
Trusted Firmware-A
Release 2.10.4

Trusted Firmware-A contributors

Apr 26, 2024

CONTENTS

1 About 1

2 Getting Started 48

3 Processes & Policies 97

4 Components 133

5 System Design 313

6 Porting Guide 437

7 Platform Ports 499

8 Performance & Testing 638

9 Security Advisories 657

10 Design Documents 676

11 Threat Model 735

12 Tools 784

13 Change Log & Release Notes 790

14 Glossary 984

15 License 989

16 Getting Started 992

Index 993

i

CHAPTER

ONE

ABOUT

1.1 Feature Overview

This page provides an overview of the current TF-A feature set. For a full description of these features and their
implementation details, please see the documents that are part of the Components and System Design chapters.

The Change Log & Release Notes provides details of changes made since the last release.

1.1.1 Current features

• Initialization of the secure world, for example exception vectors, control registers and interrupts for the
platform.

• Library support for CPU specific reset and power down sequences. This includes support for errata
workarounds and the latest Arm DynamIQ CPUs.

• Drivers to enable standard initialization of Arm System IP, for example Generic Interrupt Controller
(GIC), Cache Coherent Interconnect (CCI), Cache Coherent Network (CCN), Network Interconnect
(NIC) and TrustZone Controller (TZC).

• Secure Monitor library code such as world switching, EL2/EL1 context management and interrupt rout-
ing.

• SMC (SecureMonitor Call) handling, conforming to the SMCCalling Convention using an EL3 runtime
services framework.

• PSCI library support for CPU, cluster and system power management use-cases. This library is pre-
integrated with the AArch64 EL3 Runtime Software, and is also suitable for integration with other
AArch32 EL3 Runtime Software, for example an AArch32 Secure OS.

• A generic SCMI driver to interface with conforming power controllers, for example the Arm System
Control Processor (SCP).

• A minimal AArch32 Secure Payload (SP_MIN) to demonstrate PSCI library integration with AArch32
EL3 Runtime Software.

• Secure partition manager dispatcher(SPMD) with following two configurations:

– S-EL2 SPMC implementation, widely compliant with FF-A v1.1 EAC0 and initial support of FF-A
v1.2.

1

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

– EL3 SPMC implementation, compliant with a subset of FF-A v1.1 EAC0.

• Support for Arm CCA based on FEAT_RMEwhich supports authenticated boot and execution of RMM
with the necessary routing of RMI commands as specified in RMM Beta 0 Specification.

• A Test SP and SPD to demonstrate AArch64 SecureMonitor functionality and SP interaction with PSCI.

• SPDs for the OP-TEE Secure OS, NVIDIA Trusted Little Kernel, Trusty Secure OS and ProvenCore
Secure OS.

• A Trusted Board Boot implementation, conforming to all mandatory TBBR requirements. This includes
image authentication, Firmware recovery, Firmware encryption and packaging of the various firmware
images into a Firmware Image Package (FIP).

• Measured boot support with PoC to showcase its interaction with firmware TPM (fTPM) service im-
plemneted on top of OP-TEE.

• Support for Dynamic Root of Trust for Measurement (DRTM).

• Following firmware update mechanisms available:

– PSA Firmware Update (PSA FWU)

– TBBR Firmware Update (TBBR FWU)

• Reliability, Availability, and Serviceability (RAS) functionality, including

– A Secure Partition Manager (SPM) to manage Secure Partitions in Secure-EL0, which can be used
to implement simple management and security services.

– An SDEI dispatcher to route interrupt-based SDEI events.

– An Exception Handling Framework (EHF) that allows dispatching of EL3 interrupts to their reg-
istered handlers, to facilitate firmware-first error handling.

• A dynamic configuration framework that enables each of the firmware images to be configured at runtime
if required by the platform. It also enables loading of a hardware configuration (for example, a kernel
device tree) as part of the FIP, to be passed through the firmware stages. This feature is now incorporated
inside the firmware configuration framework (fconf).

• Support for alternative boot flows, for example to support platforms where the EL3 Runtime Software is
loaded using other firmware or a separate secure system processor, or where a non-TF-A ROM expects
BL2 to be loaded at EL3.

• Support for Errata management firmware interface.

• Support for the GCC, LLVM and Arm Compiler 6 toolchains.

• Support for combining several libraries into a “romlib” image that may be shared across images to reduce
memory footprint. The romlib image is stored in ROM but is accessed through a jump-table that may
be stored in read-write memory, allowing for the library code to be patched.

• Position-Independent Executable (PIE) support.

2 Chapter 1. About

https://github.com/OP-TEE/optee_os
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
https://source.android.com/security/trusty
https://provenrun.com/products/provencore/
https://provenrun.com/products/provencore/

Trusted Firmware-A, Release 2.10.4

1.1.2 Experimental features

A feature is considered experimental when still in development or isn’t known to the TF-A team as widely
deployed or proven on end products. It is generally advised such options aren’t pulled into real deployments, or
done with the appropriate level of supplementary integration testing.

A feature is no longer considered experimental when it is generally agreed the said feature has reached a level
of maturity and quality comparable to other features that have been integrated into products.

Experimental build options are found in following section Experimental build options. Their use through the
build emits a warning message.

Additionally the following libraries are marked experimental when included in a platform:

• MPU translation library lib/xlat_mpu

• RSS comms driver drivers/arm/rss

1.1.3 Still to come

• Support for additional platforms.

• Documentation enhancements.

• Ongoing support for new architectural features, CPUs and System IP.

• Ongoing support for new Arm system architecture specifications.

• Ongoing security hardening, optimization and quality improvements.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

1.2 Release Processes

1.2.1 Project Release Cadence

The project currently aims to do a release once every 6 months which will be tagged on the master branch.
There will be a code freeze (stop merging non-essential changes) up to 4 weeks prior to the target release date.
The release candidates will start appearing after this and only bug fixes or updates required for the release will
be merged. The maintainers are free to use their judgement on what changes are essential for the release. A
release branch may be created after code freeze if there are significant changes that need merging onto the
integration branch during the merge window.

The release testing will be performed on release candidates and depending on issues found, additional release
candidates may be created to fix the issues.

1.2. Release Processes 3

Trusted Firmware-A, Release 2.10.4

|<----------6 months---------->|
|<---4 weeks--->| |<---4 weeks--->|

+---> time
| | | |

code freeze ver w.x code freeze ver y.z

Version numbering

TF-A version is given in Makefile, through several macros:

• VERSION_MAJOR

• VERSION_MINOR

• VERSION_PATCH

For example, TF-A v2.10 has VERSION_MAJOR=2, VERSION_MINOR=10 and VERSION_PATCH=0.

This VERSION_PATCH macro is only increased for LTS releases.

Upcoming Releases

These are the estimated dates for the upcoming release. These may change depending on project requirement
and partner feedback.

Release Version Target Date Expected Code Freeze
v2.0 1st week of Oct ‘18 1st week of Sep ‘18
v2.1 5th week of Mar ‘19 1st week of Mar ‘19
v2.2 4th week of Oct ‘19 1st week of Oct ‘19
v2.3 4th week of Apr ‘20 1st week of Apr ‘20
v2.4 2nd week of Nov ‘20 4th week of Oct ‘20
v2.5 3rd week of May ‘21 5th week of Apr ‘21
v2.6 4th week of Nov ‘21 2nd week of Nov ‘21
v2.7 5th week of May ‘22 3rd week of May ‘22
v2.8 5th week of Nov ‘22 3rd week of Nov ‘22
v2.9 4th week of May ‘23 2nd week of May ‘23
v2.10 4th week of Nov ‘23 2nd week of Nov ‘23

1.2.2 Removal of Deprecated Interfaces

As mentioned in the Platform Ports Policy, this is a live document cataloging all the deprecated interfaces in
TF-A project and the Release version after which it will be removed.

4 Chapter 1. About

Trusted Firmware-A, Release 2.10.4

Interface Deprecation
Date

Removed after
Release

Comments

Mbedtls-2.x 2.10 2.10 Support for TF-A builds with Mbedtls-
2.x will be removed

STM32MP15_OPTEE_RSV_SHM2.10 3.0 OP-TEE manages its own memory on
STM32MP15

1.2.3 Removal of Deprecated Drivers

As mentioned in the Platform Ports Policy, this is a live document cataloging all the deprecated drivers in TF-A
project and the Release version after which it will be removed.

Driver Deprecation Date Removed after Release Comments
None at this time.

Copyright (c) 2018-2023, Arm Limited and Contributors. All rights reserved.

1.3 Project Maintenance

Trusted Firmware-A (TF-A) is an open governance community project. All contributions are reviewed and
merged by the community members listed below.

For more details on the roles of maintainers, code owners and general information about code reviews in TF-A
project, please refer to the Code Review Guidelines.

1.3.1 Maintainers

Note: If you wish to become a maintainer for TF-A project, please refer to the Project Maintenance Processes.

Mail
Dan Handley <dan.handley@arm.com>

GitHub ID
danh-arm

Mail
Soby Mathew <soby.mathew@arm.com>

GitHub ID
soby-mathew

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

1.3. Project Maintenance 5

mailto:dan.handley@arm.com
https://github.com/danh-arm
mailto:soby.mathew@arm.com
https://github.com/soby-mathew
mailto:sandrine.bailleux@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
sandrine-bailleux-arm

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Mark Dykes <mark.dykes@arm.com>

GitHub ID
mardyk01

Mail
Olivier Deprez <olivier.deprez@arm.com>

GitHub ID
odeprez

Mail
Bipin Ravi <bipin.ravi@arm.com>

GitHub ID
bipinravi-arm

Mail
Joanna Farley <joanna.farley@arm.com>

GitHub ID
joannafarley-arm

Mail
Julius Werner <jwerner@chromium.org>

GitHub ID
jwerner-chromium

Mail
Varun Wadekar <vwadekar@nvidia.com>

GitHub ID
vwadekar

Mail
Andre Przywara <andre.przywara@arm.com>

GitHub ID
Andre-ARM

6 Chapter 1. About

https://github.com/sandrine-bailleux-arm
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:mark.dykes@arm.com
https://github.com/mardyk01
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:bipin.ravi@arm.com
https://github.com/bipinravi-arm
mailto:joanna.farley@arm.com
https://github.com/joannafarley-arm
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium
mailto:vwadekar@nvidia.com
https://github.com/vwadekar
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM

Trusted Firmware-A, Release 2.10.4

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

GitHub ID
laurenw-arm

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Mail
Raghu Krishnamurthy <raghu.ncstate@icloud.com>

GitHub ID
raghuncstate

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Yann Gautier <yann.gautier@st.com>

GitHub ID
Yann-lms

1.3.2 LTS Maintainers

Mail
Bipin Ravi <bipin.ravi@arm.com>

GitHub ID
bipinravi-arm

Mail
Joanna Farley <joanna.farley@arm.com>

GitHub ID
joannafarley-arm

Mail
Okash Khawaja <okash@google.com>

GitHub ID
bytefire

Mail
Varun Wadekar <vwadekar@nvidia.com>

GitHub ID
vwadekar

1.3. Project Maintenance 7

mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:raghu.ncstate@icloud.com
https://github.com/raghuncstate
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:yann.gautier@st.com
https://github.com/Yann-lms
mailto:bipin.ravi@arm.com
https://github.com/bipinravi-arm
mailto:joanna.farley@arm.com
https://github.com/joannafarley-arm
mailto:okash@google.com
https://github.com/bytefire
mailto:vwadekar@nvidia.com
https://github.com/vwadekar

Trusted Firmware-A, Release 2.10.4

Mail
Yann Gautier <yann.gautier@st.com>

GitHub ID
Yann-lms

1.3.3 Code owners

Common Code

Armv7-A architecture port

Mail
Etienne Carriere <etienne.carriere@linaro.org>

GitHub ID
etienne-lms

Build Definitions for CMake Build System

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Files
/

Software Delegated Exception Interface (SDEI)

Mail
Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>

GitHub ID
jayanthchidanand-arm

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Files
services/std_svc/sdei/

8 Chapter 1. About

mailto:yann.gautier@st.com
https://github.com/Yann-lms
mailto:etienne.carriere@linaro.org
https://github.com/etienne-lms
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:jayanthdodderi.chidanand@arm.com
https://github.com/jayanthchidanand-arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm

Trusted Firmware-A, Release 2.10.4

Trusted Boot

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

GitHub ID
sandrine-bailleux-arm

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

GitHub ID
laurenw-arm

Mail
Jimmy Brisson <jimmy.brisson@arm.com>

GitHub ID
jimmy-brisson

Files
drivers/auth/

Secure Partition Manager Core (EL3 FF-A SPMC)

Mail
Marc Bonnici <marc.bonnici@arm.com>

GitHub ID
marcbonnici

Files
services/std_svc/spm/el3_spmc/*

Secure Partition Manager Dispatcher (SPMD)

Mail
Olivier Deprez <olivier.deprez@arm.com>

GitHub ID
odeprez

Mail
Joao Alves <Joao.Alves@arm.com>

1.3. Project Maintenance 9

mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:jimmy.brisson@arm.com
https://github.com/theotherjimmy
mailto:marc.bonnici@arm.com
https://github.com/marcbonnici
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:Joao.Alves@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
J-Alves

Files
services/std_svc/spmd/*

Exception Handling Framework (EHF)

Mail
Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>

GitHub ID
jayanthchidanand-arm

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Files
bl31/ehf.c

Realm Management Monitor Dispatcher (RMMD)

Mail
Javier Almansa Sobrino <javier.almansasobrino@arm.com>

GitHub ID
javieralso-arm

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Files
services/std_svc/rmmd/*

Files
include/services/rmmd_svc.h

Files
include/services/rmm_core_manifest.h

10 Chapter 1. About

https://github.com/J-Alves
mailto:jayanthdodderi.chidanand@arm.com
https://github.com/jayanthchidanand-arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:javier.almansasobrino@arm.com
https://github.com/javieralso-arm
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov

Trusted Firmware-A, Release 2.10.4

Realm Management Extension (RME)

Mail
Javier Almansa Sobrino <javier.almansasobrino@arm.com>

GitHub ID
javieralso-arm

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Drivers, Libraries and Framework Code

Console API framework

Mail
Julius Werner <jwerner@chromium.org>

GitHub ID
jwerner-chromium

Files
drivers/console/

Files
include/drivers/console.h

Files
plat/common/aarch64/crash_console_helpers.S

coreboot support libraries

Mail
Julius Werner <jwerner@chromium.org>

GitHub ID
jwerner-chromium

Files
drivers/coreboot/

Files
include/drivers/coreboot/

Files
include/lib/coreboot.h

1.3. Project Maintenance 11

mailto:javier.almansasobrino@arm.com
https://github.com/javieralso-arm
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium

Trusted Firmware-A, Release 2.10.4

Files
lib/coreboot/

eMMC/UFS drivers

Mail
Haojian Zhuang <haojian.zhuang@linaro.org>

GitHub ID
hzhuang1

Files
drivers/partition/

Files
drivers/synopsys/emmc/

Files
drivers/synopsys/ufs/

Files
drivers/ufs/

Files
include/drivers/dw_ufs.h

Files
include/drivers/ufs.h

Files
include/drivers/synopsys/dw_mmc.h

Arm® Ethos™-N NPU driver

Mail
Joshua Slater <joshua.slater@arm.com>

GitHub ID
jslater8

Mail
Ştefana Simion <stefana.simion@arm.com>

GitHub ID
stefanasimion

Files
drivers/arm/ethosn/

Files
include/drivers/arm/ethosn.h

12 Chapter 1. About

mailto:haojian.zhuang@linaro.org
https://github.com/hzhuang1
mailto:joshua.slater@arm.com
https://github.com/jslater8
mailto:stefana.simion@arm.com
https://github.com/stefanasimion

Trusted Firmware-A, Release 2.10.4

Files
include/drivers/arm/ethosn_cert.h

Files
include/drivers/arm/ethosn_fip.h

Files
include/drivers/arm/ethosn_oid.h

Files
plat/arm/board/juno/juno_ethosn_tzmp1_def.h

Files
plat/arm/common/fconf/fconf_ethosn_getter.c

Files
include/plat/arm/common/fconf_ethosn_getter.h

Files
fdts/juno-ethosn.dtsi

JTAG DCC console driver

Mail
Michal Simek <michal.simek@amd.com>

GitHub ID
michalsimek

Mail
Amit Nagal <amit.nagal@amd.com>

GitHub ID
amit-nagal

Mail
Akshay Belsare <akshay.belsare@amd.com>

GitHub ID
Akshay-Belsare

Files
drivers/arm/dcc/

Files
include/drivers/arm/dcc.h

1.3. Project Maintenance 13

mailto:michal.simek@amd.com
https://github.com/michalsimek
mailto:amit.nagal@amd.com
https://github.com/amit-nagal
mailto:akshay.belsare@amd.com
https://github.com/Akshay-Belsare

Trusted Firmware-A, Release 2.10.4

Power State Coordination Interface (PSCI)

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

GitHub ID
laurenw-arm

Files
lib/psci/

DebugFS

Mail
Olivier Deprez <olivier.deprez@arm.com>

GitHub ID
odeprez

Files
lib/debugfs/

Firmware Configuration Framework (FCONF)

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

14 Chapter 1. About

mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Lauren.Wehrmeister@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
laurenw-arm

Files
lib/fconf/

Performance Measurement Framework (PMF)

Mail
Joao Alves <Joao.Alves@arm.com>

GitHub ID
J-Alves

Files
lib/pmf/

Errata Management

Mail
Bipin Ravi <bipin.ravi@arm.com>

GitHub ID
bipinravi-arm

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

GitHub ID
laurenw-arm

Arm CPU libraries

Mail
Bipin Ravi <bipin.ravi@arm.com>

GitHub ID
bipinravi-arm

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

GitHub ID
laurenw-arm

Files
lib/cpus/

1.3. Project Maintenance 15

https://github.com/laurenw-arm
mailto:Joao.Alves@arm.com
https://github.com/J-Alves
mailto:bipin.ravi@arm.com
https://github.com/bipinravi-arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:bipin.ravi@arm.com
https://github.com/bipinravi-arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm

Trusted Firmware-A, Release 2.10.4

Reliability Availability Serviceabilty (RAS) framework

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Olivier Deprez <olivier.deprez@arm.com>

GitHub ID
odeprez

Files
lib/extensions/ras/

Activity Monitors Unit (AMU) extensions

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Files
lib/extensions/amu/

Memory Partitioning And Monitoring (MPAM) extensions

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Files
lib/extensions/mpam/

16 Chapter 1. About

mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm

Trusted Firmware-A, Release 2.10.4

Pointer Authentication (PAuth) and Branch Target Identification (BTI) extensions

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Files
lib/extensions/pauth/

Statistical Profiling Extension (SPE)

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Files
lib/extensions/spe/

Standard C library

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Files
lib/libc/

Library At ROM (ROMlib)

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Files
lib/romlib/

1.3. Project Maintenance 17

mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm

Trusted Firmware-A, Release 2.10.4

Translation tables (xlat_tables) library

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Joao Alves <Joao.Alves@arm.com>

GitHub ID
J-Alves

Files
lib/xlat_tables_*/

IO abstraction layer

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Olivier Deprez <olivier.deprez@arm.com>

GitHub ID
odeprez

Files
drivers/io/

GIC driver

Mail
Alexei Fedorov <Alexei.Fedorov@arm.com>

GitHub ID
AlexeiFedorov

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

18 Chapter 1. About

mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Joao.Alves@arm.com
https://github.com/J-Alves
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:Alexei.Fedorov@arm.com
https://github.com/AlexeiFedorov
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:Madhukar.Pappireddy@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
madhukar-Arm

Mail
Olivier Deprez <olivier.deprez@arm.com>

GitHub ID
odeprez

Files
drivers/arm/gic/

Message Handling Unit (MHU) driver

Mail
David Vincze <david.vincze@arm.com>

GitHub ID
davidvincze

Files
include/drivers/arm/mhu.h

Files
drivers/arm/mhu

Runtime Security Subsystem (RSS) comms driver

Mail
David Vincze <david.vincze@arm.com>

GitHub ID
davidvincze

Files
include/drivers/arm/rss_comms.h

Files
drivers/arm/rss

Libfdt wrappers

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

1.3. Project Maintenance 19

https://github.com/madhukar-Arm
mailto:olivier.deprez@arm.com
https://github.com/odeprez
mailto:david.vincze@arm.com
https://github.com/davidvincze
mailto:david.vincze@arm.com
https://github.com/davidvincze
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:manish.badarkhe@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
ManishVB-Arm

Files
common/fdt_wrappers.c

Firmware Encryption Framework

Mail
Sumit Garg <sumit.garg@linaro.org>

GitHub ID
b49020

Files
drivers/io/io_encrypted.c

Files
include/drivers/io/io_encrypted.h

Files
include/tools_share/firmware_encrypted.h

Measured Boot

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

GitHub ID
sandrine-bailleux-arm

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Jimmy Brisson <jimmy.brisson@arm.com>

GitHub ID
jimmy-brisson

Files
drivers/measured_boot

Files
include/drivers/measured_boot

Files
docs/components/measured_boot

20 Chapter 1. About

https://github.com/ManishVB-Arm
mailto:sumit.garg@linaro.org
https://github.com/b49020
mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:jimmy.brisson@arm.com
https://github.com/theotherjimmy

Trusted Firmware-A, Release 2.10.4

Files
plat/arm/board/fvp/fvp*_measured_boot.c

DRTM

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Files
services/std_svc/drtm

PSA Firmware Update

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

GitHub ID
sandrine-bailleux-arm

Files
drivers/fwu

Files
include/drivers/fwu

Platform Security Architecture (PSA) APIs

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

GitHub ID
sandrine-bailleux-arm

Mail
Jimmy Brisson <jimmy.brisson@arm.com>

1.3. Project Maintenance 21

mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:jimmy.brisson@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
jimmy-brisson

Files
include/lib/psa

Files
lib/psa

System Control and Management Interface (SCMI) Server

Mail
Etienne Carriere <etienne.carriere@st.com>

GitHub ID
etienne-lms

Mail
Peng Fan <peng.fan@nxp.com>

GitHub ID
MrVan

Files
drivers/scmi-msg

Files
include/drivers/scmi*

Max Power Mitigation Mechanism (MPMM)

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Files
include/lib/mpmm/

Files
lib/mpmm/

22 Chapter 1. About

https://github.com/theotherjimmy
mailto:etienne.carriere@st.com
https://github.com/etienne-lms
mailto:peng.fan@nxp.com
https://github.com/MrVan
mailto:chris.kay@arm.com
https://github.com/cjkay

Trusted Firmware-A, Release 2.10.4

Granule Protection Tables Library (GPT-RME)

Mail
Soby Mathew <soby.mathew@arm.com>

GitHub ID
soby-mathew

Mail
Javier Almansa Sobrino <javier.almansasobrino@arm.com>

GitHub ID
javieralso-arm

Files
lib/gpt_rme

Files
include/lib/gpt_rme

Firmware Handoff Library (Transfer List)

Mail
Raymond Mao <raymond.mao@linaro.org>

GitHub ID
raymo200915

Mail
Harrison Mutai <harrison.mutai@arm.com>

GitHub ID
harrisonmutai-arm

Files
lib/transfer_list

Files
include/lib/transfer_list.h

Platform Ports

Allwinner ARMv8 platform port

Mail
Andre Przywara <andre.przywara@arm.com>

GitHub ID
Andre-ARM

1.3. Project Maintenance 23

mailto:soby.mathew@arm.com
https://github.com/soby-mathew
mailto:javier.almansasobrino@arm.com
https://github.com/javieralso-arm
mailto:raymond.mao@linaro.org
https://github.com/raymo200915
mailto:harrison.mutai@arm.com
https://github.com/harrisonmutai-arm
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM

Trusted Firmware-A, Release 2.10.4

Mail
Samuel Holland <samuel@sholland.org>

GitHub ID
smaeul

Files
docs/plat/allwinner.rst

Files
plat/allwinner/

Files
drivers/allwinner/

Amlogic Meson S905 (GXBB) platform port

Mail
Andre Przywara <andre.przywara@arm.com>

GitHub ID
Andre-ARM

Files
docs/plat/meson-gxbb.rst

Files
drivers/amlogic/

Files
plat/amlogic/gxbb/

Amlogic Meson S905x (GXL) platform port

Mail
Remi Pommarel <repk@triplefau.lt>

GitHub ID
remi-triplefault

Files
docs/plat/meson-gxl.rst

Files
plat/amlogic/gxl/

24 Chapter 1. About

mailto:samuel@sholland.org
https://github.com/smaeul
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM
mailto:repk@triplefau.lt
https://github.com/repk

Trusted Firmware-A, Release 2.10.4

Amlogic Meson S905X2 (G12A) platform port

Mail
Carlo Caione <ccaione@baylibre.com>

GitHub ID
carlocaione

Files
docs/plat/meson-g12a.rst

Files
plat/amlogic/g12a/

Amlogic Meson A113D (AXG) platform port

Mail
Carlo Caione <ccaione@baylibre.com>

GitHub ID
carlocaione

Files
docs/plat/meson-axg.rst

Files
plat/amlogic/axg/

Arm FPGA platform port

Mail
Andre Przywara <andre.przywara@arm.com>

GitHub ID
Andre-ARM

Mail
Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>

GitHub ID
javieralso-arm

Files
plat/arm/board/arm_fpga

1.3. Project Maintenance 25

mailto:ccaione@baylibre.com
https://github.com/carlocaione
mailto:ccaione@baylibre.com
https://github.com/carlocaione
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM
mailto:Javier.AlmansaSobrino@arm.com
https://github.com/javieralso-arm

Trusted Firmware-A, Release 2.10.4

Arm FVP Platform port

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>

GitHub ID
madhukar-Arm

Files
plat/arm/board/fvp

Arm Juno Platform port

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Files
plat/arm/board/juno

Arm Morello and N1SDP Platform ports

Mail
Anurag Koul <anurag.koul@arm.com>

GitHub ID
anukou

Mail
Chandni Cherukuri <chandni.cherukuri@arm.com>

GitHub ID
chandnich

Files
plat/arm/board/morello

26 Chapter 1. About

mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:Madhukar.Pappireddy@arm.com
https://github.com/madhukar-Arm
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:anurag.koul@arm.com
https://github.com/anukou
mailto:chandni.cherukuri@arm.com
https://github.com/chandnich

Trusted Firmware-A, Release 2.10.4

Files
plat/arm/board/n1sdp

Arm Rich IoT Platform ports

Mail
Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>

GitHub ID
abdellatif-elkhlifi

Mail
Xueliang Zhong <xueliang.zhong@arm.com>

GitHub ID
xueliang-zhong-arm

Files
plat/arm/board/corstone700

Files
plat/arm/board/a5ds

Files
plat/arm/board/corstone1000

Arm Reference Design platform ports

Mail
Thomas Abraham <thomas.abraham@arm.com>

GitHub ID
thomas-arm

Mail
Vijayenthiran Subramaniam <vijayenthiran.subramaniam@arm.com>

GitHub ID
vijayenthiran-arm

Files
plat/arm/css/sgi/

Files
plat/arm/board/rde1edge/

Files
plat/arm/board/rdn1edge/

Files
plat/arm/board/rdn2/

1.3. Project Maintenance 27

mailto:abdellatif.elkhlifi@arm.com
https://github.com/abdellatif-elkhlifi
mailto:xueliang.zhong@arm.com
https://github.com/xueliang-zhong-arm
mailto:thomas.abraham@arm.com
https://github.com/thomas-arm
mailto:vijayenthiran.subramaniam@arm.com
https://github.com/vijayenthiran-arm

Trusted Firmware-A, Release 2.10.4

Files
plat/arm/board/rdv1/

Files
plat/arm/board/rdv1mc/

Files
plat/arm/board/sgi575/

Arm Total Compute platform port

Mail
Vishnu Banavath <vishnu.banavath@arm.com>

GitHub ID
vishnu-banavath

Mail
Rupinderjit Singh <rupinderjit.singh@arm.com>

GitHub ID
rupsin01

Files
plat/arm/board/tc

Aspeed platform port

Mail
Chia-Wei Wang <chiawei_wang@aspeedtech.com>

GitHub ID
ChiaweiW

Mail
Neal Liu <neal_liu@aspeedtech.com>

GitHub ID
Neal-liu

Files
docs/plat/ast2700.rst

Files
plat/aspeed/

28 Chapter 1. About

mailto:vishnu.banavath@arm.com
https://github.com/vishnu-banavath
mailto:rupinderjit.singh@arm.com
https://github.com/rupsin01
mailto:chiawei_wang@aspeedtech.com
https://github.com/chiaweiw
mailto:neal_liu@aspeedtech.com
https://github.com/neal-liu

Trusted Firmware-A, Release 2.10.4

HiSilicon HiKey and HiKey960 platform ports

Mail
Haojian Zhuang <haojian.zhuang@linaro.org>

GitHub ID
hzhuang1

Files
docs/plat/hikey.rst

Files
docs/plat/hikey960.rst

Files
plat/hisilicon/hikey/

Files
plat/hisilicon/hikey960/

HiSilicon Poplar platform port

Mail
Shawn Guo <shawn.guo@linaro.org>

GitHub ID
shawnguo2

Files
docs/plat/poplar.rst

Files
plat/hisilicon/poplar/

Intel SocFPGA platform ports

Mail
Sieu Mun Tang <sieu.mun.tang@intel.com>

GitHub ID
sieumunt

Mail
Benjamin Jit Loon Lim <jit.loon.lim@intel.com>

GitHub ID
BenjaminLimJL

Files
plat/intel/soc/

1.3. Project Maintenance 29

mailto:haojian.zhuang@linaro.org
https://github.com/hzhuang1
mailto:shawn.guo@linaro.org
https://github.com/shawnguo2
mailto:sieu.mun.tang@intel.com
https://github.com/sieumunt
mailto:jit.loon.lim@intel.com
https://github.com/BenjaminLimJL

Trusted Firmware-A, Release 2.10.4

Files
drivers/intel/soc/

MediaTek platform ports

Mail
Rex-BC Chen <rex-bc.chen@mediatek.com>

GitHub ID
mtk-rex-bc-chen

Mail
Leon Chen <leon.chen@mediatek.com>

GitHub ID
leon-chen-mtk

Mail
Jason-CH Chen <jason-ch.chen@mediatek.com>

GitHub ID
jason-ch-chen

Mail
Yidi Lin <yidilin@chromium.org>

GitHub ID
linyidi

Files
docs/plat/mt*.rst

Files
plat/mediatek/

Marvell platform ports and SoC drivers

Mail
Konstantin Porotchkin <kostap@marvell.com>

GitHub ID
kostapr

Files
docs/plat/marvell/

Files
plat/marvell/

Files
drivers/marvell/

30 Chapter 1. About

mailto:rex-bc.chen@mediatek.com
https://github.com/mtk-rex-bc-chen
mailto:leon.chen@mediatek.com
https://github.com/leon-chen-mtk
mailto:jason-ch.chen@mediatek.com
https://github.com/jason-ch-chen
mailto:yidilin@chromium.org
https://github.com/linyidi
mailto:kostap@marvell.com
https://github.com/kostapr

Trusted Firmware-A, Release 2.10.4

Files
tools/marvell/

Nuvoton npcm845x platform port

Mail
Hila Miranda-Kuzi <hila.miranda.kuzi1@gmail.com>

GitHub ID
hilamirandakuzi1

Mail
Margarita Glushkin <rutigl@gmail.com>

GitHub ID
rutigl

Mail
Avi Fishman <avi.fishman@nuvoton.com>

GitHub ID
avifishman

Files
docs/plat/npcm845x.rst

Files
drivers/nuvoton/

Files
include/drivers/nuvoton/

Files
include/plat/nuvoton/

Files
plat/nuvoton/

NVidia platform ports

Mail
Varun Wadekar <vwadekar@nvidia.com>

GitHub ID
vwadekar

Files
docs/plat/nvidia-tegra.rst

Files
include/lib/cpus/aarch64/denver.h

1.3. Project Maintenance 31

mailto:hila.miranda.kuzi1@gmail.com
https://github.com/hilamirandakuzi1
mailto:rutigl@gmail.com
https://github.com/rutigl
mailto:avi.fishman@nuvoton.com
https://github.com/avifishman
mailto:vwadekar@nvidia.com
https://github.com/vwadekar

Trusted Firmware-A, Release 2.10.4

Files
lib/cpus/aarch64/denver.S

Files
plat/nvidia/

NXP i.MX 7 WaRP7 platform port and SoC drivers

Mail
Bryan O’Donoghue <bryan.odonoghue@linaro.org>

GitHub ID
bryanodonoghue

Mail
Jun Nie <jun.nie@linaro.org>

GitHub ID
niej

Files
docs/plat/warp7.rst

Files
plat/imx/common/

Files
plat/imx/imx7/

Files
drivers/imx/timer/

Files
drivers/imx/uart/

Files
drivers/imx/usdhc/

NXP i.MX 8 platform port

Mail
Peng Fan <peng.fan@nxp.com>

GitHub ID
MrVan

Files
docs/plat/imx8.rst

Files
plat/imx/

32 Chapter 1. About

mailto:bryan.odonoghue@linaro.org
https://github.com/bryanodonoghue
mailto:jun.nie@linaro.org
https://github.com/niej
mailto:peng.fan@nxp.com
https://github.com/MrVan

Trusted Firmware-A, Release 2.10.4

NXP i.MX8M platform port

Mail
Jacky Bai <ping.bai@nxp.com>

GitHub ID
JackyBai

Files
docs/plat/imx8m.rst

Files
plat/imx/imx8m/

NXP i.MX9 platform port

Mail
Jacky Bai <ping.bai@nxp.com>

GitHub ID
JackyBai

Files
docs/plat/imx9.rst

Files
plat/imx/imx93/

NXP QorIQ Layerscape common code for platform ports

Mail
Pankaj Gupta <pankaj.gupta@nxp.com>

GitHub ID
pangupta

Mail
Jiafei Pan <jiafei.pan@nxp.com>

GitHub ID
JiafeiPan

Files
docs/plat/nxp/

Files
plat/nxp/

Files
drivers/nxp/

1.3. Project Maintenance 33

mailto:ping.bai@nxp.com
https://github.com/JackyBai
mailto:ping.bai@nxp.com
https://github.com/JackyBai
mailto:pankaj.gupta@nxp.com
https://github.com/pangupta
mailto:jiafei.pan@nxp.com
https://github.com/JiafeiPan

Trusted Firmware-A, Release 2.10.4

Files
tools/nxp/

NXP SoC Part LX2160A and its platform port

Mail
Pankaj Gupta <pankaj.gupta@nxp.com>

GitHub ID
pangupta

Files
plat/nxp/soc-lx2160a

Files
plat/nxp/soc-lx2160a/lx2162aqds

Files
plat/nxp/soc-lx2160a/lx2160aqds

Files
plat/nxp/soc-lx2160a/lx2160ardb

NXP SoC Part LS1028A and its platform port

Mail
Jiafei Pan <jiafei.pan@nxp.com>

GitHub ID
JiafeiPan

Files
plat/nxp/soc-ls1028a

Files
plat/nxp/soc-ls1028a/ls1028ardb

NXP SoC Part LS1043A and its platform port

Mail
Jiafei Pan <jiafei.pan@nxp.com>

GitHub ID
JiafeiPan

Files
plat/nxp/soc-ls1043a

Files
plat/nxp/soc-ls1043a/ls1043ardb

34 Chapter 1. About

mailto:pankaj.gupta@nxp.com
https://github.com/pangupta
mailto:jiafei.pan@nxp.com
https://github.com/JiafeiPan
mailto:jiafei.pan@nxp.com
https://github.com/JiafeiPan

Trusted Firmware-A, Release 2.10.4

NXP SoC Part LS1046A and its platform port

Mail
Jiafei Pan <jiafei.pan@nxp.com>

GitHub ID
JiafeiPan

Files
plat/nxp/soc-ls1046a

Files
plat/nxp/soc-ls1046a/ls1046ardb

Files
plat/nxp/soc-ls1046a/ls1046afrwy

Files
plat/nxp/soc-ls1046a/ls1046aqds

NXP SoC Part LS1088A and its platform port

Mail
Jiafei Pan <jiafei.pan@nxp.com>

GitHub ID
JiafeiPan

Files
plat/nxp/soc-ls1088a

Files
plat/nxp/soc-ls1088a/ls1088ardb

Files
plat/nxp/soc-ls1088a/ls1088aqds

QEMU platform port

Mail
Jens Wiklander <jens.wiklander@linaro.org>

GitHub ID
jenswi-linaro

Files
docs/plat/qemu.rst

Files
plat/qemu/

1.3. Project Maintenance 35

mailto:jiafei.pan@nxp.com
https://github.com/JiafeiPan
mailto:jiafei.pan@nxp.com
https://github.com/JiafeiPan
mailto:jens.wiklander@linaro.org
https://github.com/jenswi-linaro

Trusted Firmware-A, Release 2.10.4

QTI platform port

Mail
Saurabh Gorecha <sgorecha@codeaurora.org>

GitHub ID
sgorecha

Mail
Lachit Patel <lpatel@codeaurora.org>

GitHub ID
lachitp

Mail
Sreevyshanavi Kare <skare@codeaurora.org>

GitHub ID
sreekare

Mail
Muhammad Arsath K F <quic_mkf@quicinc.com>

GitHub ID
quic_mkf

Mail
QTI TF Maintainers <qti.trustedfirmware.maintainers@codeaurora.org>

Files
docs/plat/qti.rst

Files
plat/qti/

QTI MSM8916 platform port

Mail
Stephan Gerhold <stephan@gerhold.net>

GitHub ID
stephan-gh

Mail
Nikita Travkin <nikita@trvn.ru>

GitHub ID
TravMurav

Files
docs/plat/qti-msm8916.rst

Files
plat/qti/mdm9607/

36 Chapter 1. About

mailto:sgorecha@codeaurora.org
https://github.com/sgorecha
mailto:lpatel@codeaurora.org
https://github.com/lachitp
mailto:skare@codeaurora.org
https://github.com/sreekare
mailto:quic_mkf@quicinc.com
https://github.com/quicmkf
mailto:qti.trustedfirmware.maintainers@codeaurora.org
mailto:stephan@gerhold.net
https://github.com/stephan-gh
mailto:nikita@trvn.ru
https://github.com/TravMurav

Trusted Firmware-A, Release 2.10.4

Files
plat/qti/msm8909/

Files
plat/qti/msm8916/

Files
plat/qti/msm8939/

Raspberry Pi 3 platform port

Mail
Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>

GitHub ID
grandpaul

Files
docs/plat/rpi3.rst

Files
plat/rpi/rpi3/

Files
plat/rpi/common/

Files
drivers/rpi3/

Files
include/drivers/rpi3/

Raspberry Pi 4 platform port

Mail
Andre Przywara <andre.przywara@arm.com>

GitHub ID
Andre-ARM

Files
docs/plat/rpi4.rst

Files
plat/rpi/rpi4/

Files
plat/rpi/common/

Files
drivers/rpi3/

1.3. Project Maintenance 37

mailto:paul.liu@linaro.org
https://github.com/grandpaul
mailto:andre.przywara@arm.com
https://github.com/Andre-ARM

Trusted Firmware-A, Release 2.10.4

Files
include/drivers/rpi3/

Renesas rcar-gen3 platform port

Mail
Marek Vasut <marek.vasut@gmail.com>

GitHub ID
marex

Files
docs/plat/rcar-gen3.rst

Files
plat/renesas/common

Files
plat/renesas/rcar

Files
drivers/renesas/common

Files
drivers/renesas/rcar

Files
tools/renesas/rcar_layout_create

Renesas RZ/G2 platform port

Mail
Biju Das <biju.das.jz@bp.renesas.com>

GitHub ID
bijucdas

Mail
Marek Vasut <marek.vasut@gmail.com>

GitHub ID
marex

Mail
Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>

GitHub ID
prabhakarlad

Files
docs/plat/rz-g2.rst

38 Chapter 1. About

mailto:marek.vasut@gmail.com
https://github.com/marex
mailto:biju.das.jz@bp.renesas.com
https://github.com/bijucdas
mailto:marek.vasut@gmail.com
https://github.com/marex
mailto:prabhakar.mahadev-lad.rj@bp.renesas.com
https://github.com/prabhakarlad

Trusted Firmware-A, Release 2.10.4

Files
plat/renesas/common

Files
plat/renesas/rzg

Files
drivers/renesas/common

Files
drivers/renesas/rzg

Files
tools/renesas/rzg_layout_create

RockChip platform port

Mail
Tony Xie <tony.xie@rock-chips.com>

GitHub ID
TonyXie06

GitHub ID
rockchip-linux

Mail
Heiko Stuebner <heiko@sntech.de>

GitHub ID
mmind

Mail
Julius Werner <jwerner@chromium.org>

GitHub ID
jwerner-chromium

Files
plat/rockchip/

STM32MP1 platform port

Mail
Yann Gautier <yann.gautier@st.com>

GitHub ID
Yann-lms

Files
docs/plat/st/*

1.3. Project Maintenance 39

mailto:tony.xie@rock-chips.com
https://github.com/TonyXie06
https://github.com/rockchip-linux
mailto:heiko@sntech.de
https://github.com/mmind
mailto:jwerner@chromium.org
https://github.com/jwerner-chromium
mailto:yann.gautier@st.com
https://github.com/Yann-lms

Trusted Firmware-A, Release 2.10.4

Files
docs/plat/stm32mp1.rst

Files
drivers/st/

Files
fdts/stm32*

Files
include/drivers/st/

Files
include/dt-bindings/*/stm32*

Files
plat/st/

Files
tools/stm32image/

Synquacer platform port

Mail
Sumit Garg <sumit.garg@linaro.org>

GitHub ID
b49020

Files
docs/plat/synquacer.rst

Files
plat/socionext/synquacer/

Texas Instruments platform port

Mail
Nishanth Menon <nm@ti.com>

GitHub ID
nmenon

Files
docs/plat/ti-k3.rst

Files
plat/ti/

40 Chapter 1. About

mailto:sumit.garg@linaro.org
https://github.com/b49020
mailto:nm@ti.com
https://github.com/nmenon

Trusted Firmware-A, Release 2.10.4

UniPhier platform port

Mail
Orphan

Files
docs/plat/socionext-uniphier.rst

Files
plat/socionext/uniphier/

Xilinx platform port

Mail
Michal Simek <michal.simek@amd.com>

GitHub ID
michalsimek

Mail
Amit Nagal <amit.nagal@amd.com>

GitHub ID
amit-nagal

Mail
Akshay Belsare <akshay.belsare@amd.com>

GitHub ID
Akshay-Belsare

Files
docs/plat/xilinx*

Files
plat/xilinx/

Secure Payloads and Dispatchers

OP-TEE dispatcher

Mail
Jens Wiklander <jens.wiklander@linaro.org>

GitHub ID
jenswi-linaro

Files
docs/components/spd/optee-dispatcher.rst

1.3. Project Maintenance 41

mailto:michal.simek@amd.com
https://github.com/michalsimek
mailto:amit.nagal@amd.com
https://github.com/amit-nagal
mailto:akshay.belsare@amd.com
https://github.com/Akshay-Belsare
mailto:jens.wiklander@linaro.org
https://github.com/jenswi-linaro

Trusted Firmware-A, Release 2.10.4

Files
services/spd/opteed/

TLK

Mail
Varun Wadekar <vwadekar@nvidia.com>

GitHub ID
vwadekar

Files
docs/components/spd/tlk-dispatcher.rst

Files
include/bl32/payloads/tlk.h

Files
services/spd/tlkd/

Trusty secure payloads

Mail
Arve Hjønnevåg <arve@android.com>

GitHub ID
arve-android

Mail
Marco Nelissen <marcone@google.com>

GitHub ID
marcone

Mail
Varun Wadekar <vwadekar@nvidia.com>

GitHub ID
vwadekar

Files
docs/components/spd/trusty-dispatcher.rst

Files
services/spd/trusty/

42 Chapter 1. About

mailto:vwadekar@nvidia.com
https://github.com/vwadekar
mailto:arve@android.com
https://github.com/arve-android
mailto:marcone@google.com
https://github.com/marcone
mailto:vwadekar@nvidia.com
https://github.com/vwadekar

Trusted Firmware-A, Release 2.10.4

Test Secure Payload (TSP)

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Files
bl32/tsp/

Files
services/spd/tspd/

ProvenCore Secure Payload Dispatcher

Mail
Jérémie Corbier <jeremie.corbier@provenrun.com>

GitHub ID
jcorbier

Files
docs/components/spd/pnc-dispatcher.rst

Files
services/spd/pncd/

Tools

Fiptool

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Joao Alves <Joao.Alves@arm.com>

GitHub ID
J-Alves

Files
tools/fiptool/

1.3. Project Maintenance 43

mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:jeremie.corbier@provenrun.com
https://github.com/jcorbier
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Joao.Alves@arm.com
https://github.com/J-Alves

Trusted Firmware-A, Release 2.10.4

Cert_create tool

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

GitHub ID
sandrine-bailleux-arm

Mail
Manish Badarkhe <manish.badarkhe@arm.com>

GitHub ID
ManishVB-Arm

Mail
Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>

GitHub ID
laurenw-arm

Mail
Jimmy Brisson <jimmy.brisson@arm.com>

GitHub ID
jimmy-brisson

Files
tools/cert_create/

Encrypt_fw tool

Mail
Sumit Garg <sumit.garg@linaro.org>

GitHub ID
b49020

Files
tools/encrypt_fw/

Sptool

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Mail
Joao Alves <Joao.Alves@arm.com>

44 Chapter 1. About

mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:manish.badarkhe@arm.com
https://github.com/ManishVB-Arm
mailto:Lauren.Wehrmeister@arm.com
https://github.com/laurenw-arm
mailto:jimmy.brisson@arm.com
https://github.com/theotherjimmy
mailto:sumit.garg@linaro.org
https://github.com/b49020
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:Joao.Alves@arm.com

Trusted Firmware-A, Release 2.10.4

GitHub ID
J-Alves

Files
tools/sptool/

Build system

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Mail
Manish Pandey <manish.pandey2@arm.com>

GitHub ID
manish-pandey-arm

Files
Makefile

Files
make_helpers/

Threat Model

Mail
Sandrine Bailleux <sandrine.bailleux@arm.com>

GitHub ID
sandrine-bailleux-arm

Mail
Joanna Farley <joanna.farley@arm.com>

GitHub ID
joannafarley-arm

Mail
Raghu Krishnamurthy <raghu.ncstate@icloud.com>

GitHub ID
raghuncstate

Mail
Varun Wadekar <vwadekar@nvidia.com>

GitHub ID
vwadekar

1.3. Project Maintenance 45

https://github.com/J-Alves
mailto:chris.kay@arm.com
https://github.com/cjkay
mailto:manish.pandey2@arm.com
https://github.com/manish-pandey-arm
mailto:sandrine.bailleux@arm.com
https://github.com/sandrine-bailleux-arm
mailto:joanna.farley@arm.com
https://github.com/joannafarley-arm
mailto:raghu.ncstate@icloud.com
https://github.com/raghuncstate
mailto:vwadekar@nvidia.com
https://github.com/vwadekar

Trusted Firmware-A, Release 2.10.4

Files
docs/threat_model/

Conventional Changelog Extensions

Mail
Chris Kay <chris.kay@arm.com>

GitHub ID
CJKay

Files
tools/conventional-changelog-tf-a

1.4 Support & Contact

We welcome any feedback on TF-A and there are several methods for providing it or for obtaining support.

Warning: If you think you have found a security vulnerability, please report this using the process defined
in the Security Handling document.

1.4.1 Mailing Lists

Public mailing lists for TF-A and the wider Trusted Firmware project are hosted on TrustedFirmware.org. The
mailing lists can be used for general enquiries, enhancement requests and issue reports, or to follow and partic-
ipate in technical or organizational discussions around the project. These discussions include design proposals,
advance notice of changes and upcoming events.

The relevant lists for the TF-A project are:

• TF-A development

• TF-A-Tests development

You can see a summary of all the lists on the TrustedFirmware.org website.

1.4.2 Open Tech Forum Call

Every other week, we organize a call with all interested TF-A contributors. Anyone is welcome to join. This
is an opportunity to discuss any technical topic within the community. More details can be found here.

46 Chapter 1. About

mailto:chris.kay@arm.com
https://github.com/cjkay
https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://lists.trustedfirmware.org/mailman3/lists/tf-a-tests.lists.trustedfirmware.org/
https://lists.trustedfirmware.org/mailman3/lists/
https://www.trustedfirmware.org/meetings/tf-a-technical-forum/

Trusted Firmware-A, Release 2.10.4

1.4.3 Issue Tracker

Bug reports may be filed on the issue tracker on the TrustedFirmware.org website. Using this tracker gives
everyone visibility of the known issues in TF-A.

1.4.4 Arm Licensees

Arm licensees have an additional support conduit - they may contact Arm directly via their partner managers.

Copyright (c) 2019-2022, Arm Limited. All rights reserved.

1.5 Contributor Acknowledgements

Note: This file is only relevant for legacy contributions, to acknowledge the specific contributors referred to
in “Arm Limited and Contributors” copyright notices. As contributors are now encouraged to put their name
or company name directly into the copyright notices, this file is not relevant for new contributions. See the
License document for the correct template to use for new contributions.

• Linaro Limited

• Marvell International Ltd.

• NVIDIA Corporation

• NXP Semiconductors

• Socionext Inc.

• STMicroelectronics

• Xilinx, Inc.

Copyright (c) 2019, Arm Limited. All rights reserved.

1.5. Contributor Acknowledgements 47

https://developer.trustedfirmware.org

CHAPTER

TWO

GETTING STARTED

2.1 Prerequisites

This document describes the software requirements for building TF-A for AArch32 and AArch64 target plat-
forms.

It may possible to build TF-Awith combinations of software packages that are different from those listed below,
however only the software described in this document can be officially supported.

2.1.1 Build Host

TF-A can be built using either a Linux or a Windows machine as the build host.

A relatively recent Linux distribution is recommended for building TF-A. We have performed tests using
Ubuntu 22.04 LTS (64-bit) but other distributions should also work fine as a base, provided that the neces-
sary tools and libraries can be installed.

2.1.2 Toolchain

TF-A can be built with any of the following cross-compiler toolchains that target the Armv7-A or Armv8-A
architectures:

• TF-A has been tested with version 12.3.Rel1 (gcc 12.3) from the Arm Developer website

You will need the targets arm-none-eabi and aarch64-none-elf for AArch32 and
AArch64 builds respectively.

• Clang == 14.0.0

• Arm Compiler == 6.18

In addition, a native compiler is required to build the supporting tools.

Note: Versions greater than the ones specified are likely but not guaranteed to work. This is predominantly be-
cause TF-A carries its own copy of compiler-rt, which may be older than the version expected by the compiler.
Fixes and bug reports are always welcome.

48

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

Trusted Firmware-A, Release 2.10.4

Note: The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE, Cygwin, and Msys
(MinGW) shells, using version 5.3.1 of the GNU toolchain.

Note: For instructions on how to select the cross compiler refer to Performing an Initial Build.

2.1.3 Software and Libraries

The following tools are required to obtain and build TF-A:

• An appropriate toolchain (see Toolchain)

• GNU Make

• Git

The following libraries must be available to build one or more components or supporting tools:

• OpenSSL >= 1.0.0 (1.0.x, v3.0.0 to v3.0.6 highly discouraged due to security issues)

Required to build the cert_create, encrypt_fw, and fiptool tools.

Note: If using OpenSSL 3, older Linux versions may require it to be built from source code,
as it may not be available in the default package repositories. Please refer to the OpenSSL
project documentation for more information.

