime of the current
exception level. Additional contexts may be explicitly allocated and initialized using the REGISTER_XLAT_CONTEXT ()
macro. Separate APIs are provided to act either on the default translation context or on an alternative one.

To register a translation context, the user must provide the library with the following information:
* A name.

The resulting translation context variable will be called after this name, to which _xlat_ctx is appended. For
example, if the macro name parameter is foo, the context variable name will be foo_xlat_ctx.

¢ The maximum number of mmap regions to map.
Should account for both static and dynamic regions, if applicable.
* The number of sub-translation tables to allocate.

Number of translation tables to statically allocate for this context, excluding the initial lookup level translation
table, which is always allocated. For example, if the initial lookup level is 1, this parameter would specify the
number of level-2 and level-3 translation tables to pre-allocate for this context.

» The size of the virtual address space.

Size in bytes of the virtual address space to map using this context. This will incidentally determine the number
of entries in the initial lookup level translation table : the library will allocate as many entries as is required to
map the entire virtual address space.

» The size of the physical address space.
Size in bytes of the physical address space to map using this context.

The default translation context is internally initialized using information coming (for the most part) from platform-
specific defines:

e name: hard-coded to tf ; hence the name of the default context variable is tf_xlat_ctx;
* number of mmap regions: MAX_MMAP_REGIONS;

¢ number of sub-translation tables: MAX_XLAT_TABLES;

* size of the virtual address space: PLAT_VIRT_ADDR_SPACE_SIZE;

* size of the physical address space: PLAT_PHY_ADDR_SPACE_SIZE.

Please refer to the Porting Guide for more details about these macros.

222 Chapter 4. Components

Trusted Firmware-A

Static and dynamic memory regions

The library optionally supports dynamic memory mapping. This feature may be enabled using the
PLAT_XLAT_TABLES_DYNAMIC platform build flag.

When dynamic memory mapping is enabled, the library categorises mmap regions as static or dynamic.

* Static regions are fixed for the lifetime of the system. They can only be added early on, before the translation
tables are created and populated. They cannot be removed afterwards.

* Dynamic regions can be added or removed any time.
When the dynamic memory mapping feature is disabled, only static regions exist.

The dynamic memory mapping feature may be used to map and unmap transient memory areas. This is useful when the
user needs to access some memory for a fixed period of time, after which the memory may be discarded and reclaimed.
For example, a memory region that is only required at boot time while the system is initializing, or to temporarily share
a memory buffer between the normal world and trusted world. Note that it is up to the caller to ensure that these regions
are not accessed concurrently while the regions are being added or removed.

Although this feature provides some level of dynamic memory allocation, this does not allow dynamically allocating
an arbitrary amount of memory at an arbitrary memory location. The user is still required to declare at compile-time
the limits of these allocations ; the library will deny any mapping request that does not fit within this pre-allocated pool
of memory.

4.15.3 Library APIs

The external APIs exposed by this library are declared and documented in the x1at_tables_v2.h header file. This
should be the reference point for getting information about the usage of the different APIs this library provides. This
section just provides some extra details and clarifications.

Although the mmap_region structure is a publicly visible type, it is not recommended to populate these structures by
hand. Instead, wherever APIs expect function arguments of type mmap_region_t, these should be constructed using
the MAP_REGION* () family of helper macros. This is to limit the risk of compatibility breaks, should the mmap_region
structure type evolve in the future.

The MAP_REGION() and MAP_REGION_FLAT() macros do not allow specifying a mapping granularity, which leaves
the library implementation free to choose it. However, in cases where a specific granularity is required, the
MAP_REGION2 () macro might be used instead.

As explained earlier in this document, when the dynamic mapping feature is disabled, there is no notion of dynamic re-
gions. Conceptually, there are only static regions. For this reason (and to retain backward compatibility with the version
1 of the library), the APIs that map static regions do not embed the word szatic in their functions names (for example
mmap_add_region()), in contrast with the dynamic regions APIs (for example mmap_add_dynamic_region()).

Although the definition of static and dynamic regions is not based on the state of the MMU, the two are still related in
some way. Static regions can only be added before init_xlat_tables() is called and init_xlat_tables() must
be called while the MMU is still off. As a result, static regions cannot be added once the MMU has been enabled.
Dynamic regions can be added with the MMU on or off. In practice, the usual call flow would look like this:

1. The MMU is initially off.

Add some static regions, add some dynamic regions.

Initialize translation tables based on the list of mmap regions (using one of the init_xlat_tables* () APIs).
At this point, it is no longer possible to add static regions. Dynamic regions can still be added or removed.

Enable the MMU.

A U i

Dynamic regions can continue to be added or removed.

4.15. Translation (XLAT) Tables Library 223

Trusted Firmware-A

Because static regions are added early on at boot time and are all in the control of the platform initialization code, the
mmap_add* () family of APIs are not expected to fail. They do not return any error code.

Nonetheless, these APIs will check upfront whether the region can be successfully added before updating the translation
context structure. If the library detects that there is insufficient memory to meet the request, or that the new region will
overlap another one in an invalid way, or if any other unexpected error is encountered, they will print an error message on
the UART. Additionally, when asserts are enabled (typically in debug builds), an assertion will be triggered. Otherwise,
the function call will just return straight away, without adding the offending memory region.

4.15.4 Library limitations

Dynamic regions are not allowed to overlap each other. Static regions are allowed to overlap as long as one of them
is fully contained inside the other one. This is allowed for backwards compatibility with the previous behaviour in the
version 1 of the library.

4.15.5 Implementation details
Code structure

The library is divided into 4 modules:
* Core module

Provides the main functionality of the library, such as the initialization of translation tables contexts and map-
ping/unmapping memory regions. This module provides functions such as mmap_add_region_ctx that let the
caller specify the translation tables context affected by them.

See xlat_tables_core.c.
¢ Active context module

Instantiates the context that is used by the current BL image and provides helpers to manipulate it, abstracting
it from the rest of the code. This module provides functions such as mmap_add_region, that directly affect the
BL image using them.

See xlat_tables_context.c.
o Utilities module

Provides additional functionality like debug print of the current state of the translation tables and helpers to query
memory attributes and to modify them.

See xlat_tables_utils.c.
¢ Architectural module

Provides functions that are dependent on the current execution state (AArch32/AArch64), such as the functions
used for TLB invalidation, setup the MMU, or calculate the Physical Address Space size. They do not need a
translation context to work on.

See aarch32/xlat_tables_arch.c and aarch64/xlat_tables_arch.c.

224 Chapter 4. Components

Trusted Firmware-A

From mmap regions to translation tables

A translation context contains a list of mmap_region_t, which holds the information of all the regions that are mapped
at any given time. Whenever there is a request to map (resp. unmap) a memory region, it is added to (resp. removed
from) the mmap_region_t list.

The mmap regions list is a conceptual way to represent the memory layout. At some point, the library has to convert
this information into actual translation tables to program into the MMU.

Before the init_xlat_tables() API is called, the library only acts on the mmap regions list. Adding a static or
dynamic region at this point through one of the mmap_add* () APIs does not affect the translation tables in any way,
they only get registered in the internal mmap region list. It is only when the user calls the init_xlat_tables()
that the translation tables are populated in memory based on the list of mmap regions registered so far. This is an
optimization that allows creation of the initial set of translation tables in one go, rather than having to edit them every
time while the MMU is disabled.

After the init_xlat_tables() API has been called, only dynamic regions can be added. Changes to the translation
tables (as well as the mmap regions list) will take effect immediately.

The memory mapping algorithm

The mapping function is implemented as a recursive algorithm. It is however bound by the level of depth of the
translation tables (the Armv8-A architecture allows up to 4 lookup levels).

By default', the algorithm will attempt to minimize the number of translation tables created to satisfy the user’s request.
It will favour mapping a region using the biggest possible blocks, only creating a sub-table if it is strictly necessary.
This is to reduce the memory footprint of the firmware.

The most common reason for needing a sub-table is when a specific mapping requires a finer granularity. Misaligned
regions also require a finer granularity than what the user may had originally expected, using a lot more memory than
expected. The reason is that all levels of translation are restricted to address translations of the same granularity as
the size of the blocks of that level. For example, for a 4 KiB page size, a level 2 block entry can only translate up to a
granularity of 2 MiB. If the Physical Address is not aligned to 2 MiB then additional level 3 tables are also needed.

Note that not every translation level allows any type of descriptor. Depending on the page size, levels O and 1 of
translation may only allow table descriptors. If a block entry could be able to describe a translation, but that level does
not allow block descriptors, a table descriptor will have to be used instead, as well as additional tables at the next level.

! That is, when mmap regions do not enforce their mapping granularity.

4.15. Translation (XLAT) Tables Library 225

Trusted Firmware-A

Virtual Address Space Physical Address Space
0 GiB
L1 Block Entry 1 GiB, Aligned to L1
1 GiB
2 GiB L2 Table 1GiB, Not aligned to L1
3 GiB
L1 Block Entry
4 GiB
1 GiB, Aligned to L1
5 GiB L2 Table
1GiB, Aligned to L1
6 GiB
L2 Table
7 GiB 1GiB, Mot aligned to L1
8 GiB

The mmap regions are sorted in a way that simplifies the code that maps them. Even though this ordering is only
strictly needed for overlapping static regions, it must also be applied for dynamic regions to maintain a consistent order
of all regions at all times. As each new region is mapped, existing entries in the translation tables are checked to ensure
consistency. Please refer to the comments in the source code of the core module for more details about the sorting
algorithm in use.

TLB maintenance operations

The library takes care of performing TLB maintenance operations when required. For example, when the user requests
removing a dynamic region, the library invalidates all TLB entries associated to that region to ensure that these changes
are visible to subsequent execution, including speculative execution, that uses the changed translation table entries.