The following libraries are required for Trusted Board Boot and Measured Boot support:

• mbed TLS == 3.4.1 (tag: mbedtls-3.4.1)

These tools are optional:

• Device Tree Compiler (DTC) >= 1.4.7

Needed if you want to rebuild the provided Flattened Device Tree (FDT) source files (.dts
files). DTC is available for Linux through the package repositories of most distributions.

• Arm Development Studio (Arm-DS)

The standard software package used for debugging software on Arm development platforms
and FVP models.

• Node.js >= 16

Highly recommended, and necessary in order to install and use the packaged Git hooks and
helper tools. Without these tools you will need to rely on the CI for feedback on commit
message conformance.

• Poetry >= 1.3.2

2.1. Prerequisites 49

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio

Trusted Firmware-A, Release 2.10.4

Required for managing Python dependencies, this will allow you to reliably reproduce a
Python environment to build documentation and run analysis tools. Most importantly, it
ensures your system environment will not be affected by dependencies in the Python scripts.

Package Installation (Linux)

If you are using the recommended Ubuntu distribution then you can install the required packages with the
following command:

sudo apt install build-essential git

The optional packages can be installed using:

sudo apt install device-tree-compiler

Additionally, to install a version of Node.js compatible with TF-A’s repository scripts, you can use the Node
Version Manager. To install both NVM and an appropriate version of Node.js, run the following from the
root directory of the repository:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.1/install.sh |␣
↪→bash
exec "$SHELL" -ic "nvm install; exec $SHELL"

2.1.4 Supporting Files

TF-A has been tested with pre-built binaries and file systems from Linaro Release 20.01. Alternatively, you
can build the binaries from source using instructions in Performing an Initial Build.

2.1.5 Getting the TF-A Source

Source code for TF-A is maintained in a Git repository hosted on TrustedFirmware.org. To clone this repository
from the server, run the following in your shell:

git clone "https://review.trustedfirmware.org/TF-A/trusted-firmware-a"

Additional Steps for Contributors

If you are planning on contributing back to TF-A, there are some things you’ll want to know.

TF-A is hosted by a Gerrit Code Review server. Gerrit requires that all commits include a Change-Id footer,
and this footer is typically automatically generated by a Git hook installed by you, the developer.

If you have Node.js installed already, you can automatically install this hook, along with any additional hooks
and Javascript-based tooling that we use, by running from within your newly-cloned repository:

50 Chapter 2. Getting Started

https://github.com/nvm-sh/nvm#install--update-script
https://github.com/nvm-sh/nvm#install--update-script
http://releases.linaro.org/members/arm/platforms/20.01
https://www.gerritcodereview.com/

Trusted Firmware-A, Release 2.10.4

npm install --no-save

If you have opted not to install Node.js, you can install the Gerrit hook manually by running:

curl -Lo $(git rev-parse --git-dir)/hooks/commit-msg https://review.
↪→trustedfirmware.org/tools/hooks/commit-msg
chmod +x $(git rev-parse --git-dir)/hooks/commit-msg

You can read more about Git hooks in the githooks page of the Git documentation, available here.

Copyright (c) 2021-2023, Arm Limited. All rights reserved.

2.2 Building Documentation

To create a rendered copy of this documentation locally you can use the Sphinx tool to build and package the
plain-text documents into HTML-formatted pages.

If you are building the documentation for the first time then you will need to check that you have the required
software packages, as described in the Prerequisites section that follows.

Note: An online copy of the documentation is available at https://www.trustedfirmware.org/docs/tf-a, if you
want to view a rendered copy without doing a local build.

2.2.1 Prerequisites

For building a local copy of the TF-A documentation you will need:

• Python 3 (3.8 or later)

• PlantUML (1.2017.15 or later)

• Poetry (Python dependency manager)

• Optionally, the Dia application can be installed if you need to edit existing .dia diagram files, or create
new ones.

Below is an example set of instructions to get a working environment (tested on Ubuntu):

sudo apt install python3 python3-pip plantuml [dia]
curl -sSL https://install.python-poetry.org | python3 -

2.2. Building Documentation 51

https://git-scm.com/docs/githooks
http://www.sphinx-doc.org/en/master/
https://www.trustedfirmware.org/docs/tf-a
https://python-poetry.org/docs/
https://wiki.gnome.org/Apps/Dia

Trusted Firmware-A, Release 2.10.4

2.2.2 Building rendered documentation

To install Python dependencies using Poetry:

poetry install

Poetry will create a new virtual environment and install all dependencies listed in pyproject.toml. You
can get information about this environment, such as its location and the Python version, with the command:

poetry env info

If you have already sourced a virtual environment, Poetry will respect this and install dependencies there.

Once all dependencies are installed, the documentation can be compiled into HTML-formatted pages from the
project root directory by running:

poetry run make doc

Output from the build process will be placed in: docs/build/html.

Other Output Formats

We also support building documentation in other formats. From the docs directory of the project, run the
following command to see the supported formats.

poetry run make -C docs help

To build the documentation in PDF format, additionally ensure that the following packages are installed:

• FreeSerif font

• latexmk

• librsvg2-bin

• xelatex

• xindy

Below is an example set of instructions to install the required packages (tested on Ubuntu):

sudo apt install fonts-freefont-otf latexmk librsvg2-bin texlive-xetex xindy

Once all the dependencies are installed, run the command poetry run make -C docs latexpdf
to build the documentation. Output from the build process (trustedfirmware-a.pdf) can be found in
docs/build/latex.

52 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

Building rendered documentation from Poetry’s virtual environment

The command poetry run used in the steps above executes the input command from inside the project’s
virtual environment. The easiest way to activate this virtual environment is with the poetry shell com-
mand.

Running poetry shell from the directory containing this project, activates the same virtual environment.
This creates a sub-shell through which you can build the documentation directly with make.

poetry shell
make doc

Type exit to deactivate the virtual environment and exit this new shell. For other use cases, please see the
official Poetry documentation.

2.2.3 Building rendered documentation from a container

There may be cases where you can not either install or upgrade required dependencies to generate the docu-
ments, so in this case, one way to create the documentation is through a docker container. The first step is to
check if docker is installed in your host, otherwise check main docker page for installation instructions. Once
installed, run the following script from project root directory

docker run --rm -v $PWD:/tf-a sphinxdoc/sphinx \
bash -c 'cd /tf-a &&

apt-get update && apt-get install -y curl plantuml &&
curl -sSL https://install.python-poetry.org | python3 - &&
~/.local/bin/poetry install && ~/.local/bin/poetry run make doc'

The above command fetches the sphinxdoc/sphinx container from docker hub, launches the container,
installs documentation requirements and finally creates the documentation. Once done, exit the container and
output from the build process will be placed in: docs/build/html.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

2.3 Performing an Initial Build

• Before building TF-A, the environment variable CROSS_COMPILE must point to your cross compiler.

For AArch64:

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-

For AArch32:

export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-none-eabi-

2.3. Performing an Initial Build 53

https://python-poetry.org/docs/
https://www.docker.com/
https://hub.docker.com/repository/docker/sphinxdoc/sphinx

Trusted Firmware-A, Release 2.10.4

It is possible to build TF-A using Clang or Arm Compiler 6. To do so CC needs to point to the clang
or armclang binary, which will also select the clang or armclang assembler. Arm Compiler 6 will be
selected when the base name of the path assigned to CC matches the string ‘armclang’. GNU binutils
are required since the TF-A build system doesn’t currently support Arm Scatter files. Meaning the GNU
linker is used by default for Arm Compiler 6. Because of this dependency, CROSS_COMPILE should
be set as described above.

For AArch64 using Arm Compiler 6:

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all

On the other hand, Clang uses LLVM linker (LLD) and other LLVM binutils by default instead of GNU
utilities (LLVM linker (LLD) 14.0.0 is known to work with TF-A). CROSS_COMPILE need not be set
for Clang. Please note, that the default linker may be manually overridden using the LD variable.

Clang will be selected when the base name of the path assigned to CC contains the string ‘clang’. This is
to allow both clang and clang-X.Y to work.

For AArch64 using clang:

make CC=<path-to-clang>/bin/clang PLAT=<platform> all

• Change to the root directory of the TF-A source tree and build.

For AArch64:

make PLAT=<platform> all

For AArch32:

make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all

Notes:

– If PLAT is not specified, fvp is assumed by default. See the Build Options document for more
information on available build options.

– (AArch32 only) Currently only PLAT=fvp is supported.

– (AArch32 only) AARCH32_SP is the AArch32 EL3 Runtime Software and it corresponds to the
BL32 image. A minimal AARCH32_SP, sp_min, is provided by TF-A to demonstrate how PSCI
Library can be integrated with an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime
Softwaremay include other runtime services, for example TrustedOS services. A guide to integrate
PSCI library with AArch32 EL3 Runtime Software can be found at PSCI Library Integration guide
for Armv8-A AArch32 systems.

– (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32 image, is not compiled
in by default. Refer to the Test Secure Payload (TSP) and Dispatcher (TSPD) document for details
on building the TSP.

– By default this produces a release version of the build. To produce a debug version instead, refer
to the “Debugging options” section below.

54 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

– The build process creates products in a build directory tree, building the objects and binaries
for each boot loader stage in separate sub-directories. The following boot loader binary files are
created from the corresponding ELF files:

∗ build/<platform>/<build-type>/bl1.bin

∗ build/<platform>/<build-type>/bl2.bin

∗ build/<platform>/<build-type>/bl31.bin (AArch64 only)

∗ build/<platform>/<build-type>/bl32.bin (mandatory for AArch32)

where <platform> is the name of the chosen platform and <build-type> is either debug
or release. The actual number of images might differ depending on the platform.

• Build products for a specific build variant can be removed using:

make DEBUG=<D> PLAT=<platform> clean

…where <D> is 0 or 1, as specified when building.

The build tree can be removed completely using:

make realclean

Copyright (c) 2020-2022, Arm Limited. All rights reserved.

2.4 Building Supporting Tools

Note: OpenSSL 3.0 is needed in order to build the tools. A custom installation can be used if not updating the
OpenSSL version on the OS. In order to do this, use the OPENSSL_DIR variable after the make command
to indicate the location of the custom OpenSSL build. Then, to run the tools, use the LD_LIBRARY_PATH
to indicate the location of the built libraries. More info about OPENSSL_DIR can be found at Build Options.

2.4.1 Building and using the FIP tool

The following snippets build a FIP for the FVP platform. While it is not an intrinsic part of the FIP format, a
BL33 image is required for these examples. For the purposes of experimentation, Trusted Firmware-A Tests
(tftf.bin`) may be used. Refer to to the TFTF documentation for instructions on building a TFTF binary.

The TF-A build system provides the make target fip to create a FIP file for the specified platform using the FIP
creation tool included in the TF-A project. Examples below show how to build a FIP file for FVP, packaging
TF-A and BL33 images.

For AArch64:

2.4. Building Supporting Tools 55

https://git.trustedfirmware.org/TF-A/tf-a-tests.git/
https://trustedfirmware-a-tests.readthedocs.io/en/latest/

Trusted Firmware-A, Release 2.10.4

make PLAT=fvp BL33=<path-to>/bl33.bin fip

For AArch32:

make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/bl33.bin fip

The resulting FIP may be found in:

build/fvp/<build-type>/fip.bin

For advanced operations on FIP files, it is also possible to independently build the tool and create or modify
FIPs using this tool. To do this, follow these steps:

It is recommended to remove old artifacts before building the tool:

make -C tools/fiptool clean

Build the tool:

make [DEBUG=1] [V=1] fiptool

The tool binary can be located in:

./tools/fiptool/fiptool

Invoking the tool with help will print a help message with all available options.

Example 1: create a new Firmware package fip.bin that contains BL2 and BL31:

./tools/fiptool/fiptool create \
--tb-fw build/<platform>/<build-type>/bl2.bin \
--soc-fw build/<platform>/<build-type>/bl31.bin \
fip.bin

Example 2: view the contents of an existing Firmware package:

./tools/fiptool/fiptool info <path-to>/fip.bin

Example 3: update the entries of an existing Firmware package:

Change the BL2 from Debug to Release version
./tools/fiptool/fiptool update \

--tb-fw build/<platform>/release/bl2.bin \
build/<platform>/debug/fip.bin

Example 4: unpack all entries from an existing Firmware package:

Images will be unpacked to the working directory
./tools/fiptool/fiptool unpack <path-to>/fip.bin

Example 5: remove an entry from an existing Firmware package:

56 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

./tools/fiptool/fiptool remove \
--tb-fw build/<platform>/debug/fip.bin

Note that if the destination FIP file exists, the create, update and remove operations will automatically overwrite
it.

The unpack operation will fail if the images already exist at the destination. In that case, use -f or –force to
continue.

More information about FIP can be found in the Firmware Design document.

2.4.2 Building the Certificate Generation Tool

The cert_create tool is built as part of the TF-A build process when the fip make target is specified
and TBB is enabled (as described in the previous section), but it can also be built separately with the following
command:

make PLAT=<platform> [DEBUG=1] [V=1] certtool

For platforms that require their own IDs in certificate files, the generic ‘cert_create’ tool can be built with the
following command. Note that the target platform must define its IDs within a platform_oid.h header
file for the build to succeed.

make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool

DEBUG=1 builds the tool in debug mode. V=1makes the build process more verbose. The following command
should be used to obtain help about the tool:

./tools/cert_create/cert_create -h

Building the Firmware Encryption Tool

The encrypt_fw tool is built as part of the TF-A build process when the fip make target is specified, DE-
CRYPTION_SUPPORT and TBB are enabled, but it can also be built separately with the following command:

make PLAT=<platform> [DEBUG=1] [V=1] enctool

DEBUG=1 builds the tool in debug mode. V=1makes the build process more verbose. The following command
should be used to obtain help about the tool:

./tools/encrypt_fw/encrypt_fw -h

Note that the enctool in its current implementation only supports encryption key to be provided in plain format.
A typical implementation can very well extend this tool to support custom techniques to protect encryption key.

Also, a user may choose to provide encryption key or nonce as an input file via using cat <filename>
instead of a hex string.

2.4. Building Supporting Tools 57

Trusted Firmware-A, Release 2.10.4

Copyright (c) 2019-2022, Arm Limited. All rights reserved.

2.5 Build Options

The TF-A build system supports the following build options. Unless mentioned otherwise, these options are
expected to be specified at the build command line and are not to be modified in any component makefiles.
Note that the build system doesn’t track dependency for build options. Therefore, if any of the build options
are changed from a previous build, a clean build must be performed.

2.5.1 Common build options

• AARCH32_INSTRUCTION_SET: Choose the AArch32 instruction set that the compiler should use.
Valid values are T32 and A32. It defaults to T32 due to code having a smaller resulting size.

• AARCH32_SP : Choose the AArch32 Secure Payload component to be built as as the BL32 image when
ARCH=aarch32. The value should be the path to the directory containing the SP source, relative to
the bl32/; the directory is expected to contain a makefile called <aarch32_sp-value>.mk.

• AMU_RESTRICT_COUNTERS: Register reads to the group 1 counters will return zero at all but the
highest implemented exception level. Reads from the memory mapped view are unaffected by this con-
trol.

• ARCH : Choose the target build architecture for TF-A. It can take either aarch64 or aarch32 as
values. By default, it is defined to aarch64.

• ARM_ARCH_FEATURE: Optional Arm Architecture build option which specifies one or more feature
modifiers. This option has the form [no]feature+... and defaults to none. It translates into
compiler option -march=armvX[.Y]-a+[no]feature+.... See compiler’s documentation for
the list of supported feature modifiers.

• ARM_ARCH_MAJOR: The major version of Arm Architecture to target when compiling TF-A. Its value
must be numeric, and defaults to 8 . See also, Armv8 Architecture Extensions and Armv7 Architecture
Extensions in Firmware Design.

• ARM_ARCH_MINOR: The minor version of Arm Architecture to target when compiling TF-A. Its value
must be a numeric, and defaults to 0. See also, Armv8 Architecture Extensions in Firmware Design.

• ARM_BL2_SP_LIST_DTS: Path to DTS file snippet to override the hardcoded SP nodes in
tb_fw_config.

• ARM_SPMC_MANIFEST_DTS : path to an alternate manifest file used as the SPMC Core manifest.
Valid when SPD=spmd is selected.

• BL2: This is an optional build option which specifies the path to BL2 image for the fip target. In this
case, the BL2 in the TF-A will not be built.

• BL2U: This is an optional build option which specifies the path to BL2U image. In this case, the BL2U
in TF-A will not be built.

58 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

• RESET_TO_BL2: Boolean option to enable BL2 entrypoint as the CPU reset vector instead of the BL1
entrypoint. It can take the value 0 (CPU reset to BL1 entrypoint) or 1 (CPU reset to BL2 entrypoint).
The default value is 0.

• BL2_RUNS_AT_EL3: This is an implicit flag to denote that BL2 runs at EL3. While it is explicitly set
to 1 when RESET_TO_BL2 is set to 1 it can also be true in a 4-world system where RESET_TO_BL2
is 0.

• BL2_ENABLE_SP_LOAD: Boolean option to enable loading SP packages from the FIP. Automatically
enabled if SP_LAYOUT_FILE is provided.

• BL2_IN_XIP_MEM: In some use-cases BL2 will be stored in eXecute In Place (XIP) memory, like
BL1. In these use-cases, it is necessary to initialize the RW sections in RAM, while leaving the RO
sections in place. This option enable this use-case. For now, this option is only supported when RE-
SET_TO_BL2 is set to ‘1’.

• BL31: This is an optional build option which specifies the path to BL31 image for the fip target. In
this case, the BL31 in TF-A will not be built.

• BL31_KEY: This option is used when GENERATE_COT=1. It specifies a file that contains the BL31
private key in PEM format or a PKCS11 URI. If SAVE_KEYS=1, only a file is accepted and it will be
used to save the key.

• BL32: This is an optional build option which specifies the path to BL32 image for the fip target. In
this case, the BL32 in TF-A will not be built.

• BL32_EXTRA1: This is an optional build option which specifies the path to Trusted OS Extra1 image
for the fip target.

• BL32_EXTRA2: This is an optional build option which specifies the path to Trusted OS Extra2 image
for the fip target.

• BL32_KEY: This option is used when GENERATE_COT=1. It specifies a file that contains the BL32
private key in PEM format or a PKCS11 URI. If SAVE_KEYS=1, only a file is accepted and it will be
used to save the key.

• BL33: Path to BL33 image in the host file system. This is mandatory for fip target in case TF-A BL2
is used.

• BL33_KEY: This option is used when GENERATE_COT=1. It specifies a file that contains the BL33
private key in PEM format or a PKCS11 URI. If SAVE_KEYS=1, only a file is accepted and it will be
used to save the key.

• BRANCH_PROTECTION: Numeric value to enable ARMv8.3 Pointer Authentication and ARMv8.5
Branch Target Identification support for TF-A BL images themselves. If enabled, it is needed to use a
compiler that supports the option -mbranch-protection. Selects the branch protection features
to use:

• 0: Default value turns off all types of branch protection

• 1: Enables all types of branch protection features

• 2: Return address signing to its standard level

• 3: Extend the signing to include leaf functions

2.5. Build Options 59

Trusted Firmware-A, Release 2.10.4

• 4: Turn on branch target identification mechanism

The table below summarizes BRANCH_PROTECTION values, GCC compilation options and resulting
PAuth/BTI features.

Value GCC option PAuth BTI
0 none N N
1 standard Y Y
2 pac-ret Y N
3 pac-ret+leaf Y N
4 bti N Y

This option defaults to 0. Note that Pointer Authentication is enabled for Non-secure world irrespective
of the value of this option if the CPU supports it.

• BUILD_MESSAGE_TIMESTAMP: String used to identify the time and date of the compilation of each
build. It must be set to a C string (including quotes where applicable). Defaults to a string that contains
the time and date of the compilation.

• BUILD_STRING: Input string for VERSION_STRING, which allows the TF-A build to be uniquely
identified. Defaults to the current git commit id.

• BUILD_BASE: Output directory for the build. Defaults to ./build

• CFLAGS: Extra user options appended on the compiler’s command line in addition to the options set by
the build system.

• COLD_BOOT_SINGLE_CPU: This option indicates whether the platform may release several CPUs
out of reset. It can take either 0 (several CPUs may be brought up) or 1 (only one CPU will ever
be brought up during cold reset). Default is 0. If the platform always brings up a single CPU,
there is no need to distinguish between primary and secondary CPUs and the boot path can be opti-
mised. The plat_is_my_cpu_primary() and plat_secondary_cold_boot_setup()
platform porting interfaces do not need to be implemented in this case.

• COT: When Trusted Boot is enabled, selects the desired chain of trust. Defaults to tbbr.

• CRASH_REPORTING: A non-zero value enables a console dump of processor register state when an
unexpected exception occurs during execution of BL31. This option defaults to the value of DEBUG -
i.e. by default this is only enabled for a debug build of the firmware.

• CREATE_KEYS: This option is used when GENERATE_COT=1. It tells the certificate generation tool
to create new keys in case no valid keys are present or specified. Allowed options are ‘0’ or ‘1’. Default
is ‘1’.

• CTX_INCLUDE_AARCH32_REGS : Boolean option that, when set to 1, will cause the AArch32 system
registers to be included when saving and restoring the CPU context. The option must be set to 0 for
AArch64-only platforms (that is on hardware that does not implement AArch32, or at least not at EL1
and higher ELs). Default value is 1.

• CTX_INCLUDE_FPREGS: Boolean option that, when set to 1, will cause the FP registers to be included
when saving and restoring the CPU context. Default is 0.

60 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

• CTX_INCLUDE_MTE_REGS: Numeric value to include Memory Tagging Extension registers in cpu
context. This must be enabled, if the platform wants to use this feature in the Secure world and MTE is
enabled at ELX. This flag can take values 0 to 2, to align with the FEATURE_DETECTIONmechanism.
Default value is 0.

• CTX_INCLUDE_NEVE_REGS: Numeric value, when set will cause the Armv8.4-NV registers to be
saved/restored when entering/exiting an EL2 execution context. This flag can take values 0 to 2, to align
with the FEATURE_DETECTION mechanism. Default value is 0.

• CTX_INCLUDE_PAUTH_REGS: Numeric value to enable the Pointer Authentication for Secure world.
This will cause the ARMv8.3-PAuth registers to be included when saving and restoring the CPU con-
text as part of world switch. This flag can take values 0 to 2, to align with FEATURE_DETECTION
mechanism. Default value is 0.

Note that Pointer Authentication is enabled for Non-secure world irrespective of the value of this flag if
the CPU supports it.

• DEBUG: Chooses between a debug and release build. It can take either 0 (release) or 1 (debug) as values.
0 is the default.

• DECRYPTION_SUPPORT: This build flag enables the user to select the authenticated decryption al-
gorithm to be used to decrypt firmware/s during boot. It accepts 2 values: aes_gcm and none. The
default value of this flag is none to disable firmware decryption which is an optional feature as per
TBBR.

• DISABLE_BIN_GENERATION: Boolean option to disable the generation of the binary image. If set
to 1, then only the ELF image is built. 0 is the default.

• DISABLE_MTPMU: Numeric option to disable FEAT_MTPMU (Multi Threaded PMU). FEAT_MTPMU
is an optional feature available on Armv8.6 onwards. This flag can take values 0 to 2, to align with the
FEATURE_DETECTION mechanism. Default is 0.

• DYN_DISABLE_AUTH: Provides the capability to dynamically disable Trusted Board Boot au-
thentication at runtime. This option is meant to be enabled only for development platforms.
TRUSTED_BOARD_BOOT flag must be set if this flag has to be enabled. 0 is the default.

• E: Boolean option to make warnings into errors. Default is 1.

When specifying higher warnings levels (W=1 and higher), this option defaults to 0. This is done to
encourage contributors to use them, as they are expected to produce warnings that would otherwise fail
the build. New contributions are still expected to build with W=0 and E=1 (the default).

• EL3_PAYLOAD_BASE: This option enables booting an EL3 payload instead of the normal boot flow.
It must specify the entry point address of the EL3 payload. Please refer to the “Booting an EL3 payload”
section for more details.

• ENABLE_AMU_AUXILIARY_COUNTERS: Enables support for AMU auxiliary counters (also known
as group 1 counters). These are implementation-defined counters, and as such require additional platform
configuration. Default is 0.

• ENABLE_AMU_FCONF: Enables configuration of the AMU through FCONF, which allows platforms
with auxiliary counters to describe them via the HW_CONFIG device tree blob. Default is 0.

• ENABLE_ASSERTIONS: This option controls whether or not calls to assert() are compiled out.
For debug builds, this option defaults to 1, and calls to assert() are left in place. For release builds,

2.5. Build Options 61

Trusted Firmware-A, Release 2.10.4

this option defaults to 0 and calls to assert() function are compiled out. This option can be set
independently of DEBUG. It can also be used to hide any auxiliary code that is only required for the
assertion and does not fit in the assertion itself.

• ENABLE_BACKTRACE: This option controls whether to enable backtrace dumps or not. It is supported
in both AArch64 and AArch32. However, in AArch32 the format of the frame records are not defined
in the AAPCS and they are defined by the implementation. This implementation of backtrace only
supports the format used by GCC when T32 interworking is disabled. For this reason enabling this
option in AArch32 will force the compiler to only generate A32 code. This option is enabled by default
only in AArch64 debug builds, but this behaviour can be overridden in each platform’s Makefile or in
the build command line.

• ENABLE_FEAT_AMU: Numeric value to enable Activity Monitor Unit extensions. This flag can take the
values 0 to 2, to align with the FEATURE_DETECTION mechanism. This is an optional architectural
feature available on v8.4 onwards. Some v8.2 implementations also implement an AMU and this option
can be used to enable this feature on those systems as well. This flag can take the values 0 to 2, the default
is 0.

• ENABLE_FEAT_AMUv1p1: Numeric value to enable the FEAT_AMUv1p1 extension.
FEAT_AMUv1p1 is an optional feature available on Arm v8.6 onwards. This flag can take the
values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_CSV2_2: Numeric value to enable the FEAT_CSV2_2 extension. It allows access to
the SCXTNUM_EL2 (Software Context Number) register during EL2 context save/restore operations.
FEAT_CSV2_2 is an optional feature available on Arm v8.0 onwards. This flag can take values 0 to 2,
to align with the FEATURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_DIT: Numeric value to enable FEAT_DIT (Data Independent Timing) extension.
It allows setting the DIT bit of PSTATE in EL3. FEAT_DIT is a mandatory architectural feature
and is enabled from v8.4 and upwards. This flag can take the values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_ECV: Numeric value to enable support for the Enhanced Counter Virtualization fea-
ture, allowing for access to the CNTPOFF_EL2 (Counter-timer Physical Offset register) during EL2 to
EL3 context save/restore operations. Its a mandatory architectural feature and is enabled from v8.6 and
upwards. This flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism.
Default value is 0.

• ENABLE_FEAT_FGT: Numeric value to enable support for FGT (Fine Grain Traps) feature allowing
for access to the HDFGRTR_EL2 (Hypervisor Debug Fine-Grained Read Trap Register) during EL2 to
EL3 context save/restore operations. Its a mandatory architectural feature and is enabled from v8.6 and
upwards. This flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism.
Default value is 0.

• ENABLE_FEAT_HCX: Numeric value to set the bit SCR_EL3.HXEn in EL3 to allow access to
HCRX_EL2 (extended hypervisor control register) from EL2 as well as adding HCRX_EL2 to the EL2
context save/restore operations. Its a mandatory architectural feature and is enabled from v8.7 and up-
wards. This flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism.
Default value is 0.

• ENABLE_FEAT_MTE_PERM: Numeric value to enable support for FEAT_MTE_PERM, which intro-
duces Allocation tag access permission to memory region attributes. FEAT_MTE_PERM is a optional

62 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

architectural feature available from v8.9 and upwards. This flag can take the values 0 to 2, to align with
the FEATURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_PAN: Numeric value to enable the FEAT_PAN (Privileged Access Never) extension.
FEAT_PAN adds a bit to PSTATE, generating a permission fault for any privileged data access from
EL1/EL2 to virtual memory address, accessible at EL0, provided (HCR_EL2.E2H=1). It is a mandatory
architectural feature and is enabled from v8.1 and upwards. This flag can take values 0 to 2, to align with
the FEATURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_RNG: Numeric value to enable the FEAT_RNG extension. FEAT_RNG is an optional
feature available on Arm v8.5 onwards. This flag can take the values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_RNG_TRAP: Numeric value to enable the FEAT_RNG_TRAP extension. This fea-
ture is only supported in AArch64 state. This flag can take values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0. FEAT_RNG_TRAP is an optional feature from
Armv8.5 onwards.

• ENABLE_FEAT_SB: Boolean option to let the TF-A code use the FEAT_SB (Speculation Barrier)
instruction FEAT_SB is an optional feature and defaults to 0 for pre-Armv8.5 CPUs, but is mandatory
for Armv8.5 or later CPUs. It is enabled from v8.5 and upwards and if needed can be overidden from
platforms explicitly.

• ENABLE_FEAT_SEL2: Numeric value to enable the FEAT_SEL2 (Secure EL2) extension.
FEAT_SEL2 is a mandatory feature available on Arm v8.4. This flag can take values 0 to 2, to align
with the FEATURE_DETECTION mechanism. Default is 0.

• ENABLE_FEAT_TWED: Numeric value to enable the FEAT_TWED (Delayed trapping of WFE Instruc-
tion) extension. FEAT_TWED is a optional feature available on Arm v8.6. This flag can take values 0 to
2, to align with the FEATURE_DETECTION mechanism. Default is 0.

When ENABLE_FEAT_TWED is set to 1, WFE instruction trapping gets delayed by the
amount of value in TWED_DELAY.

• ENABLE_FEAT_VHE: Numeric value to enable the FEAT_VHE (Virtualization Host Extensions) ex-
tension. It allows access to CONTEXTIDR_EL2 register during EL2 context save/restore opera-
tions.``FEAT_VHE`` is a mandatory architectural feature and is enabled from v8.1 and upwards. It
can take values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_TCR2: Numeric value to set the bit SCR_EL3.ENTCR2 in EL3 to allow access to
TCR2_EL2 (extended translation control) from EL2 as well as adding TCR2_EL2 to the EL2 context
save/restore operations. Its a mandatory architectural feature and is enabled from v8.9 and upwards. This
flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default value is
0.

• ENABLE_FEAT_S2PIE: Numeric value to enable support for FEAT_S2PIE at EL2 and below,
and context switch relevant registers. This flag can take the values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_S1PIE: Numeric value to enable support for FEAT_S1PIE at EL2 and below,
and context switch relevant registers. This flag can take the values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0.

2.5. Build Options 63

Trusted Firmware-A, Release 2.10.4

• ENABLE_FEAT_S2POE: Numeric value to enable support for FEAT_S2POE at EL2 and below,
and context switch relevant registers. This flag can take the values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_S1POE: Numeric value to enable support for FEAT_S1POE at EL2 and below,
and context switch relevant registers. This flag can take the values 0 to 2, to align with the FEA-
TURE_DETECTION mechanism. Default value is 0.

• ENABLE_FEAT_GCS: Numeric value to set the bit SCR_EL3.GCSEn in EL3 to allow use of Guarded
Control Stack from EL2 as well as adding the GCS registers to the EL2 context save/restore operations.
This flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default
value is 0.

• ENABLE_LTO: Boolean option to enable Link Time Optimization (LTO) support in GCC for TF-A.
This option is currently only supported for AArch64. Default is 0.

• ENABLE_FEAT_MPAM: Numeric value to enable lower ELs to use MPAM feature. MPAM is an
optional Armv8.4 extension that enables various memory system components and resources to define
partitions; software running at various ELs can assign themselves to desired partition to control their
performance aspects.

This flag can take values 0 to 2, to align with the FEATURE_DETECTION mechanism. When this
option is set to 1 or 2, EL3 allows lower ELs to access their own MPAM registers without trapping into
EL3. This option doesn’t make use of partitioning in EL3, however. Platform initialisation code should
configure and use partitions in EL3 as required. This option defaults to 2 since MPAM is enabled by
default for NS world only. The flag is automatically disabled when the target architecture is AArch32.

• ENABLE_MPMM: Boolean option to enable support for the Maximum Power Mitigation Mechanism
supported by certain Arm cores, which allows the SoC firmware to detect and limit high activity events
to assist in SoC processor power domain dynamic power budgeting and limit the triggering of whole-rail
(i.e. clock chopping) responses to overcurrent conditions. Defaults to 0.

• ENABLE_MPMM_FCONF: Enables configuration of MPMM through FCONF, which allows platforms
with cores supporting MPMM to describe them via the HW_CONFIG device tree blob. Default is 0.

• ENABLE_PIE: Boolean option to enable Position Independent Executable(PIE) support within generic
code in TF-A. This option is currently only supported in BL2, BL31, and BL32 (TSP) for AARCH64
binaries, and in BL32 (SP_min) for AARCH32. Default is 0.

• ENABLE_PMF: Boolean option to enable support for optional Performance Measurement Frame-
work(PMF). Default is 0.

• ENABLE_PSCI_STAT: Boolean option to enable support for optional PSCI functions
PSCI_STAT_RESIDENCY and PSCI_STAT_COUNT. Default is 0. In the absence of an al-
ternate stat collection backend, ENABLE_PMF must be enabled. If ENABLE_PMF is set, the residency
statistics are tracked in software.

• ENABLE_RUNTIME_INSTRUMENTATION: Boolean option to enable runtime instrumentation which
injects timestamp collection points into TF-A to allow runtime performance to be measured. Currently,
only PSCI is instrumented. Enabling this option enables the ENABLE_PMF build option as well. Default
is 0.

• ENABLE_SPE_FOR_NS : Numeric value to enable Statistical Profiling extensions. This is an op-
tional architectural feature for AArch64. This flag can take the values 0 to 2, to align with the FEA-

64 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

TURE_DETECTION mechanism. The default is 2 but is automatically disabled when the target archi-
tecture is AArch32.

• ENABLE_SVE_FOR_NS: Numeric value to enable Scalable Vector Extension (SVE) for the Non-secure
world only. SVE is an optional architectural feature for AArch64. Note that when SVE is enabled for the
Non-secure world, access to SIMD and floating-point functionality from the Secure world is disabled by
default and controlled with ENABLE_SVE_FOR_SWD. This is to avoid corruption of the Non-secure
world data in the Z-registers which are aliased by the SIMD and FP registers. The build option is not
compatible with the CTX_INCLUDE_FPREGS build option, and will raise an assert on platforms where
SVE is implemented and ENABLE_SVE_FOR_NS enabled. This flag can take the values 0 to 2, to align
with the FEATURE_DETECTIONmechanism. At this time, this build option cannot be used on systems
that have SPM_MM enabled. The default is 1.

• ENABLE_SVE_FOR_SWD: Boolean option to enable SVE for the Secure world. SVE is an optional ar-
chitectural feature for AArch64. Note that this option requires ENABLE_SVE_FOR_NS to be enabled.
The default is 0 and it is automatically disabled when the target architecture is AArch32.

• ENABLE_STACK_PROTECTOR: String option to enable the stack protection checks in GCC. Al-
lowed values are “all”, “strong”, “default” and “none”. The default value is set to “none”. “strong”
is the recommended stack protection level if this feature is desired. “none” disables the stack pro-
tection. For all values other than “none”, the plat_get_stack_protector_canary() plat-
form hook needs to be implemented. The value is passed as the last component of the option
-fstack-protector-$ENABLE_STACK_PROTECTOR.

• ENCRYPT_BL31: Binary flag to enable encryption of BL31 firmware. This flag depends on DECRYP-
TION_SUPPORT build flag.

• ENCRYPT_BL32: Binary flag to enable encryption of Secure BL32 payload. This flag depends on
DECRYPTION_SUPPORT build flag.

• ENC_KEY: A 32-byte (256-bit) symmetric key in hex string format. It could either be SSK or BSSK
depending on FW_ENC_STATUS flag. This value depends on DECRYPTION_SUPPORT build flag.

• ENC_NONCE: A 12-byte (96-bit) encryption nonce or Initialization Vector (IV) in hex string format.
This value depends on DECRYPTION_SUPPORT build flag.

• ERROR_DEPRECATED: This option decides whether to treat the usage of deprecated platform APIs,
helper functions or drivers within Trusted Firmware as error. It can take the value 1 (flag the use of
deprecated APIs as error) or 0. The default is 0.

• ETHOSN_NPU_DRIVER: boolean option to enable a SiP service that can configure an Arm® Ethos™-
N NPU. To use this service the target platform’s HW_CONFIG must include the device tree nodes for
the NPU. Currently, only the Arm Juno platform has this included in its HW_CONFIG and the platform
only loads the HW_CONFIG in AArch64 builds. Default is 0.

• ETHOSN_NPU_TZMP1: boolean option to enable TZMP1 support for the Arm® Ethos™-N NPU.
Requires ETHOSN_NPU_DRIVER and TRUSTED_BOARD_BOOT to be enabled.

• ETHOSN_NPU_FW: location of the NPU firmware binary (`ethosn.bin`). This firmware image
will be included in the FIP and loaded at runtime.

• EL3_EXCEPTION_HANDLING: When set to 1, enable handling of exceptions targeted at EL3. When
set 0 (default), no exceptions are expected or handled at EL3, and a panic will result. The exception
to this rule is when SPMD_SPM_AT_SEL2 is set to 1, in which case, only exceptions occuring during

2.5. Build Options 65

Trusted Firmware-A, Release 2.10.4

normal world execution, are trapped to EL3. Any exception trapped during secure world execution are
trapped to the SPMC. This is supported only for AArch64 builds.

• EVENT_LOG_LEVEL: Chooses the log level to use for Measured Boot when MEASURED_BOOT is
enabled. For a list of valid values, see LOG_LEVEL. Default value is 40 (LOG_LEVEL_INFO).

• FAULT_INJECTION_SUPPORT: ARMv8.4 extensions introduced support for fault injection from
lower ELs, and this build option enables lower ELs to use Error Records accessed via System Registers
to inject faults. This is applicable only to AArch64 builds.

This feature is intended for testing purposes only, and is advisable to keep disabled for production images.

• FIP_NAME: This is an optional build option which specifies the FIP filename for the fip target. Default
is fip.bin.

• FWU_FIP_NAME: This is an optional build option which specifies the FWU FIP filename for the
fwu_fip target. Default is fwu_fip.bin.

• FW_ENC_STATUS: Top level firmware’s encryption numeric flag, values:

0: Encryption is done with Secret Symmetric Key (SSK) which is common
for a class of devices.

1: Encryption is done with Binding Secret Symmetric Key (BSSK) which is
unique per device.

This flag depends on DECRYPTION_SUPPORT build flag.

• GENERATE_COT: Boolean flag used to build and execute the cert_create tool to create certificates
as per the Chain of Trust described in Trusted Board Boot. The build system then calls fiptool to
include the certificates in the FIP and FWU_FIP. Default value is ‘0’.

Specify both TRUSTED_BOARD_BOOT=1 and GENERATE_COT=1 to include support for the Trusted
Board Boot feature in the BL1 and BL2 images, to generate the corresponding certificates, and to include
those certificates in the FIP and FWU_FIP.

Note that if TRUSTED_BOARD_BOOT=0 and GENERATE_COT=1, the BL1 and BL2 images will not
include support for Trusted Board Boot. The FIP will still include the corresponding certificates. This
FIP can be used to verify the Chain of Trust on the host machine through other mechanisms.

Note that if TRUSTED_BOARD_BOOT=1 and GENERATE_COT=0, the BL1 and BL2 images will
include support for Trusted Board Boot, but the FIP and FWU_FIP will not include the corresponding
certificates, causing a boot failure.

• GICV2_G0_FOR_EL3: Unlike GICv3, the GICv2 architecture doesn’t have inherent support for spe-
cific EL3 type interrupts. Setting this build option to 1 assumes GICv2 Group 0 interrupts are expected
to target EL3, both by platform abstraction layer and Interrupt Management Framework. This allows
GICv2 platforms to enable features requiring EL3 interrupt type. This also means that all GICv2 Group
0 interrupts are delivered to EL3, and the Secure Payload interrupts needs to be synchronously handed
over to Secure EL1 for handling. The default value of this option is 0, which means the Group 0 inter-
rupts are assumed to be handled by Secure EL1.

• HANDLE_EA_EL3_FIRST_NS: When set to 1, External Aborts and SError Interrupts, resulting from
errors in NS world, will be always trapped in EL3 i.e. in BL31 at runtime. When set to 0 (default), these
exceptions will be trapped in the current exception level (or in EL1 if the current exception level is EL0).

66 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

• HW_ASSISTED_COHERENCY: On most Arm systems to-date, platform-specific software operations
are required for CPUs to enter and exit coherency. However, newer systems exist where CPUs’ entry
to and exit from coherency is managed in hardware. Such systems require software to only initiate
these operations, and the rest is managed in hardware, minimizing active software management. In
such systems, this boolean option enables TF-A to carry out build and run-time optimizations during
boot and power management operations. This option defaults to 0 and if it is enabled, then it implies
WARMBOOT_ENABLE_DCACHE_EARLY is also enabled.

If this flag is disabled while the platform which TF-A is compiled for includes cores that manage co-
herency in hardware, then a compilation error is generated. This is based on the fact that a system cannot
have, at the same time, cores that manage coherency in hardware and cores that don’t. In other words, a
platform cannot have, at the same time, cores that require HW_ASSISTED_COHERENCY=1 and cores
that require HW_ASSISTED_COHERENCY=0.

Note that, when HW_ASSISTED_COHERENCY is enabled, version 2 of translation library (xlat tables
v2) must be used; version 1 of translation library is not supported.

• IMPDEF_SYSREG_TRAP: Numeric value to enable the handling traps for implementation defined sys-
tem register accesses from lower ELs. Default value is 0.

• INVERTED_MEMMAP: memmap tool print by default lower addresses at the bottom, higher addresses
at the top. This build flag can be set to ‘1’ to invert this behavior. Lower addresses will be printed at the
top and higher addresses at the bottom.

• KEY_ALG: This build flag enables the user to select the algorithm to be used for generating the
PKCS keys and subsequent signing of the certificate. It accepts 5 values: rsa, rsa_1_5, ecdsa,
ecdsa-brainpool-regular and ecdsa-brainpool-twisted. The option rsa_1_5 is
the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is retained only for compati-
bility. The default value of this flag is rsa which is the TBBR compliant PKCS#1 RSA 2.1 scheme.

• KEY_SIZE: This build flag enables the user to select the key size for the algorithm specified by
KEY_ALG. The valid values for KEY_SIZE depend on the chosen algorithm and the cryptographic
module.

KEY_ALG Possible key sizes
rsa 1024 , 2048 (default), 3072, 4096
ecdsa 256 (default), 384
ecdsa-brainpool-regular unavailable
ecdsa-brainpool-twisted unavailable

• HASH_ALG: This build flag enables the user to select the secure hash algorithm. It accepts 3 values:
sha256, sha384 and sha512. The default value of this flag is sha256.

• LDFLAGS: Extra user options appended to the linkers’ command line in addition to the one set by the
build system.

• LOG_LEVEL: Chooses the log level, which controls the amount of console log output compiled into the
build. This should be one of the following:

0 (LOG_LEVEL_NONE)
10 (LOG_LEVEL_ERROR)

(continues on next page)

2.5. Build Options 67

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
20 (LOG_LEVEL_NOTICE)
30 (LOG_LEVEL_WARNING)
40 (LOG_LEVEL_INFO)
50 (LOG_LEVEL_VERBOSE)

All log output up to and including the selected log level is compiled into the build. The default value is
40 in debug builds and 20 in release builds.

• MEASURED_BOOT: Boolean flag to include support for the Measured Boot feature. This flag can be
enabled with TRUSTED_BOARD_BOOT in order to provide trust that the code taking the measurements
and recording them has not been tampered with.

This option defaults to 0.

• MARCH_DIRECTIVE: used to pass a -march option from the platform build options to the compiler.
An example usage:

MARCH_DIRECTIVE := -march=armv8.5-a

• HARDEN_SLS: used to pass -mharden-sls=all from the TF-A build options to the compiler cur-
rently supporting only of the options. GCC documentation: https://gcc.gnu.org/onlinedocs/gcc/
AArch64-Options.html#index-mharden-sls

An example usage:

HARDEN_SLS := 1

This option defaults to 0.

• NON_TRUSTED_WORLD_KEY: This option is used when GENERATE_COT=1. It specifies a file that
contains the Non-TrustedWorld private key in PEM format or a PKCS11 URI. If SAVE_KEYS=1, only
a file is accepted and it will be used to save the key.

• NS_BL2U: Path to NS_BL2U image in the host file system. This image is optional. It is only needed if
the platform makefile specifies that it is required in order to build the fwu_fip target.

• NS_TIMER_SWITCH: Enable save and restore for non-secure timer register contents uponworld switch.
It can take either 0 (don’t save and restore) or 1 (do save and restore). 0 is the default. An SPD may set
this to 1 if it wants the timer registers to be saved and restored.

• OPTEE_SP_FW_CONFIG: DTC build flag to include OP-TEE as SP in tb_fw_config device tree. This
flag is defined only when ARM_SPMC_MANIFEST_DTS manifest file name contains pattern optee_sp.

• OVERRIDE_LIBC: This option allows platforms to override the default libc for the BL image. It can
be either 0 (include) or 1 (remove). The default value is 0.

• PL011_GENERIC_UART: Boolean option to indicate the PL011 driver that the underlying hardware
is not a full PL011 UART but a minimally compliant generic UART, which is a subset of the PL011.
The driver will not access any register that is not part of the SBSA generic UART specification. Default
value is 0 (a full PL011 compliant UART is present).

• PLAT: Choose a platform to build TF-A for. The chosen platform name must be subdirectory of any
depth under plat/, and must contain a platform makefile named platform.mk. For example, to

68 Chapter 2. Getting Started

https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html#index-mharden-sls
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html#index-mharden-sls

Trusted Firmware-A, Release 2.10.4

build TF-A for the Arm Juno board, select PLAT=juno.

• PRELOADED_BL33_BASE: This option enables booting a preloaded BL33 image instead of the normal
boot flow. When defined, it must specify the entry point address for the preloaded BL33 image. This
option is incompatible with EL3_PAYLOAD_BASE. If both are defined, EL3_PAYLOAD_BASE has
priority over PRELOADED_BL33_BASE.

• PROGRAMMABLE_RESET_ADDRESS: This option indicates whether the reset vector address can be
programmed or is fixed on the platform. It can take either 0 (fixed) or 1 (programmable). Default is 0.
If the platform has a programmable reset address, it is expected that a CPU will start executing code
directly at the right address, both on a cold and warm reset. In this case, there is no need to identify
the entrypoint on boot and the boot path can be optimised. The plat_get_my_entrypoint()
platform porting interface does not need to be implemented in this case.

• PSCI_EXTENDED_STATE_ID: As per PSCI1.0 Specification, there are 2 formats possible for the
PSCI power-state parameter: original and extended State-ID formats. This flag if set to 1, configures the
generic PSCI layer to use the extended format. The default value of this flag is 0, which means by default
the original power-state format is used by the PSCI implementation. This flag should be specified by the
platform makefile and it governs the return value of PSCI_FEATURES API for CPU_SUSPEND smc
function id. When this option is enabled on Arm platforms, the option ARM_RECOM_STATE_ID_ENC
needs to be set to 1 as well.

• PSCI_OS_INIT_MODE: Boolean flag to enable support for optional PSCI OS-initiated mode. This
option defaults to 0.

• ENABLE_FEAT_RAS: Boolean flag to enable Armv8.2 RAS features. RAS features are an optional
extension for pre-Armv8.2 CPUs, but are mandatory for Armv8.2 or later CPUs. This flag can take the
values 0 or 1. The default value is 0. NOTE: This flag enables use of IESB capability to reduce entry
latency into EL3 even when RAS error handling is not performed on the platform. Hence this flag is
recommended to be turned on Armv8.2 and later CPUs.

• RESET_TO_BL31: Enable BL31 entrypoint as the CPU reset vector instead of the BL1 entrypoint. It
can take the value 0 (CPU reset to BL1 entrypoint) or 1 (CPU reset to BL31 entrypoint). The default
value is 0.

• RESET_TO_SP_MIN: SP_MIN is the minimal AArch32 Secure Payload provided in TF-A. This flag
configures SP_MIN entrypoint as the CPU reset vector instead of the BL1 entrypoint. It can take the
value 0 (CPU reset to BL1 entrypoint) or 1 (CPU reset to SP_MIN entrypoint). The default value is 0.

• ROT_KEY: This option is used when GENERATE_COT=1. It specifies a file that contains the ROT pri-
vate key in PEM format or a PKCS11 URI and enforces public key hash generation. If SAVE_KEYS=1,
only a file is accepted and it will be used to save the key.

• SAVE_KEYS: This option is used when GENERATE_COT=1. It tells the certificate generation tool to
save the keys used to establish the Chain of Trust. Allowed options are ‘0’ or ‘1’. Default is ‘0’ (do not
save).

• SCP_BL2: Path to SCP_BL2 image in the host file system. This image is optional. If a SCP_BL2
image is present then this option must be passed for the fip target.

• SCP_BL2_KEY: This option is used when GENERATE_COT=1. It specifies a file that contains the
SCP_BL2 private key in PEM format or a PKCS11 URI. If SAVE_KEYS=1, only a file is accepted and
it will be used to save the key.

2.5. Build Options 69

Trusted Firmware-A, Release 2.10.4

• SCP_BL2U: Path to SCP_BL2U image in the host file system. This image is optional. It is only needed
if the platform makefile specifies that it is required in order to build the fwu_fip target.

• SDEI_SUPPORT: Setting this to 1 enables support for Software Delegated Exception Interface to BL31
image. This defaults to 0.

When set to 1, the build option EL3_EXCEPTION_HANDLING must also be set to 1.

• SEPARATE_CODE_AND_RODATA: Whether code and read-only data should be isolated on separate
memory pages. This is a trade-off between security and memory usage. See “Isolating code and read-
only data on separate memory pages” section in Firmware Design. This flag is disabled by default and
affects all BL images.

• SEPARATE_NOBITS_REGION: Setting this option to 1 allows the NOBITS sections of BL31 (.bss,
stacks, page tables, and coherent memory) to be allocated in RAM discontiguous from the loaded
firmware image. When set, the platform is expected to provide definitions for BL31_NOBITS_BASE
and BL31_NOBITS_LIMIT. When the option is 0 (the default), NOBITS sections are placed in RAM
immediately following the loaded firmware image.

• SEPARATE_BL2_NOLOAD_REGION: Setting this option to 1 allows the NOLOAD sections of BL2
(.bss, stacks, page tables) to be allocated in RAM discontiguous from loaded firmware images. When
set, the platform need to provide definitions of BL2_NOLOAD_START and BL2_NOLOAD_LIMIT.
This flag is disabled by default and NOLOAD sections are placed in RAM immediately following the
loaded firmware image.

• SMC_PCI_SUPPORT: This option allows platforms to handle PCI configuration access requests via a
standard SMCCC defined in DEN0115. When combined with UEFI+ACPI this can provide a certain
amount of OS forward compatibility with newer platforms that aren’t ECAM compliant.

• SPD: Choose a Secure Payload Dispatcher component to be built into TF-A. This build option is only
valid if ARCH=aarch64. The value should be the path to the directory containing the SPD source, rel-
ative to services/spd/; the directory is expected to contain a makefile called <spd-value>.mk.
The SPM Dispatcher standard service is located in services/std_svc/spmd and enabled by SPD=spmd.
The SPM Dispatcher cannot be enabled when the SPM_MM option is enabled.

• SPIN_ON_BL1_EXIT: This option introduces an infinite loop in BL1. It can take either 0 (no loop) or
1 (add a loop). 0 is the default. This loop stops execution in BL1 just before handing over to BL31. At
this point, all firmware images have been loaded in memory, and the MMU and caches are turned off.
Refer to the “Debugging options” section for more details.

• SPMC_AT_EL3 : This boolean option is used jointly with the SPM Dispatcher option (SPD=spmd).
When enabled (1) it indicates the SPMC component runs at the EL3 exception level. The default
value is 0 (disabled). This configuration supports pre-Armv8.4 platforms (aka not implementing the
FEAT_SEL2 extension).

• SPMC_AT_EL3_SEL0_SP : Boolean option to enable SEL0 SP load support when SPMC_AT_EL3
is enabled. The default value if 0 (disabled). This option cannot be enabled (1) when (SPMC_AT_EL3)
is disabled.

• SPMC_OPTEE : This boolean option is used jointly with the SPM Dispatcher option (SPD=spmd) and
with SPMD_SPM_AT_SEL2=0 to indicate that the SPMC at S-EL1 is OP-TEE and an OP-TEE specific
loading mechanism should be used.

70 Chapter 2. Getting Started

https://developer.arm.com/docs/den0115/latest

Trusted Firmware-A, Release 2.10.4

• SPMD_SPM_AT_SEL2 : This boolean option is used jointly with the SPM Dispatcher option
(SPD=spmd). When enabled (1) it indicates the SPMC component runs at the S-EL2 exception
level provided by the FEAT_SEL2 extension. This is the default when enabling the SPM Dispatcher.
When disabled (0) it indicates the SPMC component runs at the S-EL1 execution state or at EL3 if
SPMC_AT_EL3 is enabled. The latter configurations support pre-Armv8.4 platforms (aka not imple-
menting the FEAT_SEL2 extension).

• SPM_MM : Boolean option to enable the Management Mode (MM)-based Secure Partition Manager
(SPM) implementation. The default value is 0 (disabled). This option cannot be enabled (1) when SPM
Dispatcher is enabled (SPD=spmd).

• SP_LAYOUT_FILE: Platform provided path to JSON file containing the description of secure parti-
tions. The build system will parse this file and package all secure partition blobs into the FIP. This file
is not necessarily part of TF-A tree. Only available when SPD=spmd.

• SP_MIN_WITH_SECURE_FIQ: Boolean flag to indicate the SP_MIN handles secure interrupts
(caught through the FIQ line). Platforms can enable this directive if they need to handle such in-
terruption. When enabled, the FIQ are handled in monitor mode and non secure world is not al-
lowed to mask these events. Platforms that enable FIQ handling in SP_MIN shall implement the api
sp_min_plat_fiq_handler(). The default value is 0.

• SVE_VECTOR_LEN: SVE vector length to configure in ZCR_EL3. Platforms can configure this if they
need to lower the hardware limit, for example due to asymmetric configuration or limitations of software
run at lower ELs. The default is the architectural maximum of 2048 which should be suitable for most
configurations, the hardware will limit the effective VL to the maximum physically supported VL.

• TRNG_SUPPORT: Setting this to 1 enables support for True Random Number Generator Interface to
BL31 image. This defaults to 0.

• TRUSTED_BOARD_BOOT: Boolean flag to include support for the Trusted Board Boot feature. When
set to ‘1’, BL1 and BL2 images include support to load and verify the certificates and images in a FIP,
and BL1 includes support for the Firmware Update. The default value is ‘0’. Generation and inclusion
of certificates in the FIP and FWU_FIP depends upon the value of the GENERATE_COT option.

Warning: This option depends on CREATE_KEYS to be enabled. If the keys already exist in disk,
they will be overwritten without further notice.

• TRUSTED_WORLD_KEY: This option is used whenGENERATE_COT=1. It specifies a file that contains
the Trusted World private key in PEM format or a PKCS11 URI. If SAVE_KEYS=1, only a file is
accepted and it will be used to save the key.

• TSP_INIT_ASYNC: Choose BL32 initialization method as asynchronous or synchronous, (see “Ini-
tializing a BL32 Image” section in Firmware Design). It can take the value 0 (BL32 is initialized using
synchronous method) or 1 (BL32 is initialized using asynchronous method). Default is 0.

• TSP_NS_INTR_ASYNC_PREEMPT: A non zero value enables the interrupt routing model which
routes non-secure interrupts asynchronously from TSP to EL3 causing immediate preemption of TSP.
The EL3 is responsible for saving and restoring the TSP context in this routing model. The default rout-
ing model (when the value is 0) is to route non-secure interrupts to TSP allowing it to save its context
and hand over synchronously to EL3 via an SMC.

2.5. Build Options 71

Trusted Firmware-A, Release 2.10.4

Note: When EL3_EXCEPTION_HANDLING is 1, TSP_NS_INTR_ASYNC_PREEMPT must also
be set to 1.

• TS_SP_FW_CONFIG: DTC build flag to include Trusted Services (Crypto and internal-trusted-storage)
as SP in tb_fw_config device tree.

• TWED_DELAY: Numeric value to be set in order to delay the trapping of WFE instruction. EN-
ABLE_FEAT_TWED build option must be enabled to set this delay. It can take values in the range
(0-15). Default value is 0 and based on this value, 2^(TWED_DELAY + 8) cycles will be delayed.
Platforms need to explicitly update this value based on their requirements.

• USE_ARM_LINK: This flag determines whether to enable support for ARM linker. When the LINKER
build variable points to the armlink linker, this flag is enabled automatically. To enable support for
armlink, platforms will have to provide a scatter file for the BL image. Currently, Tegra platforms use
the armlink support to compile BL3-1 images.

• USE_COHERENT_MEM: This flag determines whether to include the coherent memory region in the BL
memory map or not (see “Use of Coherent memory in TF-A” section in Firmware Design). It can take
the value 1 (Coherent memory region is included) or 0 (Coherent memory region is excluded). Default
is 1.

• ARM_IO_IN_DTB: This flag determines whether to use IO based on the firmware configuration frame-
work. This will move the io_policies into a configuration device tree, instead of static structure in the
code base.

• COT_DESC_IN_DTB: This flag determines whether to create COT descriptors at runtime using fconf.
If this flag is enabled, COT descriptors are statically captured in tb_fw_config file in the form of device
tree nodes and properties. Currently, COT descriptors used by BL2 are moved to the device tree and
COT descriptors used by BL1 are retained in the code base statically.

• SDEI_IN_FCONF: This flag determines whether to configure SDEI setup in runtime using firmware
configuration framework. The platform specific SDEI shared and private events configuration is re-
trieved from device tree rather than static C structures at compile time. This is only supported if
SDEI_SUPPORT build flag is enabled.

• SEC_INT_DESC_IN_FCONF: This flag determines whether to configure Group 0 and Group1 secure
interrupts using the firmware configuration framework. The platform specific secure interrupt property
descriptor is retrieved from device tree in runtime rather than depending on static C structure at compile
time.

• USE_ROMLIB: This flag determines whether library at ROMwill be used. This feature creates a library
of functions to be placed in ROM and thus reduces SRAM usage. Refer to Library at ROM for further
details. Default is 0.

• V: Verbose build. If assigned anything other than 0, the build commands are printed. Default is 0.

• VERSION_STRING: String used in the log output for each TF-A image. Defaults to a string formed by
concatenating the version number, build type and build string.

• W: Warning level. Some compiler warning options of interest have been regrouped and put in the root
Makefile. This flag can take the values 0 to 3, each level enabling more warning options. Default is 0.

72 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

This option is closely related to the E option, which enables -Werror.

– W=0 (default)

Enables a wide assortment of warnings, most notably -Wall and -Wextra, as well as various
bad practices and things that are likely to result in errors. Includes some compiler specific flags.
No warnings are expected at this level for any build.

– W=1

Enables warnings we want the generic build to include but are too time consuming to fix at the
moment. It re-enables warnings taken out for W=0 builds (a few of the -Wextra additions). This
level is expected to eventually be merged into W=0. Some warnings are expected on some builds,
but new contributions should not introduce new ones.

– W=2 (recommended)

Enables warnings we want the generic build to include but cannot be enabled due to external
libraries. This level is expected to eventually be merged into W=0. Lots of warnings are
expected, primarily from external libraries like zlib and compiler-rt, but new controbutions
should not introduce new ones.

– W=3

Enables warnings that are informative but not necessary and generally too verbose and frequently
ignored. A very large number of warnings are expected.

The exact set of warning flags depends on the compiler and TF-A warning level, however they are all
succinctly set in the top-level Makefile. Please refer to the GCC or Clang documentation for more
information on the individual flags.

• WARMBOOT_ENABLE_DCACHE_EARLY : Boolean option to enable D-cache early on the CPU after
warm boot. This is applicable for platforms which do not require interconnect programming to enable
cache coherency (eg: single cluster platforms). If this option is enabled, then warm boot path enables
D-caches immediately after enabling MMU. This option defaults to 0.

• SUPPORT_STACK_MEMTAG: This flag determines whether to enable memory tagging for stack or not.
It accepts 2 values: yes and no. The default value of this flag is no. Note this option must be enabled
only for ARM architecture greater than Armv8.5-A.

• ERRATA_SPECULATIVE_AT: This flag determines whether to enable AT speculative errata
workaround or not. It accepts 2 values: 1 and 0. The default value of this flag is 0.

AT speculative errata workaround disables stage1 page table walk for lower ELs (EL1 and EL0) in EL3 so
that AT speculative fetch at any point produces either the correct result or failure without TLB allocation.

This boolean option enables errata for all below CPUs.

Errata CPU Workaround Define
1165522 Cortex-A76 ERRATA_A76_1165522

1319367 Cortex-A72 ERRATA_A72_1319367

1319537 Cortex-A57 ERRATA_A57_1319537

1530923 Cortex-A55 ERRATA_A55_1530923

1530924 Cortex-A53 ERRATA_A53_1530924

2.5. Build Options 73

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://clang.llvm.org/docs/DiagnosticsReference.html

Trusted Firmware-A, Release 2.10.4

Note: This option is enabled by build only if platform sets any of above defines mentioned in
’Workaround Define’ column in the table. If this option is enabled for the EL3 software then EL2 soft-
ware also must implement this workaround due to the behaviour of the errata mentioned in new SDEN
document which will get published soon.

• RAS_TRAP_NS_ERR_REC_ACCESS: This flag enables/disables the SCR_EL3.TERR bit, to trap ac-
cess to the RAS ERR and RAS ERX registers from lower ELs. This flag is disabled by default.

• OPENSSL_DIR: This option is used to provide the path to a directory on the host machine where a
custom installation of OpenSSL is located, which is used to build the certificate generation, firmware
encryption and FIP tools. If this option is not set, the default OS installation will be used.

• USE_SP804_TIMER: Use the SP804 timer instead of the Generic Timer for functions that wait for an
arbitrary time length (udelay and mdelay). The default value is 0.

• ENABLE_BRBE_FOR_NS: Numeric value to enable access to the branch record buffer registers from
NS ELs when FEAT_BRBE is implemented. BRBE is an optional architectural feature for AArch64.
This flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. The default
is 0 and it is automatically disabled when the target architecture is AArch32.

• ENABLE_TRBE_FOR_NS: Numeric value to enable access of trace buffer control registers from NS
ELs, NS-EL2 or NS-EL1(when NS-EL2 is implemented but unused) when FEAT_TRBE is imple-
mented. TRBE is an optional architectural feature for AArch64. This flag can take the values 0 to 2,
to align with the FEATURE_DETECTION mechanism. The default is 0 and it is automatically disabled
when the target architecture is AArch32.

• ENABLE_SYS_REG_TRACE_FOR_NS: Numeric value to enable trace system registers access from
NS ELs, NS-EL2 or NS-EL1 (when NS-EL2 is implemented but unused). This feature is available if
trace unit such as ETMv4.x, and ETE(extending ETM feature) is implemented. This flag can take the
values 0 to 2, to align with the FEATURE_DETECTION mechanism. The default is 0.

• ENABLE_TRF_FOR_NS: Numeric value to enable trace filter control registers access from NS ELs,
NS-EL2 or NS-EL1 (when NS-EL2 is implemented but unused), if FEAT_TRF is implemented. This
flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. This flag is
disabled by default.

• PLAT_RSS_NOT_SUPPORTED: Boolean option to enable the usage of the PSAAPIs on platforms that
doesn’t support RSS (providing Arm CCA HES functionalities). When enabled (1), a mocked version
of the APIs are used. The default value is 0.

• CONDITIONAL_CMO: Boolean option to enable call to platform-defined routine plat_can_cmo
which will return zero if cache management operations should be skipped and non-zero otherwise. By
default, this option is disabled which means platform hook won’t be checked and CMOs will always be
performed when related functions are called.

• ERRATA_ABI_SUPPORT: Boolean option to enable support for Errata management firmware interface
for the BL31 image. By default its disabled (0).

• ERRATA_NON_ARM_INTERCONNECT: Boolean option to enable support for the errata mitigation for
platforms with a non-arm interconnect using the errata ABI. By default its disabled (0).

74 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

• ENABLE_CONSOLE_GETC: Boolean option to enable getc() feature in console driver(s). By default it
is disabled (0) because it constitutes an attack vector into TF-A by potentially allowing an attacker to
inject arbitrary data. This option should only be enabled on a need basis if there is a use case for reading
characters from the console.

2.5.2 GICv3 driver options

GICv3 driver files are included using directive:

include drivers/arm/gic/v3/gicv3.mk

The driver can be configured with the following options set in the platform makefile:

• GICV3_SUPPORT_GIC600: Add support for the GIC-600 variants of GICv3. Enabling this option
will add runtime detection support for the GIC-600, so is safe to select even for a GIC500 implementa-
tion. This option defaults to 0.

• GICV3_SUPPORT_GIC600AE_FMU: Add support for the Fault Management Unit
for GIC-600 AE. Enabling this option will introduce support to initialize the FMU. Platforms
should call the init function during boot to enable the FMU and its safety mechanisms. This option
defaults to 0.

• GICV3_IMPL_GIC600_MULTICHIP: Selects GIC-600 variant with multichip functionality. This
option defaults to 0

• GICV3_OVERRIDE_DISTIF_PWR_OPS: Allows override of default implementation of
arm_gicv3_distif_pre_save and arm_gicv3_distif_post_restore functions. This
is required for FVP platform which need to simulate GIC save and restore during SYSTEM_SUSPEND
without powering down GIC. Default is 0.

• GIC_ENABLE_V4_EXTN : Enables GICv4 related changes in GICv3 driver. This option defaults to 0.

• GIC_EXT_INTID:When set to1, GICv3 driver will support extended PPI (1056-1119) and SPI (4096-
5119) range. This option defaults to 0.

2.5.3 Debugging options

To compile a debug version and make the build more verbose use

make PLAT=<platform> DEBUG=1 V=1 all

AArch64 GCC 11 uses DWARF version 5 debugging symbols by default. Some tools (for example Arm-DS)
might not support this and may need an older version of DWARF symbols to be emitted by GCC. This can
be achieved by using the -gdwarf-<version> flag, with the version being set to 2, 3, 4 or 5. Setting the
version to 4 is recommended for Arm-DS.

When debugging logic problems it might also be useful to disable all compiler optimizations by using -O0.

Warning: Using -O0 could cause output images to be larger and base addresses might need to be recal-
culated (see theMemory layout on Arm development platforms section in the Firmware Design).

2.5. Build Options 75

Trusted Firmware-A, Release 2.10.4

Extra debug options can be passed to the build system by setting CFLAGS or LDFLAGS:

CFLAGS='-O0 -gdwarf-2' \
make PLAT=<platform> DEBUG=1 V=1 all

Note that using-Wl, style compilation driver options inCFLAGSwill be ignored as the linker is called directly.

It is also possible to introduce an infinite loop to help in debugging the post-BL2 phase of TF-A. This can be
done by rebuilding BL1 with the SPIN_ON_BL1_EXIT=1 build flag. Refer to the Common build options
section. In this case, the developer may take control of the target using a debugger when indicated by the
console output. When using Arm-DS, the following commands can be used:

Stop target execution
interrupt

#
Prepare your debugging environment, e.g. set breakpoints
#

Jump over the debug loop
set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4

Resume execution
continue

2.5.4 Experimental build options

Common build options

• DRTM_SUPPORT: Boolean flag to enable support for Dynamic Root of Trust for Measurement
(DRTM). This feature has trust dependency on BL31 for taking the measurements and recording
them as per PSA DRTM specification. For platforms which use BL2 to load/authenticate BL31
TRUSTED_BOARD_BOOT can be used and for the platforms which use RESET_TO_BL31 platform
owners should have mechanism to authenticate BL31. This option defaults to 0.

• ENABLE_RME: Numeric value to enable support for the ARMv9 Realm Management Extension. This
flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default value is
0.

• ENABLE_SME_FOR_NS: Numeric value to enable Scalable Matrix Extension (SME), SVE, and
FPU/SIMD for the non-secure world only. These features share registers so are enabled together. Using
this option without ENABLE_SME_FOR_SWD=1 will cause SME, SVE, and FPU/SIMD instructions
in secure world to trap to EL3. Requires ENABLE_SVE_FOR_NS to be set as SME is a superset of
SVE. SME is an optional architectural feature for AArch64. At this time, this build option cannot be
used on systems that have SPD=spmd/SPM_MM and atempting to build with this option will fail. This
flag can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default is 0.

• ENABLE_SME2_FOR_NS: Numeric value to enable Scalable Matrix Extension version 2 (SME2) for
the non-secure world only. SME2 is an optional architectural feature for AArch64. This should be set

76 Chapter 2. Getting Started

https://developer.arm.com/documentation/den0113/a

Trusted Firmware-A, Release 2.10.4

along with ENABLE_SME_FOR_NS=1, if not, the default SME accesses will still be trapped. This flag
can take the values 0 to 2, to align with the FEATURE_DETECTION mechanism. Default is 0.

• ENABLE_SME_FOR_SWD: Boolean option to enable the Scalable Matrix Extension for secure world.
Used along with SVE and FPU/SIMD. ENABLE_SME_FOR_NS and ENABLE_SVE_FOR_SWD
must also be set to use this. Default is 0.

• ENABLE_SPMD_LP : This boolean option is used jointly with the SPM Dispatcher option
(SPD=spmd). When enabled (1) it indicates support for logical partitions in EL3, managed by the
SPMD as defined in the FF-A v1.2 specification. This flag is disabled by default. This flag must not be
used if SPMC_AT_EL3 is enabled.

• FEATURE_DETECTION: Boolean option to enable the architectural features detection mechanism. It
detects whether the Architectural features enabled through feature specific build flags are supported by
the PE or not by validating them either at boot phase or at runtime based on the value possessed by the
feature flag (0 to 2) and report error messages at an early stage. This flag will also enable errata ordering
checking for DEBUG builds.

This prevents and benefits us from EL3 runtime exceptions during context save and restore routines
guarded by these build flags. Henceforth validating them before their usage provides more control on the
actions taken under them.

The mechanism permits the build flags to take values 0, 1 or 2 and evaluates them accordingly.

Lets consider ENABLE_FEAT_HCX, build flag for FEAT_HCX as an example:

ENABLE_FEAT_HCX = 0: Feature disabled statically at compile time.
ENABLE_FEAT_HCX = 1: Feature Enabled and the flag is validated at␣
↪→boottime.
ENABLE_FEAT_HCX = 2: Feature Enabled and the flag is validated at␣
↪→runtime.

In the above example, if the feature build flag, ENABLE_FEAT_HCX set to 0, feature is disabled stat-
ically during compilation. If it is defined as 1, feature is validated, wherein FEAT_HCX is detected at
boot time. In case not implemented by the PE, a hard panic is generated. Finally, if the flag is set to 2,
feature is validated at runtime.

Note that the entire implementation is divided into two phases, wherein as as part of phase-1 we are
supporting the values 0,1. Value 2 is currently not supported and is planned to be handled explicilty in
phase-2 implementation.

FEATURE_DETECTION macro is disabled by default. Platforms can explicitly make use of this by
mechanism, by enabling it to validate whether they have set their build flags properly at an early phase.

• PSA_CRYPTO: Boolean option for enabling MbedTLS PSA crypto APIs support. The platform will
use PSA compliant Crypto APIs during authentication and image measurement process by enabling this
option. It uses APIs defined as per the PSA Crypto API specification. This feature is only supported if
using MbedTLS 3.x version. It is disabled (0) by default.

• TRANSFER_LIST: Setting this to 1 enables support for Firmware Handoff using Transfer List defined
in Firmware Handoff specification. This defaults to 0. Current implementation follows the Firmware
Handoff specification v0.9.

2.5. Build Options 77

https://armmbed.github.io/mbed-crypto/html/
https://github.com/FirmwareHandoff/firmware_handoff/releases/tag/v0.9

Trusted Firmware-A, Release 2.10.4

• USE_DEBUGFS: When set to 1 this option exposes a virtual filesystem interface through BL31 as a SiP
SMC function. Default is disabled (0).

Firmware update options

• PSA_FWU_SUPPORT: Enable the firmware update mechanism as per the PSA FW update specification.
The default value is 0. PSA firmware update implementation has few limitations, such as:

– BL2 is not part of the protocol-updatable images. If BL2 needs to be updated, then it should be
done through another platform-defined mechanism.

– It assumes the platform’s hardware supports CRC32 instructions.

• NR_OF_FW_BANKS: Define the number of firmware banks. This flag is used in defining the firmware
update metadata structure. This flag is by default set to ‘2’.

• NR_OF_IMAGES_IN_FW_BANK: Define the number of firmware images in each firmware bank. Each
firmware bank must have the same number of images as per the PSA FW update specification. This flag
is used in defining the firmware update metadata structure. This flag is by default set to ‘1’.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

2.6 Internal Build Options

TF-A internally uses certain options that are not exposed directly through build-options but enabled or disabled
indirectly and depends on certain options to be enabled or disabled.

• CTX_INCLUDE_EL2_REGS: This boolean option provides context save/restore operations when en-
tering/exiting an EL2 execution context. This is of primary interest when Armv8.4-SecEL2 or RME ex-
tension is implemented. Default is 0 (disabled). This option will be set to 1 (enabled) when SPD=spmd
and SPMD_SPM_AT_SEL2 is set or when ENABLE_RME is set to 1 (enabled).

• FFH_SUPPORT: This boolean option provides support to enable Firmware First handling (FFH) of
External aborts and SError interrupts originating from lower ELs which gets trapped in EL3. This option
will be set to 1 (enabled) if HANDLE_EA_EL3_FIRST_NS is set. Currently only NS world routes EA
to EL3 but in future when Secure/Realm wants to use FFH then they can introduce new macros which
will enable this option implicitly.

2.7 Image Terminology

This page contains the current name, abbreviated name and purpose of the various images referred to in the
Trusted Firmware project.

78 Chapter 2. Getting Started

https://developer.arm.com/documentation/den0118/a/
https://developer.arm.com/documentation/den0118/a/

Trusted Firmware-A, Release 2.10.4

2.7.1 Common Image Features

• Some of the names and abbreviated names have changed to accommodate new requirements. The
changed names are as backward compatible as possible to minimize confusion. Where applicable, the
previous names are indicated. Some code, documentation and build artefacts may still refer to the pre-
vious names; these will inevitably take time to catch up.

• The main name change is to prefix each image with the processor it corresponds to (for exam-
ple AP_, SCP_, …). In situations where there is no ambiguity (for example, within AP specific
code/documentation), it is permitted to omit the processor prefix (for example, just BL1 instead of
AP_BL1).

• Previously, the format for 3rd level images had 2 forms; BL3was either suffixedwith a dash (“-”) followed
by a number (for example, BL3-1) or a subscript number, depending on whether rich text formatting
was available. This was confusing and often the dash gets omitted in practice. Therefore the new form
is to just omit the dash and not use subscript formatting.

• The names no longer contain dash (“-”) characters at all. In some places (for example, function names)
it’s not possible to use this character. All dashes are either removed or replaced by underscores (“_”).

• The abbreviation BL stands for BootLoader. This is a historical anomaly. Clearly, many of these images
are not BootLoaders, they are simply firmware images. However, the BL abbreviation is now widely
used and is retained for backwards compatibility.

• The image names are not case sensitive. For example, bl1 is interchangeable with BL1, although mixed
case should be avoided.

2.7.2 Trusted Firmware Images

Firmware Image Package: FIP

This is a packaging format used by TF-A to package firmware images in a single binary. The number and type
of images that should be packed in a FIP is platform-specific and may include TF-A images and other firmware
images required by the platform. For example, most platforms require a BL33 image which corresponds to the
normal world bootloader (e.g. UEFI or U-Boot).

AP Boot ROM: AP_BL1

Typically, this is the first code to execute on the AP and cannot be modified. Its primary purpose is to per-
form the minimum initialization necessary to load and authenticate an updateable AP firmware image into an
executable RAM location, then hand-off control to that image.

2.7. Image Terminology 79

Trusted Firmware-A, Release 2.10.4

AP RAM Firmware: AP_BL2

This is the 2nd stage AP firmware. It is currently also known as the “Trusted Boot Firmware”. Its primary
purpose is to perform any additional initialization required to load and authenticate all 3rd level firmware images
into their executable RAM locations, then hand-off control to the EL3 Runtime Firmware.

EL3 Runtime Firmware: AP_BL31

Also known as “SoC AP firmware” or “EL3 monitor firmware”. Its primary purpose is to handle transitions
between the normal and secure world.

Secure-EL1 Payload (SP): AP_BL32

Typically this is a TEE or Trusted OS, providing runtime secure services to the normal world. However,
it may refer to a more abstract Secure-EL1 Payload (SP). Note that this abbreviation should only be used
in systems where there is a single or primary image executing at Secure-EL1. In systems where there are
potentially multiple SPs and there is no concept of a primary SP, this abbreviation should be avoided; use the
recommended Other AP 3rd level images abbreviation instead.

AP Normal World Firmware: AP_BL33

For example, UEFI or uboot. Its primary purpose is to boot a normal world OS.

Other AP 3rd level images: AP_BL3_XXX

The abbreviated names of the existing 3rd level images imply a load/execution ordering (for example,
AP_BL31 -> AP_BL32 -> AP_BL33). Some systems may have additional images and/or a different
load/execution ordering. The abbreviated names of the existing images are retained for backward compatibility
but new 3rd level images should be suffixed with an underscore followed by text identifier, not a number.

In systems where 3rd level images are provided by different vendors, the abbreviated name should identify the
vendor as well as the image function. For example, AP_BL3_ARM_RAS.

Realm Monitor Management Firmware: RMM

This is the Realm-EL2 firmware. It is required if Realm Management Extension (RME) feature is enabled. If a
path to RMM image is not provided, TF-A builds Test Realm Payload (TRP) image by default and uses it as
the RMM image.

80 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

SCP Boot ROM: SCP_BL1 (previously BL0)

Typically, this is the first code to execute on the SCP and cannot be modified. Its primary purpose is to
perform the minimum initialization necessary to load and authenticate an updateable SCP firmware image into
an executable RAM location, then hand-off control to that image. This may be performed in conjunction with
other processor firmware (for example, AP_BL1 and AP_BL2).

This image was previously abbreviated as BL0 but in some systems, the SCP may directly load/authenticate its
own firmware. In these systems, it doesn’t make sense to interleave the image terminology for AP and SCP;
both AP and SCP Boot ROMs are BL1 from their own point of view.

SCP RAM Firmware: SCP_BL2 (previously BL3-0)

This is the 2nd stage SCP firmware. It is currently also known as the “SCP runtime firmware” but it could
potentially be an intermediate firmware if the SCP needs to load/authenticate multiple 3rd level images in
future.

This image was previously abbreviated as BL3-0 but from the SCP’s point of view, this has always been the
2nd stage firmware. The previous name is too AP-centric.

2.7.3 Firmware Update (FWU) Images

The terminology for these images has not been widely adopted yet but they have to be considered in a production
Trusted Board Boot solution.

AP Firmware Update Boot ROM: AP_NS_BL1U

Typically, this is the first normal world code to execute on the AP during a firmware update operation, and can-
not be modified. Its primary purpose is to load subsequent firmware update images from an external interface
and communicate with AP_BL1 to authenticate those images.

During firmware update, there are (potentially) multiple transitions between the secure and normal world. The
“level” of the BL image is relative to the world it’s in so it makes sense to encode “NS” in the normal world
images. The absence of “NS” implies a secure world image.

AP Firmware Update Config: AP_BL2U

This image does the minimum necessary AP secure world configuration required to complete the firmware
update operation. It is potentially a subset of AP_BL2 functionality.

2.7. Image Terminology 81

Trusted Firmware-A, Release 2.10.4

SCP Firmware Update Config: SCP_BL2U (previously BL2-U0)

This image does the minimum necessary SCP secure world configuration required to complete the firmware
update operation. It is potentially a subset of SCP_BL2 functionality.

AP Firmware Updater: AP_NS_BL2U (previously BL3-U)

This is the 2nd stage AP normal world firmware updater. Its primary purpose is to load a new set of firmware
images from an external interface and write them into non-volatile storage.

2.7.4 Other Processor Firmware Images

Some systems may have additional processors to the AP and SCP. For example, a Management Control Proces-
sor (MCP). Images for these processors should follow the same terminology, with the processor abbreviation
prefix, followed by underscore and the level of the firmware image.

For example,

MCP Boot ROM: MCP_BL1

MCP RAM Firmware: MCP_BL2

2.8 PSCI Library Integration guide for Armv8-A AArch32 systems

This document describes the PSCI library interface with a focus on how to integrate with a suitable Trusted OS
for an Armv8-A AArch32 system. The PSCI Library implements the PSCI Standard as described in PSCI and
is meant to be integrated with EL3 Runtime Software which invokes the PSCI Library interface appropriately.
EL3 Runtime Software refers to software executing at the highest secure privileged mode, which is EL3 in
AArch64 or Secure SVC/ Monitor mode in AArch32, and provides runtime services to the non-secure world.
The runtime service request is made via SMC (Secure Monitor Call) and the call must adhere to SMCCC. In
AArch32, EL3 Runtime Software may additionally include Trusted OS functionality. A minimal AArch32
Secure Payload, SP-MIN, is provided in Trusted Firmware-A (TF-A) to illustrate the usage and integration of
the PSCI library. The description of PSCI library interface and its integration with EL3 Runtime Software in
this document is targeted towards AArch32 systems.

2.8.1 Generic call sequence for PSCI Library interface (AArch32)

The generic call sequence of PSCI Library interfaces (see PSCI Library Interface) during cold boot in AArch32
system is described below:

1. After cold reset, the EL3 Runtime Software performs its cold boot initialization including the PSCI
library pre-requisites mentioned in PSCI Library Interface, and also the necessary platform setup.

2. Call psci_setup() in Monitor mode.

82 Chapter 2. Getting Started

https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

3. Optionally call psci_register_spd_pm_hook() to register callbacks to do bookkeeping for the
EL3 Runtime Software during power management.

4. Call psci_prepare_next_non_secure_ctx() to initialize the non-secure CPU context.

5. Get the non-secure cpu_context_t for the current CPU by calling cm_get_context() , then
programming the registers in the non-secure context and exiting to non-secure world. If the EL3 Run-
time Software needs additional configuration to be set for non-secure context, like routing FIQs to the
secure world, the values of the registers can be modified prior to programming. See PSCI CPU context
management for more details on CPU context management.

The generic call sequence of PSCI library interfaces during warm boot in AArch32 systems is described below:

1. After warm reset, the EL3 Runtime Software performs the necessary warm boot initialization including
the PSCI library pre-requisites mentioned in PSCI Library Interface (Note that the Data cachemust not
be enabled).

2. Call psci_warmboot_entrypoint() in Monitor mode. This interface initializes/restores the
non-secure CPU context as well.

3. Do step 5 of the cold boot call sequence described above.

The generic call sequence of PSCI library interfaces on receipt of a PSCI SMC on an AArch32 system is
described below:

1. On receipt of an SMC, save the register context as per SMCCC.

2. If the SMC function identifier corresponds to a SMC32 PSCI API, construct the appropriate arguments
and call the psci_smc_handler() interface. The invocation may or may not return back to the
caller depending on whether the PSCI API resulted in power down of the CPU.

3. If psci_smc_handler() returns, populate the return value in R0 (AArch32)/ X0 (AArch64) and
restore other registers as per SMCCC.

2.8.2 PSCI CPU context management

PSCI library is in charge of initializing/restoring the non-secure CPU system registers according to PSCI during
cold/warm boot. This is referred to as PSCI CPU Context Management. Registers that need to be
preserved across CPU power down/power up cycles are maintained in cpu_context_t data structure. The
initialization of other non-secure CPU system registers which do not require coordination with the EL3Runtime
Software is done directly by the PSCI library (see cm_prepare_el3_exit()).

The EL3 Runtime Software is responsible for managing register context during switch between Normal and
Secure worlds. The register context to be saved and restored depends on the mechanism used to trigger the
world switch. For example, if the world switch was triggered by an SMC call, then the registers need to be saved
and restored according to SMCCC. In AArch64, due to the tight integration with BL31, both BL31 and PSCI
library use the same cpu_context_t data structure for PSCI CPU context management and register context
management during world switch. This cannot be assumed for AArch32 EL3 Runtime Software since most
AArch32 Trusted OSes already implement a mechanism for register context management during world switch.
Hence, when the PSCI library is integrated with a AArch32 EL3 Runtime Software, the cpu_context_t
is stripped down for just PSCI CPU context management.

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 83

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

During cold/warm boot, after invoking appropriate PSCI library interfaces, it is expected that the EL3 Runtime
Software will query the cpu_context_t and write appropriate values to the corresponding system registers.
This mechanism resolves 2 additional problems for AArch32 EL3 Runtime Software:

1. Values for certain system registers like SCR and SCTLR cannot be unilaterally determined by PSCI
library and need inputs from the EL3 Runtime Software. Using cpu_context_t as an intermediary
data store allows EL3 Runtime Software to modify the register values appropriately before programming
them.

2. The PSCI library provides appropriate LR and SPSR values (entrypoint information) for exit into non-
secure world. Using cpu_context_t as an intermediary data store allows the EL3 Runtime Software
to store these values safely until it is ready for exit to non-secure world.

Currently thecpu_context_t data structure for AArch32 stores the following registers: R0 - R3, LR (R14),
SCR, SPSR, SCTLR.

The EL3 Runtime Software must implement accessors to get/set pointers to CPU context cpu_context_t
data and these are described in CPU Context management API.

2.8.3 PSCI Library Interface

The PSCI library implements the PSCI. The interfaces to this library are declared in psci_lib.h and are
as listed below:

u_register_t psci_smc_handler(uint32_t smc_fid, u_register_t x1,
u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags);

int psci_setup(const psci_lib_args_t *lib_args);
void psci_warmboot_entrypoint(void);
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm);
void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info);

The CPU context data ‘cpu_context_t’ is programmed to the registers differently when PSCI is integrated with
an AArch32 EL3 Runtime Software compared to when the PSCI is integrated with an AArch64 EL3 Runtime
Software (BL31). For example, in the case of AArch64, there is no need to retrieve cpu_context_t data
and program the registers as it will done implicitly as part of el3_exit. The description below of the PSCI
interfaces is targeted at integration with an AArch32 EL3 Runtime Software.

The PSCI library is responsible for initializing/restoring the non-secure world to an appropriate state after
boot and may choose to directly program the non-secure system registers. The PSCI generic code takes care
not to directly modify any of the system registers affecting the secure world and instead returns the values
to be programmed to these registers via cpu_context_t. The EL3 Runtime Software is responsible for
programming those registers and can use the proposed values provided in the cpu_context_t, modifying
the values if required.

PSCI library needs the flexibility to access both secure and non-secure copies of banked registers. Hence it
needs to be invoked in Monitor mode for AArch32 and in EL3 for AArch64. The NS bit in SCR (in AArch32)
or SCR_EL3 (in AArch64) must be set to 0. Additional requirements for the PSCI library interfaces are:

• Instruction cache must be enabled

84 Chapter 2. Getting Started

https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

• Both IRQ and FIQ must be masked for the current CPU

• The page tables must be setup and the MMU enabled

• The C runtime environment must be setup and stack initialized

• The Data cache must be enabled prior to invoking any of the PSCI library interfaces except for
psci_warmboot_entrypoint(). For psci_warmboot_entrypoint(), if the build op-
tion HW_ASSISTED_COHERENCY is enabled however, data caches are expected to be enabled.

Further requirements for each interface can be found in the interface description.

Interface : psci_setup()

Argument : const psci_lib_args_t *lib_args
Return : void

This function is to be called by the primary CPU during cold boot before any other interface to the PSCI library.
It takes lib_args, a const pointer to psci_lib_args_t, as the argument. The psci_lib_args_t
is a versioned structure and is declared in psci_lib.h header as follows:

typedef struct psci_lib_args {
/* The version information of PSCI Library Interface */
param_header_t h;
/* The warm boot entrypoint function */
mailbox_entrypoint_t mailbox_ep;

} psci_lib_args_t;

The first field h, of param_header_t type, provides the version information. The second field mail-
box_ep is the warm boot entrypoint address and is used to configure the platform mailbox. Helper macros
are provided in psci_lib.h to construct the lib_args argument statically or during runtime. Prior to
calling the psci_setup() interface, the platform setup for cold boot must have completed. Major actions
performed by this interface are:

• Initializes architecture.

• Initializes PSCI power domain and state coordination data structures.

• Calls plat_setup_psci_ops() with warm boot entrypoint mailbox_ep as argument.

• Calls cm_set_context_by_index() (see CPU Context management API) for all the CPUs in the
platform

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 85

Trusted Firmware-A, Release 2.10.4

Interface : psci_prepare_next_non_secure_ctx()

Argument : entry_point_info_t *next_image_info
Return : void

After psci_setup() and prior to exit to the non-secure world, this function must be called by the EL3
Runtime Software to initialize the non-secure world context. The non-secure world entrypoint information
next_image_info (first argument) will be used to determine the non-secure context. After this function
returns, the EL3 Runtime Software must retrieve the cpu_context_t (using cm_get_context()) for the
current CPU and program the registers prior to exit to the non-secure world.

Interface : psci_register_spd_pm_hook()

Argument : const spd_pm_ops_t *
Return : void

As explained in Secure payload power management callback, the EL3 Runtime Software may want to
perform some bookkeeping during power management operations. This function is used to register the
spd_pm_ops_t (first argument) callbacks with the PSCI library which will be called appropriately dur-
ing power management. Calling this function is optional and need to be called by the primary CPU during the
cold boot sequence after psci_setup() has completed.

Interface : psci_smc_handler()

Argument : uint32_t smc_fid, u_register_t x1,
u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags

Return : u_register_t

This function is the top level handler for SMCs which fall within the PSCI service range specified in SMCCC.
The function ID smc_fid (first argument) determines the PSCI API to be called. The x1 to x4 (2nd to 5th
arguments), are the values of the registers r1 - r4 (in AArch32) or x1 - x4 (in AArch64) when the SMC is
received. These are the arguments to PSCI API as described in PSCI. The ‘flags’ (8th argument) is a bit field
parameter and is detailed in ‘smccc.h’ header. It includes whether the call is from the secure or non-secure
world. The cookie (6th argument) and the handle (7th argument) are not used and are reserved for future
use.

The return value from this interface is the return value from the underlying PSCI API corresponding to
smc_fid. This function may not return back to the caller if PSCI API causes power down of the CPU.
In this case, when the CPU wakes up, it will start execution from the warm reset address.

86 Chapter 2. Getting Started

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

Interface : psci_warmboot_entrypoint()

Argument : void
Return : void

This function performs the warm boot initialization/restoration as mandated by PSCI. For AArch32, on wakeup
from power down the CPU resets to secure SVC mode and the EL3 Runtime Software must perform the pre-
requisite initializations mentioned at top of this section. This function must be called with Data cache disabled
(unless build option HW_ASSISTED_COHERENCY is enabled) but with MMU initialized and enabled. The
major actions performed by this function are:

• Invalidates the stack and enables the data cache.

• Initializes architecture and PSCI state coordination.

• Restores/Initializes the peripheral drivers to the required state via appropriate plat_psci_ops_t
hooks

• Restores the EL3 Runtime Software context via appropriate spd_pm_ops_t callbacks.

• Restores/Initializes the non-secure context and populates the cpu_context_t for the current CPU.

Upon the return of this function, the EL3 Runtime Software must retrieve the non-secure cpu_context_t
using cm_get_context() and program the registers prior to exit to the non-secure world.

2.8.4 EL3 Runtime Software dependencies

The PSCI Library includes supporting frameworks like context management, cpu operations (cpu_ops) and
per-cpu data framework. Other helper library functions like bakery locks and spin locks are also included in
the library. The dependencies which must be fulfilled by the EL3 Runtime Software for integration with PSCI
library are described below.

General dependencies

The PSCI library being a Multiprocessor (MP) implementation, EL3 Runtime Software must provide an SMC
handling framework capable of MP adhering to SMCCC specification.

The EL3 Runtime Software must also export cache maintenance primitives and some helper utilities for assert,
print and memory operations as listed below. The TF-A source tree provides implementations for all these
functions but the EL3 Runtime Software may use its own implementation.

Functions : assert(), memcpy(), memset(), printf()

These must be implemented as described in ISO C Standard.

Function : flush_dcache_range()

Argument : uintptr_t addr, size_t size
Return : void

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 87

https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

This function cleans and invalidates (flushes) the data cache for memory at address addr (first argument)
address and of size size (second argument).

Function : inv_dcache_range()

Argument : uintptr_t addr, size_t size
Return : void

This function invalidates (flushes) the data cache for memory at address addr (first argument) address and of
size size (second argument).

CPU Context management API

The CPU context management data memory is statically allocated by PSCI library in BSS section. The PSCI
library requires the EL3 Runtime Software to implement APIs to store and retrieve pointers to this CPU context
data. SP-MIN demonstrates how these APIs can be implemented but the EL3 Runtime Software can choose a
more optimal implementation (like dedicating the secure TPIDRPRW system register (in AArch32) for storing
these pointers).

Function : cm_set_context_by_index()

Argument : unsigned int cpu_idx, void *context, unsigned int security_state
Return : void

This function is called during cold boot when the psci_setup() PSCI library interface is called.

This function must store the pointer to the CPU context data, context (2nd argument), for the spec-
ified security_state (3rd argument) and CPU identified by cpu_idx (first argument). The se-
curity_state will always be non-secure when called by PSCI library and this argument is re-
tained for compatibility with BL31. The cpu_idx will correspond to the index returned by the
plat_core_pos_by_mpidr() for mpidr of the CPU.

The actual method of storing the context pointers is implementation specific. For example, SP-MIN stores
the pointers in the array sp_min_cpu_ctx_ptr declared in sp_min_main.c.

Function : cm_get_context()

Argument : uint32_t security_state
Return : void *

This functionmust return the pointer to thecpu_context_t structure for the specifiedsecurity_state
(first argument) for the current CPU. The caller must ensure that cm_set_context_by_index is called
first and the appropriate context pointers are stored prior to invoking this API. The security_state will
always be non-secure when called by PSCI library and this argument is retained for compatibility with BL31.

Function : cm_get_context_by_index()

Argument : unsigned int cpu_idx, unsigned int security_state
Return : void *

This function must return the pointer to the cpu_context_t structure for the specified secu-
rity_state (second argument) for the CPU identified by cpu_idx (first argument). The caller must

88 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

ensure that cm_set_context_by_index is called first and the appropriate context pointers are stored
prior to invoking this API. The security_state will always be non-secure when called by PSCI library
and this argument is retained for compatibility with BL31. The cpu_idxwill correspond to the index returned
by the plat_core_pos_by_mpidr() for mpidr of the CPU.

Platform API

The platform layer abstracts the platform-specific details from the generic PSCI library. The following platform
APIs/macros must be defined by the EL3 Runtime Software for integration with the PSCI library.

The mandatory platform APIs are:

• plat_my_core_pos

• plat_core_pos_by_mpidr

• plat_get_syscnt_freq2

• plat_get_power_domain_tree_desc

• plat_setup_psci_ops

• plat_reset_handler

• plat_panic_handler

• plat_get_my_stack

The mandatory platform macros are:

• PLATFORM_CORE_COUNT

• PLAT_MAX_PWR_LVL

• PLAT_NUM_PWR_DOMAINS

• CACHE_WRITEBACK_GRANULE

• PLAT_MAX_OFF_STATE

• PLAT_MAX_RET_STATE

• PLAT_MAX_PWR_LVL_STATES (optional)

• PLAT_PCPU_DATA_SIZE (optional)

The details of these APIs/macros can be found in the Porting Guide.

All platform specific operations for powermanagement are done viaplat_psci_ops_t callbacks registered
by the platform when plat_setup_psci_ops() API is called. The description of each of the callbacks
in plat_psci_ops_t can be found in PSCI section of the Porting Guide. If any these callbacks are not
registered, then the PSCI API associated with that callback will not be supported by PSCI library.

2.8. PSCI Library Integration guide for Armv8-A AArch32 systems 89

Trusted Firmware-A, Release 2.10.4

Secure payload power management callback

During PSCI power management operations, the EL3 Runtime Software may need to perform some bookkeep-
ing, and PSCI library provides spd_pm_ops_t callbacks for this purpose. These hooks must be populated
and registered by using psci_register_spd_pm_hook() PSCI library interface.

Typical bookkeeping during PSCI power management calls include save/restore of the EL3 Runtime Software
context. Also if the EL3 Runtime Software makes use of secure interrupts, then these interrupts must also be
managed appropriately during CPU power down/power up. Any secure interrupt targeted to the current CPU
must be disabled or re-targeted to other running CPU prior to power down of the current CPU. During power
up, these interrupt can be enabled/re-targeted back to the current CPU.

typedef struct spd_pm_ops {
void (*svc_on)(u_register_t target_cpu);
int32_t (*svc_off)(u_register_t __unused);
void (*svc_suspend)(u_register_t max_off_pwrlvl);
void (*svc_on_finish)(u_register_t __unused);
void (*svc_suspend_finish)(u_register_t max_off_pwrlvl);
int32_t (*svc_migrate)(u_register_t from_cpu, u_register_t to_cpu);
int32_t (*svc_migrate_info)(u_register_t *resident_cpu);
void (*svc_system_off)(void);
void (*svc_system_reset)(void);

} spd_pm_ops_t;

A brief description of each callback is given below:

• svc_on, svc_off, svc_on_finish

The svc_on, svc_off callbacks are called during PSCI_CPU_ON, PSCI_CPU_OFF APIs respec-
tively. The svc_on_finish is called when the target CPU of PSCI_CPU_ON API powers up and
executes the psci_warmboot_entrypoint() PSCI library interface.

• svc_suspend, svc_suspend_finish

The svc_suspend callback is called during power down bu either PSCI_SUSPEND or
PSCI_SYSTEM_SUSPEND APIs. The svc_suspend_finish is called when the CPU wakes
up from suspend and executes the psci_warmboot_entrypoint() PSCI library interface. The
max_off_pwrlvl (first parameter) denotes the highest power domain level being powered down to
or woken up from suspend.

• svc_system_off, svc_system_reset

These callbacks are called during PSCI_SYSTEM_OFF and PSCI_SYSTEM_RESET PSCI APIs re-
spectively.

• svc_migrate_info

This callback is called in response to PSCI_MIGRATE_INFO_TYPE or
PSCI_MIGRATE_INFO_UP_CPU APIs. The return value of this callback must correspond to
the return value of PSCI_MIGRATE_INFO_TYPE API as described in PSCI. If the secure payload
is a Uniprocessor (UP) implementation, then it must update the mpidr of the CPU it is resident in via
resident_cpu (first argument). The updates to resident_cpu is ignored if the secure payload
is a multiprocessor (MP) implementation.

90 Chapter 2. Getting Started

https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

• svc_migrate

This callback is only relevant if the secure payload in EL3 Runtime Software is a Uniprocessor (UP)
implementation and supports migration from the current CPU from_cpu (first argument) to another
CPU to_cpu (second argument). This callback is called in response to PSCI_MIGRATE API. This
callback is never called if the secure payload is a Multiprocessor (MP) implementation.

CPU operations

The CPU operations (cpu_ops) framework implement power down sequence specific to the CPU and the de-
tails of which can be found at CPU specific operations framework. The TF-A tree implements the cpu_ops
for various supported CPUs and the EL3 Runtime Software needs to include the required cpu_ops in its
build. The start and end of the cpu_ops descriptors must be exported by the EL3 Runtime Software via the
__CPU_OPS_START__ and __CPU_OPS_END__ linker symbols.

The cpu_ops descriptors also include reset sequences and may include errata workarounds for the CPU. The
EL3 Runtime Software can choose to call this during cold/warm reset if it does not implement its own reset
sequence/errata workarounds.

Copyright (c) 2016-2023, Arm Limited and Contributors. All rights reserved.

2.9 EL3 Runtime Service Writer’s Guide

2.9.1 Introduction

This document describes how to add a runtime service to the EL3 Runtime Firmware component of Trusted
Firmware-A (TF-A), BL31.

Software executing in the normal world and in the trusted world at exception levels lower than EL3 will request
runtime services using the Secure Monitor Call (SMC) instruction. These requests will follow the convention
described in the SMC Calling Convention PDD (SMCCC). The SMCCC assigns function identifiers to each
SMC request and describes how arguments are passed and results are returned.

SMC Functions are grouped together based on the implementor of the service, for example a subset of the
Function IDs are designated as “OEM Calls” (see SMCCC for full details). The EL3 runtime services frame-
work in BL31 enables the independent implementation of services for each group, which are then compiled
into the BL31 image. This simplifies the integration of common software from Arm to support PSCI, Secure
Monitor for a Trusted OS and SoC specific software. The common runtime services framework ensures that
SMC Functions are dispatched to their respective service implementation - the Firmware Design document
provides details of how this is achieved.

The interface and operation of the runtime services depends heavily on the concepts and definitions described
in the SMCCC, in particular SMC Function IDs, Owning Entity Numbers (OEN), Fast and Standard calls,
and the SMC32 and SMC64 calling conventions. Please refer to that document for a full explanation of these
terms.

2.9. EL3 Runtime Service Writer’s Guide 91

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

2.9.2 Owning Entities, Call Types and Function IDs

The SMC Function Identifier includes a OEN field. These values and their meaning are described in SMCCC
and summarized in table 1 below. Some entities are allocated a range of of OENs. The OEN must be inter-
preted in conjunction with the SMC call type, which is either Fast or Yielding. Fast calls are uninterruptible
whereas Yielding calls can be pre-empted. The majority of Owning Entities only have allocated ranges for Fast
calls: Yielding calls are reserved exclusively for Trusted OS providers or for interoperability with legacy 32-bit
software that predates the SMCCC.

Type OEN Service
Fast 0 Arm Architecture calls
Fast 1 CPU Service calls
Fast 2 SiP Service calls
Fast 3 OEM Service calls
Fast 4 Standard Service calls
Fast 5-47 Reserved for future use
Fast 48-49 Trusted Application calls
Fast 50-63 Trusted OS calls

Yielding 0- 1 Reserved for existing Armv7-A calls
Yielding 2-63 Trusted OS Standard Calls

Table 1: Service types and their corresponding Owning Entity Numbers

Each individual entity can allocate the valid identifiers within the entity range as they need - it is not necessary
to coordinate with other entities of the same type. For example, two SoC providers can use the same Function
ID within the SiP Service calls OEN range to mean different things - as these calls should be specific to the
SoC. The Standard Runtime Calls OEN is used for services defined by Arm standards, such as PSCI.