A counter-example is the initialization of translation tables. In this case, explicit TLB maintenance is not required. The
Armv8-A architecture guarantees that all TLBs are disabled from reset and their contents have no effect on address
translation at reset®>. Therefore, the TLBs invalidation is deferred to the enable_mmu* () family of functions, just
before the MMU is turned on.

2 See section D4.9 Translation Lookaside Buffers (TLBs), subsection TLB behavior at reset in Armv8-A, rev C.a.

226 Chapter 4. Components

Trusted Firmware-A

TLB invalidation is not required when adding dynamic regions either. Dynamic regions are not allowed to overlap
existing memory region. Therefore, if the dynamic mapping request is deemed legitimate, it automatically concerns
memory that was not mapped in this translation regime and the library will have initialized its corresponding translation
table entry to an invalid descriptor. Given that the TLBs are not architecturally permitted to hold any invalid translation
table entry®, this means that this mapping cannot be cached in the TLBs.

Copyright (c) 2017-2019, Arm Limited and Contributors. All rights reserved.

4.16 Chain of trust bindings

The device tree allows to describe the chain of trust with the help of ‘cot’ node which contain ‘manifests’ and ‘images’
as sub-nodes. ‘manifests’ and ‘images’ nodes contains number of sub-nodes (i.e. ‘certificate’ and ‘image’ nodes)
mentioning properties of the certificate and image respectively.

Also, device tree describes ‘non-volatile-counters’ node which contains number of sub-nodes mentioning properties of
all non-volatile-counters used in the chain of trust.

4.16.1 cot

This is root node which contains ‘manifests’ and ‘images’ as sub-nodes

4.16.2 Manifests and Certificate node bindings definition

* Manifests node Description: Container of certificate nodes.
PROPERTIES
— compatible: Usage: required
Value type: <string>
Definition: must be “arm, cert-descs”
* Certificate node Description:
Describes certificate properties which are used during the authentication process.
PROPERTIES
— root-certificate Usage:

Required for the certificate with no parent. In other words, certificates which are validated using
root of trust public key.

Value type: <boolean>

— image-id Usage: Required for every certificate with unique id.
Value type: <u32>

— parent Usage:

It refers to their parent image, which typically contains information to authenticate the certificate.
This property is required for all non-root certificates.

3 See section D4.10.1 General TLB maintenance requirements in Armv8-A, rev C.a.

4.16. Chain of trust bindings 227

Trusted Firmware-A

This property is not required for root-certificates as root-certificates are validated using root of
trust public key provided by platform.

Value type: <phandle>
— signing-key Usage:

This property is used to refer public key node present in parent certificate node and it is required
property for all non-root certificates which are authenticated using public-key present in parent
certificate.

This property is not required for root-certificates as root-certificates are validated using root of
trust public key provided by platform.

Value type: <phandle>
— antirollback-counter Usage:

This property is used by all certificates which are protected against rollback attacks using a non-
volatile counter and it is an optional property.

This property is used to refer one of the non-volatile counter sub-node present in ‘non-volatile
counters’ node.

Value type: <phandle>
SUBNODES
— Description:
Hash and public key information present in the certificate are shown by these nodes.
— public key node Description: Provide public key information in the certificate.
PROPERTIES
% oid Usage:

This property provides the Object ID of public key provided in the certificate which the
help of which public key information can be extracted.

Value type: <string>
— hash node Description: Provide the hash information in the certificate.
PROPERTIES
% oid Usage:

This property provides the Object ID of hash provided in the certificate which the help
of which hash information can be extracted.

Value type: <string>

Example:

cot {
manifests {
compatible = "arm, cert-descs”

trusted-key-cert: trusted-key-cert {
root-certificate;
image-id = <TRUSTED_KEY_CERT_ID>;
antirollback-counter = <&trusted_nv_counter>;

(continues on next page)

228 Chapter 4. Components

Trusted Firmware-A

(continued from previous page)

trusted-world-pk: trusted-world-pk {
oid = TRUSTED_WORLD_PK_OID;
};
non-trusted-world-pk: non-trusted-world-pk {
oid = NON_TRUSTED_WORLD_PK_OID;
3
};

scp_fw_key_cert: scp_fw_key_cert {
image-id = <SCP_FW_KEY_CERT_ID>;
parent = <&trusted-key-cert>;
signing-key = <&trusted_world_pk>;
antirollback-counter = <&trusted_nv_counter>;

scp_fw_content_pk: scp_fw_content_pk {
oid = SCP_FW_CONTENT_CERT_PK_OID;
3

next-certificate {

};
};

1

4.16.3 Images and Image node bindings definition

* Images node Description: Container of image nodes
PROPERTIES
— compatible: Usage: required
Value type: <string>
Definition: must be “arm, img-descs”
* Image node Description:
Describes image properties which will be used during authentication process.
PROPERTIES
— image-id Usage: Required for every image with unique id.
Value type: <u32>
— parent Usage:

Required for every image to provide a reference to its parent image, which contains the necessary
information to authenticate it.

Value type: <phandle>

4.16. Chain of trust bindings 229

Trusted Firmware-A

— hash Usage:

Required for all images which are validated using hash method. This property is used to refer
hash node present in parent certificate node.

Value type: <phandle>
Note:

Currently, all images are validated using ‘hash’ method. In future, there may be multiple methods
can be used to validate the image.

Example:

cot {
images {
compatible = "arm, img-descs";
scp_bl2_image {
image-id = <SCP_BL2_IMAGE_ID>;
parent = <&scp_fw_content_cert>;

hash = <&scp_fw_hash>;
3

next-img {
1

1

4.16.4 non-volatile counter node binding definition

* non-volatile counters node Description: Contains properties for non-volatile counters.
PROPERTIES
— compatible: Usage: required
Value type: <string>
Definition: must be “arm, non-volatile-counter”
— #address-cells Usage: required
Value type: <u32>
Definition:
Must be set according to address size of non-volatile counter register
— #size-cells Usage: required
Value type: <u32>
Definition: must be set to 0

SUBNODE

230 Chapter 4. Components

Trusted Firmware-A

— counters node Description: Contains various non-volatile counters present in the platform.
PROPERTIES

— id Usage: Required for every nv-counter with unique id.
Value type: <u32>

— reg Usage:
Register base address of non-volatile counter and it is required property.
Value type: <u32>

— oid Usage:

This property provides the Object ID of non-volatile counter provided in the certificate
and it is required property.

Value type: <string>

Example: Below is non-volatile counters example for ARM platform

non_volatile_counters: non_volatile_counters {
compatible = "arm, non-volatile-counter";
#address-cells = <1>;
#size-cells = <0>;

trusted-nv-counter: trusted_nv_counter {
id <TRUSTED_NV_CTR_ID>;
reg <TFW_NVCTR_BASE>;
oid = TRUSTED_FW_NVCOUNTER_OID;

};

non_trusted_nv_counter: non_trusted_nv_counter {
id = <NON_TRUSTED_NV_CTR_ID>;
reg <NTFW_CTR_BASE>;
oid NON_TRUSTED_FW_NVCOUNTER_OID;

};

4.16.5 Future update to chain of trust binding

This binding document needs to be revisited to generalise some terminologies which are currently specific to X.509
certificates for e.g. Object IDs.

Copyright (c¢) 2020, Arm Limited. All rights reserved.

4.16. Chain of trust bindings 231

Trusted Firmware-A

232 Chapter 4. Components

CHAPTER
FIVE

SYSTEM DESIGN

5.1 Alternative Boot Flows

5.1.1 EL3 payloads alternative boot flow
On a pre-production system, the ability to execute arbitrary, bare-metal code at the highest exception level is required.
It allows full, direct access to the hardware, for example to run silicon soak tests.

Although it is possible to implement some baremetal secure firmware from scratch, this is a complex task on some
platforms, depending on the level of configuration required to put the system in the expected state.

Rather than booting a baremetal application, a possible compromise is to boot EL3 payloads through TF-A instead.
This is implemented as an alternative boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
other BL images and passing control to BL31. It reduces the complexity of developing EL3 baremetal code by:

* putting the system into a known architectural state;
* taking care of platform secure world initialization;
* loading the SCP_BL2 image if required by the platform.

When booting an EL3 payload on Arm standard platforms, the configuration of the TrustZone controller is simplified
such that only region O is enabled and is configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.

The system is left in the same state as when entering BL31 in the default boot flow. In particular:
* Running in EL3;
¢ Current state is AArch64;
¢ Little-endian data access;
 All exceptions disabled;
MMU disabled;
* Caches disabled.

233

Trusted Firmware-A

Booting an EL3 payload

The EL3 payload image is a standalone image and is not part of the FIP. It is not loaded by TF-A. Therefore, there are
2 possible scenarios:

» The EL3 payload may reside in non-volatile memory (NVM) and execute in place. In this case, booting it is just
a matter of specifying the right address in NVM through EL3_PAYLOAD_BASE when building TF-A.

» The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at run-time.

To help in the latter scenario, the SPIN_ON_BL1_EXIT=1 build option can be used. The infinite loop that it introduces in
BL1 stops execution at the right moment for a debugger to take control of the target and load the payload (for example,
over JTAG).

It is expected that this loading method will work in most cases, as a debugger connection is usually available in a
pre-production system. The user is free to use any other platform-specific mechanism to load the EL3 payload, though.

5.1.2 Preloaded BL33 alternative boot flow

Some platforms have the ability to preload BL33 into memory instead of relying on TF-A to load it. This may simplify
packaging of the normal world code and improve performance in a development environment. When secure world cold
boot is complete, TF-A simply jumps to a BL33 base address provided at build time.