The SMC Function ID also indicates whether the call has followed the SMC32 calling convention, where all
parameters are 32-bit, or the SMC64 calling convention, where the parameters are 64-bit. The framework
identifies and rejects invalid calls that use the SMC64 calling convention but that originate from an AArch32
caller.

The EL3 runtime services framework uses the call type and OEN to identify a specific handler for each SMC
call, but it is expected that an individual handler will be responsible for all SMC Functions within a given service
type.

2.9.3 Getting started

TF-A has a services directory in the source tree under which each owning entity can place the implemen-
tation of its runtime service. The PSCI implementation is located here in the lib/psci directory.

Runtime service sources will need to include the runtime_svc.h header file.

92 Chapter 2. Getting Started

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

2.9.4 Registering a runtime service

A runtime service is registered using the DECLARE_RT_SVC() macro, specifying the name of the service,
the range of OENs covered, the type of service and initialization and call handler functions.

#define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch)

• _name is used to identify the data structure declared by this macro, and is also used for diagnostic
purposes

• _start and _end values must be based on the OEN_* values defined in smccc.h

• _type must be one of SMC_TYPE_FAST or SMC_TYPE_YIELD

• _setup is the initialization function with the rt_svc_init signature:

typedef int32_t (*rt_svc_init)(void);

• _smch is the SMC handler function with the rt_svc_handle signature:

typedef uintptr_t (*rt_svc_handle_t)(uint32_t smc_fid,
u_register_t x1, u_register_t x2,
u_register_t x3, u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);

Details of the requirements and behavior of the two callbacks is provided in the following sections.

During initialization the services framework validates each declared service to ensure that the following con-
ditions are met:

1. The _start OEN is not greater than the _end OEN

2. The _end OEN does not exceed the maximum OEN value (63)

3. The _type is one of SMC_TYPE_FAST or SMC_TYPE_YIELD

4. _setup and _smch routines have been specified

std_svc_setup.c provides an example of registering a runtime service:

/* Register Standard Service Calls as runtime service */
DECLARE_RT_SVC(

std_svc,
OEN_STD_START,
OEN_STD_END,
SMC_TYPE_FAST,
std_svc_setup,
std_svc_smc_handler

);

2.9. EL3 Runtime Service Writer’s Guide 93

Trusted Firmware-A, Release 2.10.4

2.9.5 Initializing a runtime service

Runtime services are initialized once, during cold boot, by the primary CPU after platform and architectural
initialization is complete. The framework performs basic validation of the declared service before calling the
service initialization function (_setup in the declaration). This function must carry out any essential EL3
initialization prior to receiving a SMC Function call via the handler function.

On success, the initialization function must return 0. Any other return value will cause the framework to issue
a diagnostic:

Error initializing runtime service <name of the service>

and then ignore the service - the system will continue to boot but SMC calls will not be passed to the service
handler and instead return the Unknown SMC Function ID result 0xFFFFFFFF.

If the system must not be allowed to proceed without the service, the initialization function must itself cause
the firmware boot to be halted.

If the service uses per-CPU data this must either be initialized for all CPUs during this call, or be done lazily
when a CPU first issues an SMC call to that service.

2.9.6 Handling runtime service requests

SMC calls for a service are forwarded by the framework to the service’s SMC handler function (_smch in the
service declaration). This function must have the following signature:

typedef uintptr_t (*rt_svc_handle_t)(uint32_t smc_fid,
u_register_t x1, u_register_t x2,
u_register_t x3, u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);

The handler is responsible for:

1. Determining thatsmc_fid is a valid and supported SMCFunction ID, otherwise completing the request
with the Unknown SMC Function ID:

SMC_RET1(handle, SMC_UNK);

2. Determining if the requested function is valid for the calling security state. SMC Calls can be made from
Non-secure, Secure or Realm worlds and the framework will forward all calls to the service handler.

The flags parameter to this function indicates the caller security state in bits 0 and
5. The is_caller_secure(flags), is_caller_non_secure(flags) and
is_caller_realm(flags) helper functions can be used to determine whether the caller’s
security state is Secure, Non-secure or Realm respectively.

If invalid, the request should be completed with:

SMC_RET1(handle, SMC_UNK);

94 Chapter 2. Getting Started

Trusted Firmware-A, Release 2.10.4

3. Truncating parameters for calls made using the SMC32 calling convention. Such calls can be determined
by checking the CC field in bit[30] of the smc_fid parameter, for example by using:

if (GET_SMC_CC(smc_fid) == SMC_32) ...

For such calls, the upper bits of the parameters x1-x4 and the saved parameters X5-X7 are UNDEFINED
and must be explicitly ignored by the handler. This can be done by truncating the values to a suitable
32-bit integer type before use, for example by ensuring that functions defined to handle individual SMC
Functions use appropriate 32-bit parameters.

4. Providing the service requested by the SMC Function, utilizing the immediate parameters x1-x4 and/or
the additional saved parameters X5-X7. The latter can be retrieved using the SMC_GET_GP(handle,
ref) function, supplying the appropriate CTX_GPREG_Xn reference, e.g.

uint64_t x6 = SMC_GET_GP(handle, CTX_GPREG_X6);

5. Implementing the standard SMC32 Functions that provide information about the implementation of the
service. These are the Call Count, Implementor UID and Revision Details for each service documented
in section 6 of the SMCCC.

TF-A expects owning entities to follow this recommendation.

6. Returning the result to the caller. Based on SMCCC spec, results are returned in W0-W7(X0-X7)
registers for SMC32(SMC64) calls from AArch64 state. Results are returned in R0-R7 registers for
SMC32 calls from AArch32 state. The framework provides a family of macros to set the multi-register
return value and complete the handler:

AArch64 state:

SMC_RET1(handle, x0);
SMC_RET2(handle, x0, x1);
SMC_RET3(handle, x0, x1, x2);
SMC_RET4(handle, x0, x1, x2, x3);
SMC_RET5(handle, x0, x1, x2, x3, x4);
SMC_RET6(handle, x0, x1, x2, x3, x4, x5);
SMC_RET7(handle, x0, x1, x2, x3, x4, x5, x6);
SMC_RET8(handle, x0, x1, x2, x3, x4, x5, x6, x7);

AArch32 state:

SMC_RET1(handle, r0);
SMC_RET2(handle, r0, r1);
SMC_RET3(handle, r0, r1, r2);
SMC_RET4(handle, r0, r1, r2, r3);
SMC_RET5(handle, r0, r1, r2, r3, r4);
SMC_RET6(handle, r0, r1, r2, r3, r4, r5);
SMC_RET7(handle, r0, r1, r2, r3, r4, r5, r6);
SMC_RET8(handle, r0, r1, r2, r3, r4, r5, r6, r7);

The cookie parameter to the handler is reserved for future use and can be ignored. The handle is returned
by the SMC handler - completion of the handler function must always be via one of the SMC_RETn()macros.

2.9. EL3 Runtime Service Writer’s Guide 95

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

Note: The PSCI and Test Secure-EL1 Payload Dispatcher services do not follow all of the above requirements
yet.

2.9.7 Services that contain multiple sub-services

It is possible that a single owning entity implements multiple sub-services. For example, the Standard calls ser-
vice handles 0x84000000-0x8400FFFF and 0xC4000000-0xC400FFFF functions. Within that range,
the PSCI service handles the 0x84000000-0x8400001F and 0xC4000000-0xC400001F functions. In
that respect, PSCI is a ‘sub-service’ of the Standard calls service. In future, there could be additional such sub-
services in the Standard calls service which perform independent functions.

In this situation it may be valuable to introduce a second level framework to enable independent implementation
of sub-services. Such a framework might look very similar to the current runtime services framework, but using
a different part of the SMC Function ID to identify the sub-service. TF-A does not provide such a framework
at present.

2.9.8 Secure-EL1 Payload Dispatcher service (SPD)

Services that handle SMC Functions targeting a Trusted OS, Trusted Application, or other Secure-EL1 Payload
are special. These services need to manage the Secure-EL1 context, provide the Secure Monitor functionality
of switching between the normal and secure worlds, deliver SMC Calls through to Secure-EL1 and generally
manage the Secure-EL1 Payload through CPU power-state transitions.

TODO: Provide details of the additional work required to implement a SPD and the BL31 support for these
services. Or a reference to the document that will provide this information….

Copyright (c) 2014-2023, Arm Limited and Contributors. All rights reserved.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

96 Chapter 2. Getting Started

https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/

CHAPTER

THREE

PROCESSES & POLICIES

3.1 Security Handling

3.1.1 Security Disclosures

We disclose all security vulnerabilities we find, or are advised about, that are relevant to Trusted Firmware-A.
We encourage responsible disclosure of vulnerabilities and inform users as best we can about all possible issues.

We disclose TF-A vulnerabilities as Security Advisories, all of which are listed at the bottom of this page. Any
new ones will, additionally, be announced on the TF-A project’s mailing list.

3.1.2 Found a Security Issue?

Although we try to keep TF-A secure, we can only do so with the help of the community of developers and
security researchers.

Warning: If you think you have found a security vulnerability, please do not report it in the issue tracker
or on the mailing list. Instead, please follow the TrustedFirmware.org security incident process.

One of the goals of this process is to ensure providers of products that use TF-A have a chance to consider the
implications of the vulnerability and its remedy before it is made public. As such, please follow the disclosure
plan outlined in the process. We do our best to respond and fix any issues quickly.

Afterwards, we encourage you to write-up your findings about the TF-A source code.

3.1.3 Attribution

We will name and thank you in the Change Log & Release Notes distributed with the source code and in any
published security advisory.

97

https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://developer.trustedfirmware.org/project/board/1/
https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://developer.trustedfirmware.org/w/collaboration/security_center/

Trusted Firmware-A, Release 2.10.4

3.1.4 Security Advisories

ID Title
Advisory TFV-1 (CVE-2016-10319) Malformed Firmware Update SMC can result in copy of unexpect-

edly large data into secure memory
Advisory TFV-2 (CVE-2017-7564) Enabled secure self-hosted invasive debug interface can allow nor-

mal world to panic secure world
Advisory TFV-3 (CVE-2017-7563) RO memory is always executable at AArch64 Secure EL1
Advisory TFV-4 (CVE-2017-9607) Malformed Firmware Update SMC can result in copy or authenti-

cation of unexpected data in secure memory in AArch32 state
Advisory TFV-5 (CVE-2017-15031) Not initializing or saving/restoring PMCR_EL0 can leak secure

world timing information
Advisory TFV-6 (CVE-2017-5753,
CVE-2017-5715, CVE-2017-5754)

Trusted Firmware-A exposure to speculative processor vulnerabili-
ties using cache timing side-channels

Advisory TFV-7 (CVE-2018-3639) Trusted Firmware-A exposure to cache speculation vulnerability
Variant 4

Advisory TFV-8 (CVE-2018-19440) Not saving x0 to x3 registers can leak information from one Normal
World SMC client to another

Advisory TFV-9 (CVE-2022-23960) Trusted Firmware-A exposure to speculative processor vulnerabili-
ties with branch prediction target reuse

Advisory TFV-10 (CVE-2022-
47630)

Incorrect validation of X.509 certificate extensions can result in an
out-of-bounds read

Advisory TFV-11 (CVE-2023-
49100)

A Malformed SDEI SMC can cause out of bound memory read

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

3.2 Platform Ports Policy

This document clarifies a couple of policy points around platform ports management.

3.2.1 Platform compatibility policy

Platform compatibility is mainly affected by changes to Platform APIs (as documented in the Porting Guide),
driver APIs (like the GICv3 drivers) or library interfaces (like xlat_table library). The project will try to
maintain compatibility for upstream platforms.

Due to evolving requirements and enhancements, there might be changes affecting platform compatibility,
which means the previous interface needs to be deprecated and a new interface introduced to replace it. In case
the migration to the new interface is trivial, the contributor of the change is expected to make good effort to
migrate the upstream platforms to the new interface.

The project will generally not take into account downstream platforms. If those are affected by a deprecation /
removal decision, we encourage their maintainers to upstream their platform code or copy the latest version of
the code being deprecated into their downstream tree.

98 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

The deprecated interfaces are listed inside Release Processes as well as the release after which each one will be
removed. When an interface is deprecated, the page must be updated to indicate the release after which the
interface will be removed. This must be at least 1 full release cycle in future. For non-trivial interface changes,
an email should be sent out to the TF-A publicmailing list to notify platforms that they shouldmigrate away from
the deprecated interfaces. Platforms are expected to migrate before the removal of the deprecated interface.

3.2.2 Deprecation policy

If a platform, driver or library interface is no longer maintained, it is best to deprecate it to keep the projects’
source tree clean and healthy. Deprecation can be a 1-stage or 2-stage process (up to the maintainers).

• 2-stage: The source code can be kept in the repository for a cooling off period before deleting it (typically
2 release cycles). In this case, we keep track of the Deprecated version separately from the Deleted
version.

• 1-stage: The source code can be deleted straight away. In this case, both versions are the same.

The Platform Ports page provides a list of all deprecated/deleted platform ports (or soon to be) to this day.

Copyright (c) 2018-2023, Arm Limited and Contributors. All rights reserved.

3.3 Commit Style

When writing commit messages, please think carefully about the purpose and scope of the change you are
making: describe briefly what the change does, and describe in detail why it does it. This helps to ensure
that changes to the code-base are transparent and approachable to reviewers, and it allows us to keep a more
accurate changelog. You may use Markdown in commit messages.

A good commit message provides all the background information needed for reviewers to understand the intent
and rationale of the patch. This information is also useful for future reference.

For example:

• What does the patch do?

• What motivated it?

• What impact does it have?

• How was it tested?

• Have alternatives been considered? Why did you choose this approach over another one?

• If it fixes an issue, include a reference.

TF-A follows the Conventional Commits specification. All commits to the main repository are expected to
adhere to these guidelines, so it is strongly recommended that you read at least the quick summary of the
specification.

To briefly summarize, commit messages are expected to be of the form:

3.3. Commit Style 99

https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://developer.trustedfirmware.org/project/board/1/
https://www.conventionalcommits.org/en/v1.0.0
https://www.conventionalcommits.org/en/v1.0.0/#summary

Trusted Firmware-A, Release 2.10.4

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

The following example commit message demonstrates the use of the refactor type and the amu scope:

refactor(amu): factor out register accesses

This change introduces a small set of register getters and setters to
avoid having to repeatedly mask and shift in complex code.

Change-Id: Ia372f60c5efb924cd6eeceb75112e635ad13d942
Signed-off-by: Chris Kay <chris.kay@arm.com>

The following types are permissible and are strictly enforced:

Scope Description
feat A new feature
fix A bug fix
build Changes that affect the build system or external dependencies
ci Changes to our CI configuration files and scripts
docs Documentation-only changes
perf A code change that improves performance
refac-
tor

A code change that neither fixes a bug nor adds a feature

revert Changes that revert a previous change
style Changes that do not affect the meaning of the code (white-space, formatting, missing semi-

colons, etc.)
test Adding missing tests or correcting existing tests
chore Any other change

The permissible scopes are more flexible, and we maintain a list of them in our changelog configu-
ration file. Scopes in this file are organized by their changelog section, where each changelog section
has a single scope that is considered to be blessed, and possibly several deprecated scopes. Please avoid using
deprecated scopes.

While we don’t enforce scopes strictly, we do ask that commits use these if they can, or add their own if no
appropriate one exists (see Adding Scopes).

It’s highly recommended that you use the tooling installed by the optional steps in the prerequisites guide to
validate commit messages locally, as commitlint reports a live list of the acceptable scopes.

100 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

3.3.1 Adding Scopes

Scopes that are not present in the changelog configuration file are considered to be deprecated, and should be
avoided. If you are adding a new component that does not yet have a designated scope, please add one.

For example, if you are adding or making modifications to Foo’s latest and greatest new platform Bar then you
would add it to the Platforms changelog sub-section, and the hierarchy should look something like this:

- title: Platforms

subsections:
- title: Foo

scope: foo

subsections:
- title: Bar

scope: bar

When creating new scopes, try to keep them short and succinct, and use kebab case
(this-is-kebab-case). Components with a product name (i.e. most platforms and some drivers) should
use that name (e.g. gic600ae, flexspi, stpmic1), otherwise use a name that uniquely represents the
component (e.g. marvell-comphy-3700, rcar3-drivers, a3720-uart).

3.3.2 Mandated Trailers

Commits are expected to be signed off with the Signed-off-by: trailer using your real name and email
address. You can do this automatically by committing with Git’s -s flag. By adding this line the contributor
certifies the contribution is made under the terms of the Developer Certificate of Origin.

There may be multiple Signed-off-by: lines depending on the history of the patch, but onemust be the
committer. More details may be found in the Gerrit Signed-off-by Lines guidelines.

Ensure that each commit also has a unique Change-Id: line. If you have followed optional steps in the
prerequisites to either install the Node.js tools or clone the repository using the “Clone with commit-msg hook”
clone method, then this should be done automatically for you.

More details may be found in the Gerrit Change-Ids documentation.

Copyright (c) 2021, Arm Limited and Contributors. All rights reserved.

3.4 Coding Style

The following sections outline the TF-A coding style for C code. The style is based on the Linux kernel coding
style, with a few modifications.

The style should not be considered set in stone. Feel free to provide feedback and suggestions.

3.4. Coding Style 101

https://review.trustedfirmware.org/Documentation/user-signedoffby.html
https://review.trustedfirmware.org/Documentation/user-changeid.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Trusted Firmware-A, Release 2.10.4

Note: You will almost certainly find code in the TF-A repository that does not follow the style. The intent is
for all code to do so eventually.

3.4.1 File Encoding

The source code must use the UTF-8 character encoding. Comments and documentation may use non-ASCII
characters when required (e.g. Greek letters used for units) but code itself is still limited to ASCII characters.

Newlines must be in Unix style, which means that only the Line Feed (LF) character is used to break a line
and reset to the first column.

3.4.2 Language

The primary language for comments and naming must be International English. In cases where there is a
conflict between the American English and British English spellings of a word, the American English spelling
is used.

Exceptions are made when referring directly to something that does not use international style, such as the name
of a company. In these cases the existing name should be used as-is.

3.4.3 C Language Standard

The C language mode used for TF-A is GNU99. This is the “GNU dialect of ISO C99”, which implies the ISO
C99 standard with GNU extensions.

Both GCC and Clang compiler toolchains have support for GNU99 mode, though Clang does lack support for
a small number of GNU extensions. These missing extensions are rarely used, however, and should not pose a
problem.

3.4.4 MISRA Compliance

TF-A attempts to comply with the MISRA C:2012 Guidelines. Coverity Static Analysis is used to regularly
generate a report of current MISRA defects and to prevent the addition of new ones.

It is not possible for the project to follow all MISRA guidelines. We maintain a spreadsheet that lists all rules
and directives and whether we aim to comply with them or not. A rationale is given for each deviation.

Note: Enforcing a rule does not mean that the codebase is free of defects of that rule, only that they would
ideally be removed.

Note: Third-party libraries are not considered in our MISRA analysis and we do not intend to modify them
to make them MISRA compliant.

102 Chapter 3. Processes & Policies

https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx
https://developer.trustedfirmware.org/file/download/lamajxif3w7c4mpjeoo5/PHID-FILE-fp7c7acszn6vliqomyhn/MISRA-and-TF-Analysis-v1.3.ods

Trusted Firmware-A, Release 2.10.4

3.4.5 Indentation

Use tabs for indentation. The use of spaces for indentation is forbidden except in the case where a term is
being indented to a boundary that cannot be achieved using tabs alone.

Tab spacing should be set to 8 characters.

Trailing whitespace is not allowed and must be trimmed.

3.4.6 Spacing

Single spacing should be used around most operators, including:

• Arithmetic operators (+, -, /, *)

• Assignment operators (=, +=, etc)

• Boolean operators (&&, ||)

• Comparison operators (<, >, ==, etc)

A space should also be used to separate parentheses and braces when they are not already separated by a newline,
such as for the if statement in the following example:

int function_foo(bool bar)
{

if (bar) {
function_baz();

}
}

Note that there is no space between the name of a function and the following parentheses.

Control statements (if, for, switch, while, etc) must be separated from the following open parenthesis
by a single space. The previous example illustrates this for an if statement.

3.4.7 Line Length

Line length should be at most 80 characters. This limit does not include non-printing characters such as the
line feed.

This rule is a should, not a must, and it is acceptable to exceed the limit slightly where the readability of the
code would otherwise be significantly reduced. Use your judgement in these cases.

3.4. Coding Style 103

Trusted Firmware-A, Release 2.10.4

3.4.8 Blank Lines

Functions are usually separated by a single blank line. In certain cases it is acceptable to use additional blank
lines for clarity, if required.

The file must end with a single newline character. Many editors have the option to insert this automatically and
to trim multiple blank lines at the end of the file.

3.4.9 Braces

Opening Brace Placement

Braces follow the Kernighan and Ritchie (K&R) style, where the opening brace is not placed on a new line.

Example for a while loop:

while (condition) {
foo();
bar();

}

This style applies to all blocks except for functions which, following the Linux style, do place the opening brace
on a new line.

Example for a function:

int my_function(void)
{

int a;

a = 1;
return a;

}

Conditional Statement Bodies

Where conditional statements (such as if, for, while and do) are used, braces must be placed around the
statements that form the body of the conditional. This is the case regardless of the number of statements in the
body.

Note: This is a notable departure from the Linux coding style that has been adopted to follow MISRA
guidelines more closely and to help prevent errors.

For example, use the following style:

if (condition) {
foo++;

}

104 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

instead of omitting the optional braces around a single statement:

/* This is violating MISRA C 2012: Rule 15.6 */
if (condition)

foo++;

The reason for this is to prevent accidental changes to control flow when modifying the body of the conditional.
For example, at a quick glance it is easy to think that the value of bar is only incremented if condition
evaluates to true but this is not the case - bar will always be incremented regardless of the condition evalu-
ation. If the developer forgets to add braces around the conditional body when adding the bar++; statement
then the program execution will not proceed as intended.

/* This is violating MISRA C 2012: Rule 15.6 */
if (condition)

foo++;
bar++;

3.4.10 Naming

Functions

Use lowercase for function names, separating multiple words with an underscore character (_). This is some-
times referred to as Snake Case. An example is given below:

void bl2_arch_setup(void)
{

...
}

Local Variables and Parameters

Local variables and function parameters use the same format as function names: lowercase with underscore
separation between multiple words. An example is given below:

static void set_scr_el3_from_rm(uint32_t type,
uint32_t interrupt_type_flags,
uint32_t security_state)

{
uint32_t flag, bit_pos;

...

}

3.4. Coding Style 105

Trusted Firmware-A, Release 2.10.4

Preprocessor Macros

Identifiers that are defined using preprocessor macros are written in all uppercase text.

#define BUFFER_SIZE_BYTES 64

3.4.11 Function Attributes

Place any function attributes after the function type and before the function name.

void __init plat_arm_interconnect_init(void);

3.4.12 Alignment

Alignment should be performed primarily with tabs, adding spaces if required to achieve a granularity that is
smaller than the tab size. For example, with a tab size of eight columns it would be necessary to use one tab
character and two spaces to indent text by ten columns.

Switch Statement Alignment

When using switch statements, align each case statement with the switch so that they are in the same
column.

switch (condition) {
case A:

foo();
case B:

bar();
default:

baz();
}

Pointer Alignment

The reference and dereference operators (ampersand and pointer star) must be aligned with the name of the
object on which they are operating, as opposed to the type of the object.

uint8_t *foo;

foo = &bar;

106 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

3.4.13 Comments

The general rule for comments is that the double-slash style of comment (//) is not allowed. Examples of the
allowed comment formats are shown below:

/*
* This example illustrates the first allowed style for multi-line comments.
*
* Blank lines within multi-lines are allowed when they add clarity or when
* they separate multiple contexts.
*
*/

/**
* This is the second allowed style for multi-line comments.
*
* In this style, the first and last lines use asterisks that run the full
* width of the comment at its widest point.
*
* This style can be used for additional emphasis.
*
***/

/* Single line comments can use this format */

/***
* This alternative single-line comment style can also be used for emphasis.
**/

3.4.14 Headers and inclusion

Header guards

For a header file called “some_driver.h” the style used by TF-A is:

#ifndef SOME_DRIVER_H
#define SOME_DRIVER_H

<header content>

#endif /* SOME_DRIVER_H */

3.4. Coding Style 107

Trusted Firmware-A, Release 2.10.4

Include statement ordering

All header files that are included by a source file must use the following, grouped ordering. This is to improve
readability (by making it easier to quickly read through the list of headers) and maintainability.

1. System includes: Header files from the standard C library, such as stddef.h and string.h.

2. Project includes: Header files under the include/ directory within TF-A are project includes.

3. Platform includes: Header files relating to a single, specific platform, and which are located under the
plat/<platform_name> directory within TF-A, are platform includes.

Within each group, #include statements must be in alphabetical order, taking both the file and directory
names into account.

Groups must be separated by a single blank line for clarity.

The example below illustrates the ordering rules using some contrived header file names; this type of name
reuse should be otherwise avoided.

#include <string.h>

#include <a_dir/example/a_header.h>
#include <a_dir/example/b_header.h>
#include <a_dir/test/a_header.h>
#include <b_dir/example/a_header.h>

#include "a_header.h"

The preferred approach for third-party headers is to include them immediately following system header files
like in the example below, where the version.h header from the Mbed TLS library immediately follows
the stddef.h system header.

/* system header files */
#include <stddef.h>

/* Mbed TLS header files */
#include <mbedtls/version.h>

/* project header files */
#include <drivers/auth/auth_mod.h>
#include <drivers/auth/tbbr_cot_common.h>

/* platform header files */
#include <platform_def.h>

108 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

Include statement variants

Two variants of the #include directive are acceptable in the TF-A codebase. Correct use of the two styles
improves readability by suggesting the location of the included header and reducing ambiguity in cases where
generic and platform-specific headers share a name.

For header files that are in the same directory as the source file that is including them, use the "..." variant.

For header files that are not in the same directory as the source file that is including them, use the <...>
variant.

Example (bl1_fwu.c):

#include <assert.h>
#include <errno.h>
#include <string.h>

#include "bl1_private.h"

3.4.15 Typedefs

Avoid anonymous typedefs of structs/enums in headers

For example, the following definition:

typedef struct {
int arg1;
int arg2;

} my_struct_t;

is better written as:

struct my_struct {
int arg1;
int arg2;

};

This allows function declarations in other header files that depend on the struct/enum to forward declare the
struct/enum instead of including the entire header:

struct my_struct;
void my_func(struct my_struct *arg);

instead of:

#include <my_struct.h>
void my_func(my_struct_t *arg);

Some TF definitions use both a struct/enum name and a typedef name. This is discouraged for new definitions
as it makes it difficult for TF to comply with MISRA rule 8.3, which states that “All declarations of an object
or function shall use the same names and type qualifiers”.

3.4. Coding Style 109

Trusted Firmware-A, Release 2.10.4

The Linux coding standards also discourage new typedefs and checkpatch emits a warning for this.

Existing typedefs will be retained for compatibility.

Copyright (c) 2020-2023, Arm Limited. All rights reserved.

3.5 Coding Guidelines

This document provides some additional guidelines to consider when writing TF-A code. These are not intended
to be strictly-enforced rules like the contents of the Coding Style.

3.5.1 Automatic Editor Configuration

Many of the rules given below (such as indentation size, use of tabs, and newlines) can be set automatically
using the EditorConfig configuration file in the root of the repository: .editorconfig. With a supported
editor, the rules set out in this file can be automatically applied when you are editing files in the TF-A repository.

Several editors include built-in support for EditorConfig files, and many others support its functionality through
plugins.

Use of the EditorConfig file is suggested but is not required.

3.5.2 Automatic Compliance Checking

To assist with coding style compliance, the project Makefile contains two targets which both utilise the check-
patch.pl script that ships with the Linux source tree. The project also defines certain checkpatch options in the
.checkpatch.conf file in the top-level directory.

Note: Checkpatch errors will gate upstream merging of pull requests. Checkpatch warnings will not gate
merging but should be reviewed and fixed if possible.

To check the entire source tree, you must first download copies of checkpatch.pl, spelling.txt and
const_structs.checkpatch available in the Linux master tree scripts directory, then set the CHECK-
PATCH environment variable to point to checkpatch.pl (with the other 2 files in the same directory) and
build the checkcodebase target:

make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and the remote master, use:

make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master, set the BASE_COMMIT
variable to your desired branch. By default, BASE_COMMIT is set to origin/master.

110 Chapter 3. Processes & Policies

http://editorconfig.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/

Trusted Firmware-A, Release 2.10.4

Ignored Checkpatch Warnings

Some checkpatch warnings in the TF codebase are deliberately ignored. These include:

• **WARNING: line over 80 characters**: Although the codebase should generally conform
to the 80 character limit this is overly restrictive in some cases.

• **WARNING: Use of volatile is usually wrong: see Why the “volatile” type class
should not be used . Although this document contains some very useful information, there are several
legimate uses of the volatile keyword within the TF codebase.

3.5.3 Performance considerations

Avoid printf and use logging macros

debug.h provides loggingmacros (for example, WARN andERROR) whichwraptf_log andwhich allow the
logging call to be compiled-out depending on the make command. Use these macros to avoid print statements
being compiled unconditionally into the binary.

Each logging macro has a numerical log level:

#define LOG_LEVEL_NONE 0
#define LOG_LEVEL_ERROR 10
#define LOG_LEVEL_NOTICE 20
#define LOG_LEVEL_WARNING 30
#define LOG_LEVEL_INFO 40
#define LOG_LEVEL_VERBOSE 50

By default, all logging statements with a log level <= LOG_LEVEL_INFO will be compiled into debug builds
and all statements with a log level <= LOG_LEVEL_NOTICE will be compiled into release builds. This can
be overridden from the command line or by the platform makefile (although it may be necessary to clean the
build directory first).

For example, to enable VERBOSE logging on FVP:

make PLAT=fvp LOG_LEVEL=50 all

Use const data where possible

For example, the following code:

struct my_struct {
int arg1;
int arg2;

};

void init(struct my_struct *ptr);

void main(void)

(continues on next page)

3.5. Coding Guidelines 111

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html
https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
{

struct my_struct x;
x.arg1 = 1;
x.arg2 = 2;
init(&x);

}

is better written as:

struct my_struct {
int arg1;
int arg2;

};

void init(const struct my_struct *ptr);

void main(void)
{

const struct my_struct x = { 1, 2 };
init(&x);

}

This allows the linker to put the data in a read-only data section instead of a writeable data section, which may
result in a smaller and faster binary. Note that this may require dependent functions (init() in the above
example) to have const arguments, assuming they don’t need to modify the data.

3.5.4 Libc functions that are banned or to be used with caution

Below is a list of functions that present security risks and either must not be used (Banned) or are discouraged
from use and must be used with care (Caution).

libc function Status Comments
strcpy, wcscpy, strncpy Banned use strlcpy instead
strcat, wcscat, strncat Banned use strlcat instead
sprintf, vsprintf Banned use snprintf, vsnprintf instead
snprintf Caution ensure result fits in buffer i.e : snprintf(buf,size…) < size
vsnprintf Caution inspect va_list match types specified in format string
strtok Banned use strtok_r or strsep instead
strtok_r, strsep Caution inspect for terminated input buffer
ato* Banned use equivalent strto* functions
*toa Banned Use snprintf instead

The libc component in the codebase will not add support for the banned APIs.

112 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

3.5.5 Error handling and robustness

Using CASSERT to check for compile time data errors

Where possible, use the CASSERT macro to check the validity of data known at compile time instead of
checking validity at runtime, to avoid unnecessary runtime code.

For example, this can be used to check that the assembler’s and compiler’s views of the size of an array is the
same.

#include <cassert.h>

define MY_STRUCT_SIZE 8 /* Used by assembler source files */

struct my_struct {
uint32_t arg1;
uint32_t arg2;

};

CASSERT(MY_STRUCT_SIZE == sizeof(struct my_struct), assert_my_struct_size_
↪→mismatch);

If MY_STRUCT_SIZE in the above example were wrong then the compiler would emit an error like this:

my_struct.h:10:1: error: size of array ‘assert_my_struct_size_mismatch’ is␣
↪→negative

Using assert() to check for programming errors

In general, each secure world TF image (BL1, BL2, BL31 and BL32) should be treated as a tightly integrated
package; the image builder should be aware of and responsible for all functionality within the image, even if
code within that image is provided by multiple entities. This allows us to be more aggressive in interpreting
invalid state or bad function arguments as programming errors using assert(), including arguments passed
across platform porting interfaces. This is in contrast to code in a Linux environment, which is less tightly
integrated and may attempt to be more defensive by passing the error back up the call stack.

Where possible, badly written TF code should fail early using assert(). This helps reduce the amount of
untested conditional code. By default these statements are not compiled into release builds, although this can
be overridden using the ENABLE_ASSERTIONS build flag.

Examples:

• Bad argument supplied to library function

• Bad argument provided by platform porting function

• Internal secure world image state is inconsistent

3.5. Coding Guidelines 113

Trusted Firmware-A, Release 2.10.4

Handling integration errors

Each secure world imagemay be provided by a different entity (for example, a Trusted Boot vendormay provide
the BL2 image, a TEE vendor may provide the BL32 image and the OEM/SoC vendor may provide the other
images).

An image may contain bugs that are only visible when the images are integrated. The system integrator may not
even have access to the debug variants of all the images in order to check if asserts are firing. For example, the
release variant of BL1may have already been burnt into the SoC. Therefore, TF code that detects an integration
error should _not_ consider this a programming error, and should always take action, even in release builds.

If an integration error is considered non-critical it should be treated as a recoverable error. If the error is
considered critical it should be treated as an unexpected unrecoverable error.

Handling recoverable errors

The secure worldmust not crash when supplied with bad data from an external source. For example, data from
the normal world or a hardware device. Similarly, the secure world must not crash if it detects a non-critical
problem within itself or the system. It must make every effort to recover from the problem by emitting a WARN
message, performing any necessary error handling and continuing.

Examples:

• Secure world receives SMC from normal world with bad arguments.

• Secure world receives SMC from normal world at an unexpected time.

• BL31 receives SMC from BL32 with bad arguments.

• BL31 receives SMC from BL32 at unexpected time.

• Secure world receives recoverable error from hardware device. Retrying the operation may help here.

• Non-critical secure world service is not functioning correctly.

• BL31 SPD discovers minor configuration problem with corresponding SP.

Handling unrecoverable errors

In some cases it may not be possible for the secure world to recover from an error. This situation should be
handled in one of the following ways:

1. If the unrecoverable error is unexpected then emit an ERRORmessage and call panic(). This will end
up calling the platform-specific function plat_panic_handler().

2. If the unrecoverable error is expected to occur in certain circumstances, then emit an ERROR message
and call the platform-specific function plat_error_handler().

Cases 1 and 2 are subtly different. A platform may implement plat_panic_handler and
plat_error_handler in the same way (for example, by waiting for a secure watchdog to time-
out or by invoking an interface on the platform’s power controller to reset the platform). However,
plat_error_handler may take additional action for some errors (for example, it may set a flag so the

114 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

platform resets into a different mode). Also, plat_panic_handler() may implement additional debug
functionality (for example, invoking a hardware breakpoint).

Examples of unexpected unrecoverable errors:

• BL32 receives an unexpected SMC response from BL31 that it is unable to recover from.

• BL31 Trusted OS SPD code discovers that BL2 has not loaded the corresponding Trusted OS, which is
critical for platform operation.

• Secure world discovers that a critical hardware device is an unexpected and unrecoverable state.

• Secure world receives an unexpected and unrecoverable error from a critical hardware device.

• Secure world discovers that it is running on unsupported hardware.

Examples of expected unrecoverable errors:

• BL1/BL2 fails to load the next image due to missing/corrupt firmware on disk.

• BL1/BL2 fails to authenticate the next image due to an invalid certificate.

• Secure world continuously receives recoverable errors from a hardware device but is unable to proceed
without a valid response.

Handling critical unresponsiveness

If the secure world is waiting for a response from an external source (for example, the normal world or a hard-
ware device) which is critical for continued operation, it must not wait indefinitely. It must have a mechanism
(for example, a secure watchdog) for resetting itself and/or the external source to prevent the system from
executing in this state indefinitely.

Examples:

• BL1 is waiting for the normal world to raise an SMC to proceed to the next stage of the secure firmware
update process.

• A Trusted OS is waiting for a response from a proxy in the normal world that is critical for continued
operation.

• Secure world is waiting for a hardware response that is critical for continued operation.

3.5.6 Use of built-in C and libc data types

The TF-A codebase should be kept as portable as possible, especially since both 64-bit and 32-bit platforms
are supported. To help with this, the following data type usage guidelines should be followed:

• Where possible, use the built-in C data types for variable storage (for example, char, int, long
long, etc) instead of the standard C99 types. Most code is typically only concerned with the minimum
size of the data stored, which the built-in C types guarantee.

• Avoid using the exact-size standard C99 types in general (for example, uint16_t, uint32_t,
uint64_t, etc) since they can prevent the compiler from making optimizations. There are legitimate
uses for them, for example to represent data of a known structure. When using them in struct definitions,

3.5. Coding Guidelines 115

Trusted Firmware-A, Release 2.10.4

consider how padding in the struct will work across architectures. For example, extra padding may be
introduced in AArch32 systems if a struct member crosses a 32-bit boundary.

• Use int as the default integer type - it’s likely to be the fastest on all systems. Also this can be assumed to
be 32-bit as a consequence of the Procedure Call Standard for the Arm Architecture and the Procedure
Call Standard for the Arm 64-bit Architecture .

• Avoid use of short as this may end up being slower than int in some systems. If a variable must be
exactly 16-bit, use int16_t or uint16_t.

• Avoid use of long. This is guaranteed to be at least 32-bit but, given that int is 32-bit on Arm platforms,
there is no use for it. For integers of at least 64-bit, use long long.

• Use char for storing text. Use uint8_t for storing other 8-bit data.

• Use unsigned for integers that can never be negative (counts, indices, sizes, etc). TF intends to com-
ply with MISRA “essential type” coding rules (10.X), where signed and unsigned types are considered
different essential types. Choosing the correct type will aid this. MISRA static analysers will pick up
any implicit signed/unsigned conversions that may lead to unexpected behaviour.

• For pointer types:

– If an argument in a function declaration is pointing to a known type then simply use a pointer to
that type (for example: struct my_struct *).

– If a variable (including an argument in a function declaration) is pointing to a general, memory-
mapped address, an array of pointers or another structure that is likely to require pointer arithmetic
then use uintptr_t. This will reduce the amount of casting required in the code. Avoid using
unsigned long or unsigned long long for this purpose; it may work but is less portable.

– For other pointer arguments in a function declaration, use void *. This includes pointers to types
that are abstracted away from the known API and pointers to arbitrary data. This allows the calling
function to pass a pointer argument to the function without any explicit casting (the cast to void
* is implicit). The function implementation can then do the appropriate casting to a specific type.

– Avoid pointer arithmetic generally (as this violates MISRA C 2012 rule 18.4) and especially on
void pointers (as this is only supported via language extensions and is considered non-standard). In
TF-A, setting the W build flag to W=3 enables the -Wpointer-arith compiler flag and this will emit
warnings where pointer arithmetic is used.

– Use ptrdiff_t to compare the difference between 2 pointers.

• Use size_t when storing the sizeof() something.

• Use ssize_t when returning the sizeof() something from a function that can also return an error
code; the signed type allows for a negative return code in case of error. This practice should be used
sparingly.

• Use u_register_t when it’s important to store the contents of a register in its native size (32-bit
in AArch32 and 64-bit in AArch64). This is not a standard C99 type but is widely available in libc
implementations, including the FreeBSD version included with the TF codebase. Where possible, cast
the variable to a more appropriate type before interpreting the data. For example, the following struct in
ep_info.h could use this type to minimize the storage required for the set of registers:

116 Chapter 3. Processes & Policies

https://github.com/ARM-software/abi-aa/blob/main/aapcs32/aapcs32.rst
https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst
https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst

Trusted Firmware-A, Release 2.10.4

typedef struct aapcs64_params {
u_register_t arg0;
u_register_t arg1;
u_register_t arg2;
u_register_t arg3;
u_register_t arg4;
u_register_t arg5;
u_register_t arg6;
u_register_t arg7;

} aapcs64_params_t;

If some code wants to operate on arg0 and knows that it represents a 32-bit unsigned integer on all systems,
cast it to unsigned int.

These guidelines should be updated if additional types are needed.

3.5.7 Favor C language over assembly language

Generally, prefer code written in C over assembly. Assembly code is less portable, harder to understand,
maintain and audit security wise. Also, static analysis tools generally don’t analyze assembly code.

If specific system-level instructions must be used (like cache maintenance operations), please consider using
inline assembly. The arch_helpers.h files already define inline functions for a lot of these.

There are, however, legitimate uses of assembly language. These are usually early boot (eg. cpu reset sequences)
and exception handling code before the C runtime environment is set up.

When writing assembly please note that a wide variety of common instruction sequences have helper macros
in asm_macros.S which are preferred over writing them directly. This is especially important for de-
bugging purposes as debug symbols must manually be included. Please use the func_prologue and
func_epilogue macros if you need to use the stack. Also, obeying the Procedure Call Standard (PCS) is
generally recommended.

3.5.8 Do not use weak functions

Note: The following guideline applies more strongly to common, platform-independent code. For plaform
code (under plat/ directory), it is up to each platform maintainer to decide whether this should be striclty
enforced or not.

The use of weak functions is highly discouraged in the TF-A codebase. Newly introduced platform interfaces
should be strongly defined, wherever possible. In the rare cases where this is not possible or where weak
functions appear as the best tool to solve the problem at hand, this should be discussed with the project’s
maintainers and justified in the code.

For the purpose of providing a default implementation of a platform interface, an alternative to weak functions
is to provide a strongly-defined implementation under the plat/common/ directory. Then platforms have
two options to pull in this implementation:

3.5. Coding Guidelines 117

Trusted Firmware-A, Release 2.10.4

• They can include the source file through the platform’s makefile. Note that this method is suitable only if
the platform wants all default implementations defined in this file, else either the file should be refactored
or the next approach should be used.

• They access the platform interface through a constant function pointer.

In both cases, what matters is that platforms include the default implementation as a conscious decision.

Rationale

Weak functions may sound useful to simplify the initial porting effort to a new platform, such that one can
quickly get the firmware to build and link, without implementing all platform interfaces from the beginning.
For this reason, the TF-A project used to make heavy use of weak functions and there are still many outstanding
usages of them across the code base today. We intend to convert them to strongly-defined functions over time.

However, weak functions also have major drawbacks, which we consider outweighing their benefits. They can
make it hard to identify which implementation gets built into the firmware, especially when using multiple levels
of “weakness”. This has resulted in bugs in the past.

Weak functions are also forbidden by MISRA coding guidelines, which TF-A aims to comply with.

Copyright (c) 2020 - 2023, Arm Limited and Contributors. All rights reserved.

3.6 Contributor’s Guide

3.6.1 Getting Started

• Make sure you have a Github account and you are logged on both developer.trustedfirmware.org and
review.trustedfirmware.org.

• If you plan to contribute a major piece of work, it is usually a good idea to start a discussion around it on
the mailing list. This gives everyone visibility of what is coming up, you might learn that somebody else
is already working on something similar or the community might be able to provide some early input to
help shaping the design of the feature.

If you intend to include Third Party IP in your contribution, please mention it explicitly in the email
thread and ensure that the changes that include Third Party IP are made in a separate patch (or patch
series).

• Clone Trusted Firmware-A on your own machine as described in Getting the TF-A Source.

• Create a local topic branch based on the Trusted Firmware-A master branch.

118 Chapter 3. Processes & Policies

https://developer.trustedfirmware.org
https://review.trustedfirmware.org
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git

Trusted Firmware-A, Release 2.10.4

3.6.2 Making Changes

• Ensure commits adhere to the the project’s Commit Style.

• Make commits of logical units. See these general Git guidelines for contributing to a project.

• Keep the commits on topic. If you need to fix another bug or make another enhancement, please address
it on a separate topic branch.

• Split the patch in manageable units. Small patches are usually easier to review so this will speed up the
review process.

• Avoid long commit series. If you do have a long series, consider whether some commits should be
squashed together or addressed in a separate topic.

• Follow the Coding Style and Coding Guidelines.

– Use the checkpatch.pl script provided with the Linux source tree. A Makefile target is provided
for convenience, see this section for more details.

• Where appropriate, please update the documentation.

– Consider whether the Porting Guide, Firmware Design document or other in-source documentation
needs updating.

– If you are submitting new files that you intend to be the code owner for (for example, a new platform
port), then also update the Code owners file.

– For topics with multiple commits, you should make all documentation changes (and nothing else)
in the last commit of the series. Otherwise, include the documentation changes within the single
commit.

• Ensure that each changed file has the correct copyright and license information. Files that entirely consist
of contributions to this project should have a copyright notice and BSD-3-Clause SPDX license identifier
of the form as shown in License. Files that contain changes to imported Third Party IP files should retain
their original copyright and license notices.

For significant contributions you may add your own copyright notice in the following format:

Portions copyright (c) [XXXX-]YYYY, <OWNER>. All rights reserved.

where XXXX is the year of first contribution (if different to YYYY) and YYYY is the year of most
recent contribution. <OWNER> is your name or your company name.

• Ensure that each patch in the patch series compiles in all supported configurations. Patches which do not
compile will not be merged.

• Please test your changes. As a minimum, ensure that Linux boots on the Foundation FVP. See Arm
Fixed Virtual Platforms (FVP) for more information. For more extensive testing, consider running the
TF-A Tests against your patches.

• Ensure that all CI automated tests pass. Failures should be fixed. They might block a patch, depending
on how critical they are.

3.6. Contributor’s Guide 119

http://git-scm.com/book/ch5-2.html
https://trustedfirmware-a-tests.readthedocs.io

Trusted Firmware-A, Release 2.10.4

3.6.3 Submitting Changes

• Submit your changes for review at https://review.trustedfirmware.org targeting the integration
branch.

• Add reviewers for your patch:

– At least one code owner for each module modified by the patch. See the list of modules and their
Code owners.

– At least one maintainer. See the list of Maintainers.

– If some module has no code owner, try to identify a suitable (non-code owner) reviewer. Running
git blame on the module’s source code can help, as it shows who has been working the most
recently on this area of the code.

Alternatively, if it is impractical to identify such a reviewer, you might send an email to the TF-A
mailing list to broadcast your review request to the community.

Note that self-reviewing a patch is prohibited, even if the patch author is the only code owner of a module
modified by the patch. Getting a second pair of eyes on the code is essential to keep up with the quality
standards the project aspires to.

• The changes will then undergo further review by the designated people. Any review comments will be
made directly on your patch. This may require you to do some rework. For controversial changes, the
discussion might be moved to the TF-A mailing list to involve more of the community.

Refer to the Gerrit Uploading Changes documentation for more details.

• The patch submission rules are the following. For a patch to be approved and merged in the tree, it must
get:

– One Code-Owner-Review+1 for each of the modules modified by the patch.

– A Maintainer-Review+1.

In the case where a code owner could not be found for a given module, Code-Owner-Review+1 is
substituted by Code-Review+1.

In addition to these various code review labels, the patch must also get a Verified+1. This is usually
set by the Continuous Integration (CI) bot when all automated tests passed on the patch. Sometimes,
some of these automated tests may fail for reasons unrelated to the patch. In this case, the maintainers
might (after analysis of the failures) override the CI bot score to certify that the patch has been correctly
tested.

In the event where the CI system lacks proper tests for a patch, the patch author or a reviewer might
agree to perform additional manual tests in their review and the reviewer incorporates the review of the
additional testing in the Code-Review+1 or Code-Owner-Review+1 as applicable to attest that
the patch works as expected. Where possible additional tests should be added to the CI system as a follow
up task. For example, for a platform-dependent patch where the said platform is not available in the CI
system’s board farm.

• When the changes are accepted, the Maintainers will integrate them.

– Typically, the Maintainers will merge the changes into the integration branch.

120 Chapter 3. Processes & Policies

https://review.trustedfirmware.org
https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://lists.trustedfirmware.org/mailman3/lists/tf-a.lists.trustedfirmware.org/
https://review.trustedfirmware.org/Documentation/user-upload.html

Trusted Firmware-A, Release 2.10.4

– If the changes are not based on a sufficiently-recent commit, or if they cannot be automatically
rebased, then the Maintainers may rebase it on the integration branch or ask you to do so.

– After final integration testing, the changes will make their way into the master branch. If a
problem is found during integration, theMaintainers will request your help to solve the issue. They
may revert your patches and ask you to resubmit a reworked version of them or they may ask you
to provide a fix-up patch.

3.6.4 Add CI Configurations

• TF-A uses Jenkins tool for Continuous Integration and testing activities. Various CI Jobs are deployed
which run tests on every patch before being merged. So each of your patches go through a series of
checks before they get merged on to the master branch. Kindly ensure, that everytime you add new files
under your platform, they are covered under the following two sections:

Coverity Scan

• Coverity Scan analysis is one of the tests we perform on our source code at regular intervals.
We maintain a build script tf-cov-make which contains the build configurations of various platforms
in order to cover the entire source code being analysed by Coverity.

• When you submit your patches for review containing new source files, please ensure to include
them for the Coverity Scan analysis by adding the respective build configurations in the
tf-cov-make build script.

• In this section you find the details on how to append your new build configurations for Coverity scan
analysis illustrated with examples:

1. We maintain a separate repository named tf-a-ci-scripts repository for placing all the test scripts which
will be executed by the CI Jobs.

2. In this repository, tf-cov-make script is located at tf-a-ci-scripts/script/
tf-coverity/tf-cov-make

3. Edit tf-cov-make script by appending all the possible build configurations with the specific
build-flags relevant to your platform, so that newly added source files get built and analysed by
Coverity.

4. For better understanding follow the below specified examples listed in the tf-cov-make script.

Example 1:
#Intel
make PLAT=stratix10 $(common_flags) all
make PLAT=agilex $(common_flags) all

• In the above example there are two different SoCs stratix and agilex under the Intel platform and
the build configurations has been added suitably to include most of their source files.

Example 2:
#Hikey

(continues on next page)

3.6. Contributor’s Guide 121

https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/
https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/tree/script/tf-coverity/tf-cov-make

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
make PLAT=hikey $(common_flags) ${TBB_OPTIONS} ENABLE_PMF=1 all
make PLAT=hikey960 $(common_flags) ${TBB_OPTIONS} all
make PLAT=poplar $(common_flags) all

• In this case for Hikey boards additional build-flags has been included along with the com-
mom_flags to cover most of the files relevant to it.

• Similar to this you can still find many other different build configurations of various other platforms listed
in the tf-cov-make script. Kindly refer them and append your build configurations respectively.

Test Build Configuration (tf-l1-build-plat)

• Coverity Scan analysis, runs on a daily basis andwill not be triggered for every individual trusted-firmware
patch.

• Considering this, we have other distinguished CI jobs which run a set of test configurations on every
patch, before they are being passed to Coverity scan analysis.

• tf-l1-build-plat is the test group, which holds the test configurations to build all the platforms.
So be kind enough to verify that your newly added files are built as part of one of the existing platform
configurations present in tf-l1-build-plat test group.

• In this section you find the details on how to add the appropriate files, needed to build your newly intro-
duced platform as part of tf-l1-build-plat test group, illustrated with an example:

• Lets consider Hikey platform: In the tf-a-ci-scripts repository we need to add a build configuration
file hikey-default under tf_config folder, tf_config/hikey-default listing all the build
parameters relevant to it.

#Hikey Build Parameters
CROSS_COMPILE=aarch64-none-elf-
PLAT=hikey

• Further a test-configuration file hikey-default:nil need to be added under the test group,
tf-l1-build-plat located at tf-a-ci-scripts/group/tf-l1-build-plat, to allow
the platform to be built as part of this group.

#
Copyright (c) 2019-2022 Arm Limited. All rights reserved.
#
SPDX-License-Identifier: BSD-3-Clause
#

• As illustrated above, you need to add the similar files supporting your platform.

122 Chapter 3. Processes & Policies

https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/

Trusted Firmware-A, Release 2.10.4

3.6.5 Binary Components

• Platforms may depend on binary components submitted to the Trusted Firmware binary repository if
they require code that the contributor is unable or unwilling to open-source. This should be used as a
rare exception.

• All binary components must follow the contribution guidelines (in particular licensing rules) outlined in
the readme.rst file of the binary repository.

• Binary components must be restricted to only the specific functionality that cannot be open-sourced and
must be linked into a larger open-source platform port. The majority of the platform port must still be
implemented in open source. Platform ports that are merely a thin wrapper around a binary component
that contains all the actual code will not be accepted.

• Only platform port code (i.e. in the plat/<vendor> directory) may rely on binary components.
Generic code must always be fully open-source.

Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.

3.7 Code Review Guidelines

3.7.1 Why do we do code reviews?

The main goal of code reviews is to improve the code quality. By reviewing each other’s code, we can help
catch issues that were missed by the author before they are integrated in the source tree. Different people bring
different perspectives, depending on their past work, experiences and their current use cases of TF-A in their
products.

Code reviews also play a key role in sharing knowledge within the community. People with more expertise in
one area of the code base can help those that are less familiar with it.

Code reviews are meant to benefit everyone through team work. It is not about unfairly criticizing or belittling
the work of any contributor.

3.7.2 Overview of the code review process

All contributions to Trusted Firmware-A project are reviewed by the community to ensure they meet the
project’s expectations before they get merged, according to the Project Maintenance Process defined for all
Trusted Firmware projects.

Technical ownership of most parts of the codebase falls on the Code owners. All patches are ultimately merged
by the Maintainers.

Approval of a patch is tracked using Gerrit labels. For a patch to be merged, it must get all of the following
votes:

• At least one Code-Owner-Review+1 up-vote, and no Code-Owner-Review-1 down-vote.

• At least one Maintainer-Review+1 up-vote, and no Maintainer-Review-1 down-vote.

3.7. Code Review Guidelines 123

https://review.trustedfirmware.org/admin/repos/tf-binaries
https://git.trustedfirmware.org/tf-binaries.git/tree/readme.rst
https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/

Trusted Firmware-A, Release 2.10.4

• Verified+1 vote applied by the automated Continuous Integration (CI) system.

Note that, in some instances, the maintainers might give a waiver for some of the CI failures and manually
override the Verified+1 score.

3.7.3 Good practices for all reviewers

To ensure the code review gives the greatest possible benefit, participants in the project should:

• Be considerate of other people and their needs. Participants may be working to different timescales, and
have different priorities. Keep this in mind - be gracious while waiting for action from others, and timely
in your actions when others are waiting for you.

• Review other people’s patches where possible. The more active reviewers there are, the more quickly
new patches can be reviewed and merged. Contributing to code review helps everyone in the long run,
as it creates a culture of participation which serves everyone’s interests.

3.7.4 Guidelines for patch contributors

In addition to the rules outlined in the Contributor’s Guide, as a patch contributor you are expected to:

• Answer all comments from people who took the time to review your patches.

• Be patient and resilient. It is quite common for patches to go through several rounds of reviews and
rework before they get approved, especially for larger features.

In the event that a code review takes longer than you would hope for, you may try the following actions
to speed it up:

• Ping the reviewers on Gerrit or on the mailing list. If it is urgent, explain why. Please remain courteous
and do not abuse this.

• If one code owner has become unresponsive, ask the other code owners for help progressing the patch.

• If there is only one code owner and they have become unresponsive, ask one of the project maintainers
for help.

• Do the right thing for the project, not the fastest thing to get code merged.

For example, if some existing piece of code - say a driver - does not quite meet your exact needs, go
the extra mile and extend the code with the missing functionality you require - as opposed to copying
the code into some other directory to have the freedom to change it in any way. This way, your changes
benefit everyone and will be maintained over time.

• It is the patch-author’s responsibility to respond to review comments within 21 days. In the event that the
patch-author does not respond within this timeframe, the maintainer is entitled to abandon the patch(es).
Patch author(s) may be busy with other priorities, causing a delay in responding to active review com-
ments after posting patch(es). In such a situation, if the author’s patch(es) is/are abandoned, they can
restore their work for review by resolving comments, merge-conflicts, and revising their original submis-
sions.

124 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

3.7.5 Guidelines for all reviewers

There are no good or bad review comments. If you have any doubt about a patch or need some clarifications,
it’s better to ask rather than letting a potential issue slip. Examples of review comments could be:

• Questions (“Why do you need to do this?”, “What if X happens?”)

• Bugs (“I think you need a logical || rather than a bitwise |.”)

• Design issues (“This won’t scale well when we introduce feature X.”)

• Improvements (“Would it be better if we did Y instead?”)

3.7.6 Guidelines for code owners

Code owners are listed on the Project Maintenance page, along with the module(s) they look after.

When reviewing a patch, code owners are expected to check the following:

• The patch looks good from a technical point of view. For example:

• The structure of the code is clear.

• It complies with the relevant standards or technical documentation (where applicable).

• It leverages existing interfaces rather than introducing new ones unnecessarily.

• It fits well in the design of the module.

• It adheres to the security model of the project. In particular, it does not increase the attack surface (e.g.
new SMCs) without justification.

• The patch adheres to the TF-A Coding Style. The CI system should help catch coding style violations.

• (Only applicable to generic code) The code is MISRA-compliant (see MISRA Compliance). The CI
system should help catch violations.

• Documentation is provided/updated (where applicable).

• The patch has had an appropriate level of testing. Testing details are expected to be provided by the
patch author. If they are not, do not hesitate to request this information.

• All CI automated tests pass.

If a code owner is happy with a patch, they should give their approval through the Code-Owner-Review+1
label in Gerrit. If instead, they have concerns, questions, or any other type of blocking comment, they should
set Code-Owner-Review-1.

Code owners are expected to behave professionally and responsibly. Here are some guidelines for them:

• Once you are engaged in a review, make sure you stay involved until the patch is merged. Rejecting a
patch and going away is not very helpful. You are expected to monitor the patch author’s answers to your
review comments, answer back if needed and review new revisions of their patch.

• Provide constructive feedback. Just saying, “This is wrong, you should do X instead.” is usually not very
helpful. The patch author is unlikely to understand why you are requesting this change and might feel
personally attacked.

3.7. Code Review Guidelines 125

Trusted Firmware-A, Release 2.10.4

• Be mindful when reviewing a patch. As a code owner, you are viewed as the expert for the relevant
module. By approving a patch, you are partially responsible for its quality and the effects it has for all
TF-A users. Make sure you fully understand what the implications of a patch might be.

3.7.7 Guidelines for maintainers

Maintainers are listed on the Project Maintenance page.

When reviewing a patch, maintainers are expected to check the following:

• The general structure of the patch looks good. This covers things like:

– Code organization.

– Files and directories, names and locations.

For example, platform code should be added under the plat/ directory.

– Naming conventions.

For example, platform identifiers should be properly namespaced to avoid name clashes with generic
code.

– API design.

• Interaction of the patch with other modules in the code base.

• The patch aims at complying with any standard or technical documentation that applies.

• New files must have the correct license and copyright headers. See this paragraph for more information.
The CI system should help catch files with incorrect or no copyright/license headers.

• There is no third party code or binary blobs with potential IP concerns. Maintainers should look for
copyright or license notices in code, and use their best judgement. If they are unsure about a patch, they
should ask other maintainers for help.

• Generally speaking, new driver code should be placed in the generic layer. There are cases where a driver
has to stay into the platform layer but this should be the exception, rather than the rule.

• Existing common drivers (in particular for Arm IPs like the GIC driver) should not be copied into the
platform layer to cater for platform quirks. This type of code duplication hurts the maintainability of the
project. The duplicate driver is less likely to benefit from bug fixes and future enhancements. In most
cases, it is possible to rework a generic driver to make it more flexible and fit slightly different use cases.
That way, these enhancements benefit everyone.

• When a platform specific driver really is required, the burden lies with the patch author to prove the need
for it. A detailed justification should be posted via the commit message or on the mailing list.

• Before merging a patch, verify that all review comments have been addressed. If this is not the case,
encourage the patch author and the relevant reviewers to resolve these together.

If a maintainer is happy with a patch, they should give their approval through the Maintainer-Review+1
label in Gerrit. If instead, they have concerns, questions, or any other type of blocking comment, they should
set Maintainer-Review-1.

126 Chapter 3. Processes & Policies

Trusted Firmware-A, Release 2.10.4

Copyright (c) 2020-2023, Arm Limited. All rights reserved.

3.8 Frequently-Asked Questions (FAQ)

3.8.1 How do I update my changes?

Often it is necessary to update your patch set before it is merged. Refer to the Gerrit Upload Patch Set docu-
mentation on how to do so.

If you need to modify an existing patch set with multiple commits, refer to the Gerrit Replace Changes docu-
mentation.

3.8.2 How long will my changes take to merge into integration?

This can vary a lot, depending on:

• How important the patch set is considered by the TF maintainers. Where possible, you should indicate
the required timescales for merging the patch set and the impact of any delay. Feel free to add a comment
to your patch set to get an estimate of when it will be merged.

• The quality of the patch set. Patches are likely to be merged more quickly if they follow the coding
guidelines, have already had some code review, and have been appropriately tested.

• The impact of the patch set. For example, a patch that changes a key generic API is likely to receive
much greater scrutiny than a local change to a specific platform port.

• Howmuch opportunity for external review is required. For example, the TFmaintainers may not wait for
external review comments to merge trivial bug-fixes but may wait up to a week to merge major changes,
or ones requiring feedback from specific parties.

• How many other patch sets are waiting to be integrated and the risk of conflict between the topics.

• If there is a code freeze in place in preparation for the release. Please refer the Release Processes docu-
ment for more details.

• The workload of the TF maintainers.

3.8.3 How long will it take for my changes to go from integration to master?

This depends on how many concurrent patches are being processed at the same time. In simple cases where
all potential regressions have already been tested, the delay will be less than 1 day. If the TF maintainers are
trying to merge several things over the course of a few days, it might take up to a week. Typically, it will be
1-2 days.

The worst case is if the TF maintainers are trying to make a release while also receiving patches that will not be
merged into the release. In this case, the patches will be merged onto integration, which will temporarily
diverge from the release branch. The integration branch will be rebased onto master after the release,
and then master will be fast-forwarded to integration 1-2 days later. This whole process could take up

3.8. Frequently-Asked Questions (FAQ) 127

https://review.trustedfirmware.org/Documentation/intro-user.html#upload-patch-set
https://review.trustedfirmware.org/Documentation/intro-user.html#upload-patch-set
https://review.trustedfirmware.org/Documentation/user-upload.html#push_replace
https://review.trustedfirmware.org/Documentation/user-upload.html#push_replace

Trusted Firmware-A, Release 2.10.4

4 weeks. Please refer to the Release Processes document for code freeze dates. The TF maintainers will inform
the patch owner if this is going to happen.

It is OK to create a patch based on commits that are only available in integration or another patch set,
rather than master. There is a risk that the dependency commits will change (for example due to patch set
rework or integration problems). If this happens, the dependent patch will need reworking.

3.8.4 What are these strange comments in my changes?

All the comments from TrustedFirmware Code Review user (email: ci@trustedfirmware.
org) are associated with Continuous Integration (CI) infrastructure. The links published on the comments
redirect to the CI web interface at http://ci.trustedfirmware.org, where details of the tests failures, if any, can
be examined.

Copyright (c) 2019-2020, Arm Limited. All rights reserved.

3.9 Project Maintenance Processes

Trusted Firmware-A (TF-A) project follows the generic trustedfirmware.org Project Maintenance Process. The
present document complements it by defining TF-A project-specific decisions.

3.9.1 How to become a maintainer?

Qualifying Criteria

To be elligible to become a maintainer for TF-A project, all criteria outlined here must be fullfilled. These are:

• Being an active member of the project for at least a couple of years.

• Having contributed a substantial number of non-trivial and high-quality patches.

• Having reviewed a substantial number of non-trivial patches, preferably in the generic layer, with high-
quality constructive feedback.

• Behaving in a professional and polite way, with the best interests of the project at heart.

• Showing a strong will to improve the project and to do the right thing, rather than going for the quick
and easy path.

• Participating in design discussions on the development mailing list and during TF-A tech forums calls.

• Having appropriate bandwidth (minimum 2 hours per week) to deal with the workload.

128 Chapter 3. Processes & Policies

http://ci.trustedfirmware.org
https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/
https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/#how-to-become-a-maintainer

Trusted Firmware-A, Release 2.10.4

Election Process

To put an individual’s name up for election,

1. Send an email to all existing TF-Amaintainers, asking whether they have any objections to this individual
becoming a TF-A maintainer.

2. Give existing maintainers one calendar week to participate in the discussion.

3. If there are objections, the existing maintainers should try to resolve them amongst themselves. If they
cannot, this should be escalated to the trustedfirmware.org Technical Steering Commitee (TSC).

4. If there are no (more) objections, announce the news on the TF-A mailing list and update the list of
maintainers on the Project Maintenance page.

3.10 Secure Development Guidelines

This page contains guidance on what to check for additional security measures, including build options that can
be modified to improve security or catch issues early in development.

3.10.1 Security considerations

Part of the security of a platform is handling errors correctly, as described in the previous section. There are
several other security considerations covered in this section.

Do not leak secrets to the normal world

The secure worldmust not leak secrets to the normal world, for example in response to an SMC.

Handling Denial of Service attacks

The secure world should never crash or become unusable due to receiving too many normal world requests (a
Denial of Service or DoS attack). It should have a mechanism for throttling or ignoring normal world requests.

Preventing Secure-world timing information leakage via PMU counters

The Secure world needs to implement some defenses to prevent the Non-secure world from making it leak
timing information. In general, higher privilege levels must defend from those below when the PMU is treated
as an attack vector.

Refer to the Performance Monitoring Unit guide for detailed information on the PMU registers.

3.10. Secure Development Guidelines 129

Trusted Firmware-A, Release 2.10.4

Timing leakage attacks from the Non-secure world

Since the Non-secure world has access to the PMCR register, it can configure the PMU to increment counters
at any exception level and in both Secure and Non-secure state. Thus, it attempts to leak timing information
from the Secure world.

Shown below is an example of such a configuration:

• PMEVTYPER0_EL0 and PMCCFILTR_EL0:

– Set P to 0.

– Set NSK to 1.

– Set M to 0.

– Set NSH to 0.

– Set SH to 1.

• PMCNTENSET_EL0:

– Set P[0] to 1.

– Set C to 1.

• PMCR_EL0:

– Set DP to 0.

– Set E to 1.

This configuration instructs PMEVCNTR0_EL0 and PMCCNTR_EL0 to increment at Secure EL1, Secure EL2
(if implemented) and EL3.

Since the Non-secure world has fine-grained control over where (at which exception levels) it instructs counters
to increment, obtaining event counts would allow it to carry out side-channel timing attacks against the Secure
world. Examples include Spectre, Meltdown, as well as extracting secrets from cryptographic algorithms with
data-dependent variations in their execution time.

Secure world mitigation strategies

The MDCR_EL3 register allows EL3 to configure the PMU (among other things). The Arm ARM details all
of the bit fields in this register, but for the PMU there are two bits which determine the permissions of the
counters:

• SPME for the programmable counters.

• SCCD for the cycle counter.

Depending on the implemented features, the Secure world can prohibit counting in AArch64 state via the
following:

• ARMv8.2-Debug not implemented:

130 Chapter 3. Processes & Policies

https://developer.arm.com/docs/ddi0487/latest

Trusted Firmware-A, Release 2.10.4

– Prohibit general event counters and the cycle counter: MDCR_EL3.SPME == 0 &&
PMCR_EL0.DP == 1 && !ExternalSecureNoninvasiveDebugEnabled().

∗ MDCR_EL3.SPME resets to 0, so by default general events should not be counted in the
Secure world.

∗ The PMCR_EL0.DP bit therefore needs to be set to 1 when EL3 is entered and PMCR_EL0
needs to be saved and restored in EL3.

∗ ExternalSecureNoninvasiveDebugEnabled() is an authentication interface
which is implementation-defined unless ARMv8.4-Debug is implemented. The Arm ARM
has detailed information on this topic.

– The only other way is to disable the PMCR_EL0.E bit upon entering EL3, which disables counting
altogether.

• ARMv8.2-Debug implemented:

– Prohibit general event counters: MDCR_EL3.SPME == 0.

– Prohibit cycle counter: MDCR_EL3.SPME == 0 && PMCR_EL0.DP == 1. PMCR_EL0
therefore needs to be saved and restored in EL3.

• ARMv8.5-PMU implemented:

– Prohibit general event counters: as in ARMv8.2-Debug.

– Prohibit cycle counter: MDCR_EL3.SCCD == 1

In Aarch32 execution state the MDCR_EL3 alias is the SDCR register, which has some of the bit fields of
MDCR_EL3, most importantly the SPME and SCCD bits.

3.10.2 Build options

Several build options can be used to check for security issues. Refer to theBuild Options for detailed information
on these.

• The BRANCH_PROTECTION build flag can be used to enable Pointer Authentication and Branch Target
Identification.

• The ENABLE_STACK_PROTECTOR build flag can be used to identify buffer overflows.

• The W build flag can be used to enable a number of compiler warning options to detect potentially incor-
rect code. TF-A is tested with W=0 but it is recommended to develop against W=2 (which will eventually
become the default).

Additional guidelines are provided below for some security-related build options:

• The ENABLE_CONSOLE_GETC build flag should be set to 0 to disable the getc() feature, which allows
the firmware to read characters from the console. Keeping this feature enabled is considered dangerous
from a security point of view because it potentially allows an attacker to inject arbitrary data into the
firmware. It should only be enabled on a need basis if there is a use case for it, for example in a testing
or factory environment.

3.10. Secure Development Guidelines 131

https://developer.arm.com/docs/ddi0487/latest

Trusted Firmware-A, Release 2.10.4

References

• Arm ARM

Copyright (c) 2019-2020, Arm Limited. All rights reserved.

132 Chapter 3. Processes & Policies

https://developer.arm.com/docs/ddi0487/latest

CHAPTER

FOUR

COMPONENTS

4.1 Secure Payload Dispatcher (SPD)

4.1.1 OP-TEE Dispatcher

OP-TEE OS is a Trusted OS running as Secure EL1.

To build and execute OP-TEE follow the instructions at OP-TEE build.git

There are two different modes for loading the OP-TEE OS. The default mode will load it as the BL32 payload
during boot, and is the recommended technique for platforms to use. There is also another technique that will
load OP-TEE OS after boot via an SMC call by enabling the option for OPTEE_ALLOW_SMC_LOAD that
was specifically added for ChromeOS. Loading OP-TEE via an SMC call may be insecure depending upon the
platform configuration. If using that option, be sure to understand the risks involved with allowing the Trusted
OS to be loaded this way. ChromeOS uses a boot flow where it verifies the signature of the firmware before
executing it, and then only if the signature is valid will the ‘secrets’ used by the TEE become accessible. The
firmware then verifies the signature of the kernel using depthcharge, and the kernel verifies the rootfs using dm-
verity. The SMC call to load OP-TEE is then invoked immediately after the kernel finishes loading and before
any attack vectors can be opened up by mounting writable filesystems or opening network/device connections.
this ensures the platform is ‘closed’ and running signed code through the point where OP-TEE is loaded.

Copyright (c) 2014-2023, Arm Limited and Contributors. All rights reserved.

4.1.2 Trusted Little Kernel (TLK) Dispatcher

TLK dispatcher (TLK-D) adds support for NVIDIA’s Trusted Little Kernel (TLK) to work with Trusted
Firmware-A (TF-A). TLK-D can be compiled by including it in the platform’s makefile. TLK is primarily
meant to work with Tegra SoCs, so while TF-A only supports TLK on Tegra, the dispatcher code can only be
compiled for other platforms.

In order to compile TLK-D, we need a BL32 image to be present. Since, TLKD just needs to compile, any
BL32 image would do. To use TLK as the BL32, please refer to the “Build TLK” section.

Once a BL32 is ready, TLKD can be included in the image by adding “SPD=tlkd” to the build command.

133

https://github.com/OP-TEE/build
https://github.com/OP-TEE/build

Trusted Firmware-A, Release 2.10.4

Trusted Little Kernel (TLK)

TLK is a Trusted OS running as Secure EL1. It is a Free Open Source Software (FOSS) release of the
NVIDIA® Trusted Little Kernel (TLK) technology, which extends technology made available with the de-
velopment of the Little Kernel (LK). You can download the LK modular embedded preemptive kernel for use
on Arm, x86, and AVR32 systems from https://github.com/travisg/lk

NVIDIA implemented its Trusted Little Kernel (TLK) technology, designed as a free and open-source trusted
execution environment (OTE).

TLK features include:

• Small, pre-emptive kernel

• Supports multi-threading, IPCs, and thread scheduling

• Added TrustZone features

• Added Secure Storage

• Under MIT/FreeBSD license

NVIDIA extensions to Little Kernel (LK) include:

• User mode

• Address-space separation for TAs

• TLK Client Application (CA) library

• TLK TA library

• Crypto library (encrypt/decrypt, key handling) via OpenSSL

• Linux kernel driver

• Cortex A9/A15 support

• Power Management

• TrustZone memory carve-out (reconfigurable)

• Page table management

• Debugging support over UART (USB planned)

TLK is hosted by NVIDIA on http://nv-tegra.nvidia.com under the 3rdparty/ote_partner/tlk.git
repository. Detailed information about TLK and OTE can be found in the
Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf manual located under the “documentation” direc-
tory_.

134 Chapter 4. Components

https://github.com/travisg/lk
http://nv-tegra.nvidia.com

Trusted Firmware-A, Release 2.10.4

Build TLK

To build and execute TLK, follow the instructions from “Building a TLK Device” section from
Tegra_BSP_for_Android_TLK_FOSS_Reference.pdf manual.

Input parameters to TLK

TLK expects the TZDRAM size and a structure containing the boot arguments. BL2 passes this information to
the EL3 software as members of the bl32_ep_info struct, where bl32_ep_info is part of bl31_params_t (passed
by BL2 in X0)

Example

bl32_ep_info->args.arg0 = TZDRAM size available for BL32
bl32_ep_info->args.arg1 = unused (used only on Armv7-A)
bl32_ep_info->args.arg2 = pointer to boot args

4.1.3 Trusty Dispatcher

Trusty is a a set of software components, supporting a Trusted Execution Environment (TEE) onmobile devices,
published and maintained by Google.

Detailed information and build instructions can be found on the Android Open Source Project (AOSP) webpage
for Trusty hosted at https://source.android.com/security/trusty

Boot parameters

Custom boot parameters can be passed to Trusty by providing a platform specific function:

void plat_trusty_set_boot_args(aapcs64_params_t *args)

If this function is provided args->arg0 must be set to the memory size allocated to trusty. If the platform
does not provide this function, but defines TSP_SEC_MEM_SIZE, a default implementation will pass the
memory size from TSP_SEC_MEM_SIZE. args->arg1 can be set to a platform specific parameter block,
and args->arg2 should then be set to the size of that block.

4.1. Secure Payload Dispatcher (SPD) 135

https://source.android.com/security/trusty

Trusted Firmware-A, Release 2.10.4

Supported platforms

Out of all the platforms supported by Trusted Firmware-A, Trusty is only verified and supported by NVIDIA’s
Tegra SoCs.

4.1.4 ProvenCore Dispatcher

ProvenCore dispatcher (PnC-D) adds support for ProvenRun’s ProvenCore micro-kernel to work with Trusted
Firmware-A (TF-A).

ProvenCore is a secure OS developed by ProvenRun S.A.S. using deductive formal methods.

Once a BL32 is ready, PnC-D can be included in the image by adding “SPD=pncd” to the build command.

4.2 Activity Monitors

FEAT_AMUv1 of the Armv8-A architecture introduces the Activity Monitors extension. This extension de-
scribes the architecture for the Activity Monitor Unit (AMU), an optional non-invasive component for moni-
toring core events through a set of 64-bit counters.

When the ENABLE_FEAT_AMU=1 build option is provided, Trusted Firmware-A sets up the AMU prior to
its exit from EL3, and will save and restore architected AMU counters as necessary upon suspend and resume.

4.2.1 Auxiliary counters

FEAT_AMUv1 describes a set of implementation-defined auxiliary counters (also known as group 1 counters),
controlled by the ENABLE_AMU_AUXILIARY_COUNTERS build option.

As a security precaution, Trusted Firmware-A does not enable these by default. Instead, platforms may con-
figure their auxiliary counters through one of two possible mechanisms:

• FCONF, controlled by the ENABLE_AMU_FCONF build option.

• A platform implementation of the plat_amu_topology function (the default).

See Activity Monitor Unit (AMU) Bindings for documentation on the FCONF device tree bindings.

Copyright (c) 2021, Arm Limited. All rights reserved.

136 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.3 Arm SiP Services

This document enumerates and describes the Arm SiP (Silicon Provider) services.

SiP services are non-standard, platform-specific services offered by the silicon implementer or platform
provider. They are accessed via SMC (“SMC calls”) instruction executed from Exception Levels below EL3.
SMC calls for SiP services:

• Follow SMC Calling Convention;

• Use SMC function IDs that fall in the SiP range, which are 0xc2000000 - 0xc200ffff for 64-bit
calls, and 0x82000000 - 0x8200ffff for 32-bit calls.

The Arm SiP implementation offers the following services:

• Performance Measurement Framework (PMF)

• Execution State Switching service

• DebugFS interface

Source definitions for Arm SiP service are located in the arm_sip_svc.h header file.

4.3.1 Performance Measurement Framework (PMF)

The Performance Measurement Framework allows callers to retrieve timestamps captured at various paths in
TF-A execution.

4.3.2 Execution State Switching service

Execution State Switching service provides a mechanism for a non-secure lower Exception Level (either EL2,
or NS EL1 if EL2 isn’t implemented) to request to switch its execution state (a.k.a. Register Width), either
from AArch64 to AArch32, or from AArch32 to AArch64, for the calling CPU. This service is only available
when Trusted Firmware-A (TF-A) is built for AArch64 (i.e. when build option ARCH is set to aarch64).

ARM_SIP_SVC_EXE_STATE_SWITCH

Arguments:
uint32_t Function ID
uint32_t PC hi
uint32_t PC lo
uint32_t Cookie hi
uint32_t Cookie lo

Return:
uint32_t

The function ID parameter must be 0x82000020. It uniquely identifies the Execution State Switching service
being requested.

4.3. Arm SiP Services 137

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

The parameters PC hi and PC lo defines upper and lower words, respectively, of the entry point (physical
address) at which execution should start, after Execution State has been switched. When calling fromAArch64,
PC hi must be 0.

When execution starts at the supplied entry point after Execution State has been switched, the parameters
Cookie hi and Cookie lo are passed in CPU registers 0 and 1, respectively. When calling from AArch64, Cookie
hi must be 0.

This call can only be made on the primary CPU, before any secondaries were brought up with CPU_ON PSCI
call. Otherwise, the call will always fail.

The effect of switching execution state is as if the Exception Level were entered for the first time, following
power on. This means CPU registers that have a defined reset value by the Architecture will assume that value.
Other registers should not be expected to hold their values before the call was made. CPU endianness, however,
is preserved from the previous execution state. Note that this switches the execution state of the calling CPU
only. This is not a substitute for PSCI SYSTEM_RESET.

The service may return the following error codes:

• STATE_SW_E_PARAM: If any of the parameters were deemed invalid for a specific request.

• STATE_SW_E_DENIED: If the call is not successful, or when TF-A is built for AArch32.

If the call is successful, the caller wouldn’t observe the SMC returning. Instead, execution starts at the sup-
plied entry point, with the CPU registers 0 and 1 populated with the supplied Cookie hi and Cookie lo values,
respectively.

4.3.3 DebugFS interface

The optional DebugFS interface is accessed through an SMC SiP service. Refer to the component documen-
tation for details.

String parameters are passed through a shared buffer using a specific union:

union debugfs_parms {
struct {

char fname[MAX_PATH_LEN];
} open;

struct mount {
char srv[MAX_PATH_LEN];
char where[MAX_PATH_LEN];
char spec[MAX_PATH_LEN];

} mount;

struct {
char path[MAX_PATH_LEN];
dir_t dir;

} stat;

struct {
char oldpath[MAX_PATH_LEN];

(continues on next page)

138 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
char newpath[MAX_PATH_LEN];

} bind;
};

Format of the dir_t structure as such:

typedef struct {
char name[NAMELEN];
long length;
unsigned char mode;
unsigned char index;
unsigned char dev;
qid_t qid;

} dir_t;

• Identifiers

SMC_OK 0
SMC_UNK -1
DEBUGFS_E_INVALID_PARAMS -2

MOUNT 0
CREATE 1
OPEN 2
CLOSE 3
READ 4
WRITE 5
SEEK 6
BIND 7
STAT 8
INIT 10
VERSION 11

MOUNT

Description

This operation mounts a blob of data pointed to by path stored in src, at filesystem location pointed to by path
stored in where, using driver pointed to by path in spec.

4.3. Arm SiP Services 139

Trusted Firmware-A, Release 2.10.4

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t MOUNT

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if mount operation failed

OPEN

Description

This operation opens the file path pointed to by fname.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t OPEN

uint32_t mode

mode can be one of:

enum mode {
O_READ = 1 << 0,
O_WRITE = 1 << 1,
O_RDWR = 1 << 2,
O_BIND = 1 << 3,
O_DIR = 1 << 4,
O_STAT = 1 << 5

};

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if open operation failed

uint32_t w1: file descriptor id on success.

140 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

CLOSE

Description

This operation closes a file described by a file descriptor obtained by a previous call to OPEN.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t CLOSE

uint32_t File descriptor id returned by OPEN

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if close operation failed

READ

Description

This operation reads a number of bytes from a file descriptor obtained by a previous call to OPEN.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t READ

uint32_t File descriptor id returned by OPEN
uint32_t Number of bytes to read

Return values

On success, the read data is retrieved from the shared buffer after the operation.

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if read operation failed

uint32_t w1: number of bytes read on success.

4.3. Arm SiP Services 141

Trusted Firmware-A, Release 2.10.4

SEEK

Description

Move file pointer for file described by given file descriptor of given offset related to whence.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t SEEK

uint32_t File descriptor id returned by OPEN
sint32_t offset in the file relative to whence
uint32_t whence

whence can be one of:

KSEEK_SET 0
KSEEK_CUR 1
KSEEK_END 2

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if seek operation failed

BIND

Description

Create a link from oldpath to newpath.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t BIND

142 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if bind operation failed

STAT

Description

Perform a stat operation on provided file name and returns the directory entry statistics into dir.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t STAT

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if stat operation failed

INIT

Description

Initial call to setup the shared exchange buffer. Notice if successful once, subsequent calls fail after a first
initialization. The caller maps the same page frame in its virtual space and uses this buffer to exchange string
parameters with filesystem primitives.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t INIT

uint64_t Physical address of the shared buffer.

4.3. Arm SiP Services 143

Trusted Firmware-A, Release 2.10.4

Return values

int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if already initialized, or internal error occurred.

VERSION

Description

Returns the debugfs interface version if implemented in TF-A.

Parameters

uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t VERSION

Return values

int32_t w0 == SMC_OK on success
w0 == SMC_UNK if interface is not implemented

uint32_t w1: On success, debugfs interface version, 32 bits value with major version number in upper 16
bits and minor version in lower 16 bits.

• CREATE(1) and WRITE (5) command identifiers are unimplemented and return SMC_UNK.

Copyright (c) 2017-2020, Arm Limited and Contributors. All rights reserved.

4.4 Debug FS

Contents

• Debug FS

– Overview

– Virtual filesystem

∗ Namespace

∗ 9p interface

144 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

– SMC interface

– Security considerations

– Limitations

– Applications

4.4.1 Overview

The DebugFS feature is primarily aimed at exposing firmware debug data to higher SW layers such as a non-
secure component. Such component can be the TFTF test payload or a Linux kernel module.

4.4.2 Virtual filesystem

The core functionality lies in a virtual file system based on a 9p file server interface (Notes on the Plan 9 Kernel
Source and Linux 9p remote filesystem protocol). The implementation permits exposing virtual files, firmware
drivers, and file blobs.

Namespace

Two namespaces are exposed:

• # is used as root for drivers (e.g. #t0 is the first uart)

• / is used as root for virtual “files” (e.g. /fip, or /dev/uart)

9p interface

The associated primitives are:

• Unix-like:

– open(): create a file descriptor that acts as a handle to the file passed as an argument.

– close(): close the file descriptor created by open().

– read(): read from a file to a buffer.

– write(): write from a buffer to a file.

– seek(): set the file position indicator of a file descriptor either to a relative or an absolute offset.

– stat(): get information about a file (type, mode, size, …).

int open(const char *name, int flags);
int close(int fd);
int read(int fd, void *buf, int n);
int write(int fd, void *buf, int n);

(continues on next page)

4.4. Debug FS 145

http://lsub.org/who/nemo/9.pdf
http://lsub.org/who/nemo/9.pdf
https://www.kernel.org/doc/Documentation/filesystems/9p.txt

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
int seek(int fd, long off, int whence);
int stat(char *path, dir_t *dir);

• Specific primitives :

– mount(): create a link between a driver and spec.

– create(): create a file in a specific location.

– bind(): expose the content of a directory to another directory.

int mount(char *srv, char *mnt, char *spec);
int create(const char *name, int flags);
int bind(char *path, char *where);

This interface is embedded into the BL31 run-time payload when selected by build options. The interface
multiplexes drivers or emulated “files”:

• Debug data can be partitioned into different virtual files e.g. expose PMF measurements through a file,
and internal firmware state counters through another file.

• This permits direct access to a firmware driver, mainly for test purposes (e.g. a hardware device that may
not be accessible to non-privileged/ non-secure layers, or for which no support exists in the NS side).

4.4.3 SMC interface

The communication with the 9p layer in BL31 is made through an SMC conduit (SMC Calling Convention),
using a specific SiP Function Id. An NS shared buffer is used to pass path string parameters, or e.g. to exchange
data on a read operation. Refer to ARM SiP Services for a description of the SMC interface.

4.4.4 Security considerations

• Due to the nature of the exposed data, the feature is considered experimental and importantly shall only
be used in debug builds.

• Several primitive imply string manipulations and usage of string formats.

• Special care is taken with the shared buffer to avoid TOCTOU attacks.

4.4.5 Limitations

• In order to setup the shared buffer, the component consuming the interface needs to allocate a physical
page frame and transmit its address.

• In order to map the shared buffer, BL31 requires enabling the dynamic xlat table option.

• Data exchange is limited by the shared buffer length. A large read operation might be split into multiple
read operations of smaller chunks.

146 Chapter 4. Components

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

• On concurrent access, a spinlock is implemented in the BL31 service to protect the internal work buffer,
and re-entrancy into the filesystem layers.

• Notice, a physical device driver if exposed by the firmware may conflict with the higher level OS if the
latter implements its own driver for the same physical device.

4.4.6 Applications

The SMC interface is accessible from an NS environment, that is:

• a test payload, bootloader or hypervisor running at NS-EL2

• a Linux kernel driver running at NS-EL1

• a Linux userspace application through the kernel driver

Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.

4.5 Exception Handling Framework

This document describes various aspects of handling exceptions by Runtime Firmware (BL31) that are targeted
at EL3, other than SMCs. The EHF takes care of the following exceptions when targeted at EL3:

• Interrupts

• Synchronous External Aborts

• Asynchronous External Aborts

TF-A’s handling of synchronous SMC exceptions raised from lower ELs is described in the Firmware Design
document. However, the EHF changes the semantics of Interrupt handling and synchronous exceptions other
than SMCs.

The EHF is selected by setting the build option EL3_EXCEPTION_HANDLING to 1, and is only available
for AArch64 systems.

4.5.1 Introduction

Through various control bits in the SCR_EL3 register, the Arm architecture allows for asynchronous exceptions
to be routed to EL3. As described in the Interrupt Management Framework document, depending on the chosen
interrupt routing model, TF-A appropriately sets the FIQ and IRQ bits of SCR_EL3 register to effect this
routing. For most use cases, other than for the purpose of facilitating context switch between Normal and
Secure worlds, FIQs and IRQs routed to EL3 are not required to be handled in EL3.

However, the evolving system and standards landscape demands that various exceptions are targeted at and
handled in EL3. For instance:

4.5. Exception Handling Framework 147

Trusted Firmware-A, Release 2.10.4

• Starting with ARMv8.2 architecture extension, many RAS features have been introduced to the Arm
architecture. With RAS features implemented, various components of the system may use one of the
asynchronous exceptions to signal error conditions to PEs. These error conditions are of critical nature,
and it’s imperative that corrective or remedial actions are taken at the earliest opportunity. Therefore, a
Firmware-first Handling approach is generally followed in response to RAS events in the system.

• The Arm SDEI specification defines interfaces through which Normal world interacts with the Runtime
Firmware in order to request notification of system events. The SDEI specification requires that these
events are notified even when the Normal world executes with the exceptions masked. This too implies
that firmware-first handling is required, where the events are first received by the EL3 firmware, and then
dispatched to Normal world through purely software mechanism.

For TF-A, firmware-first handling means that asynchronous exceptions are suitably routed to EL3, and the
Runtime Firmware (BL31) is extended to include software components that are capable of handling those
exceptions that target EL3. These components—referred to as dispatchers1 in general—may choose to:

• Receive and handle exceptions entirely in EL3, meaning the exceptions handling terminates in EL3.

• Receive exceptions, but handle part of the exception in EL3, and delegate the rest of the handling to a
dedicated software stack running at lower Secure ELs. In this scheme, the handling spans various secure
ELs.

• Receive exceptions, but handle part of the exception in EL3, and delegate processing of the error to
dedicated software stack running at lower secure ELs (as above); additionally, the Normal world may
also be required to participate in the handling, or be notified of such events (for example, as an SDEI
event). In this scheme, exception handling potentially and maximally spans all ELs in both Secure and
Normal worlds.

On any given system, all of the above handling models may be employed independently depending on platform
choice and the nature of the exception received.

4.5.2 The role of Exception Handling Framework

Corollary to the use cases cited above, the primary role of the EHF is to facilitate firmware-first handling of
exceptions on Arm systems. The EHF thus enables multiple exception dispatchers in runtime firmware to co-
exist, register for, and handle exceptions targeted at EL3. This section outlines the basics, and the rest of this
document expands the various aspects of the EHF.

In order to arbitrate exception handling among dispatchers, the EHF operation is based on a priority scheme.
This priority scheme is closely tied to how the Arm GIC architecture defines it, although it’s applied to non-
interrupt exceptions too (SErrors, for example).

The platform is required to partition the Secure priority space into priority levels as applicable for the Secure
software stack. It then assigns the dispatchers to one or more priority levels. The dispatchers then register
handlers for the priority levels at runtime. A dispatcher can register handlers for more than one priority level.

1 Not to be confused with Secure Payload Dispatcher, which is an EL3 component that operates in EL3 on behalf of Secure OS.

148 Chapter 4. Components

http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf

Trusted Firmware-A, Release 2.10.4

Interrupt Management Framework[Not supported by viewer]
Interrupt

NS

S-EL1

EL3

SPD handlers

Exception Handling Framework

GIC PMR

RAS

[Not supported by viewer]

SDEI Critical

SDEI Normal

NS priorities

0xFF

[Not supported by viewer]

[N
o
t

s
u

p
p

o
rt

e
d

 b
y
 v

ie
w

e
r]

EHF APIsNon-interrupt exceptions use EHF APIs to program GIC PMR to arbitrate priority levels

D
e

c
re

a
s
in

g
 P

ri
o

ri
ty

S
e

c
u

re
 P

ri
o

ri
ty

 l
e
ve

ls

A priority level is active when a handler at that priority level is currently executing in EL3, or has delegated
the execution to a lower EL. For interrupts, this is implicit when an interrupt is targeted and acknowledged at
EL3, and the priority of the acknowledged interrupt is used to match its registered handler. The priority level
is likewise implicitly deactivated when the interrupt handling concludes by EOIing the interrupt.

Non-interrupt exceptions (SErrors, for example) don’t have a notion of priority. In order for the priority ar-
bitration to work, the EHF provides APIs in order for these non-interrupt exceptions to assume a priority,
and to interwork with interrupts. Dispatchers handling such exceptions must therefore explicitly activate and
deactivate the respective priority level as and when they’re handled or delegated.

Because priority activation and deactivation for interrupt handling is implicit and involves GIC priority masking,
it’s impossible for a lower priority interrupt to preempt a higher priority one. By extension, this means that a
lower priority dispatcher cannot preempt a higher-priority one. Priority activation and deactivation for non-
interrupt exceptions, however, has to be explicit. The EHF therefore disallows for lower priority level to be
activated whilst a higher priority level is active, and would result in a panic. Likewise, a panic would result if
it’s attempted to deactivate a lower priority level when a higher priority level is active.

In essence, priority level activation and deactivation conceptually works like a stack—priority levels stack up
in strictly increasing fashion, and need to be unstacked in strictly the reverse order. For interrupts, the GIC
ensures this is the case; for non-interrupts, the EHF monitors and asserts this. See Transition of priority levels.

4.5.3 Interrupt handling

The EHF is a client of Interrupt Management Framework, and registers the top-level handler for interrupts that
target EL3, as described in the Interrupt Management Framework document. This has the following implica-
tions:

• On GICv3 systems, when executing in S-EL1, pending Non-secure interrupts of sufficient priority are
signalled as FIQs, and therefore will be routed to EL3. As a result, S-EL1 software cannot expect
to handle Non-secure interrupts at S-EL1. Essentially, this deprecates the routing mode described as

4.5. Exception Handling Framework 149

Trusted Firmware-A, Release 2.10.4

CSS=0, TEL3=0.

In order for S-EL1 software to handle Non-secure interrupts while having EHF enabled, the dispatcher
must adopt a model where Non-secure interrupts are received at EL3, but are then synchronously handled
over to S-EL1.

• On GICv2 systems, it’s required that the build option GICV2_G0_FOR_EL3 is set to 1 so that Group
0 interrupts target EL3.

• While executing in Secure world, EHF sets GIC Priority Mask Register to the lowest Secure priority.
This means that no Non-secure interrupts can preempt Secure execution. See Effect on SMC calls for
more details.

As mentioned above, with EHF, the platform is required to partition Group 0 interrupts into distinct priority
levels. A dispatcher that chooses to receive interrupts can then own one or more priority levels, and register
interrupt handlers for them. A given priority level can be assigned to only one handler. A dispatcher may
register more than one priority level.

Dispatchers are assigned interrupt priority levels in two steps:

Partitioning priority levels

Interrupts are associated to dispatchers by way of grouping and assigning interrupts to a priority level. In other
words, all interrupts that are to target a particular dispatcher should fall in a particular priority level. For priority
assignment:

• Of the 8 bits of priority that Arm GIC architecture permits, bit 7 must be 0 (secure space).

• Depending on the number of dispatchers to support, the platform must choose to use the top n of the 7
remaining bits to identify and assign interrupts to individual dispatchers. Choosing n bits supports up to
2n distinct dispatchers. For example, by choosing 2 additional bits (i.e., bits 6 and 5), the platform can
partition into 4 secure priority ranges: 0x0, 0x20, 0x40, and 0x60. See Interrupt handling example.

Note: The Arm GIC architecture requires that a GIC implementation that supports two security states must
implement at least 32 priority levels; i.e., at least 5 upper bits of the 8 bits are writeable. In the scheme described
above, when choosing n bits for priority range assignment, the platform must ensure that at least n+1 top bits
of GIC priority are writeable.

The priority thus assigned to an interrupt is also used to determine the priority of delegated execu-
tion in lower ELs. Delegated execution in lower EL is associated with a priority level chosen with
ehf_activate_priority() API (described later). The chosen priority level also determines the in-
terrupts masked while executing in a lower EL, therefore controls preemption of delegated execution.

The platform expresses the chosen priority levels by declaring an array of priority level descriptors. Each
entry in the array is of type ehf_pri_desc_t, and declares a priority level, and shall be populated by the
EHF_PRI_DESC() macro.

150 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Warning: The macro EHF_PRI_DESC() installs the descriptors in the array at a computed index, and
not necessarily where the macro is placed in the array. The size of the array might therefore be larger than
what it appears to be. The ARRAY_SIZE()macro therefore should be used to determine the size of array.

Finally, this array of descriptors is exposed to EHF via the EHF_REGISTER_PRIORITIES() macro.

Refer to the Interrupt handling example for usage. See also: Interrupt Prioritisation Considerations.

Programming priority

The text in Partitioning priority levels only describes how the platform expresses the required levels of priority.
It however doesn’t choose interrupts nor program the required priority in GIC.

The Firmware Design guide explains methods for configuring secure interrupts. EHF requires the platform
to enumerate interrupt properties (as opposed to just numbers) of Secure interrupts. The priority of secure
interrupts must match that as determined in the Partitioning priority levels section above.

See Limitations, and also refer to Interrupt handling example for illustration.

4.5.4 Registering handler

Dispatchers register handlers for their priority levels through the following API:

int ehf_register_priority_handler(int pri, ehf_handler_t handler)

The API takes two arguments:

• The priority level for which the handler is being registered;

• The handler to be registered. The handler must be aligned to 4 bytes.

If a dispatcher owns more than one priority levels, it has to call the API for each of them.

The API will succeed, and return 0, only if:

• There exists a descriptor with the priority level requested.

• There are no handlers already registered by a previous call to the API.

Otherwise, the API returns -1.

The interrupt handler should have the following signature:

typedef int (*ehf_handler_t)(uint32_t intr_raw, uint32_t flags, void *handle,
void *cookie);

The parameters are as obtained from the top-level EL3 interrupt handler.

The SDEI dispatcher, for example, expects the platform to allocate two different priority levels—
PLAT_SDEI_CRITICAL_PRI, and PLAT_SDEI_NORMAL_PRI—and registers the same handler to han-
dle both levels.

4.5. Exception Handling Framework 151

Trusted Firmware-A, Release 2.10.4

4.5.5 Interrupt handling example

The following annotated snippet demonstrates how a platform might choose to assign interrupts to fictitious
dispatchers:

#include <common/interrupt_props.h>
#include <drivers/arm/gic_common.h>
#include <exception_mgmt.h>

...

/*
* This platform uses 2 bits for interrupt association. In total, 3 upper
* bits are in use.
*
* 7 6 5 3 0
* .-.-.-.----------.
* |0|b|b| ..0.. |
* '-'-'-'----------'
*/

#define PLAT_PRI_BITS 2

/* Priorities for individual dispatchers */
#define DISP0_PRIO 0x00 /* Not used */
#define DISP1_PRIO 0x20
#define DISP2_PRIO 0x40
#define DISP3_PRIO 0x60

/* Install priority level descriptors for each dispatcher */
ehf_pri_desc_t plat_exceptions[] = {

EHF_PRI_DESC(PLAT_PRI_BITS, DISP1_PRIO),
EHF_PRI_DESC(PLAT_PRI_BITS, DISP2_PRIO),
EHF_PRI_DESC(PLAT_PRI_BITS, DISP3_PRIO),

};

/* Expose priority descriptors to Exception Handling Framework */
EHF_REGISTER_PRIORITIES(plat_exceptions, ARRAY_SIZE(plat_exceptions),

PLAT_PRI_BITS);

...

/* List interrupt properties for GIC driver. All interrupts target EL3 */
const interrupt_prop_t plat_interrupts[] = {

/* Dispatcher 1 owns interrupts d1_0 and d1_1, so assigns priority DISP1_
↪→PRIO */

INTR_PROP_DESC(d1_0, DISP1_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d1_1, DISP1_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),

/* Dispatcher 2 owns interrupts d2_0 and d2_1, so assigns priority DISP2_
↪→PRIO */

INTR_PROP_DESC(d2_0, DISP2_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d2_1, DISP2_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),

(continues on next page)

152 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
/* Dispatcher 3 owns interrupts d3_0 and d3_1, so assigns priority DISP3_

↪→PRIO */
INTR_PROP_DESC(d3_0, DISP3_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d3_1, DISP3_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),

};

...

/* Dispatcher 1 registers its handler */
ehf_register_priority_handler(DISP1_PRIO, disp1_handler);

/* Dispatcher 2 registers its handler */
ehf_register_priority_handler(DISP2_PRIO, disp2_handler);

/* Dispatcher 3 registers its handler */
ehf_register_priority_handler(DISP3_PRIO, disp3_handler);

...

See also the Build-time flow and the Run-time flow.

4.5.6 Activating and Deactivating priorities

A priority level is said to be active when an exception of that priority is being handled: for interrupts, this
is implied when the interrupt is acknowledged; for non-interrupt exceptions, such as SErrors or SDEI explicit
dispatches, this has to be done via calling ehf_activate_priority(). See Run-time flow.

Conversely, when the dispatcher has reached a logical resolution for the cause of the exception, the correspond-
ing priority level ought to be deactivated. As above, for interrupts, this is implied when the interrupt is EOId
in the GIC; for other exceptions, this has to be done via calling ehf_deactivate_priority().

Thanks to different provisions for exception delegation, there are potentially more than one work flow for de-
activation:

• The dispatcher has addressed the cause of the exception, and decided to take no further action. In
this case, the dispatcher’s handler deactivates the priority level before returning to the EHF. Runtime
firmware, upon exit through an ERET, resumes execution before the interrupt occurred.

• The dispatcher has to delegate the execution to lower ELs, and the cause of the exception can be con-
sidered resolved only when the lower EL returns signals complete (via an SMC) at a future point in time.
The following sequence ensues:

1. The dispatcher calls setjmp() to setup a jump point, and arranges to enter a lower EL upon the
next ERET.

2. Through the ensuing ERET from runtime firmware, execution is delegated to a lower EL.

3. The lower EL completes its execution, and signals completion via an SMC.

4. The SMC is handled by the same dispatcher that handled the exception previously. Noticing the
conclusion of exception handling, the dispatcher does longjmp() to resume beyond the previous
jump point.

4.5. Exception Handling Framework 153

Trusted Firmware-A, Release 2.10.4

As mentioned above, the EHF provides the following APIs for activating and deactivating interrupt:

• ehf_activate_priority() activates the supplied priority level, but only if the current active
priority is higher than the given one; otherwise panics. Also, to prevent interruption by physical inter-
rupts of lower priority, the EHF programs the Priority Mask Register corresponding to the PE to the
priority being activated. Dispatchers typically only need to call this when handling exceptions other than
interrupts, and it needs to delegate execution to a lower EL at a desired priority level.

• ehf_deactivate_priority() deactivates a given priority, but only if the current active priority
is equal to the given one; otherwise panics. EHF also restores the Priority Mask Register corresponding
to the PE to the priority before the call to ehf_activate_priority(). Dispatchers typically only
need to call this after handling exceptions other than interrupts.

The calling of APIs are subject to allowed transitions. See also the Run-time flow.

4.5.7 Transition of priority levels

The EHF APIs ehf_activate_priority() and ehf_deactivate_priority() can be called to
transition the current priority level on a PE. A given sequence of calls to these APIs are subject to the following
conditions:

• For activation, the EHF only allows for the priority to increase (i.e. numeric value decreases);

• For deactivation, the EHF only allows for the priority to decrease (i.e. numeric value increases). Addi-
tionally, the priority being deactivated is required to be the current priority.