For this option to be used, the PRELOADED_BL33_BASE build option has to be used when compiling TF-A. For example,
the following command will create a FIP without a BL.33 and prepare to jump to a BL33 image loaded at address
0x80000000:

make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip

Copyright (c) 2019, Arm Limited. All rights reserved.

5.2 Authentication Framework & Chain of Trust

The aim of this document is to describe the authentication framework implemented in Trusted Firmware-A (TF-A).
This framework fulfills the following requirements:

1. It should be possible for a platform port to specify the Chain of Trust in terms of certificate hierarchy and the
mechanisms used to verify a particular image/certificate.

2. The framework should distinguish between:

* The mechanism used to encode and transport information, e.g. DER encoded X.509v3 certificates to ferry
Subject Public Keys, hashes and non-volatile counters.

* The mechanism used to verify the transported information i.e. the cryptographic libraries.

The framework has been designed following a modular approach illustrated in the next diagram:

T o oo +
Trusted	Trusted	Trusted
Firmware	Firmware	Firmware
Generic	IO Framework	Platform
Code i.e.	(10)	Port
	I	

BL1/BL2 (GEN) | (PP)

(continues on next page)

234 Chapter 5. System Design

Trusted Firmware-A

(continued from previous page)

Fommm - Fomm - R e +
A A A
I I I
v v v
Fommm - + Fomm - + Fomm - +
	[Image	
Crypto		Auth		Parser
Module	<->	Module	<->	Module
(CD I	CAM) I	(IPM) I		
I I I I I I				
Fommm - + o - + tomm - +				
A A				
v v				
R e e + Fom -				
Cryptographic		Image Parser		
Libraries (CL)		Libraries (IPL)		
e + e +
I I
I I
I I
v v
Fomm - +

| Misc. Libs e.g. |
| ASN.1 decoder |

DIAGRAM 1.

This document describes the inner details of the authentication framework and the abstraction mechanisms available
to specify a Chain of Trust.

5.2.1 Framework design

This section describes some aspects of the framework design and the rationale behind them. These aspects are key to
verify a Chain of Trust.

Chain of Trust

A CoT is basically a sequence of authentication images which usually starts with a root of trust and culminates in a
single data image. The following diagram illustrates how this maps to a CoT for the BL31 image described in the
TBBR-Client specification.

R e L e + e L e P +
| ROTPK/ROTPK Hash |------ >| Trusted Key |
o + | Certificate |
| (Auth Image) |
Y e ittt +

/ I

/ |

(continues on next page)

5.2. Authentication Framework & Chain of Trust 235

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

Trusted Firmware-A

(continued from previous page)

/ |

/ |

L \'
R e e + Fom - +
| Trusted World |------ >| BL31 Key |
| Public Key | | Certificate |
o + | (Auth Image) |
e +

/ |

/ |

/ |

/ |

/ \%
Fom - + L o - +
| BL31 Content |------ >| BL31 Content |
| Certificate PK | | Certificate |
Fom e + | (Auth Image) |
e +

/ |

/ |

/ |

/ |

/ \Y
o - + L oo - +
| BL31 Hash |------ >| BL31 Image |
| | | (Data Image) |
i ey + | |
Fomm - +

DIAGRAM 2.

The root of trust is usually a public key (ROTPK) that has been burnt in the platform and cannot be modified.

Image types

Images in a CoT are categorised as authentication and data images. An authentication image contains information to
authenticate a data image or another authentication image. A data image is usually a boot loader binary, but it could be
any other data that requires authentication.

Component responsibilities

For every image in a Chain of Trust, the following high level operations are performed to verify it:
1. Allocate memory for the image either statically or at runtime.

Identify the image and load it in the allocated memory.

Check the integrity of the image as per its type.

Authenticate the image as per the cryptographic algorithms used.

A

If the image is an authentication image, extract the information that will be used to authenticate the next image
in the CoT.

236 Chapter 5. System Design

Trusted Firmware-A

In Diagram 1, each component is responsible for one or more of these operations. The responsibilities are briefly
described below.

TF-A Generic code and 10 framework (GEN/IO)

These components are responsible for initiating the authentication process for a particular image in BL1 or BL2. For
each BL image that requires authentication, the Generic code asks recursively the Authentication module what is the
parent image until either an authenticated image or the ROT is reached. Then the Generic code calls the 10 framework
to load the image and calls the Authentication module to authenticate it, following the CoT from ROT to Image.

TF-A Platform Port (PP)

The platform is responsible for:

1.

Specifying the CoT for each image that needs to be authenticated. Details of how a CoT can be specified by the
platform are explained later. The platform also specifies the authentication methods and the parsing method used
for each image.

Statically allocating memory for each parameter in each image which is used for verifying the CoT, e.g. memory
for public keys, hashes etc.

Providing the ROTPK or a hash of it.

Providing additional information to the IPM to enable it to identify and extract authentication parameters con-
tained in an image, e.g. if the parameters are stored as X509v3 extensions, the corresponding OID must be
provided.

Fulfill any other memory requirements of the IPM and the CM (not currently described in this document).

Export functions to verify an image which uses an authentication method that cannot be interpreted by the CM,
e.g. if an image has to be verified using a NV counter, then the value of the counter to compare with can only be
provided by the platform.

Export a custom IPM if a proprietary image format is being used (described later).

Authentication Module (AM)

It is responsible for:

1.

2.
3.

Providing the necessary abstraction mechanisms to describe a Col. Amongst other things, the authentication and
image parsing methods must be specified by the PP in the CoT.

Verifying the CoT passed by GEN by utilising functionality exported by the PP, IPM and CM.

Tracking which images have been verified. In case an image is a part of multiple CoTs then it should be veri-
fied only once e.g. the Trusted World Key Certificate in the TBBR-Client spec. contains information to verify
SCP_BL2, BL31, BL32 each of which have a separate CoT. (This responsibility has not been described in this
document but should be trivial to implement).

Reusing memory meant for a data image to verify authentication images e.g. in the CoT described in Diagram 2,
each certificate can be loaded and verified in the memory reserved by the platform for the BL31 image. By the
time BL31 (the data image) is loaded, all information to authenticate it will have been extracted from the parent
image i.e. BL31 content certificate. It is assumed that the size of an authentication image will never exceed the
size of a data image. It should be possible to verify this at build time using asserts.

5.2. Authentication Framework & Chain of Trust 237

Trusted Firmware-A

Cryptographic Module (CM)

The CM is responsible for providing an API to:
1. Verify a digital signature.
2. Verify a hash.

The CM does not include any cryptography related code, but it relies on an external library to perform the cryptographic
operations. A Crypto-Library (CL) linking the CM and the external library must be implemented. The following
functions must be provided by the CL:

void (*init) (void);
int (*verify_signature) (void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len);
int (*verify_hash) (void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len);

These functions are registered in the CM using the macro:

REGISTER_CRYPTO_LIB(_name, _init, _verify_signature, _verify_hash);

_name must be a string containing the name of the CL. This name is used for debugging purposes.

Image Parser Module (IPM)

The IPM is responsible for:
1. Checking the integrity of each image loaded by the IO framework.

2. Extracting parameters used for authenticating an image based upon a description provided by the platform in the
CoT descriptor.

Images may have different formats (for example, authentication images could be x509v3 certificates, signed ELF files or
any other platform specific format). The IPM allows to register an Image Parser Library (IPL) for every image format
used in the CoT. This library must implement the specific methods to parse the image. The IPM obtains the image
format from the CoT and calls the right IPL to check the image integrity and extract the authentication parameters.

See Section “Describing the image parsing methods” for more details about the mechanism the IPM provides to define
and register IPLs.

Authentication methods

The AM supports the following authentication methods:
1. Hash
2. Digital signature

The platform may specify these methods in the CoT in case it decides to define a custom CoT instead of reusing a
predefined one.

If a data image uses multiple methods, then all the methods must be a part of the same CoT. The number and type of
parameters are method specific. These parameters should be obtained from the parent image using the IPM.

238 Chapter 5. System Design

Trusted Firmware-A

1. Hash
Parameters:
1. A pointer to data to hash
2. Length of the data
3. A pointer to the hash
4. Length of the hash
The hash will be represented by the DER encoding of the following ASN.1 type:

DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithmIdentifier,
digest Digest

}

This ASN.1 structure makes it possible to remove any assumption about the type of hash algorithm used as this
information accompanies the hash. This should allow the Cryptography Library (CL) to support multiple hash
algorithm implementations.

2. Digital Signature
Parameters:

1. A pointer to data to sign
2. Length of the data
3. Public Key Algorithm
4. Public Key value
5. Digital Signature Algorithm
6. Digital Signature value

The Public Key parameters will be represented by the DER encoding of the following ASN.1 type:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier{PUBLIC-KEY, {PublicKeyAlgorithms}},
subjectPublicKey BIT STRING }

The Digital Signature Algorithm will be represented by the DER encoding of the following ASN.1 types.

AlgorithmIdentifier {ALGORITHM:IOSet } ::= SEQUENCE {

algorithm ALGORITHM.&id({IOSet}),

parameters ALGORITHM. &Type({IOSet}{@algorithm}) OPTIONAL
}

The digital signature will be represented by:

signature ::= BIT STRING

The authentication framework will use the image descriptor to extract all the information related to authentication.

5.2. Authentication Framework & Chain of Trust 239

Trusted Firmware-A

5.2.2 Specifying a Chain of Trust

A CoT can be described as a set of image descriptors linked together in a particular order. The order dictates the
sequence in which they must be verified. Each image has a set of properties which allow the AM to verify it. These
properties are described below.

The PP is responsible for defining a single or multiple CoTs for a data image. Unless otherwise specified, the data
structures described in the following sections are populated by the PP statically.

Describing the image parsing methods

The parsing method refers to the format of a particular image. For example, an authentication image that represents a
certificate could be in the X.509v3 format. A data image that represents a boot loader stage could be in raw binary or
ELF format. The IPM supports three parsing methods. An image has to use one of the three methods described below.
An IPL is responsible for interpreting a single parsing method. There has to be one IPL for every method used by the
platform.

1. Raw format: This format is effectively a nop as an image using this method is treated as being in raw binary
format e.g. boot loader images used by TF-A. This method should only be used by data images.

2. X509V3 method: This method uses industry standards like X.509 to represent PKI certificates (authentication
images). Itis expected that open source libraries will be available which can be used to parse an image represented
by this method. Such libraries can be used to write the corresponding IPL e.g. the X.509 parsing library code in
mbed TLS.

3. Platform defined method: This method caters for platform specific proprietary standards to represent authentica-
tion or data images. For example, The signature of a data image could be appended to the data image raw binary.
A header could be prepended to the combined blob to specify the extents of each component. The platform will
have to implement the corresponding IPL to interpret such a format.

The following enum can be used to define these three methods.

typedef enum img_type_enum {

IMG_RAW, /* Binary image */
IMG_PLAT, /% Platform specific format */
IMG_CERT, /* X509v3 certificate */
IMG_MAX_TYPES,

} img_type_t;

An IPL must provide functions with the following prototypes:

void init(void);

int check_integrity(void *img, unsigned int img_len);

int get_auth_param(const auth_param_type_desc_t *type_desc,
void *img, unsigned int img_len,
void **param, unsigned int *param_len);

An IPL for each type must be registered using the following macro:

REGISTER_IMG_PARSER_LIB(_type, _name, _init, _check_int, _get_param)

* _type: one of the types described above.
e _name: a string containing the IPL name for debugging purposes.
e _init: initialization function pointer.

* _check_int: check image integrity function pointer.

240 Chapter 5. System Design

Trusted Firmware-A

e _get_param: extract authentication parameter function pointer.
The init () function will be used to initialize the IPL.

The check_integrity() function is passed a pointer to the memory where the image has been loaded by the 10
framework and the image length. It should ensure that the image is in the format corresponding to the parsing method
and has not been tampered with. For example, RFC-2459 describes a validation sequence for an X.509 certificate.

The get_auth_param() function is passed a parameter descriptor containing information about the parameter
(type_desc and cookie) to identify and extract the data corresponding to that parameter from an image. This data
will be used to verify either the current or the next image in the CoT sequence.

Each image in the CoT will specify the parsing method it uses. This information will be used by the IPM to find the
right parser descriptor for the image.

Describing the authentication method(s)

As part of the CoT, each image has to specify one or more authentication methods which will be used to verify it. As
described in the Section “Authentication methods”, there are three methods supported by the AM.

typedef enum {
AUTH_METHOD_NONE,
AUTH_METHOD_HASH,
AUTH_METHOD_SIG,
AUTH_METHOD_NUM

} auth_method_type_t;

The AM defines the type of each parameter used by an authentication method. It uses this information to:

1. Specify to the get_auth_param() function exported by the IPM, which parameter should be extracted from an
image.

2. Correctly marshall the parameters while calling the verification function exported by the CM and PP.

3. Extract authentication parameters from a parent image in order to verify a child image e.g. to verify the certificate
image, the public key has to be obtained from the parent image.

typedef enum {
AUTH_PARAM_NONE,
AUTH_PARAM_RAW_DATA, /* Raw image data */
AUTH_PARAM_SIG, * The image signature */
AUTH_PARAM_SIG_ALG, * The image signature algorithm */
AUTH_PARAM_HASH, * A hash (including the algorithm) */
AUTH_PARAM_PUB_KEY, * A public key */

} auth_param_type_t;

TE e

The AM defines the following structure to identify an authentication parameter required to verify an image.

typedef struct auth_param_type_desc_s {
auth_param_type_t type;
void *cookie;

} auth_param_type_desc_t;

cookie is used by the platform to specify additional information to the IPM which enables it to uniquely identify the
parameter that should be extracted from an image. For example, the hash of a BL3x image in its corresponding content
certificate is stored in an X509v3 custom extension field. An extension field can only be identified using an OID. In

5.2. Authentication Framework & Chain of Trust 241

Trusted Firmware-A

this case, the cookie could contain the pointer to the OID defined by the platform for the hash extension field while
the type field could be set to AUTH_PARAM_HASH. A value of 0 for the cookie field means that it is not used.

For each method, the AM defines a structure with the parameters required to verify the image.

/:’r
* Parameters for authentication by hash matching
:’:/
typedef struct auth_method_param_hash_s {
auth_param_type_desc_t *data; /* Data to hash */
auth_param_type_desc_t *hash; /* Hash to match with */
} auth_method_param_hash_t;

/7’:
* Parameters for authentication by signature
:’:/
typedef struct auth_method_param_sig_s {
auth_param_type_desc_t *pk; /* Public key */

auth_param_type_desc_t *sig; /* Signature to check */
auth_param_type_desc_t *alg; /* Signature algorithm */
auth_param_type_desc_t *tbs; /* Data signed */

} auth_method_param_sig_t;

The AM defines the following structure to describe an authentication method for verifying an image

/:’r
* Authentication method descriptor
:’.-/
typedef struct auth_method_desc_s {
auth_method_type_t type;
union {
auth_method_param_hash_t hash;
auth_method_param_sig_t sig;
} param;
} auth_method_desc_t;

Using the method type specified in the type field, the AM finds out what field needs to access within the param union.

Storing Authentication parameters

A parameter described by auth_param_type_desc_t to verify an image could be obtained from either the image itself
or its parent image. The memory allocated for loading the parent image will be reused for loading the child image.
Hence parameters which are obtained from the parent for verifying a child image need to have memory allocated for
them separately where they can be stored. This memory must be statically allocated by the platform port.

The AM defines the following structure to store the data corresponding to an authentication parameter.

typedef struct auth_param_data_desc_s {
void *auth_param_ptr;
unsigned int auth_param_len;

} auth_param_data_desc_t;

The auth_param_ptr field is initialized by the platform. The auth_param_len field is used to specify the length of
the data in the memory.

242 Chapter 5. System Design

Trusted Firmware-A

For parameters that can be obtained from the child image itself, the IPM is responsible for populating the
auth_param_ptr and auth_param_len fields while executing the img_get_auth_param() function.

The AM defines the following structure to enable an image to describe the parameters that should be extracted from it
and used to verify the next image (child) in a CoT.

typedef struct auth_param_desc_s {
auth_param_type_desc_t type_desc;
auth_param_data_desc_t data;

} auth_param_desc_t;

Describing an image in a CoT

An image in a CoT is a consolidation of the following aspects of a CoT described above.

1. A unique identifier specified by the platform which allows the IO framework to locate the image in a FIP and
load it in the memory reserved for the data image in the CoT.

2. A parsing method which is used by the AM to find the appropriate IPM.

3. Authentication methods and their parameters as described in the previous section. These are used to verify the
current image.

4. Parameters which are used to verify the next image in the current Col. These parameters are specified only by
authentication images and can be extracted from the current image once it has been verified.

The following data structure describes an image in a CoT.

typedef struct auth_img_desc_s {
unsigned int img_id;
const struct auth_img_desc_s *parent;
img_type_t img_type;
const auth_method_desc_t *const img_auth_methods;
const auth_param_desc_t *const authenticated_data;
} auth_img_desc_t;

A CoT is defined as an array of pointers to auth_image_desc_t structures linked together by the parent field. Those
nodes with no parent must be authenticated using the ROTPK stored in the platform.

5.2.3 Implementation example

This section is a detailed guide explaining a trusted boot implementation using the authentication framework. This
example corresponds to the Applicative Functional Mode (AFM) as specified in the TBBR-Client document. It is
recommended to read this guide along with the source code.

5.2. Authentication Framework & Chain of Trust 243

Trusted Firmware-A

The TBBR CoT

CoT specific to BL1 and BL2 can be found in drivers/auth/tbbr/tbbr_cot_bll.c and drivers/auth/tbbr/
tbbr_cot_bl2.c respectively. The common CoT used across BLL1 and BL2 can be found in drivers/auth/tbbr/
tbbr_cot_common. c. This CoT consists of an array of pointers to image descriptors and it is registered in the frame-
work using the macro REGISTER_COT (cot_desc), where cot_desc must be the name of the array (passing a pointer
or any other type of indirection will cause the registration process to fail).

The number of images participating in the boot process depends on the CoI. There is, however, a minimum set of
images that are mandatory in TF-A and thus all CoTs must present:

e BL2

* SCP_BL2 (platform specific)
e BL31

* BL32 (optional)

e BL33

The TBBR specifies the additional certificates that must accompany these images for a proper authentication. Details
about the TBBR CoT may be found in the Trusted Board Boot document.

Following the Porting Guide, a platform must provide unique identifiers for all the images and certificates that will be
loaded during the boot process. If a platform is using the TBBR as a reference for trusted boot, these identifiers can be
obtained from include/common/tbbr/tbbr_img_def.h. Arm platforms include this file in include/plat/arm/
common/arm_def.h. Other platforms may also include this file or provide their own identifiers.

Important: the authentication module uses these identifiers to index the CoT array, so the descriptors location in the
array must match the identifiers.

Each image descriptor must specify:
* img_id: the corresponding image unique identifier defined by the platform.

* img_type: the image parser module uses the image type to call the proper parsing library to check the image
integrity and extract the required authentication parameters. Three types of images are currently supported:

— IMG_RAW: image is a raw binary. No parsing functions are available, other than reading the whole image.

— IMG_PLAT: image format is platform specific. The platform may use this type for custom images not
directly supported by the authentication framework.