If these are violated, a panic will result.

4.5.8 Effect on SMC calls

In general, Secure execution is regarded as more important than Non-secure execution. As discussed else-
where in this document, EL3 execution, and any delegated execution thereafter, has the effect of rais-
ing GIC’s priority mask—either implicitly by acknowledging Secure interrupts, or when dispatchers call
ehf_activate_priority(). As a result, Non-secure interrupts cannot preempt any Secure execution.

SMCs fromNon-secure world are synchronous exceptions, and aremechanisms for Non-secure world to request
Secure services. They’re broadly classified as Fast or Yielding (see SMCCC).

• Fast SMCs are atomic from the caller’s point of view. I.e., they return to the caller only when the Secure
world has finished serving the request. Any Non-secure interrupts that become pending meanwhile
cannot preempt Secure execution.

• Yielding SMCs carry the semantics of a preemptible, lower-priority request. A pending Non-secure in-
terrupt can preempt Secure execution handling a Yielding SMC. I.e., the caller might observe a Yielding
SMC returning when either:

1. Secure world completes the request, and the caller would find SMC_OK as the return code.

2. A Non-secure interrupt preempts Secure execution. Non-secure interrupt is handled, and Non-
secure execution resumes after SMC instruction.

154 Chapter 4. Components

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

The dispatcher handling a Yielding SMC must provide a different return code to the Non-secure caller
to distinguish the latter case. This return code, however, is not standardised (unlike SMC_UNKNOWN or
SMC_OK, for example), so will vary across dispatchers that handle the request.

For the latter case above, dispatchers before EHF expect Non-secure interrupts to be taken to S-EL12, so would
get a chance to populate the designated preempted error code before yielding to Non-secure world.

The introduction of EHF changes the behaviour as described in Interrupt handling.

When EHF is enabled, in order to allow Non-secure interrupts to preempt Yielding SMC handling, the dis-
patcher must call ehf_allow_ns_preemption() API. The API takes one argument, the error code to
be returned to the Non-secure world upon getting preempted.

4.5.9 Build-time flow

Please refer to the figure above.

The build-time flow involves the following steps:

1. Platform assigns priorities by installing priority level descriptors for individual dispatchers, as described
in Partitioning priority levels.

2. Platform provides interrupt properties to GIC driver, as described in Programming priority.

3. Dispatcher calling ehf_register_priority_handler() to register an interrupt handler.

Also refer to the Interrupt handling example.

4.5.10 Run-time flow

The following is an example flow for interrupts:

1. The GIC driver, during initialization, iterates through the platform-supplied interrupt properties (see
Programming priority), and configures the interrupts. This programs the appropriate priority and group
(Group 0) on interrupts belonging to different dispatchers.

2. The EHF, during its initialisation, registers a top-level interrupt handler with the Interrupt Management
Framework for EL3 interrupts. This also results in setting the routing bits in SCR_EL3.

3. When an interrupt belonging to a dispatcher fires, GIC raises an EL3/Group 0 interrupt, and is taken to
EL3.

4. The top-level EL3 interrupt handler executes. The handler acknowledges the interrupt, reads its Running
Priority, and from that, determines the dispatcher handler.

5. The EHF programs the Priority Mask Register of the PE to the priority of the interrupt received.

6. The EHF marks that priority level active, and jumps to the dispatcher handler.

7. Once the dispatcher handler finishes its job, it has to immediately deactivate the priority level before
returning to the EHF. See deactivation workflows.

The following is an example flow for exceptions that targets EL3 other than interrupt:
2 In case of GICv2, Non-secure interrupts while in S-EL1 were signalled as IRQs, and in case of GICv3, FIQs.

4.5. Exception Handling Framework 155

Trusted Firmware-A, Release 2.10.4

1. The platform provides handlers for the specific kind of exception.

2. The exception arrives, and the corresponding handler is executed.

3. The handler calls ehf_activate_priority() to activate the required priority level. This also has
the effect of raising GIC priority mask, thus preventing interrupts of lower priority from preempting the
handling. The handler may choose to do the handling entirely in EL3 or delegate to a lower EL.

4. Once exception handling concludes, the handler callsehf_deactivate_priority() to deactivate
the priority level activated earlier. This also has the effect of lowering GIC priority mask to what it was
before.

4.5.11 Interrupt Prioritisation Considerations

The GIC priority scheme, by design, prioritises Secure interrupts over Normal world ones. The platform further
assigns relative priorities amongst Secure dispatchers through EHF.

Asmentioned in Partitioning priority levels, interrupts targeting distinct dispatchers fall in distinct priority levels.
Because they’re routed via the GIC, interrupt delivery to the PE is subject to GIC prioritisation rules. In
particular, when an interrupt is being handled by the PE (i.e., the interrupt is in Active state), only interrupts
of higher priority are signalled to the PE, even if interrupts of same or lower priority are pending. This has
the side effect of one dispatcher being starved of interrupts by virtue of another dispatcher handling its (higher
priority) interrupts.

The EHF doesn’t enforce a particular prioritisation policy, but the platform should carefully consider the as-
signment of priorities to dispatchers integrated into runtime firmware. The platform should sensibly delineate
priority to various dispatchers according to their nature. In particular, dispatchers of critical nature (RAS, for
example) should be assigned higher priority than others (SDEI, for example); and within SDEI, Critical priority
SDEI should be assigned higher priority than Normal ones.

4.5.12 Limitations

The EHF has the following limitations:

• Although there could be up to 128 Secure dispatchers supported by the GIC priority scheme, the size of
descriptor array exposed with EHF_REGISTER_PRIORITIES() macro is currently limited to 32.
This serves most expected use cases. This may be expanded in the future, should use cases demand so.

• The platform must ensure that the priority assigned to the dispatcher in the exception descriptor and the
programmed priority of interrupts handled by the dispatcher match. The EHF cannot verify that this has
been followed.

Copyright (c) 2018-2020, Arm Limited and Contributors. All rights reserved.

156 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.6 Firmware Configuration Framework

This document provides an overview of the FCONF framework.

4.6.1 Introduction

The Firmware CONfiguration Framework (FCONF) is an abstraction layer for platform specific data, allowing
a “property” to be queried and a value retrieved without the requesting entity knowing what backing store is
being used to hold the data.

It is used to bridge new and old ways of providing platform-specific data. Today, information like the Chain
of Trust is held within several, nested platform-defined tables. In the future, it may be provided as part of a
device blob, along with the rest of the information about images to load. Introducing this abstraction layer will
make migration easier and will preserve functionality for platforms that cannot / don’t want to use device tree.

4.6.2 Accessing properties

Properties defined in the FCONF are grouped around namespaces and sub-namespaces: a.b.property. Examples
namespace can be:

• (TBBR) Chain of Trust data: tbbr.cot.trusted_boot_fw_cert

• (TBBR) dynamic configuration info: tbbr.dyn_config.disable_auth

• Arm io policies: arm.io_policies.bl2_image

• GICv3 properties: hw_config.gicv3_config.gicr_base

Properties can be accessed with the FCONF_GET_PROPERTY(a,b,property) macro.

4.6.3 Defining properties

Properties composing the FCONF have to be stored in C structures. If properties originate from a differ-
ent backend source such as a device tree, then the platform has to provide a populate() function which
essentially captures the property and stores them into a corresponding FCONF based C structure.

Such a populate() function is usually platform specific and is associated with a specific backend source. For
example, a populator function which captures the hardware topology of the platform from the HW_CONFIG
device tree. Hence each populate() function must be registered with a specific config_type identifier.
It broadly represents a logical grouping of configuration properties which is usually a device tree file.

Example:

• FW_CONFIG: properties related to base address, maximum size and image id of other DTBs etc.

• TB_FW: properties related to trusted firmware such as IO policies, mbedtls heap info etc.

• HW_CONFIG: properties related to hardware configuration of the SoC such as topology, GIC
controller, PSCI hooks, CPU ID etc.

4.6. Firmware Configuration Framework 157

Trusted Firmware-A, Release 2.10.4

Hence the populate() callback must be registered to the (FCONF) framework with the
FCONF_REGISTER_POPULATOR() macro. This ensures that the function would be called inside
the generic fconf_populate() function during initialization.

int fconf_populate_topology(uintptr_t config)
{

/* read hw config dtb and fill soc_topology struct */
}

FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);

Then, a wrapper has to be provided to match the FCONF_GET_PROPERTY() macro:

/* generic getter */
#define FCONF_GET_PROPERTY(a,b,property) a##__##b##_getter(property)

/* my specific getter */
#define hw_config__topology_getter(prop) soc_topology.prop

This second level wrapper can be used to remap the FCONF_GET_PROPERTY() to anything appropriate:
structure, array, function, etc..

To ensure a good interpretation of the properties, this documentation must explain how the properties are
described for a specific backend. Refer to the Properties binding information section for more information and
example.

4.6.4 Loading the property device tree

The fconf_load_config(image_id) must be called to load fw_config and tb_fw_config devices tree
containing the properties’ values. This must be done after the io layer is initialized, as the DTB is stored on an
external device (FIP).

158 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.6.5 Populating the properties

Once a valid device tree is available, the fconf_populate(config) function can be used to fill the C
data structure with the data from the config DTB. This function will call all the populate() callbacks which
have been registered with FCONF_REGISTER_POPULATOR() as described above.

4.6. Firmware Configuration Framework 159

Trusted Firmware-A, Release 2.10.4

4.6.6 Namespace guidance

As mentioned above, properties are logically grouped around namespaces and sub-namespaces. The following
concepts should be considered when adding new properties/namespaces. The framework differentiates two
types of properties:

• Properties used inside common code.

• Properties used inside platform specific code.

The first category applies to properties being part of the firmware and shared across multiple platforms. They
should be globally accessible and defined inside the lib/fconf directory. The namespace must be chosen
to reflect the feature/data abstracted.

Example:

• TBBR related properties: tbbr.cot.bl2_id

• Dynamic configuration information: dyn_cfg.dtb_info.hw_config_id

The second category should represent the majority of the properties defined within the framework: Platform
specific properties. Theymust be accessed only within the platformAPI and are defined only inside the platform
scope. The namespace must contain the platform name under which the properties defined belong.

Example:

• Arm io framework: arm.io_policies.bl31_id

160 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.6.7 Properties binding information

DTB binding for FCONF properties

This document describes the device tree format of FCONF properties. These properties are not related to a
specific platform and can be queried from common code.

Dynamic configuration

The FCONF framework expects a dtb-registry node with the following field:

• compatible [mandatory]

– value type: <string>

– Must be the string “fconf,dyn_cfg-dtb_registry”.

Then a list of subnodes representing a configuration DTB, which can be used by FCONF. Each subnode should
be named according to the information it contains, and must be formed with the following fields:

• load-address [mandatory]

– value type: <u64>

– Physical loading base address of the configuration. If secondary-load-address is also provided
(see below), then this is the primary load address.

• max-size [mandatory]

– value type: <u32>

– Maximum size of the configuration.

• id [mandatory]

– value type: <u32>

– Image ID of the configuration.

• secondary-load-address [optional]

– value type: <u64>

– A platform uses this physical address to copy the configuration to another location during the
boot-flow.

Copyright (c) 2023, Arm Limited and Contributors. All rights reserved.

4.6. Firmware Configuration Framework 161

Trusted Firmware-A, Release 2.10.4

Activity Monitor Unit (AMU) Bindings

To support platform-defined Activity Monitor Unit (AMU) auxiliary counters through FCONF, the
HW_CONFIG device tree accepts several AMU-specific nodes and properties.

Bindings

• /cpus/cpus/cpu* node properties

• /cpus/amus node properties

• /cpus/amus/amu* node properties

• /cpus/amus/amu*/counter* node properties

/cpus/cpus/cpu* node properties

The cpu node has been augmented to support a handle to an associated AMU view, which should describe the
counters offered by the core.

Property
name

Us-
age

Value
type

Description

amu O <phandle>If present, indicates that an AMU is available and its counters are de-
scribed by the node provided.

/cpus/amus node properties

The amus node describes the AMUs implemented by the cores in the system. This node does not have any
properties.

/cpus/amus/amu* node properties

An amu node describes the layout and meaning of the auxiliary counter registers of one or more AMUs, and
may be shared by multiple cores.

Property
name

Us-
age

Value
type

Description

#address-cellsR <u32> Value shall be 1. Specifies that the reg property array of children of
this node uses a single cell.

#size-cells R <u32> Value shall be 0. Specifies that no size is required in the reg property
in children of this node.

162 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

/cpus/amus/amu*/counter* node properties

A counter node describes an auxiliary counter belonging to the parent AMU view.

Property
name

Us-
age

Value
type

Description

reg R array Represents the counter register index, and must be a single cell.
enable-at-el3O <empty> The presence of this property indicates that this counter should be

enabled prior to EL3 exit.

Example

An example system offering four cores made up of two clusters, where the cores of each cluster share different
AMUs, may use something like the following:

cpus {
#address-cells = <2>;
#size-cells = <0>;

amus {
amu0: amu-0 {

#address-cells = <1>;
#size-cells = <0>;

counterX: counter@0 {
reg = <0>;

enable-at-el3;
};

counterY: counter@1 {
reg = <1>;

enable-at-el3;
};

};

amu1: amu-1 {
#address-cells = <1>;
#size-cells = <0>;

counterZ: counter@0 {
reg = <0>;

enable-at-el3;
};

};
};

(continues on next page)

4.6. Firmware Configuration Framework 163

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
cpu0@00000 {

...

amu = <&amu0>;
};

cpu1@00100 {
...

amu = <&amu0>;
};

cpu2@10000 {
...

amu = <&amu1>;
};

cpu3@10100 {
...

amu = <&amu1>;
};

}

In this situation, cpu0 and cpu1 (the two cores in the first cluster), share the view of their AMUs defined
by amu0. Likewise, cpu2 and cpu3 (the two cores in the second cluster), share the view of their AMUs
defined by amu1. This will cause counterX and counterY to be enabled for both cpu0 and cpu1, and
counterZ to be enabled for both cpu2 and cpu3.

Maximum Power Mitigation Mechanism (MPMM) Bindings

MPMM support cannot be determined at runtime by the firmware. Instead, these DTB bindings allow the
platform to communicate per-core support for MPMM via the HW_CONFIG device tree blob.

Bindings

164 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• /cpus/cpus/cpu* node properties

/cpus/cpus/cpu* node properties

The cpu node has been augmented to allow the platform to indicate support for MPMM on a given core.

Property name Usage Value type Description
supports-mpmm O <empty> If present, indicates that MPMM is available on this core.

Example

An example system offering two cores, one with support for MPMM and one without, can be described as
follows:

cpus {
#address-cells = <2>;
#size-cells = <0>;

cpu0@00000 {
...

supports-mpmm;
};

cpu1@00100 {
...

};
}

4.7 Firmware Update (FWU)

This document describes the design of the various Firmware Update (FWU) mechanisms available in TF-A.

1. PSA Firmware Update (PSA FWU)

2. TBBR Firmware Update (TBBR FWU)

PSA Firmware Update implements the specification of the same name (Arm document IHI 0093), which de-
fines a standard firmware interface for installing firmware updates. On the other hand, TBBR Firmware Update
only covers firmware recovery. Arguably, its name is somewhat misleading but the TBBR specification and
terminology predates PSA FWU. Both mechanisms are complementary in the sense that PSA FWU assumes
that the device has a backup or recovery capability in the event of a failed update, which can be fulfilled with
TBBR FWU implementation.

4.7. Firmware Update (FWU) 165

Trusted Firmware-A, Release 2.10.4

4.7.1 PSA Firmware Update (PSA FWU)

Introduction

The PSA FW update specification defines the concepts of Firmware Update Client and Firmware
Update Agent. The new firmware images are provided by the Client to the Update Agent to flash
them in non-volatile storage.

A common system design will place the Update Agent in the Secure-world while the Client executes
in the Normal-world. The PSA FW update specification provides ABIs meant for a Normal-world entity aka
Client to transmit the firmware images to the Update Agent.

Scope

The design of the Client and Update Agent is out of scope of this document. This document mainly
covers Platform Boot details i.e. the role of the second stage Bootloader after FWU has been done by
Client and Update Agent.

Overview

There are active and update banks in the non-volatile storage identified by the active_index and the
update_index respectively. An active bank stores running firmware, whereas an update bank contains
firmware updates.

Once Firmwares are updated in the update bank of the non-volatile storage, then Update Agent marks
the update bank as the active bank, and write updated FWU metadata in non-volatile storage. On subsequent
reboot, the second stage Bootloader (BL2) performs the following actions:

• Read FWU metadata in memory

• Retrieve the image specification (offset and length) of updated images present in non-volatile storage
with the help of FWU metadata

• Set these image specification in the corresponding I/O policies of the updated im-
ages using the FWU platform functions plat_fwu_set_images_source() and
plat_fwu_set_metadata_image_source(), please refer Porting Guide

• Use these I/O policies to read the images from this address into the memory

By default, the platform uses the active bank of non-volatile storage to boot the images in trial state.
If images pass through the authentication check and also if the system successfully booted the Normal-world
image then Update Agent marks this update as accepted after further sanitisation checking at Normal-
world.

The second stage Bootloader (BL2) avoids upgrading the platform NV-counter until it’s been confirmed that
given update is accepted.

The following sequence diagram shows platform-boot flow:

166 Chapter 4. Components

https://developer.arm.com/documentation/den0118/a/
https://developer.arm.com/documentation/den0118/a/

Trusted Firmware-A, Release 2.10.4

If the platform fails to boot from active bank due to any reasons such as authentication failure or non-fuctionality
of Normal-world software then the watchdog will reset to give a chance to the platform to fix the issue. This
boot failure & reset sequence might be repeated up to trial state times. After that, the platform can
decide to boot from the previous_active_index bank.

If the images still does not boot successfully from the previous_active_index bank (e.g. due to ageing
effect of non-volatile storage) then the platform can choose firmware recovery mechanism TBBR Firmware
Update (TBBR FWU) to bring system back to life.

4.7.2 TBBR Firmware Update (TBBR FWU)

Introduction

This technique enables authenticated firmware to update firmware images from external interfaces such as USB,
UART, SD-eMMC,NAND,NOR or Ethernet to SoCNon-Volatile memories such as NANDFlash, LPDDR2-
NVM or any memory determined by the platform. This feature functions even when the current firmware in
the system is corrupt or missing; it therefore may be used as a recovery mode. It may also be complemented
by other, higher level firmware update software.

FWU implements a specific part of the Trusted Board Boot Requirements (TBBR) specification, Arm
DEN0006C-1. It should be used in conjunction with the Trusted Board Boot design document, which de-
scribes the image authentication parts of the Trusted Firmware-A (TF-A) TBBR implementation.

4.7. Firmware Update (FWU) 167

Trusted Firmware-A, Release 2.10.4

It can be used as a last resort when all firmware updates that are carried out as part of the PSA Firmware Update
(PSA FWU) procedure have failed to function.

Scope

This document describes the secure world FWU design. It is beyond its scope to describe how normal world
FWU images should operate. To implement normal world FWU images, please refer to the “Non-Trusted
Firmware Updater” requirements in the TBBR.

Overview

The FWU boot flow is primarily mediated by BL1. Since BL1 executes in ROM, and it is usually desirable to
minimize the amount of ROM code, the design allows some parts of FWU to be implemented in other secure
and normal world images. Platform code may choose which parts are implemented in which images but the
general expectation is:

• BL1 handles:

– Detection and initiation of the FWU boot flow.

– Copying images from non-secure to secure memory

– FWU image authentication

– Context switching between the normal and secure world during the FWU process.

• Other secure world FWU images handle platform initialization required by the FWU process.

• Normal world FWU images handle loading of firmware images from external interfaces to non-secure
memory.

The primary requirements of the FWU feature are:

1. Export a BL1 SMC interface to interoperate with other FWU images executing at other Exception Levels.

2. Export a platform interface to provide FWU common code with the information it needs, and to enable
platform specific FWU functionality. See the Porting Guide for details of this interface.

TF-A uses abbreviated image terminology for FWU images like for other TF-A images. See the Image Termi-
nology document for an explanation of these terms.

The following diagram shows the FWU boot flow for Arm development platforms. Arm CSS platforms like
Juno have a System Control Processor (SCP), and these use all defined FWU images. Other platforms may use
a subset of these.

168 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Image Identification

Each FWU image and certificate is identified by a unique ID, defined by the platform, which BL1 uses to fetch
an image descriptor (image_desc_t) via a call to bl1_plat_get_image_desc(). The same ID is
also used to prepare the Chain of Trust (Refer to the Authentication Framework & Chain of Trust document
for more information).

The image descriptor includes the following information:

• Executable or non-executable image. This indicates whether the normal world is permitted to request
execution of a secure world FWU image (after authentication). Secure world certificates and non-AP
images are examples of non-executable images.

• Secure or non-secure image. This indicates whether the image is authenticated/executed in secure or

4.7. Firmware Update (FWU) 169

Trusted Firmware-A, Release 2.10.4

non-secure memory.

• Image base address and size.

• Image entry point configuration (an entry_point_info_t).

• FWU image state.

BL1 uses the FWU image descriptors to:

• Validate the arguments of FWU SMCs

• Manage the state of the FWU process

• Initialize the execution state of the next FWU image.

FWU State Machine

BL1 maintains state for each FWU image during FWU execution. FWU images at lower Exception Levels
raise SMCs to invoke FWU functionality in BL1, which causes BL1 to update its FWU image state. The BL1
image states and valid state transitions are shown in the diagram below. Note that secure images have a more
complex state machine than non-secure images.

The following is a brief description of the supported states:

170 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• RESET: This is the initial state of every image at the start of FWU. Authentication failure also leads to
this state. A secure image may yield to this state if it has completed execution. It can also be reached by
using FWU_SMC_IMAGE_RESET.

• COPYING: This is the state of a secure image while BL1 is copying it in blocks from non-secure to
secure memory.

• COPIED: This is the state of a secure image when BL1 has completed copying it to secure memory.

• AUTHENTICATED: This is the state of an image when BL1 has successfully authenticated it.

• EXECUTED: This is the state of a secure, executable image when BL1 has passed execution control to
it.

• INTERRUPTED: This is the state of a secure, executable image after it has requested BL1 to resume
normal world execution.

BL1 SMC Interface

BL1_SMC_CALL_COUNT

Arguments:
uint32_t function ID : 0x0

Return:
uint32_t

This SMC returns the number of SMCs supported by BL1.

BL1_SMC_UID

Arguments:
uint32_t function ID : 0x1

Return:
UUID : 32 bits in each of w0-w3 (or r0-r3 for AArch32 callers)

This SMC returns the 128-bit Universally Unique Identifier for the BL1 SMC service.

BL1_SMC_VERSION

Argument:
uint32_t function ID : 0x3

Return:
uint32_t : Bits [31:16] Major Version

Bits [15:0] Minor Version

This SMC returns the current version of the BL1 SMC service.

4.7. Firmware Update (FWU) 171

https://tools.ietf.org/rfc/rfc4122.txt

Trusted Firmware-A, Release 2.10.4

BL1_SMC_RUN_IMAGE

Arguments:
uint32_t function ID : 0x4
entry_point_info_t *ep_info

Return:
void

Pre-conditions:
if (normal world caller) synchronous exception
if (ep_info not EL3) synchronous exception

This SMC passes execution control to an EL3 image described by the provided entry_point_info_t
structure. In the normal TF-A boot flow, BL2 invokes this SMC for BL1 to pass execution control to BL31.

FWU_SMC_IMAGE_COPY

Arguments:
uint32_t function ID : 0x10
unsigned int image_id
uintptr_t image_addr
unsigned int block_size
unsigned int image_size

Return:
int : 0 (Success)

: -ENOMEM
: -EPERM

Pre-conditions:
if (image_id is invalid) return -EPERM
if (image_id is non-secure image) return -EPERM
if (image_id state is not (RESET or COPYING)) return -EPERM
if (secure world caller) return -EPERM
if (image_addr + block_size overflows) return -ENOMEM
if (image destination address + image_size overflows) return -ENOMEM
if (source block is in secure memory) return -ENOMEM
if (source block is not mapped into BL1) return -ENOMEM
if (image_size > free secure memory) return -ENOMEM
if (image overlaps another image) return -EPERM

This SMC copies the secure image indicated by image_id from non-secure memory to secure memory for
later authentication. The image may be copied in a single block or multiple blocks. In either case, the total size
of the image must be provided in image_size when invoking this SMC for the first time for each image; it
is ignored in subsequent calls (if any) for the same image.

The image_addr and block_size specify the source memory block to copy from. The destination ad-
dress is provided by the platform code.

If block_size is greater than the amount of remaining bytes to copy for this image then the former is trun-

172 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

cated to the latter. The copy operation is then considered as complete and the FWU state machine transitions
to the “COPIED” state. If there is still more to copy, the FWU state machine stays in or transitions to the
COPYING state (depending on the previous state).

When using multiple blocks, the source blocks do not necessarily need to be in contiguous memory.

Once the SMC is handled, BL1 returns from exception to the normal world caller.

FWU_SMC_IMAGE_AUTH

Arguments:
uint32_t function ID : 0x11
unsigned int image_id
uintptr_t image_addr
unsigned int image_size

Return:
int : 0 (Success)

: -ENOMEM
: -EPERM
: -EAUTH

Pre-conditions:
if (image_id is invalid) return -EPERM
if (secure world caller)

if (image_id state is not RESET) return -EPERM
if (image_addr/image_size is not mapped into BL1) return -ENOMEM

else // normal world caller
if (image_id is secure image)

if (image_id state is not COPIED) return -EPERM
else // image_id is non-secure image

if (image_id state is not RESET) return -EPERM
if (image_addr/image_size is in secure memory) return -ENOMEM
if (image_addr/image_size not mapped into BL1) return -ENOMEM

This SMC authenticates the image specified by image_id. If the image is in the RESET state, BL1 authenti-
cates the image in place using the provided image_addr and image_size. If the image is a secure image
in the COPIED state, BL1 authenticates the image from the secure memory that BL1 previously copied the
image into.

BL1 returns from exception to the caller. If authentication succeeds then BL1 sets the image state to AU-
THENTICATED. If authentication fails then BL1 returns the -EAUTH error and sets the image state back to
RESET.

4.7. Firmware Update (FWU) 173

Trusted Firmware-A, Release 2.10.4

FWU_SMC_IMAGE_EXECUTE

Arguments:
uint32_t function ID : 0x12
unsigned int image_id

Return:
int : 0 (Success)

: -EPERM

Pre-conditions:
if (image_id is invalid) return -EPERM
if (secure world caller) return -EPERM
if (image_id is non-secure image) return -EPERM
if (image_id is non-executable image) return -EPERM
if (image_id state is not AUTHENTICATED) return -EPERM

This SMC initiates execution of a previously authenticated image specified by image_id, in the other security
world to the caller. The current implementation only supports normal world callers initiating execution of a
secure world image.

BL1 saves the normal world caller’s context, sets the secure image state to EXECUTED, and returns from
exception to the secure image.

FWU_SMC_IMAGE_RESUME

Arguments:
uint32_t function ID : 0x13
register_t image_param

Return:
register_t : image_param (Success)

: -EPERM

Pre-conditions:
if (normal world caller and no INTERRUPTED secure image) return -EPERM

This SMC resumes execution in the other security world while there is a secure image in the EXE-
CUTED/INTERRUPTED state.

For normal world callers, BL1 sets the previously interrupted secure image state to EXECUTED. For secure
world callers, BL1 sets the previously executing secure image state to INTERRUPTED. In either case, BL1
saves the calling world’s context, restores the resuming world’s context and returns from exception into the
resuming world. If the call is successful then the caller provided image_param is returned to the resumed
world, otherwise an error code is returned to the caller.

174 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

FWU_SMC_SEC_IMAGE_DONE

Arguments:
uint32_t function ID : 0x14

Return:
int : 0 (Success)

: -EPERM

Pre-conditions:
if (normal world caller) return -EPERM

This SMC indicates completion of a previously executing secure image.

BL1 sets the previously executing secure image state to the RESET state, restores the normal world context
and returns from exception into the normal world.

FWU_SMC_UPDATE_DONE

Arguments:
uint32_t function ID : 0x15
register_t client_cookie

Return:
N/A

This SMC completes the firmware update process. BL1 calls the platform specific function
bl1_plat_fwu_done, passing the optional argument client_cookie as a void *. The SMC does
not return.

FWU_SMC_IMAGE_RESET

Arguments:
uint32_t function ID : 0x16
unsigned int image_id

Return:
int : 0 (Success)

: -EPERM

Pre-conditions:
if (secure world caller) return -EPERM
if (image in EXECUTED) return -EPERM

This SMC sets the state of an image to RESET and zeroes the memory used by it.

This is only allowed if the image is not being executed.

4.7. Firmware Update (FWU) 175

Trusted Firmware-A, Release 2.10.4

Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved.

4.8 Measured Boot Driver (MBD)

4.8.1 Properties binding information

DTB binding for Event Log properties

This document describes the device tree format of Event Log properties. These properties are not related to a
specific platform and can be queried from common code.

Dynamic configuration for Event Log

Measured Boot driver expects a tpm_event_log node with the following field in ‘tb_fw_config’, ‘nt_fw_config’
and ‘tsp_fw_config’ DTS files:

• compatible [mandatory]

– value type: <string>

– Must be the string “arm,tpm_event_log”.

Then a list of properties representing Event Log configuration, which can be used by Measured Boot driver.
Each property is named according to the information it contains:

• tpm_event_log_sm_addr [fvp_nt_fw_config.dts with OP-TEE]

– value type: <u64>

– Event Log base address in secure memory.

Note. Currently OP-TEE does not support reading DTBs from Secure memory and this property should be
removed when this feature is supported.

• tpm_event_log_addr [mandatory]

– value type: <u64>

– Event Log base address in non-secure memory.

• tpm_event_log_size [mandatory]

– value type: <u32>

– Event Log size.

• tpm_event_log_max_size [mandatory]

– value type: <u32>

– Event Log maximum size.

Copyright (c) 2023, Arm Limited and Contributors. All rights reserved.

176 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.9 Maximum Power Mitigation Mechanism (MPMM)

MPMM is an optional microarchitectural power management mechanism supported by some Arm Armv9-A
cores, beginning with the Cortex-X2, Cortex-A710 and Cortex-A510 cores. This mechanism detects and limits
high-activity events to assist in SoC processor power domain dynamic power budgeting and limit the triggering
of whole-rail (i.e. clock chopping) responses to overcurrent conditions.

MPMM is enabled on a per-core basis by the EL3 runtime firmware. The presence of MPMM cannot be
determined at runtime by the firmware, and therefore the platform must expose this information through one
of two possible mechanisms:

• FCONF, controlled by the ENABLE_MPMM_FCONF build option.

• A platform implementation of the plat_mpmm_topology function (the default).

See Maximum Power Mitigation Mechanism (MPMM) Bindings for documentation on the FCONF device tree
bindings.

Warning: MPMM exposes gearmetrics through the auxiliaryAMU counters. An external power controller
can use these metrics to budget SoC power by limiting the number of cores that can execute higher-activity
workloads or switching to a different DVFS operating point. When this is the case, the AMU counters that
make up the MPMM gears must be enabled by the EL3 runtime firmware - please see Auxiliary counters
for documentation on enabling auxiliary AMU counters.

4.10 Platform Interrupt Controller API

This document lists the optional platform interrupt controller API that abstracts the runtime configuration and
control of interrupt controller from the generic code. The mandatory APIs are described in the Porting Guide.

4.10.1 Function: unsigned int plat_ic_get_running_priority(void); [optional]

Argument : void
Return : unsigned int

This API should return the priority of the interrupt the PE is currently servicing. This must be be called only
after an interrupt has already been acknowledged via plat_ic_acknowledge_interrupt.

In the case of Arm standard platforms using GIC, the Running Priority Register is read to determine the priority
of the interrupt.

4.9. Maximum Power Mitigation Mechanism (MPMM) 177

Trusted Firmware-A, Release 2.10.4

4.10.2 Function: int plat_ic_is_spi(unsigned int id); [optional]

Argument : unsigned int
Return : int

The API should return whether the interrupt ID (first parameter) is categorized as a Shared Peripheral Interrupt.
Shared Peripheral Interrupts are typically associated to system-wide peripherals, and these interrupts can target
any PE in the system.

4.10.3 Function: int plat_ic_is_ppi(unsigned int id); [optional]

Argument : unsigned int
Return : int

The API should return whether the interrupt ID (first parameter) is categorized as a Private Peripheral Interrupt.
Private Peripheral Interrupts are typically associated with peripherals that are private to each PE. Interrupts
from private peripherals target to that PE only.

4.10.4 Function: int plat_ic_is_sgi(unsigned int id); [optional]

Argument : unsigned int
Return : int

The API should return whether the interrupt ID (first parameter) is categorized as a Software Generated Inter-
rupt. Software Generated Interrupts are raised by explicit programming by software, and are typically used in
inter-PE communication. Secure SGIs are reserved for use by Secure world software.

4.10.5 Function: unsigned int plat_ic_get_interrupt_active(unsigned int id); [op-
tional]

Argument : unsigned int
Return : int

This API should return the active status of the interrupt ID specified by the first parameter, id.

In case of Arm standard platforms using GIC, the implementation of the API reads the GIC Set Active Register
to read and return the active status of the interrupt.

178 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.10.6 Function: void plat_ic_enable_interrupt(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should enable the interrupt ID specified by the first parameter, id. PEs in the system are expected
to receive only enabled interrupts.

In case of Arm standard platforms using GIC, the implementation of the API inserts barrier to make memory
updates visible before enabling interrupt, and then writes to GIC Set Enable Register to enable the interrupt.

4.10.7 Function: void plat_ic_disable_interrupt(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should disable the interrupt ID specified by the first parameter, id. PEs in the system are not expected
to receive disabled interrupts.

In case of Arm standard platforms using GIC, the implementation of the API writes to GIC Clear Enable
Register to disable the interrupt, and inserts barrier to make memory updates visible afterwards.

4.10.8 Function: void plat_ic_set_interrupt_priority(unsigned int id, unsigned int
priority); [optional]

Argument : unsigned int
Argument : unsigned int
Return : void

This API should set the priority of the interrupt specified by first parameter id to the value set by the second
parameter priority.

In case of Arm standard platforms using GIC, the implementation of the API writes to GIC Priority Register
set interrupt priority.

4.10.9 Function: bool plat_ic_has_interrupt_type(unsigned int type); [optional]

Argument : unsigned int
Return : bool

This API should return whether the platform supports a given interrupt type. The parameter type shall be
one of INTR_TYPE_EL3, INTR_TYPE_S_EL1, or INTR_TYPE_NS.

In case of Arm standard platforms using GICv3, the implementation of the API returns true for all interrupt
types.

In case of Arm standard platforms using GICv2, the API always return true for INTR_TYPE_NS. Return
value for other types depends on the value of build option GICV2_G0_FOR_EL3:

4.10. Platform Interrupt Controller API 179

Trusted Firmware-A, Release 2.10.4

• For interrupt type INTR_TYPE_EL3:

– When GICV2_G0_FOR_EL3 is 0, it returns false, indicating no support for EL3 interrupts.

– When GICV2_G0_FOR_EL3 is 1, it returns true, indicating support for EL3 interrupts.

• For interrupt type INTR_TYPE_S_EL1:

– When GICV2_G0_FOR_EL3 is 0, it returns true, indicating support for Secure EL1 interrupts.

– When GICV2_G0_FOR_EL3 is 1, it returns false, indicating no support for Secure EL1 inter-
rupts.

4.10.10 Function: void plat_ic_set_interrupt_type(unsigned int id, unsigned int
type); [optional]

Argument : unsigned int
Argument : unsigned int
Return : void

This API should set the interrupt specified by first parameter id to the type specified by second parameter
type. The type parameter can be one of:

• INTR_TYPE_NS: interrupt is meant to be consumed by the Non-secure world.

• INTR_TYPE_S_EL1: interrupt is meant to be consumed by Secure EL1.

• INTR_TYPE_EL3: interrupt is meant to be consumed by EL3.

In case of Arm standard platforms using GIC, the implementation of the API writes to the GIC Group Register
and Group Modifier Register (only GICv3) to assign the interrupt to the right group.

For GICv3:

• INTR_TYPE_NS maps to Group 1 interrupt.

• INTR_TYPE_S_EL1 maps to Secure Group 1 interrupt.

• INTR_TYPE_EL3 maps to Secure Group 0 interrupt.

For GICv2:

• INTR_TYPE_NS maps to Group 1 interrupt.

• When the build option GICV2_G0_FOR_EL3 is set to 0 (the default), INTR_TYPE_S_EL1maps to
Group 0. Otherwise, INTR_TYPE_EL3 maps to Group 0 interrupt.

180 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.10.11 Function: void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target); [op-
tional]

Argument : int
Argument : u_register_t
Return : void

This API should raise an EL3 SGI. The first parameter, sgi_num, specifies the ID of the SGI. The second
parameter, target, must be the MPIDR of the target PE.

In case of Arm standard platforms using GIC, the implementation of the API inserts barrier to make memory
updates visible before raising SGI, then writes to appropriate SGI Register in order to raise the EL3 SGI.

4.10.12 Function: void plat_ic_set_spi_routing(unsigned int id, unsigned int rout-
ing_mode, u_register_t mpidr); [optional]

Argument : unsigned int
Argument : unsigned int
Argument : u_register_t
Return : void

This API should set the routing mode of Share Peripheral Interrupt (SPI) specified by first parameter id to
that specified by the second parameter routing_mode.

The routing_mode parameter can be one of:

• INTR_ROUTING_MODE_ANYmeans the interrupt can be routed to any PE in the system. The mpidr
parameter is ignored in this case.

• INTR_ROUTING_MODE_PE means the interrupt is routed to the PE whose MPIDR value is specified
by the parameter mpidr.

In case of Arm standard platforms using GIC, the implementation of the API writes to the GIC Target Register
(GICv2) or Route Register (GICv3) to set the routing.

4.10.13 Function: void plat_ic_set_interrupt_pending(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should set the interrupt specified by first parameter id to Pending.

In case of Arm standard platforms using GIC, the implementation of the API inserts barrier to make memory
updates visible before setting interrupt pending, and writes to the GIC Set Pending Register to set the interrupt
pending status.

4.10. Platform Interrupt Controller API 181

Trusted Firmware-A, Release 2.10.4

4.10.14 Function: void plat_ic_clear_interrupt_pending(unsigned int id); [optional]

Argument : unsigned int
Return : void

This API should clear the Pending status of the interrupt specified by first parameter id.

In case of Arm standard platforms using GIC, the implementation of the API writes to the GIC Clear Pending
Register to clear the interrupt pending status, and inserts barrier to make memory updates visible afterwards.

4.10.15 Function: unsigned int plat_ic_set_priority_mask(unsigned int id); [op-
tional]

Argument : unsigned int
Return : int

This API should set the priority mask (first parameter) in the interrupt controller such that only interrupts of
higher priority than the supplied one may be signalled to the PE. The API should return the current priority
value that it’s overwriting.

In case of Arm standard platforms using GIC, the implementation of the API inserts barriers to order memory
updates before updating mask, then writes to the GIC Priority Mask Register, and make sure memory updates
are visible before potential trigger due to mask update.

4.10.16 Function: unsigned int plat_ic_deactivate_priority(unsigned int id); [op-
tional]

Argument : unsigned int
Return : int

This API performs the operations of plat_ic_set_priority_mask along with calling the errata workaround
gicv3_apply_errata_wa_2384374(). This is performed when priority mask is restored to it’s older value. This
API returns the current priority value that it’s overwriting.

In case of Arm standard platforms using GIC, the implementation of the API inserts barriers to order memory
updates before updating mask, then writes to the GIC Priority Mask Register, and make sure memory updates
are visible before potential trigger due to mask update, and applies 2384374 GIC errata workaround to process
pending interrupt packets.

182 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.10.17 Function: unsigned int plat_ic_get_interrupt_id(unsigned int raw); [op-
tional]

Argument : unsigned int
Return : unsigned int

This API should extract and return the interrupt number from the raw value obtained by the acknowledging the
interrupt (read using plat_ic_acknowledge_interrupt()). If the interrupt ID is invalid, this API
should return INTR_ID_UNAVAILABLE.

In case of Arm standard platforms using GIC, the implementation of the API masks out the interrupt ID field
from the acknowledged value from GIC.

Copyright (c) 2017-2023, Arm Limited and Contributors. All rights reserved.

4.11 Reliability, Availability, and Serviceability (RAS) Extensions

This document describes TF-A support for Arm Reliability, Availability, and Serviceability (RAS) extensions.
RAS is a mandatory extension for Armv8.2 and later CPUs, and also an optional extension to the base Armv8.0
architecture.

For the description of Arm RAS extensions, Standard Error Records, and the precise definition of RAS ter-
minology, please refer to the Arm Architecture Reference Manual and RAS Supplement. The rest of this
document assumes familiarity with architecture and terminology.

IMPORTANT NOTE: TF-A implementation assumes that if RAS extension is present then FEAT_IESB is
also implmented.

There are two philosophies for handling RAS errors from Non-secure world point of view.

• Firmware First Handling (FFH)

• Kernel First Handling (KFH)

4.11.1 Firmware First Handling (FFH)

Introduction

EA’s and Error interrupts corresponding to NS nodes are handled first in firmware

• Errors signaled back to NS world via suitable mechanism

• Kernel is prohibited from accessing the RAS error records directly

• Firmware creates CPER records for kernel to navigate and process

• Firmware signals error back to Kernel via SDEI

4.11. Reliability, Availability, and Serviceability (RAS) Extensions 183

https://developer.arm.com/documentation/ddi0587/latest

Trusted Firmware-A, Release 2.10.4

Overview

FFHworks in conjunction with Exception Handling Framework. Exceptions resulting from errors in Non-secure
world are routed to and handled in EL3. Said errors are Synchronous External Abort (SEA), Asynchronous
External Abort (signalled as SErrors), Fault Handling and Error Recovery interrupts. RAS Framework in TF-A
allows the platform to define an external abort handler and to register RAS nodes and interrupts. It also provides
helpers for accessing Standard Error Records as introduced by the RAS extensions

4.11.2 Kernel First Handling (KFH)

Introduction

EA’s originating/attributed to NS world are handled first in NS and Kernel navigates the std error records
directly.

• KFH is the default handling mode if platform does not explicitly enable FFH mode.

• KFHmode does not need any EL3 involvement except for the reflection of errors back to lower EL. This
happens when there is an error (EA) in the system which is not yet signaled to PE while executing at
lower EL. During entry into EL3 the errors (EA) are synchronized causing async EA to pend at EL3.

4.11.3 Error Syncronization at EL3 entry

During entry to EL3 from lower EL, if there is any pending async EAs they are either reflected back to lower
EL (KFH) or handled in EL3 itself (FFH).

184 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.11.4 TF-A build options

• ENABLE_FEAT_RAS: Enable RAS extension feature at EL3.

• HANDLE_EA_EL3_FIRST_NS: Required for FFH

• RAS_TRAP_NS_ERR_REC_ACCESS: Trap Non-secure access of RAS error record registers.

• RAS_EXTENSION: Deprecated macro, equivalent to ENABLE_FEAT_RAS and HAN-
DLE_EA_EL3_FIRST_NS put together.

RAS internal macros

• FFH_SUPPORT: Gets enabled if HANDLE_EA_EL3_FIRST_NS is enabled.

RAS feature has dependency on some other TF-A build flags

• EL3_EXCEPTION_HANDLING: Required for FFH

4.11. Reliability, Availability, and Serviceability (RAS) Extensions 185

Trusted Firmware-A, Release 2.10.4

• FAULT_INJECTION_SUPPORT: Required for testing RAS feature on fvp platform

4.11.5 TF-A Tests

RAS functionality is regularly tested in TF-A CI using RAS test group which has multiple configurations for
testing lower EL External aborts.

All the tests are written in TF-A tests which runs as NS-EL2 payload.

• FFH without RAS extension

fvp-ea-ffh,fvp-ea-ffh:fvp-tftf-fip.tftf-aemv8a-debug

Couple of tests, one each for sync EA and async EA from lower ELwhich gets handled in El3.
Inject External aborts(sync/async) which traps in EL3, FVP has a handler which gracefully
handles these errors and returns back to TF-A Tests

Build Configs : HANDLE_EA_EL3_FIRST_NS , PLATFORM_TEST_EA_FFH

• FFH with RAS extension

Three Tests :

– fvp-ras-ffh,fvp-single-fault:fvp-tftf-fip.tftf-aemv8a.fi-debug

Inject an unrecoverable RAS error, which gets handled in EL3.

– fvp-ras-ffh,fvp-uncontainable:fvp-tftf.fault-fip.tftf-aemv8a.fi-debug

Inject uncontainable RAS errors which causes platform to panic.

– fvp-ras-ffh,fvp-ras-ffh-nested:fvp-tftf-fip.tftf-ras_ffh_nested-aemv8a.fi-debug

Test nested exception handling at El3 for synchronized async EAs. Inject an SError in lower EL
which remain pending until we enter EL3 through SMC call. At EL3 entry on encountering a
pending async EA it will handle the async EA first (nested exception) before handling the original
SMC call.

• KFH with RAS extension

Couple of tests in the group :

• fvp-ras-kfh,fvp-ras-kfh:fvp-tftf-fip.tftf-aemv8a.fi-debug

Inject and handle RAS errors in TF-A tests (no El3 involvement)

• fvp-ras-kfh,fvp-ras-kfh-reflect:fvp-tftf-fip.tftf-ras_kfh_reflection-aemv8a.fi-debug

Reflection of synchronized errors from EL3 to TF-A tests, two tests one each for reflecting
in IRQ and SMC path.

186 Chapter 4. Components

https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/tree/group/tf-l3-boot-tests-ras?h=refs/heads/master

Trusted Firmware-A, Release 2.10.4

4.11.6 RAS Framework

<div>
</div> plat_ea_handler() ras_ea_handler()

ras_interrupt_handler()Exception Handling Framework

[Not supported by viewer]

RAS error records

RAS interrupts array

RAS framework

<i>Iterate and probe</i> Error handler

<i>Bisect and lookup</i> Error handler

SER helpers

External Abort

[Not supported by viewer]

Interrupt Priority

EHF APIs

Platform APIs

The RAS framework allows the platform to define handlers for External Abort, Uncontainable Errors, Double
Fault, and errors rising from EL3 execution. Please refer to RAS Porting Guide.

Registering RAS error records

RAS nodes are components in the system capable of signalling errors to PEs through one one of the notification
mechanisms—SEAs, SErrors, or interrupts. RAS nodes contain one or more error records, which are registers
through which the nodes advertise various properties of the signalled error. Arm recommends that error records
are implemented in the Standard Error Record format. The RAS architecture allows for error records to be
accessible via system or memory-mapped registers.

The platform should enumerate the error records providing for each of them:

• A handler to probe error records for errors;

• When the probing identifies an error, a handler to handle it;

• For memory-mapped error record, its base address and size in KB; for a system register-accessed record,
the start index of the record and number of continuous records from that index;

• Any node-specific auxiliary data.

With this information supplied, when the run time firmware receives one of the notification mechanisms, the
RAS framework can iterate through and probe error records for error, and invoke the appropriate handler to
handle it.

The RAS framework provides the macros to populate error record information. The macros are ver-
sioned, and the latest version as of this writing is 1. These macros create a structure of type struct
err_record_info from its arguments, which are later passed to probe and error handlers.

For memory-mapped error records:

4.11. Reliability, Availability, and Serviceability (RAS) Extensions 187

Trusted Firmware-A, Release 2.10.4

ERR_RECORD_MEMMAP_V1(base_addr, size_num_k, probe, handler, aux)

And, for system register ones:

ERR_RECORD_SYSREG_V1(idx_start, num_idx, probe, handler, aux)

The probe handler must have the following prototype:

typedef int (*err_record_probe_t)(const struct err_record_info *info,
int *probe_data);

The probe handler must return a non-zero value if an error was detected, or 0 otherwise. The probe_data
output parameter can be used to pass any useful information resulting from probe to the error handler (see
below). For example, it could return the index of the record.

The error handler must have the following prototype:

typedef int (*err_record_handler_t)(const struct err_record_info *info,
int probe_data, const struct err_handler_data *const data);

The data constant parameter describes the various properties of the error, including the reason for the error,
exception syndrome, and also flags, cookie, and handle parameters from the top-level exception handler.

The platform is expected populate an array using the macros above, and register the it with the RAS frame-
work using the macro REGISTER_ERR_RECORD_INFO(), passing it the name of the array describing the
records. Note that the macro must be used in the same file where the array is defined.

Standard Error Record helpers

The TF-A RAS framework provides probe handlers for Standard Error Records, for both memory-mapped and
System Register accesses:

int ras_err_ser_probe_memmap(const struct err_record_info *info,
int *probe_data);

int ras_err_ser_probe_sysreg(const struct err_record_info *info,
int *probe_data);

When the platform enumerates error records, for those records in the Standard Error Record format, these
helpers maybe used instead of rolling out their own. Both helpers above:

• Return non-zero value when an error is detected in a Standard Error Record;

• Set probe_data to the index of the error record upon detecting an error.

188 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Registering RAS interrupts

RAS nodes can signal errors to the PE by raising Fault Handling and/or Error Recovery interrupts. For the
firmware-first handling paradigm for interrupts to work, the platform must setup and register with EHF. See
Interaction with Exception Handling Framework.

For each RAS interrupt, the platform has to provide structure of type struct ras_interrupt:

• Interrupt number;

• The associated error record information (pointer to the correspondingstruct err_record_info);

• Optionally, a cookie.

The platform is expected to define an array of struct ras_interrupt, and register it with the RAS
framework using the macro REGISTER_RAS_INTERRUPTS(), passing it the name of the array. Note that
the macro must be used in the same file where the array is defined.

The array of struct ras_interrupt must be sorted in the increasing order of interrupt number. This
allows for fast look of handlers in order to service RAS interrupts.

Double-fault handling

A Double Fault condition arises when an error is signalled to the PE while handling of a previously signalled
error is still underway. When a Double Fault condition arises, the Arm RAS extensions only require for handler
to perform orderly shutdown of the system, as recovery may be impossible.

TheRAS extensions part ofArmv8.4 introduced new architectural features to deal withDouble Fault conditions,
specifically, the introduction of NMEA and EASE bits to SCR_EL3 register. These were introduced to assist
EL3 software which runs part of its entry/exit routines with exceptions momentarily masked—meaning, in such
systems, External Aborts/SErrors are not immediately handled when they occur, but only after the exceptions
are unmasked again.

TF-A, for legacy reasons, executes entire EL3 with all exceptions unmasked. This means that all exceptions
routed to EL3 are handled immediately. TF-A thus is able to detect a Double Fault conditions in software,
without needing the intended advantages of Armv8.4 Double Fault architecture extensions.

Double faults are fatal, and terminate at the platform double fault handler, and doesn’t return.

Engaging the RAS framework

Enabling RAS support is a platform choice

The RAS support in TF-A introduces a default implementation of plat_ea_handler, the External Abort
handler in EL3. When ENABLE_FEAT_RAS is set to 1, it’ll first call ras_ea_handler() function, which
is the top-level RAS exception handler. ras_ea_handler is responsible for iterating to through platform-
supplied error records, probe them, and when an error is identified, look up and invoke the corresponding error
handler.

Note that, if the platform chooses to override the plat_ea_handler function and intend to use the RAS
framework, it must explicitly call ras_ea_handler() from within.

4.11. Reliability, Availability, and Serviceability (RAS) Extensions 189

Trusted Firmware-A, Release 2.10.4

Similarly, for RAS interrupts, the framework defines ras_interrupt_handler(). The RAS framework
arranges for it to be invoked when a RAS interrupt taken at EL3. The function bisects the platform-supplied
sorted array of interrupts to look up the error record information associated with the interrupt number. That
error handler for that record is then invoked to handle the error.

Interaction with Exception Handling Framework

As mentioned in earlier sections, RAS framework interacts with the EHF to arbitrate handling of RAS excep-
tions with others that are routed to EL3. This means that the platformmust partition a priority level for handling
RAS exceptions. The platformmust then define the macro PLAT_RAS_PRI to the priority level used for RAS
exceptions. Platforms would typically want to allocate the highest secure priority for RAS handling.

Handling of both interrupt and non-interrupt exceptions follow the sequences outlined in the EHF documenta-
tion. I.e., for interrupts, the priority management is implicit; but for non-interrupt exceptions, they’re explicit
using EHF APIs.

Copyright (c) 2018-2023, Arm Limited and Contributors. All rights reserved.

4.12 Library at ROM

This document provides an overview of the “library at ROM” implementation in Trusted Firmware-A (TF-A).

4.12.1 Introduction

The “library at ROM” feature allows platforms to build a library of functions to be placed in ROM. This reduces
SRAM usage by utilising the available space in ROM. The “library at ROM” contains a jump table with the
list of functions that are placed in ROM. The capabilities of the “library at ROM” are:

1. Functions can be from one or several libraries.

2. Functions can be patched after they have been programmed into ROM.

3. Platform-specific libraries can be placed in ROM.

4. Functions can be accessed by one or more BL images.

190 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.12.2 Index file

Library at ROM is described by an index file with the list of functions to be placed in ROM. The index file is
platform specific and its format is:

lib function [patch]

lib -- Name of the library the function belongs to
function -- Name of the function to be placed in library at ROM
[patch] -- Option to patch the function

It is also possible to insert reserved spaces in the list by using the keyword “reserved” rather than the “lib” and
“function” names as shown below:

reserved

The reserved spaces can be used to add more functions in the future without affecting the order and location of
functions already existing in the jump table. Also, for additional flexibility and modularity, the index file can
include other index files.

4.12. Library at ROM 191

Trusted Firmware-A, Release 2.10.4

For an index file example, refer to lib/romlib/jmptbl.i.

4.12.3 Wrapper functions

When invoking a function of the “library at ROM”, the calling sequence is as follows:

BL image –> wrapper function –> jump table entry –> library at ROM

The index file is used to create a jump table which is placed in ROM. Then, the wrappers refer to the jump
table to call the “library at ROM” functions. The wrappers essentially contain a branch instruction to the jump
table entry corresponding to the original function. Finally, the original function in the BL image(s) is replaced
with the wrapper function.

The “library at ROM” contains a necessary init function that initialises the global variables defined by the
functions inside “library at ROM”.

4.12.4 Script

There is a romlib_generate.py Python script that generates the necessary files for the “library at ROM”
to work. It implements multiple functions:

1. romlib_generate.py gentbl [args] - Generates the jump table by parsing the index file.

2. romlib_generator.py genvar [args] - Generates the jump table global variable (not the
jump table itself) with the absolute address in ROM. This global variable is, basically, a pointer to the
jump table.

3. romlib_generator.py genwrappers [args] - Generates a wrapper function for each entry
in the index file except for the ones that contain the keyword patch. The generated wrapper file is
called <fn_name>.s.

4. romlib_generator.py pre [args] - Preprocesses the index file which means it resolves all
the include commands in the file recursively. It can also generate a dependency file of the included index
files which can be directly used in makefiles.

192 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Each romlib_generate.py function has its own manual which is accessible by runing
romlib_generator.py [function] --help.

romlib_generate.py requires Python 3 environment.

4.12.5 Patching of functions in library at ROM

The romlib_generator.py genwrappers does not generate wrappers for the entries in the index file
that contain the keyword patch. Thus, it allows calling the function from the actual library by breaking the
link to the “library at ROM” version of this function.

The calling sequence for a patched function is as follows:

BL image –> function

4.12.6 Memory impact

Using library at ROM will modify the memory layout of the BL images:

• The ROM library needs a page aligned RAM section to hold the RW data. This section is defined by
the ROMLIB_RW_BASE and ROMLIB_RW_END macros. On Arm platforms a section of 1 page
(0x1000) is allocated at the top of SRAM. This will have for effect to shift down all the BL images by 1
page.

• Depending on the functions moved to the ROM library, the size of the BL images will be reduced. For
example: moving MbedTLS function into the ROM library reduces BL1 and BL2, but not BL31.

• This change in BL images size can be taken into consideration to optimize the memory layout when
defining the BLx_BASE macros.

4.12.7 Build library at ROM

The environment variable CROSS_COMPILE must be set appropriately. Refer to Performing an Initial Build
for more information about setting this variable.

In the below example the usage of ROMLIB together with mbed TLS is demonstrated to showcase the benefits
of library at ROM - it’s not mandatory.

make PLAT=fvp \
MBEDTLS_DIR=</path/to/mbedtls/> \
TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=</path/to/bl33.bin> \
USE_ROMLIB=1 \
all fip

Copyright (c) 2019, Arm Limited. All rights reserved.

4.12. Library at ROM 193

Trusted Firmware-A, Release 2.10.4

4.13 SDEI: Software Delegated Exception Interface

This document provides an overview of the SDEI dispatcher implementation in Trusted Firmware-A (TF-A).

4.13.1 Introduction

Software Delegated Exception Interface (SDEI) is an Arm specification for Non-secure world to register han-
dlers with firmware to receive notifications about system events. Firmware will first receive the system events
by way of asynchronous exceptions and, in response, arranges for the registered handler to execute in the
Non-secure EL.

Normal world software that interacts with the SDEI dispatcher (makes SDEI requests and receives notifications)
is referred to as the SDEI Client. A client receives the event notification at the registered handler even when
it was executing with exceptions masked. The list of SDEI events available to the client are specific to the
platform1. See also Determining client EL.

The following figure depicts a general sequence involving SDEI client executing at EL2 and an event dispatch
resulting from the triggering of a bound interrupt. A commentary is provided below:

1 Except event 0, which is defined by the SDEI specification as a standard event.

194 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

As part of initialisation, the SDEI client binds a Non-secure interrupt [1], and the SDEI dispatcher returns a
platform dynamic event number [2]. The client then registers a handler for that event [3], enables the event [5],
and unmasks all events on the current PE [7]. This sequence is typical of an SDEI client, but it may involve
additional SDEI calls.

At a later point in time, when the bound interrupt triggers [9], it’s trapped to EL3. The interrupt is handed
over to the SDEI dispatcher, which then arranges to execute the registered handler [10]. The client terminates
its execution with SDEI_EVENT_COMPLETE [11], following which the dispatcher resumes the original EL2
execution [13]. Note that the SDEI interrupt remains active until the client handler completes, at which point

4.13. SDEI: Software Delegated Exception Interface 195

Trusted Firmware-A, Release 2.10.4

EL3 does EOI [12].

Other than events bound to interrupts, as depicted in the sequence above, SDEI events can be explicitly dis-
patched in response to other exceptions, for example, upon receiving an SError or Synchronous External Abort.
See Explicit dispatch of events.

The remainder of this document only discusses the design and implementation of SDEI dispatcher in TF-A,
and assumes that the reader is familiar with the SDEI specification, the interfaces, and their requirements.

4.13.2 Defining events

A platform choosing to include the SDEI dispatcher must also define the events available on the platform, along
with their attributes.

The platform is expected to provide two arrays of event descriptors: one for private events, and another for
shared events. The SDEI dispatcher provides SDEI_PRIVATE_EVENT() and SDEI_SHARED_EVENT()
macros to populate the event descriptors. Both macros take 3 arguments:

• The event number: this must be a positive 32-bit integer.

• For an event that has a backing interrupt, the interrupt number the event is bound to:

– If it’s not applicable to an event, this shall be left as 0.

– If the event is dynamic, this should be specified as SDEI_DYN_IRQ.

• A bit map of Event flags.

To define event 0, the macro SDEI_DEFINE_EVENT_0() should be used. This macro takes only one
parameter: an SGI number to signal other PEs.

To define an event that’s meant to be explicitly dispatched (i.e., not as a result of receiving an SDEI interrupt),
the macro SDEI_EXPLICIT_EVENT() should be used. It accepts two parameters:

• The event number (as above);

• Event priority: SDEI_MAPF_CRITICAL or SDEI_MAPF_NORMAL, as described below.

Once the event descriptor arrays are defined, they should be exported to the SDEI dispatcher using the REG-
ISTER_SDEI_MAP() macro, passing it the pointers to the private and shared event descriptor arrays, re-
spectively. Note that the REGISTER_SDEI_MAP() macro must be used in the same file where the arrays
are defined.

Regarding event descriptors:

• For Event 0:

– There must be exactly one descriptor in the private array, and none in the shared array.

– The event should be defined using SDEI_DEFINE_EVENT_0().

– Must be bound to a Secure SGI on the platform.

• Explicit events should only be used in the private array.

• Statically bound shared and private interrupts must be bound to shared and private interrupts on the
platform, respectively. See the section on Configuration within Exception Handling Framework.

196 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• Both arrays should be one-dimensional. The REGISTER_SDEI_MAP() macro takes care of replicat-
ing private events for each PE on the platform.

• Both arrays must be sorted in the increasing order of event number.

The SDEI specification doesn’t have provisions for discovery of available events on the platform. The list of
events made available to the client, along with their semantics, have to be communicated out of band; for
example, through Device Trees or firmware configuration tables.

See also Event definition example.

Event flags

Event flags describe the properties of the event. They are bit maps that can be ORed to form parameters to
macros that define events (see Defining events).

• SDEI_MAPF_DYNAMIC: Marks the event as dynamic. Dynamic events can be bound to
(or released from) any Non-secure interrupt at runtime via the SDEI_INTERRUPT_BIND and
SDEI_INTERRUPT_RELEASE calls.

• SDEI_MAPF_BOUND: Marks the event as statically bound to an interrupt. These events cannot be
re-bound at runtime.

• SDEI_MAPF_NORMAL: Marks the event as having Normal priority. This is the default priority.

• SDEI_MAPF_CRITICAL: Marks the event as having Critical priority.

4.13.3 Event definition example

static sdei_ev_map_t plat_private_sdei[] = {
/* Event 0 definition */
SDEI_DEFINE_EVENT_0(8),

/* PPI */
SDEI_PRIVATE_EVENT(8, 23, SDEI_MAPF_BOUND),

/* Dynamic private events */
SDEI_PRIVATE_EVENT(100, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC),
SDEI_PRIVATE_EVENT(101, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC)

/* Events for explicit dispatch */
SDEI_EXPLICIT_EVENT(2000, SDEI_MAPF_NORMAL);
SDEI_EXPLICIT_EVENT(2000, SDEI_MAPF_CRITICAL);

};

/* Shared event mappings */
static sdei_ev_map_t plat_shared_sdei[] = {

SDEI_SHARED_EVENT(804, 0, SDEI_MAPF_DYNAMIC),

/* Dynamic shared events */
SDEI_SHARED_EVENT(3000, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC),

(continues on next page)

4.13. SDEI: Software Delegated Exception Interface 197

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
SDEI_SHARED_EVENT(3001, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC)

};

/* Export SDEI events */
REGISTER_SDEI_MAP(plat_private_sdei, plat_shared_sdei);

4.13.4 Configuration within Exception Handling Framework

The SDEI dispatcher functions alongside the Exception Handling Framework. This means that the platform
must assign priorities to both Normal and Critical SDEI interrupts for the platform:

• Install priority descriptors for Normal and Critical SDEI interrupts.

• For those interrupts that are statically bound (i.e. events defined as having the SDEI_MAPF_BOUND
property), enumerate their properties for the GIC driver to configure interrupts accordingly.

The interrupts must be configured to target EL3. This means that they should be configured as Group 0.
Additionally, on GICv2 systems, the build option GICV2_G0_FOR_EL3 must be set to 1.

See also SDEI porting requirements.

4.13.5 Determining client EL

The SDEI specification requires that the physical SDEI client executes in the highest Non-secure EL imple-
mented on the system. This means that the dispatcher will only allow SDEI calls to be made from:

• EL2, if EL2 is implemented. The Hypervisor is expected to implement a virtual SDEI dispatcher to
support SDEI clients in Guest Operating Systems executing in Non-secure EL1.

• Non-secure EL1, if EL2 is not implemented or disabled.

See the function sdei_client_el() in sdei_private.h.

4.13.6 Explicit dispatch of events

Typically, an SDEI event dispatch is caused by the PE receiving interrupts that are bound to an SDEI event.
However, there are cases where the Secure world requires dispatch of an SDEI event as a direct or indirect
result of a past activity, such as receiving a Secure interrupt or an exception.

The SDEI dispatcher implementation provides sdei_dispatch_event()API for this purpose. The API
has the following signature:

int sdei_dispatch_event(int ev_num);

The parameter ev_num is the event number to dispatch. The API returns 0 on success, or -1 on failure.

The following figure depicts a scenario involving explicit dispatch of SDEI event. A commentary is provided
below:

198 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

As part of initialisation, the SDEI client registers a handler for a platform event [1], enables the event [3], and
unmasks the current PE [5]. Note that, unlike in general SDEI dispatch, this doesn’t involve interrupt binding,
as bound or dynamic events can’t be explicitly dispatched (see the section below).

At a later point in time, a critical event2 is trapped into EL3 [7]. EL3 performs a first-level triage of the event,
and a RAS component assumes further handling [8]. The dispatch completes, but intends to involve Non-secure
world in further handling, and therefore decides to explicitly dispatch an event [10] (which the client had already
registered for [1]). The rest of the sequence is similar to that in the general SDEI dispatch: the requested event is
dispatched to the client (assuming all the conditions are met), and when the handler completes, the preempted

2 Examples of critical events are SError, Synchronous External Abort, Fault Handling interrupt or Error Recovery interrupt from one
of RAS nodes in the system.

4.13. SDEI: Software Delegated Exception Interface 199

Trusted Firmware-A, Release 2.10.4

execution resumes.

Conditions for event dispatch

All of the following requirements must be met for the API to return 0 and event to be dispatched:

• SDEI events must be unmasked on the PE. I.e. the client must have called PE_UNMASK beforehand.

• Event 0 can’t be dispatched.

• The event must be declared using the SDEI_EXPLICIT_EVENT() macro described above.

• The event must be private to the PE.

• The event must have been registered for and enabled.

• A dispatch for the same event must not be outstanding. I.e. it hasn’t already been dispatched and is yet
to be completed.

• The priority of the event (either Critical or Normal, as configured by the platform at build-time) shouldn’t
cause priority inversion. This means:

– If it’s of Normal priority, neither Normal nor Critical priority dispatch must be outstanding on the
PE.

– If it’s of a Critical priority, no Critical priority dispatch must be outstanding on the PE.

Further, the caller should be aware of the following assumptions made by the dispatcher:

• The caller of the API is a component running in EL3; for example, a RAS driver.

• The requested dispatch will be permitted by the Exception Handling Framework. I.e. the caller must
make sure that the requested dispatch has sufficient priority so as not to cause priority level inversion
within Exception Handling Framework.

• The caller must be prepared for the SDEI dispatcher to restore the Non-secure context, and mark that
the active context.

• The call will block until the SDEI client completes the event (i.e. when the client calls either
SDEI_EVENT_COMPLETE or SDEI_COMPLETE_AND_RESUME).

• The caller must be prepared for this API to return failure and handle accordingly.

4.13.7 Porting requirements

The porting requirements of the SDEI dispatcher are outlined in the Porting Guide.

200 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.13.8 Note on writing SDEI event handlers

This section pertains to SDEI event handlers in general, not just when using the TF-A SDEI dispatcher.

The SDEI specification requires that event handlers preserve the contents of all registers except x0 to x17.
This has significance if event handler is written in C: compilers typically adjust the stack frame at the beginning
and end of C functions. For example, AArch64 GCC typically produces the following function prologue and
epilogue:

c_event_handler:
stp x29, x30, [sp,#-32]!
mov x29, sp

...

bl ...

...

ldp x29, x30, [sp],#32
ret

The register x29 is used as frame pointer in the prologue. Because neither a valid SDEI_EVENT_COMPLETE
nor SDEI_EVENT_COMPLETE_AND_RESUME calls return to the handler, the epilogue never gets executed,
and registersx29 andx30 (in the case above) are inadvertently corrupted. This violates the SDEI specification,
and the normal execution thereafter will result in unexpected behaviour.

To work this around, it’s advised that the top-level event handlers are implemented in assembly, following a
similar pattern as below:

asm_event_handler:
/* Save link register whilst maintaining stack alignment */
stp xzr, x30, [sp, #-16]!
bl c_event_handler

/* Restore link register */
ldp xzr, x30, [sp], #16

/* Complete call */
ldr x0, =SDEI_EVENT_COMPLETE
smc #0
b .

4.13. SDEI: Software Delegated Exception Interface 201

Trusted Firmware-A, Release 2.10.4

4.13.9 Security Considerations

SDEI introduces concept of providing software based non-maskable interrupts to Hypervisor/OS. In doing so,
it modifies the priority scheme defined by Interrupt controllers and relies on Non-Secure clients, Hypervisor or
OS, to create/manage high priority events.

Considering a Non-secure client is involved in SDEI state management, there exists some security considera-
tions which needs to be taken care of in both client and EL3 when using SDEI. Few of them are mentioned
below.

Bound events

A bound event is an SDEI event that corresponds to a client interrupt. The binding of event is done using
SDEI_INTERRUPT_BIND SMC call to associate an SDEI event with a client interrupt. There is a possibility
that a rogue client can request an invalid interrupt to be bound. This may potentially cause out-of-bound
memory read.

Even though TF-A implementation has checks to ensure that interrupt ID passed by client is architecturally
valid, Non-secure client should also ensure the validity of interrupts.

Recurring events

For a given event source, if the events are generated continuously, then NS client may be unusable. To mitigate
against this, the Non-secure client must have mechanism in place to remove such interrupt source from the
system.

One of the examples is a memory region which continuously generates RAS errors. This may result in unusable
Non-secure client.

Dispatched events

For a dispatched event, it is the client’s responsibility to ensure that the handling finishes in finite time and
notify the dispatcher through SDEI_EVENT_COMPLETE or SDEI_EVENT_COMPLETE_AND_RESUME.
If the client fails to complete the event handling, it might result in UNPREDICTABLE behavior in the client
and potentially end up in unusable PE.

Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved.

4.14 Secure Partition Manager

Contents

• Secure Partition Manager

– Acronyms

202 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

– Foreword

∗ Terminology

∗ Support for legacy platforms

– Sample reference stack

– TF-A build options

– FVP model invocation

– Boot process

∗ Loading Hafnium and secure partitions in the secure world

∗ Booting through TF-A

· SP manifests

· Secure Partition packages

· Describing secure partitions

· SPMC manifest

· SPMC boot

· Loading of SPs

· Secure boot

– Hafnium in the secure world

∗ General considerations

· Build platform for the secure world

· Secure partitions scheduling

· Platform topology

∗ Parsing SP partition manifests

∗ Passing boot data to the SP

∗ SP Boot order

∗ Boot phases

· Primary core boot-up

· Secondary cores boot-up

∗ Notifications

∗ Mandatory interfaces

· FFA_VERSION

· FFA_FEATURES

4.14. Secure Partition Manager 203

Trusted Firmware-A, Release 2.10.4

· FFA_RXTX_MAP/FFA_RXTX_UNMAP

· FFA_PARTITION_INFO_GET

· FFA_ID_GET

· FFA_MSG_SEND_DIRECT_REQ/FFA_MSG_SEND_DIRECT_RESP

· FFA_NOTIFICATION_BITMAP_CREATE/FFA_NOTIFICATION_BITMAP_DESTROY

· FFA_NOTIFICATION_BIND/FFA_NOTIFICATION_UNBIND

· FFA_NOTIFICATION_SET/FFA_NOTIFICATION_GET

· FFA_NOTIFICATION_INFO_GET

· FFA_SPM_ID_GET

· FFA_SECONDARY_EP_REGISTER

· FFA_RX_ACQUIRE/FFA_RX_RELEASE

· FFA_MSG_SEND2

∗ SPMC-SPMD direct requests/responses

∗ Memory Sharing

∗ PE MMU configuration

∗ Schedule modes and SP Call chains

∗ Partition runtime models

∗ Interrupt management

· GIC ownership

· Non-secure interrupt handling

· Secure interrupt handling

· Secure interrupt signaling mechanisms

· Secure interrupt completion mechanisms

· Actions for a secure interrupt triggered while execution is in normal world

· Actions for a secure interrupt triggered while execution is in secure world

· EL3 interrupt handling

∗ Power management

– Arm architecture extensions for security hardening

– SMMUv3 support in Hafnium

∗ SMMUv3 features

∗ SMMUv3 Programming Interfaces

204 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

∗ Peripheral device manifest

∗ SMMUv3 driver limitations

– S-EL0 Partition support

– References

4.14.1 FF-A manifest binding to device tree

This document defines the nodes and properties used to define a partition, according to the FF-A specification.

Partition Properties

• compatible [mandatory]

– value type: <string>

– Must be the string “arm,ffa-manifest-X.Y” which specifies the major and minor versions of
the device tree binding for the FFA manifest represented by this node. The minor number is
incremented if the binding changes in a backwards compatible manner.

∗ X is an integer representing the major version number of this document.

∗ Y is an integer representing the minor version number of this document.

• ffa-version [mandatory]

– value type: <u32>

– Must be two 16 bits values (X, Y), concatenated as 31:16 -> X, 15:0 -> Y, where:

∗ X is the major version of FF-A expected by the partition at the FFA instance it will exe-
cute.

∗ Y is the minor version of FF-A expected by the partition at the FFA instance it will
execute.

• uuid [mandatory]

– value type: <prop-encoded-array>

– An array consisting of 4 <u32> values, identifying the UUID of the service implemented by
this partition. The UUID format is described in RFC 4122.

• id

– value type: <u32>

– Pre-allocated partition ID.

• auxiliary-id

– value type: <u32>

– Pre-allocated ID that could be used in memory management transactions.

4.14. Secure Partition Manager 205

Trusted Firmware-A, Release 2.10.4

• description

– value type: <string>

– Name of the partition e.g. for debugging purposes.

• execution-ctx-count [mandatory]

– value type: <u32>

– Number of vCPUs that a VM or SP wants to instantiate.

∗ In the absence of virtualization, this is the number of execution contexts that a partition
implements.

∗ If value of this field = 1 and number of PEs > 1 then the partition is treated as UP &
migrate capable.

∗ If the value of this field > 1 then the partition is treated as a MP capable partition irre-
spective of the number of PEs.

• exception-level [mandatory]

– value type: <u32>

– The target exception level for the partition:

∗ 0x0: EL1

∗ 0x1: S_EL0

∗ 0x2: S_EL1

• execution-state [mandatory]

– value type: <u32>

– The target execution state of the partition:

∗ 0: AArch64

∗ 1: AArch32

• load-address

– value type: <u64>

– Physical base address of the partition in memory. Absence of this field indicates that the
partition is position independent and can be loaded at any address chosen at boot time.

• entrypoint-offset

– value type: <u64>

– Offset from the base of the partition’s binary image to the entry point of the partition. Absence
of this field indicates that the entry point is at offset 0x0 from the base of the partition’s binary.

• xlat-granule [mandatory]

– value type: <u32>

– Translation granule used with the partition:

206 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

∗ 0x0: 4k

∗ 0x1: 16k

∗ 0x2: 64k

• boot-order

– value type: <u16>

– A unique number amongst all partitions that specifies if this partition must be booted before
others. The partition with the smaller number will be booted first.

• rx-tx-buffer

– value type: “memory-regions” node

– Specific “memory-regions” nodes that describe the RX/TX buffers expected by the partition.
The “compatible” must be the string “arm,ffa-manifest-rx_tx-buffer”.

• messaging-method [mandatory]

– value type: <u8>

– Specifies which messaging methods are supported by the partition, set bit means the feature is
supported, clear bit - not supported:

∗ Bit[0]: partition can receive direct requests if set

∗ Bit[1]: partition can send direct requests if set

∗ Bit[2]: partition can send and receive indirect messages

• managed-exit

– value type: <empty>

– Specifies if managed exit is supported.

– This field is deprecated in favor of ns-interrupts-action field in the FF-A v1.1 EAC0 spec.

• ns-interrupts-action [mandatory]

– value type: <u32>

– Specifies the action that the SPMC must take in response to a Non-secure physical interrupt.

∗ 0x0: Non-secure interrupt is queued

∗ 0x1: Non-secure interrupt is signaled after a managed exit

∗ 0x2: Non-secure interrupt is signaled

– This field supersedes the managed-exit field in the FF-A v1.0 spec.

• other-s-interrupts-action

– value type: <u32>

– Specifies the action that the SPMCmust take in response to a Other-Secure physical interrupt.

∗ 0x0: Other-Secure interrupt is queued

4.14. Secure Partition Manager 207

Trusted Firmware-A, Release 2.10.4

∗ 0x1: Other-Secure interrupt is signaled

• has-primary-scheduler

– value type: <empty>

– Presence of this field indicates that the partition implements the primary scheduler. If so,
run-time EL must be EL1.

• time-slice-mem

– value type: <empty>

– Presence of this field indicates that the partition doesn’t expect the partition manager to time
slice long running memory management functions.

• gp-register-num

– value type: <u32>

– The field specifies the general purpose register number but not its width. The width is derived
from the partition’s execution state, as specified in the partition properties. For example, if
the number value is 1 then the general-purpose register used will be x1 in AArch64 state and
w1 in AArch32 state. Presence of this field indicates that the partition expects the address of
the FF-A boot information blob to be passed in the specified general purpose register.

• stream-endpoint-ids

– value type: <prop-encoded-array>

– List of <u32> tuples, identifying the IDs this partition is acting as proxy for.

• power-management-messages

– value type: <u32>

– Specifies which power management messages a partition subscribes to. A set bit means the
partition should be informed of the power event, clear bit - should not be informed of event:

∗ Bit[0]: CPU_OFF

∗ Bit[1]: CPU_SUSPEND

∗ Bit[2]: CPU_SUSPEND_RESUME

Memory Regions

• compatible [mandatory]

– value type: <string>

– Must be the string “arm,ffa-manifest-memory-regions”.

• description

– value type: <string>

– Name of the memory region e.g. for debugging purposes.

208 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• pages-count [mandatory]

– value type: <u32>

– Count of pages of memory region as a multiple of the translation granule size

• attributes [mandatory]

– value type: <u32>

– Mapping modes: ORed to get required permission

∗ 0x1: Read

∗ 0x2: Write

∗ 0x4: Execute

∗ 0x8: Security state

• base-address

– value type: <u64>

– Base address of the region. The address must be aligned to the translation granule size. The
address given may be a Physical Address (PA), Virtual Address (VA), or Intermediate Physical
Address (IPA). Refer to the FF-A specification for more information on the restrictions around
the address type. If the base address is omitted then the partition manager must map amemory
region of the specified size into the partition’s translation regime and then communicate the
region properties (including the base address chosen by the partition manager) to the partition.

Device Regions

• compatible [mandatory]

– value type: <string>

– Must be the string “arm,ffa-manifest-device-regions”.

• description

– value type: <string>

– Name of the device region e.g. for debugging purposes.

• pages-count [mandatory]

– value type: <u32>

– Count of pages of memory region as a multiple of the translation granule size

• attributes [mandatory]

– value type: <u32>

– Mapping modes: ORed to get required permission

∗ 0x1: Read

4.14. Secure Partition Manager 209

Trusted Firmware-A, Release 2.10.4

∗ 0x2: Write

∗ 0x4: Execute

∗ 0x8: Security state

• base-address [mandatory]

– value type: <u64>

– Base address of the region. The address must be aligned to the translation granule size. The
address given may be a Physical Address (PA), Virtual Address (VA), or Intermediate Physical
Address (IPA). Refer to the FF-A specification for more information on the restrictions around
the address type.

• smmu-id

– value type: <u32>

– On systems with multiple SystemMemoryManagement Units (SMMUs) this identifier is used
to inform the partition manager which SMMU the device is upstream of. If the field is omitted
then it is assumed that the device is not upstream of any SMMU.

• stream-ids

– value type: <prop-encoded-array>

– A list of (id, mem-manage) pair, where:

∗ id: A unique <u32> value amongst all devices assigned to the partition.

• interrupts [mandatory]

– value type: <prop-encoded-array>

– A list of (id, attributes) pair describing the device interrupts, where:

∗ id: The <u32> interrupt IDs.

∗ attributes: A <u32> value, containing attributes for each interrupt ID:

Field Bit(s)
Priority 7:0
Security state 8
Config(Edge/Level) 9
Type(SPI/PPI/SGI) 11:10

Security state:

· Secure: 1

· Non-secure: 0

Configuration:

· Edge triggered: 0

· Level triggered: 1

210 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Type:

· SPI: 0b10

· PPI: 0b01

· SGI: 0b00

• interrupts-target

– value type: <prop-encoded-array>

– A list of (id, mpdir upper bits, mpidr lower bits) tuples describing which mpidr the interrupt
is routed to, where:

∗ id: The <u32> interrupt ID. Must be one of those specified in the
“interrupts” field.

∗ mpidr upper bits: The <u32> describing the upper bits of the 64 bits
mpidr

∗ mpidr lower bits: The <u32> describing the lower bits of the 64 bits
mpidr

• exclusive-access

– value type: <empty>

– Presence of this field implies that this endpoint must be granted exclusive access and ownership
of this device’s MMIO region.

Copyright (c) 2019-2022, Arm Limited and Contributors. All rights reserved.

4.14. Secure Partition Manager 211

Trusted Firmware-A, Release 2.10.4

4.14.2 Acronyms

CoT Chain of Trust
DMA Direct Memory Access
DTB Device Tree Blob
DTS Device Tree Source
EC Execution Context
FIP Firmware Image Package
FF-A Firmware Framework for Arm A-profile
IPA Intermediate Physical Address
JOP Jump-Oriented Programming
NWd Normal World
ODM Original Design Manufacturer
OEM Original Equipment Manufacturer
PA Physical Address
PE Processing Element
PM Power Management
PVM Primary VM
ROP Return-Oriented Programming
SMMU System Memory Management Unit
SP Secure Partition
SPD Secure Payload Dispatcher
SPM Secure Partition Manager
SPMC SPM Core
SPMD SPM Dispatcher
SiP Silicon Provider
SWd Secure World
TLV Tag-Length-Value
TOS Trusted Operating System
VM Virtual Machine

4.14.3 Foreword

Three implementations of a Secure Partition Manager co-exist in the TF-A codebase:

1. S-EL2 SPMC based on the FF-A specification [1], enabling virtualization in the secure world, managing
multiple S-EL1 or S-EL0 partitions.

2. EL3 SPMC based on the FF-A specification, managing a single S-EL1 partition without virtualization
in the secure world.

3. EL3 SPM based on the MM specification, legacy implementation managing a single S-EL0 partition [2].

These implementations differ in their respective SW architecture and only one can be selected at build time.
This document:

• describes the implementation from bullet 1. when the SPMC resides at S-EL2.

212 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• is not an architecture specification and it might provide assumptions on sections mandated as
implementation-defined in the specification.

• covers the implications to TF-A used as a bootloader, and Hafnium used as a reference code base for an
S-EL2/SPMC secure firmware on platforms implementing the FEAT_SEL2 architecture extension.

Terminology

• The term Hypervisor refers to the NS-EL2 component managing Virtual Machines (or partitions) in the
normal world.

• The term SPMC refers to the S-EL2 component managing secure partitions in the secure world when
the FEAT_SEL2 architecture extension is implemented.

• Alternatively, SPMC can refer to an S-EL1 component, itself being a secure partition and implementing
the FF-A ABI on platforms not implementing the FEAT_SEL2 architecture extension.

• The term VM refers to a normal world Virtual Machine managed by an Hypervisor.

• The term SP refers to a secure world “Virtual Machine” managed by an SPMC.

Support for legacy platforms

The SPM is split into a dispatcher and a core component (respectively SPMD and SPMC) residing at different
exception levels. To permit the FF-A specification adoption and a smooth migration, the SPMD supports an
SPMC residing either at S-EL1 or S-EL2:

• The SPMD is located at EL3 and mainly relays the FF-A protocol from NWd (Hypervisor or OS kernel)
to the SPMC.

• The same SPMD component is used for both S-EL1 and S-EL2 SPMC configurations.

• The SPMC exception level is a build time choice.

TF-A supports both cases:

• S-EL1 SPMC for platforms not supporting the FEAT_SEL2 architecture extension. The SPMD relays
the FF-A protocol from EL3 to S-EL1.

• S-EL2 SPMC for platforms implementing the FEAT_SEL2 architecture extension. The SPMD relays
the FF-A protocol from EL3 to S-EL2.

4.14.4 Sample reference stack

The following diagram illustrates a possible configuration when the FEAT_SEL2 architecture extension is im-
plemented, showing the SPMD and SPMC, one or multiple secure partitions, with an optional Hypervisor:

4.14. Secure Partition Manager 213

Trusted Firmware-A, Release 2.10.4

4.14.5 TF-A build options

This section explains the TF-A build options involved in building with support for an FF-A based SPM where
the SPMD is located at EL3 and the SPMC located at S-EL1, S-EL2 or EL3:

• SPD=spmd: this option selects the SPMD component to relay the FF-A protocol from NWd to SWd
back and forth. It is not possible to enable another Secure Payload Dispatcher when this option is chosen.

• SPMD_SPM_AT_SEL2: this option adjusts the SPMC exception level to being at S-EL2. It defaults
to enabled (value 1) when SPD=spmd is chosen.

• SPMC_AT_EL3: this option adjusts the SPMC exception level to being at EL3.

• If neither SPMD_SPM_AT_SEL2 or SPMC_AT_EL3 are enabled the SPMC exception level is set to
S-EL1. SPMD_SPM_AT_SEL2 is enabled. The context save/restore routine and exhaustive list of
registers is visible at [4].

214 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• SPMC_AT_EL3_SEL0_SP: this option enables the support to load SEL0 SP when SPMC at EL3
support is enabled.

• SP_LAYOUT_FILE: this option specifies a text description file providing paths to SP binary images and
manifests in DTS format (see Describing secure partitions). It is required when SPMD_SPM_AT_SEL2
is enabled hence when multiple secure partitions are to be loaded by BL2 on behalf of the SPMC.

SPMD_SPM_AT_SEL2 SPMC_AT_EL3 CTX_INCLUDE_EL2_REGS(*)
SPMC at S-EL1 0 0 0
SPMC at S-EL2

1 (default when
SPD=spmd)

0 1

SPMC at EL3 0 1 0

Other combinations of such build options either break the build or are not supported.

Notes:

• Only Arm’s FVP platform is supported to use with the TF-A reference software stack.

• When SPMD_SPM_AT_SEL2=1, the reference software stack assumes enablement of FEAT_PAuth,
FEAT_BTI and FEAT_MTE architecture extensions.

• (*) CTX_INCLUDE_EL2_REGS, this flag is TF-A internal and informational in this table. When
set, it provides the generic support for saving/restoring EL2 registers required when S-EL2 firmware is
present.

• BL32 option is re-purposed to specify the SPMC image. It can specify either the Hafnium binary path
(built for the secure world) or the path to a TEE binary implementing FF-A interfaces.

• BL33 option can specify the TFTF binary or a normal world loader such as U-Boot or the UEFI frame-
work payload.

Sample TF-A build command line when the SPMC is located at S-EL1 (e.g. when the FEAT_SEL2 architecture
extension is not implemented):

make \
CROSS_COMPILE=aarch64-none-elf- \
SPD=spmd \
SPMD_SPM_AT_SEL2=0 \
BL32=<path-to-tee-binary> \
BL33=<path-to-bl33-binary> \
PLAT=fvp \
all fip

Sample TF-A build command line when FEAT_SEL2 architecture extension is implemented and the SPMC is
located at S-EL2:

make \
CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \

(continues on next page)

4.14. Secure Partition Manager 215

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
SPD=spmd \
ARM_ARCH_MINOR=5 \
BRANCH_PROTECTION=1 \
CTX_INCLUDE_PAUTH_REGS=1 \
CTX_INCLUDE_MTE_REGS=1 \
BL32=<path-to-hafnium-binary> \
BL33=<path-to-bl33-binary> \
SP_LAYOUT_FILE=sp_layout.json \
all fip

Sample TF-A build command line when FEAT_SEL2 architecture extension is implemented, the SPMC is
located at S-EL2, and enabling secure boot:

make \
CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \
SPD=spmd \
ARM_ARCH_MINOR=5 \
BRANCH_PROTECTION=1 \
CTX_INCLUDE_PAUTH_REGS=1 \
CTX_INCLUDE_MTE_REGS=1 \
BL32=<path-to-hafnium-binary> \
BL33=<path-to-bl33-binary> \
SP_LAYOUT_FILE=sp_layout.json \
MBEDTLS_DIR=<path-to-mbedtls-lib> \
TRUSTED_BOARD_BOOT=1 \
COT=dualroot \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
GENERATE_COT=1 \
all fip

Sample TF-A build command line when the SPMC is located at EL3:

make \
CROSS_COMPILE=aarch64-none-elf- \
SPD=spmd \
SPMD_SPM_AT_SEL2=0 \
SPMC_AT_EL3=1 \
BL32=<path-to-tee-binary> \
BL33=<path-to-bl33-binary> \
PLAT=fvp \
all fip

Sample TF-A build command line when the SPMC is located at EL3 and SEL0 SP is enabled:

make \
CROSS_COMPILE=aarch64-none-elf- \
SPD=spmd \
SPMD_SPM_AT_SEL2=0 \
SPMC_AT_EL3=1 \

(continues on next page)

216 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
SPMC_AT_EL3_SEL0_SP=1 \
BL32=<path-to-tee-binary> \
BL33=<path-to-bl33-binary> \
PLAT=fvp \
all fip

4.14.6 FVP model invocation

The FVP command line needs the following options to exercise the S-EL2 SPMC:

• cluster0.has_arm_v8-5=1
• cluster1.has_arm_v8-5=1

Implements FEAT_SEL2, FEAT_PAuth, and
FEAT_BTI.

• pci.pci_smmuv3.mmu.SMMU_AIDR=2
• pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B
• pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002
• pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714
• pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0472
• pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002
• pci.pci_smmuv3.mmu.SMMU_S_IDR2=0
• pci.pci_smmuv3.mmu.SMMU_S_IDR3=0

Parameters required for the SMMUv3.2 modeling.

• cluster0.has_branch_target_exception=1
• cluster1.has_branch_target_exception=1

Implements FEAT_BTI.

• cluster0.has_pointer_authentication=2
• cluster1.has_pointer_authentication=2

Implements FEAT_PAuth

• cluster0.memory_tagging_support_level=2
• cluster1.memory_tagging_support_level=2
• bp.dram_metadata.is_enabled=1

Implements FEAT_MTE2

Sample FVP command line invocation:

<path-to-fvp-model>/FVP_Base_RevC-2xAEMvA -C pctl.startup=0.0.0.0 \
-C cluster0.NUM_CORES=4 -C cluster1.NUM_CORES=4 -C bp.secure_memory=1 \
-C bp.secureflashloader.fname=trusted-firmware-a/build/fvp/debug/bl1.bin \
-C bp.flashloader0.fname=trusted-firmware-a/build/fvp/debug/fip.bin \
-C bp.pl011_uart0.out_file=fvp-uart0.log -C bp.pl011_uart1.out_file=fvp-uart1.
↪→log \
-C bp.pl011_uart2.out_file=fvp-uart2.log \
-C cluster0.has_arm_v8-5=1 -C cluster1.has_arm_v8-5=1 \

(continues on next page)

4.14. Secure Partition Manager 217

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
-C cluster0.has_pointer_authentication=2 -C cluster1.has_pointer_
↪→authentication=2 \
-C cluster0.has_branch_target_exception=1 -C cluster1.has_branch_target_
↪→exception=1 \
-C cluster0.memory_tagging_support_level=2 -C cluster1.memory_tagging_support_
↪→level=2 \
-C bp.dram_metadata.is_enabled=1 \
-C pci.pci_smmuv3.mmu.SMMU_AIDR=2 -C pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B \
-C pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 -C pci.pci_smmuv3.mmu.SMMU_
↪→IDR3=0x1714 \
-C pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0472 -C pci.pci_smmuv3.mmu.SMMU_S_
↪→IDR1=0xA0000002 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 -C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0

4.14.7 Boot process

Loading Hafnium and secure partitions in the secure world

TF-A BL2 is the bootlader for the SPMC and SPs in the secure world.

SPs may be signed by different parties (SiP, OEM/ODM, TOS vendor, etc.). Thus they are supplied as distinct
signed entities within the FIP flash image. The FIP image itself is not signed hence this provides the ability to
upgrade SPs in the field.

Booting through TF-A

SP manifests

An SP manifest describes SP attributes as defined in [1] (partition manifest at virtual FF-A instance) in DTS
format. It is represented as a single file associated with the SP. A sample is provided by [5]. A binding
document is provided by [6].

Secure Partition packages

Secure partitions are bundled as independent package files consisting of:

• a header

• a DTB

• an image payload

The header starts with a magic value and offset values to SP DTB and image payload. Each SP package is
loaded independently by BL2 loader and verified for authenticity and integrity.

The SP package identified by its UUID (matching FF-A uuid property) is inserted as a single entry into the FIP
at end of the TF-A build flow as shown:

218 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Trusted Boot Firmware BL2: offset=0x1F0, size=0x8AE1, cmdline="--tb-fw"
EL3 Runtime Firmware BL31: offset=0x8CD1, size=0x13000, cmdline="--soc-fw"
Secure Payload BL32 (Trusted OS): offset=0x1BCD1, size=0x15270, cmdline="--
↪→tos-fw"
Non-Trusted Firmware BL33: offset=0x30F41, size=0x92E0, cmdline="--nt-fw"
HW_CONFIG: offset=0x3A221, size=0x2348, cmdline="--hw-config"
TB_FW_CONFIG: offset=0x3C569, size=0x37A, cmdline="--tb-fw-config"
SOC_FW_CONFIG: offset=0x3C8E3, size=0x48, cmdline="--soc-fw-config"
TOS_FW_CONFIG: offset=0x3C92B, size=0x427, cmdline="--tos-fw-config"
NT_FW_CONFIG: offset=0x3CD52, size=0x48, cmdline="--nt-fw-config"
B4B5671E-4A90-4FE1-B81F-FB13DAE1DACB: offset=0x3CD9A, size=0xC168, cmdline="--
↪→blob"
D1582309-F023-47B9-827C-4464F5578FC8: offset=0x48F02, size=0xC168, cmdline="--
↪→blob"

4.14. Secure Partition Manager 219

Trusted Firmware-A, Release 2.10.4

220 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Describing secure partitions

A json-formatted description file is passed to the build flow specifying paths to the SP binary image and asso-
ciated DTS partition manifest file. The latter is processed by the dtc compiler to generate a DTB fed into the
SP package. Optionally, the partition’s json description can contain offsets for both the image and partition
manifest within the SP package. Both offsets need to be 4KB aligned, because it is the translation granule
supported by Hafnium SPMC. These fields can be leveraged to support SPs with S1 translation granules that
differ from 4KB, and to configure the regions allocated within the SP package, as well as to comply with the
requirements for the implementation of the boot information protocol (see Passing boot data to the SP for more
details). In case the offsets are absent in their json node, they default to 0x1000 and 0x4000 for the manifest
offset and image offset respectively. This file also specifies the SP owner (as an optional field) identifying the
signing domain in case of dual root CoT. The SP owner can either be the silicon or the platform provider. The
corresponding “owner” field value can either take the value of “SiP” or “Plat”. In absence of “owner” field, it
defaults to “SiP” owner. The UUID of the partition can be specified as a field in the description file or if it does
not exist there the UUID is extracted from the DTS partition manifest.

{
"tee1" : {

"image": "tee1.bin",
"pm": "tee1.dts",
"owner": "SiP",
"uuid": "1b1820fe-48f7-4175-8999-d51da00b7c9f"

},

"tee2" : {
"image": "tee2.bin",
"pm": "tee2.dts",
"owner": "Plat"

},

"tee3" : {
"image": {

"file": "tee3.bin",
"offset":"0x2000"

},
"pm": {

"file": "tee3.dts",
"offset":"0x6000"

},
"owner": "Plat"

},
}

4.14. Secure Partition Manager 221

Trusted Firmware-A, Release 2.10.4

SPMC manifest

This manifest contains the SPMC attribute node consumed by the SPMD at boot time. It implements [1] (SP
manifest at physical FF-A instance) and serves two different cases:

• The SPMC resides at S-EL1: the SPMC manifest is used by the SPMD to setup a SP that co-resides
with the SPMC and executes at S-EL1 or Secure Supervisor mode.

• The SPMC resides at S-EL2: the SPMCmanifest is used by the SPMD to setup the environment required
by the SPMC to run at S-EL2. SPs run at S-EL1 or S-EL0.

attribute {
spmc_id = <0x8000>;
maj_ver = <0x1>;
min_ver = <0x1>;
exec_state = <0x0>;
load_address = <0x0 0x6000000>;
entrypoint = <0x0 0x6000000>;
binary_size = <0x60000>;

};

• spmc_id defines the endpoint ID value that SPMC can query through FFA_ID_GET.

• maj_ver/min_ver. SPMD checks provided version versus its internal version and aborts if not matching.

• exec_state defines the SPMC execution state (AArch64 or AArch32). Notice Hafnium used as a SPMC
only supports AArch64.

• load_address and binary_size are mostly used to verify secondary entry points fit into the loaded binary
image.

• entrypoint defines the cold boot primary core entry point used by SPMD (currently matches
BL32_BASE) to enter the SPMC.

Other nodes in the manifest are consumed by Hafnium in the secure world. A sample can be found at [7]:

• The hypervisor node describes SPs. is_ffa_partition boolean attribute indicates a FF-A compliant SP.
The load_address field specifies the load address at which BL2 loaded the SP package.

• cpus node provide the platform topology and allows MPIDR to VMPIDR mapping. Note the primary
core is declared first, then secondary cores are declared in reverse order.

• The memory nodes provide platform information on the ranges of memory available for use by SPs at
runtime. These ranges relate to either secure or non-secure memory, depending on the device_type field.
If the field specifies “memory” the range is secure, else if it specifies “ns-memory” the memory is non-
secure. The system integrator must exclude the memory used by other components that are not SPs, such
as the monitor, or the SPMC itself, the OS Kernel/Hypervisor, or other NWd VMs. The SPMC limits
the SP’s address space such that they do not access memory outside of those ranges.

222 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

SPMC boot

The SPMC is loaded by BL2 as the BL32 image.

The SPMC manifest is loaded by BL2 as the TOS_FW_CONFIG image [9].

BL2 passes the SPMC manifest address to BL31 through a register.

At boot time, the SPMD in BL31 runs from the primary core, initializes the core contexts and launches the
SPMC (BL32) passing the following information through registers:

• X0 holds the TOS_FW_CONFIG physical address (or SPMC manifest blob).

• X1 holds the HW_CONFIG physical address.

• X4 holds the currently running core linear id.

Loading of SPs

At boot time, BL2 loads SPs sequentially in addition to the SPMC as depicted below:

Note this boot flow is an implementation sample on Arm’s FVP platform. Platforms not using TF-A’s Firmware

4.14. Secure Partition Manager 223

Trusted Firmware-A, Release 2.10.4

CONFiguration framework would adjust to a different boot flow. The flow restricts to a maximum of 8 secure
partitions.

Secure boot

The SP content certificate is inserted as a separate FIP item so that BL2 loads SPMC, SPMC manifest, secure
partitions and verifies them for authenticity and integrity. Refer to TBBR specification [3].

The multiple-signing domain feature (in current state dual signing domain [8]) allows the use of two root keys
namely S-ROTPK and NS-ROTPK:

• SPMC (BL32) and SPMC manifest are signed by the SiP using the S-ROTPK.

• BL33 may be signed by the OEM using NS-ROTPK.

• An SP may be signed either by SiP (using S-ROTPK) or by OEM (using NS-ROTPK).

• A maximum of 4 partitions can be signed with the S-ROTPK key and 4 partitions signed with the NS-
ROTPK key.

Also refer to Describing secure partitions and TF-A build options sections.

4.14.8 Hafnium in the secure world

General considerations

Build platform for the secure world

In theHafnium reference implementation specific code parts are only relevant to the secure world. Such portions
are isolated in architecture specific files and/or enclosed by a SECURE_WORLD macro.

Secure partitions scheduling

The FF-A specification [1] provides two ways to relinquinsh CPU time to secure partitions. For this a VM
(Hypervisor or OS kernel), or SP invokes one of:

• the FFA_MSG_SEND_DIRECT_REQ interface.

• the FFA_RUN interface.

Additionally a secure interrupt can pre-empt the normal world execution and give CPU cycles by transitioning
to EL3 and S-EL2.

224 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Platform topology

The execution-ctx-count SP manifest field can take the value of one or the total number of PEs. The FF-A
specification [1] recommends the following SP types:

• Pinned MP SPs: an execution context matches a physical PE. MP SPs must implement the same number
of ECs as the number of PEs in the platform.

• Migratable UP SPs: a single execution context can run and be migrated on any physical PE. Such SP
declares a single EC in its SP manifest. An UP SP can receive a direct message request originating from
any physical core targeting the single execution context.

Parsing SP partition manifests

Hafnium consumes SP manifests as defined in [1] and SP manifests. Note the current implementation may not
implement all optional fields.

The SP manifest may contain memory and device regions nodes. In case of an S-EL2 SPMC:

• Memory regions are mapped in the SP EL1&0 Stage-2 translation regime at load time (or EL1&0 Stage-
1 for an S-EL1 SPMC). A memory region node can specify RX/TX buffer regions in which case it is not
necessary for an SP to explicitly invoke the FFA_RXTX_MAP interface. The memory referred shall be
contained within the memory ranges defined in SPMCmanifest. The NS bit in the attributes field should
be consistent with the security state of the range that it relates to. I.e. non-secure memory shall be part
of a non-secure memory range, and secure memory shall be contained in a secure memory range of a
given platform.

• Device regions are mapped in the SP EL1&0 Stage-2 translation regime (or EL1&0 Stage-1 for an S-EL1
SPMC) as peripherals and possibly allocate additional resources (e.g. interrupts).

For the S-EL2 SPMC, base addresses for memory and device region nodes are IPAs provided the SPMC
identity maps IPAs to PAs within SP EL1&0 Stage-2 translation regime.

Note: in the current implementation both VTTBR_EL2 andVSTTBR_EL2 point to the same set of page tables.
It is still open whether two sets of page tables shall be provided per SP. The memory region node as defined in
the specification provides a memory security attribute hinting to map either to the secure or non-secure EL1&0
Stage-2 table if it exists.

Passing boot data to the SP

In [1] , the section “Boot information protocol” defines a method for passing data to the SPs at boot time. It
specifies the format for the boot information descriptor and boot information header structures, which describe
the data to be exchanged between SPMC and SP. The specification also defines the types of data that can be
passed. The aggregate of both the boot info structures and the data itself is designated the boot information
blob, and is passed to a Partition as a contiguous memory region.

Currently, the SPM implementation supports the FDT type which is used to pass the partition’s DTB manifest.

The region for the boot information blob is allocated through the SP package.

4.14. Secure Partition Manager 225

Trusted Firmware-A, Release 2.10.4

To adjust the space allocated for the boot information blob, the json description of the SP (see sectionDescribing
secure partitions) shall be updated to contain the manifest offset. If no offset is provided the manifest offset
defaults to 0x1000, which is the page size in the Hafnium SPMC.