— IMG_CERT: image is an x509v3 certificate.

e parent: pointer to the parent image descriptor. The parent will contain the information required to authenticate
the current image. If the parent is NULL, the authentication parameters will be obtained from the platform (i.e.
the BL2 and Trusted Key certificates are signed with the ROT private key, whose public part is stored in the
platform).

e img_auth_methods: this points to an array which defines the authentication methods that must be checked
to consider an image authenticated. Each method consists of a type and a list of parameter descriptors. A
parameter descriptor consists of a type and a cookie which will point to specific information required to extract
that parameter from the image (i.e. if the parameter is stored in an x509v3 extension, the cookie will point to
the extension OID). Depending on the method type, a different number of parameters must be specified. This
pointer should not be NULL. Supported methods are:

— AUTH_METHOD_HASH: the hash of the image must match the hash extracted from the parent image. The
following parameter descriptors must be specified:

% data: data to be hashed (obtained from current image)

% hash: reference hash (obtained from parent image)

244 Chapter 5. System Design

Trusted Firmware-A

— AUTH_METHOD_SIG: the image (usually a certificate) must be signed with the private key whose public
part is extracted from the parent image (or the platform if the parent is NULL). The following parameter
descriptors must be specified:

* pk: the public key (obtained from parent image)

% sig: the digital signature (obtained from current image)

% alg: the signature algorithm used (obtained from current image)
% data: the data to be signed (obtained from current image)

e authenticated_data: this array pointer indicates what authentication parameters must be extracted from an
image once it has been authenticated. Each parameter consists of a parameter descriptor and the buffer ad-
dress/size to store the parameter. The CoT is responsible for allocating the required memory to store the param-
eters. This pointer may be NULL.

In the tbbr_cot*.c file, a set of buffers are allocated to store the parameters extracted from the certificates. In the
case of the TBBR CoT, these parameters are hashes and public keys. In DER format, an RSA-4096 public key requires
550 bytes, and a hash requires 51 bytes. Depending on the CoT and the authentication process, some of the buffers may
be reused at different stages during the boot.

Next in that file, the parameter descriptors are defined. These descriptors will be used to extract the parameter data
from the corresponding image.

Example: the BL31 Chain of Trust

Four image descriptors form the BL31 Chain of Trust:

static const auth_img_desc_t trusted_key_cert = {
.img_id = TRUSTED_KEY_CERT_ID,
.img_type = IMG_CERT,
.parent = NULL,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {

[0]1 = {
.type = AUTH_METHOD_SIG,
.param.sig = {
.pk = &subject_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data
}
1,
[11 = {
.type = AUTH_METHOD_NV_CTR,
.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr
}
}
1,
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
[01 = {

.type_desc = &trusted_world_pk,
.data = {
.ptr = (void *)trusted_world_pk_buf,

(continues on next page)

5.2. Authentication Framework & Chain of Trust 245

Trusted Firmware-A

(continued from previous page)

.len = (unsigned int)PK_DER_LEN

}
1,
[11 = {
.type_desc = &non_trusted_world_pk,
.data = {
.ptr = (void *)non_trusted_world_pk_buf,
.len = (unsigned int)PK_DER_LEN
}
}

}
};
static const auth_img_desc_t soc_fw_key_cert = {
.img_id = SOC_FW_KEY_CERT_ID,
.img_type = IMG_CERT,
.parent = &trusted_key_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[01 = {
.type = AUTH_METHOD_SIG,
.param.sig = {
.pk = &trusted_world_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data

}
1,
[11 = {
.type = AUTH_METHOD_NV_CTR,
.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr
}
}
s
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
[01 = {
.type_desc = &soc_fw_content_pk,
.data = {
.ptr = (void *)content_pk_buf,
.len = (unsigned int)PK_DER_LEN
}
}
}

};
static const auth_img_desc_t soc_fw_content_cert = {
.img_id = SOC_FW_CONTENT_CERT_ID,
.img_type = IMG_CERT,
.parent = &soc_fw_key_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[01 = {
.type = AUTH_METHOD_SIG,
.param.sig = {

(continues on next page)

246 Chapter 5. System Design

Trusted Firmware-A

(continued from previous page)

.pk = &soc_fw_content_pk,
.sig = &sig,

.alg = &sig_alg,

.data = &raw_data

}
1,
[11 = {
.type = AUTH_METHOD_NV_CTR,
.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr
}
}
1,
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
[01 = {
.type_desc = &soc_fw_hash,
.data = {
.ptr = (void *)soc_fw_hash_buf,
.len = (unsigned int)HASH_DER_LEN
}
1,
[11 = {
.type_desc = &soc_fw_config_hash,
.data = {
.ptr = (void *)soc_fw_config_hash_buf,
.len = (unsigned int)HASH_DER_LEN
}
}
}

3
static const auth_img_desc_t bl31_image = {
.img_id = BL31_IMAGE_ID,
.img_type = IMG_RAW,
.parent = &soc_fw_content_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {

[e1 = {
.type = AUTH_METHOD_HASH,
.param.hash = {
.data = &raw_data,
.hash = &soc_fw_hash
}
}

};

The Trusted Key certificate is signed with the ROT private key and contains the Trusted World public key and
the Non-Trusted World public key as x509v3 extensions. This must be specified in the image descriptor using the
img_auth_methods and authenticated_data arrays, respectively.

The Trusted Key certificate is authenticated by checking its digital signature using the ROTPK. Four parameters are
required to check a signature: the public key, the algorithm, the signature and the data that has been signed. Therefore,
four parameter descriptors must be specified with the authentication method:

5.2. Authentication Framework & Chain of Trust 247

Trusted Firmware-A

* subject_pk: parameter descriptor of type AUTH_PARAM_PUB_KEY. This type is used to extract a public key
from the parent image. If the cookie is an OID, the key is extracted from the corresponding x509v3 extension.
If the cookie is NULL, the subject public key is retrieved. In this case, because the parent image is NULL, the
public key is obtained from the platform (this key will be the ROTPK).

* sig: parameter descriptor of type AUTH_PARAM_SIG. It is used to extract the signature from the certificate.

* sig_alg: parameter descriptor of type AUTH_PARAM_SIG. It is used to extract the signature algorithm from the
certificate.

» raw_data: parameter descriptor of type AUTH_PARAM_RAW_DATA. It is used to extract the data to be signed from
the certificate.

Once the signature has been checked and the certificate authenticated, the Trusted World public key needs to be extracted
from the certificate. A new entry is created in the authenticated_data array for that purpose. In that entry, the
corresponding parameter descriptor must be specified along with the buffer address to store the parameter value. In
this case, the trusted_world_pk descriptor is used to extract the public key from an x509v3 extension with OID
TRUSTED_WORLD_PK_OID. The BL31 key certificate will use this descriptor as parameter in the signature authentication
method. The key is stored in the trusted_world_pk_buf buffer.

The BL31 Key certificate is authenticated by checking its digital signature using the Trusted World public key ob-
tained previously from the Trusted Key certificate. In the image descriptor, we specify a single authentication method
by signature whose public key is the trusted_world_pk. Once this certificate has been authenticated, we have to
extract the BL31 public key, stored in the extension specified by soc_fw_content_pk. This key will be copied to the
content_pk_buf buffer.

The BL31 certificate is authenticated by checking its digital signature using the BL31 public key obtained previously
from the BL31 Key certificate. We specify the authentication method using soc_fw_content_pk as public key. After
authentication, we need to extract the BL31 hash, stored in the extension specified by soc_fw_hash. This hash will
be copied to the soc_fw_hash_buf buffer.

The BL31 image is authenticated by calculating its hash and matching it with the hash obtained from the BL.31 certifi-
cate. The image descriptor contains a single authentication method by hash. The parameters to the hash method are the
reference hash, soc_fw_hash, and the data to be hashed. In this case, it is the whole image, so we specify raw_data.

The image parser library

The image parser module relies on libraries to check the image integrity and extract the authentication parameters. The
number and type of parser libraries depend on the images used in the Col. Raw images do not need a library, so only
an x509v3 library is required for the TBBR CoT.

Arm platforms will use an x509v3 library based on mbed TLS. This library may be found in drivers/auth/mbedtls/
mbedtls_x509_parser.c. It exports three functions:

void init(void);

int check_integrity(void *img, unsigned int img_len);

int get_auth_param(const auth_param_type_desc_t *type_desc,
void *img, unsigned int img_len,
void **param, unsigned int *param_len);

The library is registered in the framework using the macro REGISTER_IMG_PARSER_LIB(). Each time the image
parser module needs to access an image of type IMG_CERT, it will call the corresponding function exported in this file.

The build system must be updated to include the corresponding library and mbed TLS sources. Arm platforms use the
arm_common . mk file to pull the sources.

248 Chapter 5. System Design

Trusted Firmware-A

The cryptographic library

The cryptographic module relies on a library to perform the required operations, i.e. verify a hash or a dig-
ital signature. Arm platforms will use a library based on mbed TLS, which can be found in drivers/
auth/mbedtls/mbedtls_crypto.c. This library is registered in the authentication framework using the macro
REGISTER_CRYPTO_LIB() and exports four functions:

void init(void);
int verify_signature(void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len);
int verify_hash(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len);
int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
size_t len, const void *key, unsigned int key_len,
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)

The mbedTLS library algorithm support is configured by both the TF_MBEDTLS_KEY_ALG and
TF_MBEDTLS_KEY_SIZE variables.

e TF_MBEDTLS_KEY_ALG can take in 3 values: rsa, ecdsa or rsa+ecdsa. This variable allows the Makefile to
include the corresponding sources in the build for the various algorithms. Setting the variable to rsa+ecdsa
enables support for both rsa and ecdsa algorithms in the mbedTLS library.

e TF_MBEDTLS_KEY_SIZE sets the supported RSA key size for TFA. Valid values include 1024, 2048, 3072 and
4096.

e TF_MBEDTLS_USE_AES_GCHM enables the authenticated decryption support based on AES-GCM algorithm. Valid
values are 0 and 1.

Note: If code size is a concern, the build option MBEDTLS_SHA256_SMALLER can be defined in the platform Makefile.
It will make mbed TLS use an implementation of SHA-256 with smaller memory footprint (~1.5 KB less) but slower
(~30%).

Copyright (¢) 2017-2020, Arm Limited and Contributors. All rights reserved.

5.3 Arm CPU Specific Build Macros

This document describes the various build options present in the CPU specific operations framework to enable errata
workarounds and to enable optimizations for a specific CPU on a platform.

5.3. Arm CPU Specific Build Macros 249

Trusted Firmware-A

5.3.1 Security Vulnerability Workarounds

TF-A exports a series of build flags which control which security vulnerability workarounds should be applied at
runtime.

* WORKAROUND_CVE_2017_5715: Enables the security workaround for CVE-2017-5715. This flag can be set to
0 by the platform if none of the PEs in the system need the workaround. Setting this flag to O provides no
performance benefit for non-affected platforms, it just helps to comply with the recommendation in the spec
regarding workaround discovery. Defaults to 1.

* WORKAROUND_CVE_2018_3639: Enables the security workaround for CVE-2018-3639. Defaults to 1. The TF-A
project recommends to keep the default value of 1 even on platforms that are unaffected by CVE-2018-3639, in
order to comply with the recommendation in the spec regarding workaround discovery.

e DYNAMIC_WORKAROUND_CVE_2018_3639: Enables dynamic mitigation for CVE-2018-3639. This build option
should be set to 1 if the target platform contains at least 1 CPU that requires dynamic mitigation. Defaults to 0.

5.3.2 CPU Errata Workarounds

TF-A exports a series of build flags which control the errata workarounds that are applied to each CPU by the reset
handler. The errata details can be found in the CPU specific errata documents published by Arm:

* Cortex-A53 MPCore Software Developers Errata Notice
* Cortex-AS57 MPCore Software Developers Errata Notice
* Cortex-A72 MPCore Software Developers Errata Notice

The errata workarounds are implemented for a particular revision or a set of processor revisions. This is checked
by the reset handler at runtime. Each errata workaround is identified by its ID as specified in the processor’s errata
notice document. The format of the define used to enable/disable the errata workaround is ERRATA_<Processor
name>_<ID>, where the Processor name is for example A57 for the Cortex_A57 CPU.

Refer to CPU errata status reporting for information on how to write errata workaround functions.

All workarounds are disabled by default. The platform is responsible for enabling these workarounds according to its
requirement by defining the errata workaround build flags in the platform specific makefile. In case these workarounds
are enabled for the wrong CPU revision then the errata workaround is not applied. In the DEBUG build, this is indicated
by printing a warning to the crash console.

In the current implementation, a platform which has more than 1 variant with different revisions of a processor has no
runtime mechanism available for it to specify which errata workarounds should be enabled or not.

The value of the build flags is 0 by default, that is, disabled. A value of 1 will enable it.
For Cortex-A9, the following errata build flags are defined :

* ERRATA_A9_794073: This applies errata 794073 workaround to Cortex-A9 CPU. This needs to be enabled for
all revisions of the CPU.

For Cortex-A15, the following errata build flags are defined :

e ERRATA_A15_816470: This applies errata 816470 workaround to Cortex-A15 CPU. This needs to be enabled
only for revision >= r3p0 of the CPU.

* ERRATA_A15_827671: This applies errata 827671 workaround to Cortex-A15 CPU. This needs to be enabled
only for revision >= r3p0 of the CPU.

For Cortex-A17, the following errata build flags are defined :

e ERRATA_A17_852421: This applies errata 852421 workaround to Cortex-A17 CPU. This needs to be enabled
only for revision <= r1p2 of the CPU.

250 Chapter 5. System Design

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
http://infocenter.arm.com/help/topic/com.arm.doc.epm048406/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm049219/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm012079/index.html

Trusted Firmware-A

ERRATA_A17_852423: This applies errata 852423 workaround to Cortex-A17 CPU. This needs to be enabled
only for revision <= r1p2 of the CPU.

For Cortex-A335, the following errata build flags are defined :

ERRATA_A35_855472: This applies errata 855472 workaround to Cortex-A35 CPUs. This needs to be enabled
only for revision rOp0 of Cortex-A35.

For Cortex-AS53, the following errata build flags are defined :

ERRATA_A53_819472: This applies errata 819472 workaround to all CPUs. This needs to be enabled only for
revision <=rOpl of Cortex-AS53.

ERRATA_A53_824069: This applies errata 824069 workaround to all CPUs. This needs to be enabled only for
revision <= rOp2 of Cortex-AS53.

ERRATA_A53_826319: This applies errata 826319 workaround to Cortex-A53 CPU. This needs to be enabled
only for revision <= r0p2 of the CPU.

ERRATA_A53_827319: This applies errata 827319 workaround to all CPUs. This needs to be enabled only for
revision <= rOp2 of Cortex-AS53.

ERRATA_A53_835769: This applies erratum 835769 workaround at compile and link time to Cortex-A53 CPU.
This needs to be enabled for some variants of revision <= rOp4. This workaround can lead the linker to create
* . stub sections.

ERRATA_A53_836870: This applies errata 836870 workaround to Cortex-A53 CPU. This needs to be enabled
only for revision <= 1r0p3 of the CPU. From rOp4 and onwards, this errata is enabled by default in hardware.

ERRATA_A53_843419: This applies erratum 843419 workaround at link time to Cortex-A53 CPU. This needs to
be enabled for some variants of revision <= rOp4. This workaround can lead the linker to emit *. stub sections
which are 4kB aligned.

ERRATA_A53_855873: This applies errata 855873 workaround to Cortex-A53 CPUs. Though the erratum is
present in every revision of the CPU, this workaround is only applied to CPUs from rOp3 onwards, which feature
a chicken bit in CPUACTLR_EL]1 to enable a hardware workaround. Earlier revisions of the CPU have other
errata which require the same workaround in software, so they should be covered anyway.

ERRATA_A53_1530924: This applies errata 1530924 workaround to all revisions of Cortex-A53 CPU.

For Cortex-ASS5, the following errata build flags are defined :

ERRATA_A55_768277: This applies errata 768277 workaround to Cortex-A55 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

ERRATA_A55_778703: This applies errata 778703 workaround to Cortex-A55 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

ERRATA_A55_798797: This applies errata 798797 workaround to Cortex-A55 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

ERRATA_A55_846532: This applies errata 846532 workaround to Cortex-A55 CPU. This needs to be enabled
only for revision <= rOp1 of the CPU.

ERRATA_A55_903758: This applies errata 903758 workaround to Cortex-AS55 CPU. This needs to be enabled
only for revision <=rOp1 of the CPU.

ERRATA_A55_1221012: This applies errata 1221012 workaround to Cortex-A55 CPU. This needs to be enabled
only for revision <= r1p0 of the CPU.

ERRATA_A55_1530923: This applies errata 1530923 workaround to all revisions of Cortex-A55 CPU.

For Cortex-AS57, the following errata build flags are defined :

5.3. Arm CPU Specific Build Macros 251

Trusted Firmware-A

* ERRATA_A57_806969: This applies errata 806969 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

e ERRATA_A57_813419: This applies errata 813419 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

e ERRATA_A57_813420: This applies errata 813420 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

* ERRATA_A57_814670: This applies errata 814670 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

e ERRATA_A57_817169: This applies errata 817169 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <= rOp1 of the CPU.

* ERRATA_A57_826974: This applies errata 826974 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <= rlpl of the CPU.

* ERRATA_A57_826977: This applies errata 826977 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <=rlp1 of the CPU.

* ERRATA_A57_828024: This applies errata 828024 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <=r1p1 of the CPU.

* ERRATA_A57_829520: This applies errata 829520 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <= r1p2 of the CPU.

e ERRATA_A57_833471: This applies errata 833471 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <= r1p2 of the CPU.

e ERRATA_A57_859972: This applies errata 859972 workaround to Cortex-A57 CPU. This needs to be enabled
only for revision <= r1p3 of the CPU.

e ERRATA_A57_1319537: This applies errata 1319537 workaround to all revisions of Cortex-A57 CPU.
For Cortex-A72, the following errata build flags are defined :

e ERRATA_A72_859971: This applies errata 859971 workaround to Cortex-A72 CPU. This needs to be enabled
only for revision <= rOp3 of the CPU.

* ERRATA_A72_1319367: This applies errata 1319367 workaround to all revisions of Cortex-A72 CPU.
For Cortex-A73, the following errata build flags are defined :

* ERRATA_A73_852427: This applies errata 852427 workaround to Cortex-A73 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

e ERRATA_A73_855423: This applies errata 855423 workaround to Cortex-A73 CPU. This needs to be enabled
only for revision <=rOp1 of the CPU.

For Cortex-A75, the following errata build flags are defined :

e ERRATA_A75_764081: This applies errata 764081 workaround to Cortex-A75 CPU. This needs to be enabled
only for revision rOp0 of the CPU.

* ERRATA_A75_790748: This applies errata 790748 workaround to Cortex-A75 CPU. This needs to be en-
abled only for revision rOp0 of the CPU.

For Cortex-A76, the following errata build flags are defined :

* ERRATA_A76_1073348: This applies errata 1073348 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r1p0 of the CPU.

e ERRATA_A76_1130799: This applies errata 1130799 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r2p0 of the CPU.

252 Chapter 5. System Design

Trusted Firmware-A

ERRATA_A76_1220197: This applies errata 1220197 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r2p0 of the CPU.

ERRATA_A76_1257314: This applies errata 1257314 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

ERRATA_A76_1262606: This applies errata 1262606 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

ERRATA_A76_1262888: This applies errata 1262888 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

ERRATA_A76_1275112: This applies errata 1275112 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

ERRATA_A76_1791580: This applies errata 1791580 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r4p0 of the CPU.

ERRATA_A76_1165522: This applies errata 1165522 workaround to all revisions of Cortex-A76 CPU. This errata
is fixed in r3p0 but due to limitation of errata framework this errata is applied to all revisions of Cortex-A76 CPU.

ERRATA_A76_1868343: This applies errata 1868343 workaround to Cortex-A76 CPU. This needs to be enabled
only for revision <= r4p0 of the CPU.

ERRATA_A76_1946160: This applies errata 1946160 workaround to Cortex-A76 CPU. This needs to be enabled
only for revisions r3p0 - r4p1 of the CPU.

For Cortex-A77, the following errata build flags are defined :

ERRATA_A77_1508412: This applies errata 1508412 workaround to Cortex-A77 CPU. This needs to be enabled
only for revision <= r1p0 of the CPU.

ERRATA_A77_1925769: This applies errata 1925769 workaround to Cortex-A77 CPU. This needs to be enabled
only for revision <=rlp1 of the CPU.

ERRATA_A77_1946167: This applies errata 1946167 workaround to Cortex-A77 CPU. This needs to be enabled
only for revision <=rlpl of the CPU.

For Cortex-A78, the following errata build flags are defined :

ERRATA_A78_1688305: This applies errata 1688305 workaround to Cortex-A78 CPU. This needs to be enabled
only for revision rOp0 - r1p0 of the CPU.

ERRATA_A78_1941498: This applies errata 1941498 workaround to Cortex-A78 CPU. This needs to be enabled
for revisions rOp0, r1p0, and rlp1 of the CPU.

ERRATA_A78_1951500: This applies errata 1951500 workaround to Cortex-A78 CPU. This needs to be enabled
for revisions r1p0 and rlpl, rOp0 has the same issue but there is no workaround for that revision.

For Neoverse N1, the following errata build flags are defined :

ERRATA_N1_1073348: This applies errata 1073348 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision rOp0 and r1p0 of the CPU.

ERRATA_N1_1130799: This applies errata 1130799 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r2p0 of the CPU.

ERRATA_N1_1165347: This applies errata 1165347 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r2p0 of the CPU.

ERRATA_N1_1207823: This applies errata 1207823 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r2p0 of the CPU.

ERRATA_N1_1220197: This applies errata 1220197 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r2p0 of the CPU.

5.3.

Arm CPU Specific Build Macros 253

Trusted Firmware-A

e ERRATA_N1_1257314: This applies errata 1257314 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

* ERRATA_N1_1262606: This applies errata 1262606 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

e ERRATA_N1_1262888: This applies errata 1262888 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

e ERRATA_N1_1275112: This applies errata 1275112 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

e ERRATA_N1_1315703: This applies errata 1315703 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r3p0 of the CPU.

e ERRATA_N1_1542419: This applies errata 1542419 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revisions r3p0 - r4p0 of the CPU.

e ERRATA_N1_1868343: This applies errata 1868343 workaround to Neoverse-N1 CPU. This needs to be enabled
only for revision <= r4p0 of the CPU.

* ERRATA_N1_1946160: This applies errata 1946160 workaround to Neoverse-N1 CPU. This needs to be enabled
for revisions r3p0, r3p1, r4p0, and r4pl, for revisions rOp0, r1p0, and r2p0 there is no workaround.

5.3.3 DSU Errata Workarounds

Similar to CPU errata, TF-A also implements workarounds for DSU (DynamIQ Shared Unit) errata. The DSU errata
details can be found in the respective Arm documentation:

* Arm DSU Software Developers Errata Notice.

Each erratum is identified by an ID, as defined in the DSU errata notice document. Thus, the build flags which en-
able/disable the errata workarounds have the format ERRATA_DSU_<ID>. The implementation and application logic of
DSU errata workarounds are similar to CPU errata workarounds.

For DSU errata, the following build flags are defined:

* ERRATA_DSU_798953: This applies errata 798953 workaround for the affected DSU configurations. This errata
applies only for those DSUs that revision is rOp0 (on rOpl it is fixed). However, please note that this workaround
results in increased DSU power consumption on idle.

* ERRATA_DSU_936184: This applies errata 936184 workaround for the affected DSU configurations. This errata
applies only for those DSUs that contain the ACP interface and the DSU revision is older than r2p0 (on r2p0 it
is fixed). However, please note that this workaround results in increased DSU power consumption on idle.

5.3.4 CPU Specific optimizations

This section describes some of the optimizations allowed by the CPU micro architecture that can be enabled by the
platform as desired.

e SKIP_A57_L1_FLUSH_PWR_DWN: This flag enables an optimization in the Cortex-AS57 cluster power down se-
quence by not flushing the Level 1 data cache. The L1 data cache and the L2 unified cache are inclusive. A
flush of the L2 by set/way flushes any dirty lines from the L1 as well. This is a known safe deviation from the
Cortex-AS57 TRM defined power down sequence. Each Cortex-A57 based platform must make its own decision
on whether to use the optimization.

e A53_DISABLE_NON_TEMPORAL_HINT: This flag disables the cache non-temporal hint. The LDNP/STNP instruc-
tions as implemented on Cortex-A53 do not behave in a way most programmers expect, and will most probably
result in a significant speed degradation to any code that employs them. The Armv8-A architecture (see Arm

254 Chapter 5. System Design

http://infocenter.arm.com/help/topic/com.arm.doc.epm138168/index.html

Trusted Firmware-A

DDI 0487A.h, section D3.4.3) allows cores to ignore the non-temporal hint and treat LDNP/STNP as LDP/STP
instead. Enabling this flag enforces this behaviour. This needs to be enabled only for revisions <= rOp3 of the
CPU and is enabled by default.

* A57_DISABLE_NON_TEMPORAL_HINT: This flag has the same behaviour as
A53_DISABLE_NON_TEMPORAL_HINT but for Cortex-A57. This needs to be enabled only for revisions
<=rlp2 of the CPU and is enabled by default, as recommended in section “4.7 Non-Temporal Loads/Stores” of
the Cortex-A57 Software Optimization Guide.

¢ “A57_ENABLE_NON_CACHEABLE_LOAD_FWD”: This flag enables non-cacheable streaming en-
hancement feature for Cortex-A57 CPUs. Platforms can set this bit only if their memory system meets
the requirement that cache line fill requests from the Cortex-A57 processor are atomic. Each Cortex-A57
based platform must make its own decision on whether to use the optimization. This flag is disabled by
default.

* NEOVERSE_Nx_EXTERNAL_LLC: This flag indicates that an external last level cache(LLC) is present in the system,
and that the DataSource field on the master CHI interface indicates when data is returned from the LLC. This is
used to control how the LL_CACHE* PMU events count. Default value is O (Disabled).

Copyright (c) 2014-2021, Arm Limited and Contributors. All rights reserved.

5.4 Firmware Design

Trusted Firmware-A (TF-A) implements a subset of the Trusted Board Boot Requirements (TBBR) Platform Design
Document (PDD) for Arm reference platforms.

The TBB sequence starts when the platform is powered on and runs up to the stage where it hands-off control to firmware
running in the normal world in DRAM. This is the cold boot path.

TF-A also implements the Power State Coordination Interface PDD as a runtime service. PSCI is the interface from
normal world software to firmware implementing power management use-cases (for example, secondary CPU boot,
hotplug and idle). Normal world software can access TF-A runtime services via the Arm SMC (Secure Monitor Call)
instruction. The SMC instruction must be used as mandated by the SMC Calling Convention (SMCCC).

TF-A implements a framework for configuring and managing interrupts generated in either security state. The details
of the interrupt management framework and its design can be found in Interrupt Management Framework.

TF-A also implements a library for setting up and managing the translation tables. The details of this library can be
found in Translation (XLAT) Tables Library.

TF-A can be built to support either AArch64 or AArch32 execution state.

5.4.1 Cold boot

The cold boot path starts when the platform is physically turned on. If COLD_BOOT_SINGLE_CPU=0, one of the CPUs
released from reset is chosen as the primary CPU, and the remaining CPUs are considered secondary CPUs. The
primary CPU is chosen through platform-specific means. The cold boot path is mainly executed by the primary CPU,
other than essential CPU initialization executed by all CPUs. The secondary CPUs are kept in a safe platform-specific
state until the primary CPU has performed enough initialization to boot them.

Refer to the CPU Reset for more information on the effect of the COLD_BOOT_SINGLE_CPU platform build option.

The cold boot path in this implementation of TF-A depends on the execution state. For AArch64, it is divided into five
steps (in order of execution):

* Boot Loader stage 1 (BL1) AP Trusted ROM

5.4. Firmware Design 255

http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A

* Boot Loader stage 2 (BL2) Trusted Boot Firmware
* Boot Loader stage 3-1 (BL31) EL3 Runtime Software
* Boot Loader stage 3-2 (BL32) Secure-ELI Payload (optional)
* Boot Loader stage 3-3 (BL33) Non-trusted Firmware
For AArch32, it is divided into four steps (in order of execution):
* Boot Loader stage 1 (BL1) AP Trusted ROM
* Boot Loader stage 2 (BL2) Trusted Boot Firmware
* Boot Loader stage 3-2 (BL32) EL3 Runtime Software
* Boot Loader stage 3-3 (BL33) Non-trusted Firmware

Arm development platforms (Fixed Virtual Platforms (FVPs) and Juno) implement a combination of the following
types of memory regions. Each bootloader stage uses one or more of these memory regions.

* Regions accessible from both non-secure and secure states. For example, non-trusted SRAM, ROM and DRAM.

» Regions accessible from only the secure state. For example, trusted SRAM and ROM. The FVPs also implement
the trusted DRAM which is statically configured. Additionally, the Base FVPs and Juno development platform
configure the TrustZone Controller (TZC) to create a region in the DRAM which is accessible only from the
secure state.

The sections below provide the following details:
* dynamic configuration of Boot Loader stages
* initialization and execution of the first three stages during cold boot

* specification of the EL3 Runtime Software (BL31 for AArch64 and BL32 for AArch32) entrypoint requirements
for use by alternative Trusted Boot Firmware in place of the provided BL1 and BL2

Dynamic Configuration during cold boot
Each of the Boot Loader stages may be dynamically configured if required by the platform. The Boot Loader stage
may optionally specify a firmware configuration file and/or hardware configuration file as listed below:

* FW_CONFIG - The firmware configuration file. Holds properties shared across all BLx images. An example is
the “dtb-registry” node, which contains the information about the other device tree configurations (load-address,
size, image_id).

* HW_CONFIG - The hardware configuration file. Can be shared by all Boot Loader stages and also by the Normal
World Rich OS.

* TB_FW_CONFIG - Trusted Boot Firmware configuration file. Shared between BL.1 and BL2.

¢ SOC_FW_CONFIG - SoC Firmware configuration file. Used by BL31.

* TOS_FW_CONFIG - Trusted OS Firmware configuration file. Used by Trusted OS (BL32).

e NT_FW_CONFIG - Non Trusted Firmware configuration file. Used by Non-trusted firmware (BL33).
The Arm development platforms use the Flattened Device Tree format for the dynamic configuration files.

Each Boot Loader stage can pass up to 4 arguments via registers to the next stage. BL2 passes the list of the next images
to execute to the EL3 Runtime Software (BL31 for AArch64 and BL32 for AArch32) via arg0. All the other arguments
are platform defined. The Arm development platforms use the following convention:

* BLI passes the address of a meminfo_t structure to BL2 via argl. This structure contains the memory layout
available to BL2.

256 Chapter 5. System Design

Trusted Firmware-A

e When dynamic configuration files are present, the firmware configuration for the next Boot Loader stage is
populated in the first available argument and the generic hardware configuration is passed the next available
argument. For example,

FW_CONFIG is loaded by BL1, then its address is passed in arg® to BL2.
TB_FW_CONFIG address is retrieved by BL2 from FW_CONFIG device tree.

If HW_CONFIG is loaded by BL1, then its address is passed in arg2 to BL2. Note, argl is already used
for meminfo_t.

If SOC_FW_CONFIG is loaded by BL2, then its address is passed in argl to BL31. Note, arg® is used
to pass the list of executable images.

Similarly, if HW_CONFIG is loaded by BL1 or BL2, then its address is passed in arg2 to BL31.

For other BL3x images, if the firmware configuration file is loaded by BL2, then its address is passed in
arg0® and if HW_CONFIG is loaded then its address is passed in arg1l.

BL1

This stage begins execution from the platform’s reset vector at EL.3. The reset address is platform dependent but it is
usually located in a Trusted ROM area. The BL1 data section is copied to trusted SRAM at runtime.

On the Arm development platforms, BL1 code starts execution from the reset vector defined by the constant
BL1_RO_BASE. The BL1 data section is copied to the top of trusted SRAM as defined by the constant BL1_RW_BASE.

The functionality implemented by this stage is as follows.

Determination of boot path

Whenever a CPU is released from reset, BL1 needs to distinguish between a warm boot and a cold boot. This is done
using platform-specific mechanisms (see the plat_get_my_entrypoint() function in the Porting Guide). In the
case of a warm boot, a CPU is expected to continue execution from a separate entrypoint. In the case of a cold boot, the
secondary CPUs are placed in a safe platform-specific state (see the plat_secondary_cold_boot_setup () function
in the Porting Guide) while the primary CPU executes the remaining cold boot path as described in the following
sections.

This step only applies when PROGRAMMABLE_RESET_ADDRESS=0. Refer to the CPU Reset for more information on the
effect of the PROGRAMMABLE_RESET_ADDRESS platform build option.

Architectural initialization

BL1 performs minimal architectural initialization as follows.
* Exception vectors

BLI1 sets up simple exception vectors for both synchronous and asynchronous exceptions. The default behavior
upon receiving an exception is to populate a status code in the general purpose register X0/R0® and call the
plat_report_exception() function (see the Porting Guide). The status code is one of:

For AArch64:

0x0 : Synchronous exception from Current EL with SP_EL®
0x1 : IRQ exception from Current EL with SP_EL®
0x2 : FIQ exception from Current EL with SP_ELO®
0x3 : System Error exception from Current EL with SP_EL®

(continues on next page)

5.4. Firmware Design 257

Trusted Firmware-A

(continued from previous page)

0x4 : Synchronous exception from Current EL with SP_ELx

0x5 : IRQ exception from Current EL with SP_ELx

0x6 : FIQ exception from Current EL with SP_ELx

0x7 : System Error exception from Current EL with SP_ELx
0x8 : Synchronous exception from Lower EL using aarch64

0x9 : IRQ exception from Lower EL using aarch64

Oxa : FIQ exception from Lower EL using aarch64

Oxb : System Error exception from Lower EL using aarch64
®xc : Synchronous exception from Lower EL using aarch32

0xd : IRQ exception from Lower EL using aarch32

Oxe : FIQ exception from Lower EL using aarch32

0xf : System Error exception from Lower EL using aarch32

For AArch32:

0x10 : User mode

0x11 : FIQ mode

0x12 : IRQ mode

0x13 : SVC mode

0x16 : Monitor mode
0x17 : Abort mode

Oxla : Hypervisor mode
0x1b : Undefined mode
0x1f : System mode

The plat_report_exception() implementation on the Arm FVP port programs the Versatile Express System
LED register in the following format to indicate the occurrence of an unexpected exception:

SYS_LED[0] - Security state (Secure=0/Non-Secure=1)

SYS_LED[2:1] - Exception Level (EL3=0x3, EL2=0x2, EL1=0x1, EL0®=0x0)
For AArch32 it is always 0x0

SYS_LED[7:3] - Exception Class (Sync/Async & origin). This is the value
of the status code

A write to the LED register reflects in the System LEDs (S6LEDO..7) in the CLCD window of the FVP.

BL1 does not expect to receive any exceptions other than the SMC exception. For the latter, BL1 installs a simple
stub. The stub expects to receive a limited set of SMC types (determined by their function IDs in the general
purpose register X0/R0):

— BL1_SMC_RUN_IMAGE: This SMC is raised by BL2 to make BL1 pass control to EL3 Runtime Software.

— All SMCs listed in section “BL1 SMC Interface” in the Firmware Update (FWU) Design Guide are sup-
ported for AArch64 only. These SMCs are currently not supported when BL1 is built for AArch32.

Any other SMC leads to an assertion failure.
¢ CPU initialization

BLI1 calls the reset_handler() function which in turn calls the CPU specific reset handler function (see the
section: “CPU specific operations framework”™).

 Control register setup (for AArch64)

— SCTLR_EL3. Instruction cache is enabled by setting the SCTLR_EL3.TI bit. Alignment and stack alignment
checking is enabled by setting the SCTLR_EL3.A and SCTLR_EL3. SA bits. Exception endianness is set to
little-endian by clearing the SCTLR_EL3. EE bit.

258 Chapter 5. System Design

Trusted Firmware-A

SCR_EL3. The register width of the next lower exception level is set to AArch64 by setting the SCR. RW bit.
The SCR.EA bit is set to trap both External Aborts and SError Interrupts in EL3. The SCR. SIF bit is also
set to disable instruction fetches from Non-secure memory when in secure state.

CPTR_EL3. Accesses to the CPACR_EL1 register from EL1 or EL2, or the CPTR_EL2 register from EL2
are configured to not trap to EL3 by clearing the CPTR_EL3.TCPAC bit. Access to the trace functionality
is configured not to trap to EL3 by clearing the CPTR_EL3.TTA bit. Instructions that access the registers
associated with Floating Point and Advanced SIMD execution are configured to not trap to EL3 by clearing
the CPTR_EL3. TFP bit.

DAIF. The SError interrupt is enabled by clearing the SError interrupt mask bit.

MDCR_EL3. The trap controls, MDCR_EL3.TDOSA, MDCR_EL3.TDA and MDCR_EL3.TPN, are set so that
accesses to the registers they control do not trap to EL3. AArch64 Secure self-hosted debug is disabled
by setting the MDCR_EL3. SDD bit. Also MDCR_EL3.SPD32 is set to disable AArch32 Secure self-hosted
privileged debug from S-EL1.

 Control register setup (for AArch32)

— SCTLR. Instruction cache is enabled by setting the SCTLR. I bit. Alignment checking is enabled by setting

the SCTLR. A bit. Exception endianness is set to little-endian by clearing the SCTLR.EE bit.
SCR. The SCR. STF bit is set to disable instruction fetches from Non-secure memory when in secure state.

CPACR. Allow execution of Advanced SIMD instructions at PLO and PL1, by clearing the CPACR.ASEDIS
bit. Access to the trace functionality is configured not to trap to undefined mode by clearing the CPACR.
TRCDIS bit.

NSACR. Enable non-secure access to Advanced SIMD functionality and system register access to imple-
mented trace registers.

FPEXC. Enable access to the Advanced SIMD and floating-point functionality from all Exception levels.

CPSR.A. The Asynchronous data abort interrupt is enabled by clearing the Asynchronous data abort inter-
ru