The configuration of the boot protocol is done in the SPs manifest. As defined by the specification, the manifest
field ‘gp-register-num’ configures the GP register which shall be used to pass the address to the partitions boot
information blob when booting the partition. In addition, the Hafnium SPMC implementation requires the boot
information arguments to be listed in a designated DT node:

boot-info {
compatible = "arm,ffa-manifest-boot-info";
ffa_manifest;

};

The whole secure partition package image (see Secure Partition packages) is mapped to the SP secure EL1&0
Stage-2 translation regime. As such, the SP can retrieve the address for the boot information blob in the

226 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

designated GP register, process the boot information header and descriptors, access its own manifest DTB blob
and extract its partition manifest properties.

SP Boot order

SP manifests provide an optional boot order attribute meant to resolve dependencies such as an SP providing
a service required to properly boot another SP. SPMC boots the SPs in accordance to the boot order attribute,
lowest to the highest value. If the boot order attribute is absent from the FF-A manifest, the SP is treated as if
it had the highest boot order value (i.e. lowest booting priority).

It is possible for an SP to call into another SP through a direct request provided the latter SP has already been
booted.

Boot phases

Primary core boot-up

Upon boot-up, BL31 hands over to the SPMC (BL32) on the primary boot physical core. The SPMC performs
its platform initializations and registers the SPMC secondary physical core entry point physical address by
the use of the FFA_SECONDARY_EP_REGISTER interface (SMC invocation from the SPMC to the SPMD at
secure physical FF-A instance).

The SPMC then creates secure partitions based on SP packages andmanifests. Each secure partition is launched
in sequence (SP Boot order) on their “primary” execution context. If the primary boot physical core linear id is
N, an MP SP is started using EC[N] on PE[N] (see Platform topology). If the partition is a UP SP, it is started
using its unique EC0 on PE[N].

The SP primary EC (or the EC used when the partition is booted as described above):

• Performs the overall SP boot time initialization, and in case of a MP SP, prepares the SP environment
for other execution contexts.

• In the case of a MP SP, it invokes the FFA_SECONDARY_EP_REGISTER at secure virtual FF-A
instance (SMC invocation from SP to SPMC) to provide the IPA entry point for other execution contexts.

• Exits through FFA_MSG_WAIT to indicate successful initialization or FFA_ERROR in case of failure.

Secondary cores boot-up

Once the system is started and NWd brought up, a secondary physical core is woken up by the PSCI_CPU_ON
service invocation. The TF-A SPD hook mechanism calls into the SPMD on the newly woken up physical core.
Then the SPMC is entered at the secondary physical core entry point.

In the current implementation, the first SP is resumed on the coresponding EC (the virtual CPU which matches
the physical core). The implication is that the first SP must be a MP SP.

In a linux based system, once secure and normal worlds are booted but prior to a NWd FF-A driver has been
loaded:

4.14. Secure Partition Manager 227

Trusted Firmware-A, Release 2.10.4

• The first SP has initialized all its ECs in response to primary core boot up (at system initialization) and
secondary core boot up (as a result of linux invoking PSCI_CPU_ON for all secondary cores).

• Other SPs have their first execution context initialized as a result of secure world initialization on the
primary boot core. Other ECs for those SPs have to be run first through ffa_run to complete their
initialization (which results in the EC completing with FFA_MSG_WAIT).

Refer to Power management for further details.

Notifications

The FF-A v1.1 specification [1] defines notifications as an asynchronous communication mechanism with non-
blocking semantics. It allows for one FF-A endpoint to signal another for service provision, without hindering
its current progress.

Hafnium currently supports 64 notifications. The IDs of each notification define a position in a 64-bit bitmap.

The signaling of notifications can interchangeably happen between NWd and SWd FF-A endpoints.

The SPMC is in charge of managing notifications from SPs to SPs, from SPs to VMs, and from VMs to
SPs. An hypervisor component would only manage notifications from VMs to VMs. Given the SPMC
has no visibility of the endpoints deployed in NWd, the Hypervisor or OS kernel must invoke the interface
FFA_NOTIFICATION_BITMAP_CREATE to allocate the notifications bitmap per FF-A endpoint in the
NWd that supports it.

A sender can signal notifications once the receiver has provided it with permissions. Permissions are provided
by invoking the interface FFA_NOTIFICATION_BIND.

Notifications are signaled by invoking FFA_NOTIFICATION_SET. Henceforth they are considered to be in a
pending sate. The receiver can retrieve its pending notifications invoking FFA_NOTIFICATION_GET, which,
from that moment, are considered to be handled.

Per the FF-A v1.1 spec, each FF-A endpoint must be associated with a scheduler that is in charge of donating
CPU cycles for notifications handling. The FF-A driver calls FFA_NOTIFICATION_INFO_GET to retrieve
the information about which FF-A endpoints have pending notifications. The receiver scheduler is called and
informed by the FF-A driver, and it should allocate CPU cycles to the receiver.

There are two types of notifications supported:

• Global, which are targeted to a FF-A endpoint and can be handled within any of its execution contexts,
as determined by the scheduler of the system.

• Per-vCPU, which are targeted to a FF-A endpoint and to be handled within a a specific execution context,
as determined by the sender.

The type of a notification is set when invoking FFA_NOTIFICATION_BIND to give permissions to the sender.

Notification signaling resorts to two interrupts:

• Schedule Receiver Interrupt: non-secure physical interrupt to be handled by the FF-A driver within the
receiver scheduler. At initialization the SPMC donates a SGI ID chosen from the secure SGI IDs range
and configures it as non-secure. The SPMC triggers this SGI on the currently running core when there
are pending notifications, and the respective receivers need CPU cycles to handle them.

228 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• Notifications Pending Interrupt: virtual interrupt to be handled by the receiver of the notification. Set
when there are pending notifications for the given secure partition. The NPI is pended when the NWd
relinquishes CPU cycles to an SP.

The notifications receipt support is enabled in the partition FF-A manifest.

Mandatory interfaces

The following interfaces are exposed to SPs:

• FFA_VERSION

• FFA_FEATURES

• FFA_RX_RELEASE

• FFA_RXTX_MAP

• FFA_RXTX_UNMAP

• FFA_PARTITION_INFO_GET

• FFA_ID_GET

• FFA_MSG_WAIT

• FFA_MSG_SEND_DIRECT_REQ

• FFA_MSG_SEND_DIRECT_RESP

• FFA_MEM_DONATE

• FFA_MEM_LEND

• FFA_MEM_SHARE

• FFA_MEM_RETRIEVE_REQ

• FFA_MEM_RETRIEVE_RESP

• FFA_MEM_RELINQUISH

• FFA_MEM_FRAG_RX

• FFA_MEM_FRAG_TX

• FFA_MEM_RECLAIM

• FFA_RUN

As part of the FF-A v1.1 support, the following interfaces were added:

• FFA_NOTIFICATION_BITMAP_CREATE

• FFA_NOTIFICATION_BITMAP_DESTROY

• FFA_NOTIFICATION_BIND

• FFA_NOTIFICATION_UNBIND

4.14. Secure Partition Manager 229

Trusted Firmware-A, Release 2.10.4

• FFA_NOTIFICATION_SET

• FFA_NOTIFICATION_GET

• FFA_NOTIFICATION_INFO_GET

• FFA_SPM_ID_GET

• FFA_SECONDARY_EP_REGISTER

• FFA_MEM_PERM_GET

• FFA_MEM_PERM_SET

• FFA_MSG_SEND2

• FFA_RX_ACQUIRE

FFA_VERSION

FFA_VERSION requires a requested_version parameter from the caller. The returned value depends on the
caller:

• Hypervisor or OS kernel in NS-EL1/EL2: the SPMD returns the SPMC version specified in the SPMC
manifest.

• SP: the SPMC returns its own implemented version.

• SPMC at S-EL1/S-EL2: the SPMD returns its own implemented version.

FFA_FEATURES

FF-A features supported by the SPMC may be discovered by secure partitions at boot (that is prior to NWd is
booted) or run-time.

The SPMC calling FFA_FEATURES at secure physical FF-A instance always get FFA_SUCCESS from the
SPMD.

The request made by an Hypervisor or OS kernel is forwarded to the SPMC and the response relayed back to
the NWd.

FFA_RXTX_MAP/FFA_RXTX_UNMAP

When invoked from a secure partition FFA_RXTX_MAPmaps the provided send and receive buffers described
by their IPAs to the SP EL1&0 Stage-2 translation regime as secure buffers in the MMU descriptors.

When invoked from the Hypervisor or OS kernel, the buffers are mapped into the SPMC EL2 Stage-1 transla-
tion regime andmarked as NS buffers in theMMU descriptors. The provided addresses may be owned by a VM
in the normal world, which is expected to receive messages from the secure world. The SPMC will in this case
allocate internal state structures to facilitate RX buffer access synchronization (through FFA_RX_ACQUIRE
interface), and to permit SPs to send messages.

230 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

The FFA_RXTX_UNMAP unmaps the RX/TX pair from the translation regime of the caller, either it being
the Hypervisor or OS kernel, as well as a secure partition.

FFA_PARTITION_INFO_GET

Partition info get call can originate:

• from SP to SPMC

• from Hypervisor or OS kernel to SPMC. The request is relayed by the SPMD.

FFA_ID_GET

The FF-A id space is split into a non-secure space and secure space:

• FF-A ID with bit 15 clear relates to VMs.

• FF-A ID with bit 15 set related to SPs.

• FF-A IDs 0, 0xffff, 0x8000 are assigned respectively to the Hypervisor, SPMD and SPMC.

The SPMD returns:

• The default zero value on invocation from the Hypervisor.

• The spmc_id value specified in the SPMCmanifest on invocation from the SPMC (see SPMCmanifest)

This convention helps the SPMC to determine the origin and destination worlds in an FF-A ABI invocation. In
particular the SPMC shall filter unauthorized transactions in its world switch routine. It must not be permitted
for a VM to use a secure FF-A ID as origin world by spoofing:

• A VM-to-SP direct request/response shall set the origin world to be non-secure (FF-A ID bit 15 clear)
and destination world to be secure (FF-A ID bit 15 set).

• Similarly, an SP-to-SP direct request/response shall set the FF-A ID bit 15 for both origin and destination
IDs.

An incoming direct message request arriving at SPMD from NWd is forwarded to SPMC without a specific
check. The SPMC is resumed through eret and “knows” the message is coming from normal world in this
specific code path. Thus the origin endpoint ID must be checked by SPMC for being a normal world ID.

An SP sending a direct message request must have bit 15 set in its origin endpoint ID and this can be checked
by the SPMC when the SP invokes the ABI.

The SPMC shall reject the direct message if the claimed world in origin endpoint ID is not consistent:

• It is either forwarded by SPMD and thus origin endpoint ID must be a “normal world ID”,

• or initiated by an SP and thus origin endpoint ID must be a “secure world ID”.

4.14. Secure Partition Manager 231

Trusted Firmware-A, Release 2.10.4

FFA_MSG_SEND_DIRECT_REQ/FFA_MSG_SEND_DIRECT_RESP

This is a mandatory interface for secure partitions consisting in direct request and responses with the following
rules:

• An SP can send a direct request to another SP.

• An SP can receive a direct request from another SP.

• An SP can send a direct response to another SP.

• An SP cannot send a direct request to an Hypervisor or OS kernel.

• An Hypervisor or OS kernel can send a direct request to an SP.

• An SP can send a direct response to an Hypervisor or OS kernel.

FFA_NOTIFICATION_BITMAP_CREATE/FFA_NOTIFICATION_BITMAP_DESTROY

The secure partitions notifications bitmap are statically allocated by the SPMC. Hence, this interface is not to
be issued by secure partitions.

At initialization, the SPMC is not aware of VMs/partitions deployed in the normal world. Hence, theHypervisor
or OS kernel must use both ABIs for SPMC to be prepared to handle notifications for the provided VM ID.

FFA_NOTIFICATION_BIND/FFA_NOTIFICATION_UNBIND

Pair of interfaces to manage permissions to signal notifications. Prior to handling notifications, an FF-A end-
point must allow a given sender to signal a bitmap of notifications.

If the receiver doesn’t have notification support enabled in its FF-A manifest, it won’t be able to bind notifica-
tions, hence forbidding it to receive any notifications.

FFA_NOTIFICATION_SET/FFA_NOTIFICATION_GET

FFA_NOTIFICATION_GET retrieves all pending global notifications and per-vCPU notifications targeted to
the current vCPU.

Hafniummaintains a global count of pending notifications which gets incremented and decremented when han-
dling FFA_NOTIFICATION_SET and FFA_NOTIFICATION_GET respectively. A delayed SRI is triggered
if the counter is non-zero when the SPMC returns to normal world.

232 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

FFA_NOTIFICATION_INFO_GET

Hafnium maintains a global count of pending notifications whose information has been retrieved by this
interface. The count is incremented and decremented when handling FFA_NOTIFICATION_INFO_GET
and FFA_NOTIFICATION_GET respectively. It also tracks notifications whose information has been
retrieved individually, such that it avoids duplicating returned information for subsequent calls to
FFA_NOTIFICATION_INFO_GET. For each notification, this state information is reset when receiver called
FFA_NOTIFICATION_GET to retrieve them.

FFA_SPM_ID_GET

Returns the FF-A ID allocated to an SPM component which can be one of SPMD or SPMC.

At initialization, the SPMCqueries the SPMD for the SPMC ID, using the FFA_ID_GET interface, and records
it. The SPMC can also query the SPMD ID using the FFA_SPM_ID_GET interface at the secure physical FF-A
instance.

Secure partitions call this interface at the virtual FF-A instance, to which the SPMC returns the priorly retrieved
SPMC ID.

The Hypervisor or OS kernel can issue the FFA_SPM_ID_GET call handled by the SPMD, which returns the
SPMC ID.

FFA_SECONDARY_EP_REGISTER

When the SPMC boots, all secure partitions are initialized on their primary Execution Context.

The FFA_SECONDARY_EP_REGISTER interface is to be used by a secure partition from its first execution
context, to provide the entry point address for secondary execution contexts.

A secondary EC is first resumed either upon invocation of PSCI_CPU_ON from the NWd or by invocation of
FFA_RUN.

FFA_RX_ACQUIRE/FFA_RX_RELEASE

The RX buffers can be used to pass information to an FF-A endpoint in the following scenarios:

• When it was targetted by a FFA_MSG_SEND2 invokation from another endpoint.

• Return the result of calling FFA_PARTITION_INFO_GET.

• In a memory share operation, as part of the FFA_MEM_RETRIEVE_RESP, with the memory descriptor
of the shared memory.

If a normal world VM is expected to exchange messages with secure world, its RX/TX buffer addresses are
forwarded to the SPMC via FFA_RXTX_MAP ABI, and are from this moment owned by the SPMC. The
hypervisor must call the FFA_RX_ACQUIRE interface before attempting to use the RX buffer, in any of
the aforementioned scenarios. A successful call to FFA_RX_ACQUIRE transfers ownership of RX buffer to
hypervisor, such that it can be safely used.

4.14. Secure Partition Manager 233

Trusted Firmware-A, Release 2.10.4

The FFA_RX_RELEASE interface is used after the FF-A endpoint is done with processing the data received
in its RX buffer. If the RX buffer has been acquired by the hypervisor, the FFA_RX_RELEASE call must be
forwarded to the SPMC to reestablish SPMC’s RX ownership.

An attempt from an SP to send a message to a normal world VM whose RX buffer was acquired by the hy-
pervisor fails with error code FFA_BUSY, to preserve the RX buffer integrity. The operation could then be
conducted after FFA_RX_RELEASE.

FFA_MSG_SEND2

Hafnium copies a message from the sender TX buffer into receiver’s RX buffer. For messages from SPs to
VMs, operation is only possible if the SPMC owns the receiver’s RX buffer.

Both receiver and sender need to enable support for indirect messaging, in their respective partition manifest.
The discovery of support of such feature can be done via FFA_PARTITION_INFO_GET.

On a successful message send, Hafnium pends an RX buffer full framework notification for the receiver, to
inform it about a message in the RX buffer.

The handling of framework notifications is similar to that of global notifications. Binding of these is not nec-
essary, as these are reserved to be used by the hypervisor or SPMC.

SPMC-SPMD direct requests/responses

Implementation-defined FF-A IDs are allocated to the SPMC and SPMD. Using those IDs in source/destination
fields of a direct request/response permits SPMD to SPMC communication and either way.

• SPMC to SPMD direct request/response uses SMC conduit.

• SPMD to SPMC direct request/response uses ERET conduit.

This is used in particular to convey power management messages.

Memory Sharing

Hafnium implements the following memory sharing interfaces:

• FFA_MEM_SHARE - for shared access between lender and borrower.

• FFA_MEM_LEND - borrower to obtain exclusive access, though lender retains ownership of the memory.

• FFA_MEM_DONATE - lender permanently relinquishes ownership of memory to the borrower.

The FFA_MEM_RETRIEVE_REQ interface is for the borrower to request the memory to be mapped into
its address space: for S-EL1 partitions the SPM updates their stage 2 translation regime; for S-EL0 parti-
tions the SPM updates their stage 1 translation regime. On a successful call, the SPMC responds back with
FFA_MEM_RETRIEVE_RESP.

The FFA_MEM_RELINQUISH interface is for when the borrower is done with using a memory region.

The FFA_MEM_RECLAIM interface is for the owner of the memory to reestablish its ownership and exclusive
access to the memory shared.

234 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

The memory transaction descriptors are transmitted via RX/TX buffers. In situations where the size of the
memory transaction descriptor exceeds the size of the RX/TX buffers, Hafnium provides support for frag-
mented transmission of the full transaction descriptor. The FFA_MEM_FRAG_RX and FFA_MEM_FRAG_TX
interfaces are for receiving and transmitting the next fragment, respectively.

If lender and borrower(s) are SPs, all memory sharing operations are supported.

Hafnium also supports memory sharing operations between the normal world and the secure world. If there is
an SP involved, the SPMC allocates data to track the state of the operation.

The SPMC is also the designated allocator for the memory handle. The hypervisor or OS kernel has the
possibility to rely on the SPMC to maintain the state of the operation, thus saving memory. A lender SP can
only donate NS memory to a borrower from the normal world.

The SPMC supports the hypervisor retrieve request, as defined by the FF-A v1.1 EAC0 specification, in section
16.4.3. The intent is to aid with operations that the hypervisor must do for a VM retriever. For example, when
handling an FFA_MEM_RECLAIM, if the hypervisor relies on SPMC to keep the state of the operation, the
hypervisor retrieve request can be used to obtain that state information, do the necessary validations, and update
stage 2 memory translation.

Hafnium also supports memory lend and share targetting multiple borrowers. This is the case for a lender SP
to multiple SPs, and for a lender VM to multiple endpoints (from both secure world and normal world). If
there is at least one borrower VM, the hypervisor is in charge of managing its stage 2 translation on a successful
memory retrieve. The semantics of FFA_MEM_DONATE implies ownership transmission, which should target
only one partition.

The memory share interfaces are backwards compatible with memory transaction descriptors from FF-A v1.0.
These get translated to FF-A v1.1 descriptors for Hafnium’s internal processing of the operation. If the FF-
A version of a borrower is v1.0, Hafnium provides FF-A v1.0 compliant memory transaction descriptors on
memory retrieve response.

PE MMU configuration

With secure virtualization enabled (HCR_EL2.VM = 1) and for S-EL1 partitions, two IPA spaces (secure and
non-secure) are output from the secure EL1&0 Stage-1 translation. The EL1&0 Stage-2 translation hardware
is fed by:

• A secure IPA when the SP EL1&0 Stage-1 MMU is disabled.

• One of secure or non-secure IPA when the secure EL1&0 Stage-1 MMU is enabled.

VTCR_EL2 and VSTCR_EL2 provide configuration bits for controlling the NS/S IPA translations. The fol-
lowing controls are set up: VSTCR_EL2.SW = 0 , VSTCR_EL2.SA = 0, VTCR_EL2.NSW = 0,
VTCR_EL2.NSA = 1:

• Stage-2 translations for the NS IPA space access the NS PA space.

• Stage-2 translation table walks for the NS IPA space are to the secure PA space.

Secure and non-secure IPA regions (rooted to by VTTBR_EL2 and VSTTBR_EL2) use the same set of Stage-2
page tables within a SP.

4.14. Secure Partition Manager 235

Trusted Firmware-A, Release 2.10.4

The VTCR_EL2/VSTCR_EL2/VTTBR_EL2/VSTTBR_EL2 virtual address space configuration is made
part of a vCPU context.

For S-EL0 partitions with VHE enabled, a single secure EL2&0 Stage-1 translation regime is used for both
Hafnium and the partition.

Schedule modes and SP Call chains

An SP execution context is said to be in SPMC scheduled mode if CPU cycles are allocated to it by SPMC.
Correspondingly, an SP execution context is said to be in Normal world scheduled mode if CPU cycles are
allocated by the normal world.

A call chain represents all SPs in a sequence of invocations of a direct message request. When execution on
a PE is in the secure state, only a single call chain that runs in the Normal World scheduled mode can exist.
FF-A v1.1 spec allows any number of call chains to run in the SPMC scheduled mode but the Hafnium SPMC
restricts the number of call chains in SPMC scheduled mode to only one for keeping the implementation simple.

Partition runtime models

The runtime model of an endpoint describes the transitions permitted for an execution context between various
states. These are the four partition runtime models supported (refer to [1] section 7):

• RTM_FFA_RUN: runtime model presented to an execution context that is allocated CPU cycles through
FFA_RUN interface.

• RTM_FFA_DIR_REQ: runtime model presented to an execution context that is allocated CPU cycles
through FFA_MSG_SEND_DIRECT_REQ interface.

• RTM_SEC_INTERRUPT: runtimemodel presented to an execution context that is allocated CPU cycles
by SPMC to handle a secure interrupt.

• RTM_SP_INIT: runtime model presented to an execution context that is allocated CPU cycles by SPMC
to initialize its state.

If an endpoint execution context attempts to make an invalid transition or a valid transition that could lead to a
loop in the call chain, SPMC denies the transition with the help of above runtime models.

Interrupt management

GIC ownership

The SPMC owns the GIC configuration. Secure and non-secure interrupts are trapped at S-EL2. The SPMC
manages interrupt resources and allocates interrupt IDs based on SP manifests. The SPMC acknowledges
physical interrupts and injects virtual interrupts by setting the use of vIRQ/vFIQ bits before resuming a SP.

Abbreviations:

• NS-Int: A non-secure physical interrupt. It requires a switch to the normal world to be handled if it
triggers while execution is in secure world.

236 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• Other S-Int: A secure physical interrupt targeted to an SP different from the one that is currently running.

• Self S-Int: A secure physical interrupt targeted to the SP that is currently running.

Non-secure interrupt handling

This section documents the actions supported in SPMC in response to a non-secure interrupt as per the guid-
ance provided by FF-A v1.1 EAC0 specification. An SP specifies one of the following actions in its partition
manifest:

• Non-secure interrupt is signaled.

• Non-secure interrupt is signaled after a managed exit.

• Non-secure interrupt is queued.

An SP execution context in a call chain could specify a less permissive action than subsequent SP execution
contexts in the same call chain. The less permissive action takes precedence over the more permissive actions
specified by the subsequent execution contexts. Please refer to FF-A v1.1 EAC0 section 8.3.1 for further
explanation.

Secure interrupt handling

This section documents the support implemented for secure interrupt handling in SPMC as per the guidance
provided by FF-A v1.1 EAC0 specification. The following assumptions are made about the system configura-
tion:

• In the current implementation, S-EL1 SPs are expected to use the para virtualized ABIs for interrupt
management rather than accessing the virtual GIC interface.

• Unless explicitly stated otherwise, this support is applicable only for S-EL1 SPs managed by SPMC.

• Secure interrupts are configured as G1S or G0 interrupts.

• All physical interrupts are routed to SPMC when running a secure partition execution context.

• All endpoints with multiple execution contexts have their contexts pinned to corresponding CPUs.
Hence, a secure virtual interrupt cannot be signaled to a target vCPU that is currently running or blocked
on a different physical CPU.

A physical secure interrupt could trigger while CPU is executing in normal world or secure world. The action of
SPMC for a secure interrupt depends on: the state of the target execution context of the SP that is responsible
for handling the interrupt; whether the interrupt triggered while execution was in normal world or secure world.

4.14. Secure Partition Manager 237

Trusted Firmware-A, Release 2.10.4

Secure interrupt signaling mechanisms

Signaling refers to the mechanisms used by SPMC to indicate to the SP execution context that it has a pending
virtual interrupt and to further run the SP execution context, such that it can handle the virtual interrupt. SPMC
uses either the FFA_INTERRUPT interface with ERET conduit or vIRQ signal for signaling to S-EL1 SPs.
When normal world execution is preempted by a secure interrupt, the SPMD uses the FFA_INTERRUPT ABI
with ERET conduit to signal interrupt to SPMC running in S-EL2.

SP
State

Con-
duit

Interface and pa-
rameters

Description

WAIT-
ING

ERET,
vIRQ

FFA_INTERRUPT,
Interrupt ID

SPMC signals to SP the ID of pending interrupt. It pends vIRQ
signal and resumes execution context of SP through ERET.

BLOCKEDERET,
vIRQ

FFA_INTERRUPT SPMC signals to SP that an interrupt is pending. It pends vIRQ
signal and resumes execution context of SP through ERET.

PRE-
EMPTED

vIRQ NA SPMC pends the vIRQ signal but does not resume execution con-
text of SP.

RUN-
NING

ERET,
vIRQ

NA SPMC pends the vIRQ signal and resumes execution context of
SP through ERET.

Secure interrupt completion mechanisms

A SP signals secure interrupt handling completion to the SPMC through the following mechanisms:

• FFA_MSG_WAIT ABI if it was in WAITING state.

• FFA_RUN ABI if its was in BLOCKED state.

This is a remnant of SPMC implementation based on the FF-A v1.0 specification. In the current implemen-
tation, S-EL1 SPs use the para-virtualized HVC interface implemented by SPMC to perform priority drop
and interrupt deactivation (SPMC configures EOImode = 0, i.e. priority drop and deactivation are done to-
gether). The SPMC performs checks to deny the state transition upon invocation of either FFA_MSG_WAIT
or FFA_RUN interface if the SP didn’t perform the deactivation of the secure virtual interrupt.

If the current SP execution context was preempted by a secure interrupt to be handled by execution context of
target SP, SPMC resumes current SP after signal completion by target SP execution context.

238 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Actions for a secure interrupt triggered while execution is in normal world

State of tar-
get execution
context

Ac-
tion

Description

WAITING Sig-
naled

This starts a new call chain in SPMC scheduled mode.

PRE-
EMPTED

QueuedThe target execution must have been preempted by a non-secure interrupt. SPMC
queues the secure virtual interrupt now. It is signaled when the target execution con-
text next enters the RUNNING state.

BLOCKED,
RUNNING

NA The target execution context is blocked or running on a different CPU. This is not
supported by current SPMC implementation and execution hits panic.

If normal world execution was preempted by a secure interrupt, SPMC uses
FFA_NORMAL_WORLD_RESUME ABI to indicate completion of secure interrupt handling and
further returns execution to normal world.

The following figure describes interrupt handling flow when a secure interrupt triggers while execution is in
normal world:

A brief description of the events:

• 1) Secure interrupt triggers while normal world is running.

4.14. Secure Partition Manager 239

Trusted Firmware-A, Release 2.10.4

• 2) FIQ gets trapped to EL3.

• 3) SPMD signals secure interrupt to SPMC at S-EL2 using FFA_INTERRUPT ABI.

• 4) SPMC identifies target vCPU of SP and injects virtual interrupt (pends vIRQ).

• 5) Assuming SP1 vCPU is in WAITING state, SPMC signals virtual interrupt using
FFA_INTERRUPT with interrupt id as an argument and resumes the SP1 vCPU using
ERET in SPMC scheduled mode.

• 6) Execution traps to vIRQ handler in SP1 provided that the virtual interrupt is not masked i.e.,
PSTATE.I = 0

• 7) SP1 queries for the pending virtual interrupt id using a paravirtualized HVC call. SPMC clears the
pending virtual interrupt state management and returns the pending virtual interrupt id.

• 8) SP1 services the virtual interrupt and invokes the paravirtualized de-activation HVC call. SPMC
de-activates the physical interrupt, clears the fields tracking the secure interrupt and resumes SP1
vCPU.

• 9) SP1 performs secure interrupt completion through FFA_MSG_WAIT ABI.

• 10) SPMC returns control to EL3 using FFA_NORMAL_WORLD_RESUME.

• 11) EL3 resumes normal world execution.

Actions for a secure interrupt triggered while execution is in secure world

State of target
execution con-
text

Ac-
tion

Description

WAITING Sig-
naled

This starts a new call chain in SPMC scheduled mode.

PREEMPTED
by Self S-Int

Sig-
naled

The target execution context reenters the RUNNING state to handle the secure
virtual interrupt.

PREEMPTED
by NS-Int

QueuedSPMC queues the secure virtual interrupt now. It is signaled when the target exe-
cution context next enters the RUNNING state.

BLOCKED Sig-
naled

Both preempted and target execution contexts must have been part of the Normal
world scheduled call chain. Refer scenario 1 of Table 8.4 in the FF-A v1.1 EAC0
spec.

RUNNING NA The target execution context is running on a different CPU. This scenario is not
supported by current SPMC implementation and execution hits panic.

The following figure describes interrupt handling flow when a secure interrupt triggers while execution is in
secure world. We assume OS kernel sends a direct request message to SP1. Further, SP1 sends a direct request
message to SP2. SP1 enters BLOCKED state and SPMC resumes SP2.

240 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

A brief description of the events:

• 1) Secure interrupt triggers while SP2 is running.

• 2) SP2 gets preempted and execution traps to SPMC as IRQ.

• 3) SPMC finds the target vCPU of secure partition responsible for handling this secure interrupt. In
this scenario, it is SP1.

• 4) SPMC pends vIRQ for SP1 and signals through FFA_INTERRUPT interface. SPMC further
resumes SP1 through ERET conduit. Note that SP1 remains in Normal world schedule mode.

• 6) Execution traps to vIRQ handler in SP1 provided that the virtual interrupt is not masked i.e.,
PSTATE.I = 0

• 7) SP1 queries for the pending virtual interrupt id using a paravirtualized HVC call. SPMC clears the
pending virtual interrupt state management and returns the pending virtual interrupt id.

• 8) SP1 services the virtual interrupt and invokes the paravirtualized de-activation HVC call. SPMC
de-activates the physical interrupt and clears the fields tracking the secure interrupt and resumes
SP1 vCPU.

• 9) Since SP1 direct request completed with FFA_INTERRUPT, it resumes the direct request to SP2
by invoking FFA_RUN.

• 9) SPMC resumes the pre-empted vCPU of SP2.

4.14. Secure Partition Manager 241

Trusted Firmware-A, Release 2.10.4

EL3 interrupt handling

In GICv3 based systems, EL3 interrupts are configured as Group0 secure interrupts. Execution traps to
SPMC when a Group0 interrupt triggers while an SP is running. Further, SPMC running at S-EL2 uses
FFA_EL3_INTR_HANDLE ABI to request EL3 platform firmware to handle a pending Group0 interrupt.
Similarly, SPMD registers a handler with interrupt management framework to delegate handling of Group0
interrupt to the platform if the interrupt triggers in normal world.

• Platform hook

– plat_spmd_handle_group0_interrupt

SPMD provides platform hook to handle Group0 secure interrupts. In the current design, SPMD
expects the platform not to delegate handling to the NWd (such as through SDEI) while processing
Group0 interrupts.

Power management

In platforms with or without secure virtualization:

• The NWd owns the platform PM policy.

• The Hypervisor or OS kernel is the component initiating PSCI service calls.

• The EL3 PSCI library is in charge of the PM coordination and control (eventually writing to platform
registers).

• While coordinating PM events, the PSCI library calls backs into the Secure Payload Dispatcher for events
the latter has statically registered to.

When using the SPMD as a Secure Payload Dispatcher:

• A power management event is relayed through the SPD hook to the SPMC.

• In the current implementation only cpu on (svc_on_finish) and cpu off (svc_off) hooks are registered.

• The behavior for the cpu on event is described in Secondary cores boot-up. The SPMC is entered through
its secondary physical core entry point.

• The cpu off event occurs when the NWd calls PSCI_CPU_OFF. The PM event is signaled to the
SPMC through a power management framework message. It consists in a SPMD-to-SPMC direct re-
quest/response (SPMC-SPMD direct requests/responses) conveying the event details and SPMC response.
The SPMD performs a synchronous entry into the SPMC. The SPMC is entered and updates its internal
state to reflect the physical core is being turned off. In the current implementation no SP is resumed as a
consequence. This behavior ensures a minimal support for CPU hotplug e.g. when initiated by the NWd
linux userspace.

242 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.14.9 Arm architecture extensions for security hardening

Hafnium supports the following architecture extensions for security hardening:

• Pointer authentication (FEAT_PAuth): the extension permits detection of forged pointers used by ROP
type of attacks through the signing of the pointer value. Hafnium is built with the compiler branch pro-
tection option to permit generation of a pointer authentication code for return addresses (pointer authen-
tication for instructions). The APIA key is used while Hafnium runs. A random key is generated at boot
time and restored upon entry into Hafnium at run-time. APIA and other keys (APIB, APDA, APDB,
APGA) are saved/restored in vCPU contexts permitting to enable pointer authentication in VMs/SPs.

• Branch Target Identification (FEAT_BTI): the extension permits detection of unexpected indirect
branches used by JOP type of attacks. Hafnium is built with the compiler branch protection option,
inserting land pads at function prologues that are reached by indirect branch instructions (BR/BLR).
Hafnium code pages are marked as guarded in the EL2 Stage-1 MMU descriptors such that an indirect
branch must always target a landpad. A fault is triggered otherwise. VMs/SPs can (independently) mark
their code pages as guarded in the EL1&0 Stage-1 translation regime.

• Memory Tagging Extension (FEAT_MTE): the option permits detection of out of bound memory array
accesses or re-use of an already freed memory region. Hafnium enables the compiler option permitting
to leverage MTE stack tagging applied to core stacks. Core stacks are marked as normal tagged memory
in the EL2 Stage-1 translation regime. A synchronous data abort is generated upon tag check failure
on load/stores. A random seed is generated at boot time and restored upon entry into Hafnium. MTE
system registers are saved/restored in vCPU contexts permitting MTE usage from VMs/SPs.

4.14.10 SMMUv3 support in Hafnium

An SMMU is analogous to an MMU in a CPU. It performs address translations for Direct Memory Access
(DMA) requests from system I/O devices. The responsibilities of an SMMU include:

• Translation: Incoming DMA requests are translated from bus address space to system physical address
space using translation tables compliant to Armv8/Armv7 VMSA descriptor format.

• Protection: An I/O device can be prohibited from read, write access to a memory region or allowed.

• Isolation: Traffic from each individial device can be independently managed. The devices are differen-
tiated from each other using unique translation tables.

The following diagram illustrates a typical SMMU IP integrated in a SoC with several I/O devices along with
Interconnect and Memory system.

4.14. Secure Partition Manager 243

Trusted Firmware-A, Release 2.10.4

SMMU has several versions including SMMUv1, SMMUv2 and SMMUv3. Hafnium provides support for
SMMUv3 driver in both normal and secure world. A brief introduction of SMMUv3 functionality and the
corresponding software support in Hafnium is provided here.

SMMUv3 features

• SMMUv3 provides Stage1, Stage2 translation as well as nested (Stage1 + Stage2) translation support. It
can either bypass or abort incoming translations as well.

• Traffic (memory transactions) from each upstream I/O peripheral device, referred to as Stream, can be
independently managed using a combination of several memory based configuration structures. This al-
lows the SMMUv3 to support a large number of streams with each stream assigned to a unique translation
context.

• Support for Armv8.1 VMSA where the SMMU shares the translation tables with a Processing Element.
AArch32(LPAE) and AArch64 translation table format are supported by SMMUv3.

• SMMUv3 offers non-secure stream support with secure stream support being optional. Logically, SM-
MUv3 behaves as if there is an indepdendent SMMU instance for secure and non-secure stream support.

• It also supports sub-streams to differentiate traffic from a virtualized peripheral associated with a VM/SP.

• Additionally, SMMUv3.2 provides support for PEs implementing Armv8.4-A extensions. Consequently,
SPM depends on Secure EL2 support in SMMUv3.2 for providing Secure Stage2 translation support to
upstream peripheral devices.

244 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

SMMUv3 Programming Interfaces

SMMUv3 has three software interfaces that are used by the Hafnium driver to configure the behaviour of
SMMUv3 and manage the streams.

• Memory based data strutures that provide unique translation context for each stream.

• Memory based circular buffers for command queue and event queue.

• A large number of SMMU configuration registers that are memory mapped during boot time by Hafnium
driver. Except a few registers, all configuration registers have independent secure and non-secure versions
to configure the behaviour of SMMUv3 for translation of secure and non-secure streams respectively.

Peripheral device manifest

Currently, SMMUv3 driver in Hafnium only supports dependent peripheral devices. These devices are depen-
dent on PE endpoint to initiate and receive memory management transactions on their behalf. The acccess to
the MMIO regions of any such device is assigned to the endpoint during boot. Moreover, SMMUv3 driver uses
the same stage 2 translations for the device as those used by partition manager on behalf of the PE endpoint.
This ensures that the peripheral device has the same visibility of the physical address space as the endpoint.
The device node of the corresponding partition manifest (refer to [1] section 3.2) must specify these additional
properties for each peripheral device in the system :

• smmu-id: This field helps to identify the SMMU instance that this device is upstream of.

• stream-ids: List of stream IDs assigned to this device.

smmuv3-testengine {
base-address = <0x00000000 0x2bfe0000>;
pages-count = <32>;
attributes = <0x3>;
smmu-id = <0>;
stream-ids = <0x0 0x1>;
interrupts = <0x2 0x3>, <0x4 0x5>;
exclusive-access;

};

SMMUv3 driver limitations

The primary design goal for the Hafnium SMMU driver is to support secure streams.

• Currently, the driver only supports Stage2 translations. No support for Stage1 or nested translations.

• Supports only AArch64 translation format.

• No support for features such as PCI Express (PASIDs, ATS, PRI), MSI, RAS, Fault handling, Perfor-
mance Monitor Extensions, Event Handling, MPAM.

• No support for independent peripheral devices.

4.14. Secure Partition Manager 245

Trusted Firmware-A, Release 2.10.4

4.14.11 S-EL0 Partition support

The SPMC (Hafnium) has limited capability to run S-EL0 FF-A partitions using FEAT_VHE (mandatory with
ARMv8.1 in non-secure state, and in secure world with ARMv8.4 and FEAT_SEL2).

S-EL0 partitions are useful for simple partitions that don’t require full Trusted OS functionality. It is also useful
to reduce jitter and cycle stealing from normal world since they are more lightweight than VMs.

S-EL0 partitions are presented, loaded and initialized the same as S-EL1 VMs by the SPMC. They are differ-
entiated primarily by the ‘exception-level’ property and the ‘execution-ctx-count’ property in the SP manifest.
They are host apps under the single EL2&0 Stage-1 translation regime controlled by the SPMC and call into
the SPMC through SVCs as opposed to HVCs and SMCs. These partitions can use FF-A defined services
(FFA_MEM_PERM_*) to update or change permissions for memory regions.

S-EL0 partitions are required by the FF-A specification to be UP endpoints, capable of migrating, and the
SPMC enforces this requirement. The SPMC allows a S-EL0 partition to accept a direct message from secure
world and normal world, and generate direct responses to them. All S-EL0 partitions must use AArch64.
AArch32 S-EL0 partitions are not supported.

Memory sharing, indirect messaging, and notifications functionality with S-EL0 partitions is supported.

Interrupt handling is not supported with S-EL0 partitions and is work in progress.

4.14.12 References

[1] Arm Firmware Framework for Arm A-profile

[2] Secure Partition Manager using MM interface

[3] Trusted Boot Board Requirements Client

[4] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/lib/el3_runtime/aarch64/context.S#n45

[5] https://git.trustedfirmware.org/TF-A/tf-a-tests.git/tree/spm/cactus/plat/arm/fvp/fdts/cactus.dts

[6] https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html

[7] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_spmc_
manifest.dts

[8] https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/
CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/

[9] https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#
dynamic-configuration-during-cold-boot

Copyright (c) 2020-2023, Arm Limited and Contributors. All rights reserved.

246 Chapter 4. Components

https://developer.arm.com/docs/den0077/latest
https://developer.arm.com/documentation/den0006/d/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/lib/el3_runtime/aarch64/context.S#n45
https://git.trustedfirmware.org/TF-A/tf-a-tests.git/tree/spm/cactus/plat/arm/fvp/fdts/cactus.dts
https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_spmc_manifest.dts
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_spmc_manifest.dts
https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/
https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#dynamic-configuration-during-cold-boot
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#dynamic-configuration-during-cold-boot

Trusted Firmware-A, Release 2.10.4

4.15 EL3 Secure Partition Manager

Contents

• EL3 Secure Partition Manager

– Foreword

– Sample reference stack

– TF-A build options

– FVP model invocation

– Platform Guide

– Logical Secure Partition (LSP)

– SPMC boot

∗ Parsing SP partition manifests

∗ Passing boot data to the SP

– Supported interfaces

∗ FFA_VERSION

∗ FFA_FEATURES

∗ FFA_RXTX_MAP

∗ FFA_RXTX_UNMAP

∗ FFA_PARTITION_INFO_GET

∗ FFA_ID_GET

∗ FFA_MSG_SEND_DIRECT_REQ

∗ FFA_MSG_SEND_DIRECT_RESP

∗ FFA_SPM_ID_GET

∗ FFA_ID_GET

∗ FFA_MEM_SHARE

∗ FFA_MEM_LEND

∗ FFA_MEM_RETRIEVE_REQ

∗ FFA_MEM_RETRIEVE_RESP

∗ FFA_MEM_FRAG_RX

∗ FFA_MEM_FRAG_TX

∗ FFA_SECONDARY_EP_REGISTER

4.15. EL3 Secure Partition Manager 247

Trusted Firmware-A, Release 2.10.4

– Power management

– Secure partitions scheduling

– Partition Runtime State and Model

– Platform topology

– Interrupt handling

∗ Secure Interrupt handling

∗ Non-Secure Interrupt handling

– Test Secure Payload (TSP)

∗ TSP Tests in CI

– References

4.15.1 Foreword

This document describes the design of the EL3 SPMC based on the FF-A specification. EL3 SPMC provides
reference FF-A compliant implementation without S-EL2 virtualization support, to help adopt and migrate to
FF-A early. EL3 SPMC implementation in TF-A:

• Manages a single S-EL1 Secure Partition

• Provides a standard protocol for communication and memory sharing between FF-A endpoints.

• Provides support for EL3 Logical Partitions to support easy migration from EL3 to S-EL1.

4.15.2 Sample reference stack

The following diagram illustrates a possible configuration when the FEAT_SEL2 architecture extension is not
implemented, showing the SPMD and SPMC at EL3, one S-EL1 secure partition, with an optional Hypervisor:

248 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.15.3 TF-A build options

This section explains the TF-A build options involved in building an FF-A based SPM where the SPMD and
SPMC are located at EL3:

• SPD=spmd: this option selects the SPMD component to relay the FF-A protocol from NWd to SWd
back and forth. It is not possible to enable another Secure Payload Dispatcher when this option is chosen.

• SPMC_AT_EL3: this option adjusts the SPMC exception level to being at EL3.

• ARM_SPMC_MANIFEST_DTS: this option specifies a manifest file providing SP description. It is
required when SPMC_AT_EL3 is enabled, the secure partitions are loaded by BL2 on behalf of the
SPMC.

Notes:

• BL32 option is re-purposed to specify the S-EL1 TEE or SP image. BL32 option can be omitted if using
TF-A Test Secure Payload as SP.

• BL33 option can specify the TFTF binary or a normal world loader such as U-Boot or the UEFI frame-
work payload.

Sample TF-A build command line when the SPMC is located at EL3:

make \
CROSS_COMPILE=aarch64-none-elf- \
SPD=spmd \
SPMD_SPM_AT_SEL2=0 \
SPMC_AT_EL3=1 \

(continues on next page)

4.15. EL3 Secure Partition Manager 249

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
BL32=<path-to-tee-binary> (opt for TSP) \
BL33=<path-to-bl33-binary> \
PLAT=fvp \
all fip

4.15.4 FVP model invocation

Sample FVP command line invocation:

<path-to-fvp-model>/FVP_Base_RevC-2xAEMvA -C pctl.startup=0.0.0.0 \
-C cluster0.NUM_CORES=4 -C cluster1.NUM_CORES=4 -C bp.secure_memory=1 \
-C bp.secureflashloader.fname=trusted-firmware-a/build/fvp/debug/bl1.bin \
-C bp.flashloader0.fname=trusted-firmware-a/build/fvp/debug/fip.bin \
-C bp.pl011_uart0.out_file=fvp-uart0.log -C bp.pl011_uart1.out_file=fvp-uart1.
↪→log \
-C bp.pl011_uart2.out_file=fvp-uart2.log -C bp.vis.disable_visualisation=1

4.15.5 Platform Guide

• Platform Hooks See - [4]

– plat_spmc_shmem_begin

– plat_spmc_shmem_reclaim

SPMC provides platform hooks related to memory management interfaces. These hooks can be used for plat-
form specific implementations like for managing access control, programming TZ Controller or MPUs. These
hooks are called by SPMC before the initial share request completes, and after the final reclaim has been
completed.

• Datastore

– plat_spmc_shmem_datastore_get

EL3 SPMCuses datastore for trackingmemory transaction descriptors. On FVP platform datastore
is allocated from TZC DRAM section. Other platforms need to allocate a similar secure memory
region to be used as shared memory datastore.

The accessor function is used during SPMC initialization to obtain address and size of the datastore.
SPMC will also zero out the provided memory region.

• Platform Defines See - [5]

– SECURE_PARTITION_COUNT Number of Secure Partitions supported: must be 1.

– NS_PARTITION_COUNT Number of NWd Partitions supported.

– MAX_EL3_LP_DESCS_COUNT Number of Logical Partitions supported.

250 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.15.6 Logical Secure Partition (LSP)

• The SPMC provides support for statically allocated EL3 Logical Secure Partitions as per FF-A v1.1
specification.

• The DECLARE_LOGICAL_PARTITION macro can be used to add a LSP.

• For reference implementation See - [2]

4.15.7 SPMC boot

The SPMD and SPMC are built into the BL31 image along with TF-A’s runtime components. BL2 loads the
BL31 image as a part of (secure) boot process.

The SPMC manifest is loaded by BL2 as the TOS_FW_CONFIG image [9].

BL2 passes the SPMC manifest address to BL31 through a register.

At boot time, the SPMD in BL31 runs from the primary core, initializes the core contexts and launches the
SPMC passing the following information through registers:

• X0 holds the SPMC manifest blob address.

• X4 holds the currently running core linear id.

4.15. EL3 Secure Partition Manager 251

Trusted Firmware-A, Release 2.10.4

Parsing SP partition manifests

SPMC consumes the SP manifest, as defined in [7]. SP manifest fields align with Hafnium SP manifest for
easy porting.

compatible = "arm,ffa-manifest-1.0";

ffa-version = <0x00010001>; /* 31:16 - Major, 15:0 - Minor */
id = <0x8001>;
uuid = <0x6b43b460 0x74a24b78 0xade24502 0x40682886>;
messaging-method = <0x3>; /* Direct Messaging Only */
exception-level = <0x2>; /* S-EL1 */
execution-state = <0>;
execution-ctx-count = <8>;
gp-register-num = <0>;
power-management-messages = <0x7>;

Passing boot data to the SP

In [1] , the section “Boot information protocol” defines a method for passing data to the SPs at boot time. It
specifies the format for the boot information descriptor and boot information header structures, which describe
the data to be exchanged between SPMC and SP. The specification also defines the types of data that can be
passed. The aggregate of both the boot info structures and the data itself is designated the boot information
blob, and is passed to a Partition as a contiguous memory region.

Currently, the SPM implementation supports the FDT type which is used to pass the partition’s DTB manifest.

The region for the boot information blob is statically allocated (4K) by SPMC. BLOB contains Boot Info
Header, followed by SP Manifest contents.

The configuration of the boot protocol is done in the SP manifest. As defined by the specification, the manifest
field ‘gp-register-num’ configures the GP register which shall be used to pass the address to the partitions boot
information blob when booting the partition.

4.15.8 Supported interfaces

The following interfaces are exposed to SPs only:

• FFA_MSG_WAIT

• FFA_MEM_RETRIEVE_REQ

• FFA_MEM_RETRIEVE_RESP

• FFA_MEM_RELINQUISH

• FFA_SECONDARY_EP_REGISTER

The following interfaces are exposed to both NS Client and SPs:

• FFA_VERSION

• FFA_FEATURES

252 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• FFA_RX_RELEASE

• FFA_RXTX_MAP

• FFA_RXTX_UNMAP

• FFA_PARTITION_INFO_GET

• FFA_ID_GET

• FFA_MSG_SEND_DIRECT_REQ

• FFA_MSG_SEND_DIRECT_RESP

• FFA_MEM_FRAG_TX

• FFA_SPM_ID_GET

The following additional interfaces are forwarded from SPMD to support NS Client:

• FFA_RUN

• FFA_MEM_LEND

• FFA_MEM_SHARE

• FFA_MEM_FRAG_RX

• FFA_MEM_RECLAIM

FFA_VERSION

FFA_VERSION requires a requested_version parameter from the caller. SPMD forwards call to SPMC, the
SPMC returns its own implemented version. SPMC asserts SP and SPMC are at same FF-A Version.

FFA_FEATURES

FF-A features supported by the SPMC may be discovered by secure partitions at boot (that is prior to NWd is
booted) or run-time.

The SPMC calling FFA_FEATURES at secure physical FF-A instance always get FFA_SUCCESS from the
SPMD.

The request made by an Hypervisor or OS kernel is forwarded to the SPMC and the response relayed back to
the NWd.

4.15. EL3 Secure Partition Manager 253

Trusted Firmware-A, Release 2.10.4

FFA_RXTX_MAP

FFA_RXTX_UNMAP

When invoked from a secure partition FFA_RXTX_MAPmaps the provided send and receive buffers described
by their PAs to the EL3 translation regime as secure buffers in the MMU descriptors.

When invoked from the Hypervisor or OS kernel, the buffers are mapped into the SPMC EL3 translation
regime and marked as NS buffers in the MMU descriptors.

The FFA_RXTX_UNMAP unmaps the RX/TX pair from the translation regime of the caller, either it being
the Hypervisor or OS kernel, as well as a secure partition.

FFA_PARTITION_INFO_GET

Partition info get call can originate:

• from SP to SPMC

• from Hypervisor or OS kernel to SPMC. The request is relayed by the SPMD.

The format (v1.0 or v1.1) of the populated data structure returned is based upon the FFA version of the calling
entity.

EL3 SPMC also supports returning only the count of partitions deployed.

All LSPs and SP are discoverable from FFA_PARTITION_INFO_GET call made by either SP or NWd enti-
ties.

FFA_ID_GET

The FF-A ID space is split into a non-secure space and secure space:

• FF-A ID with bit 15 clear relates to VMs.

• FF-A ID with bit 15 set related to SPs or LSPs.

• FF-A IDs 0, 0xffff, 0x8000 are assigned respectively to the Hypervisor (or OS Kernel if Hyp is absent),
SPMD and SPMC.

This convention helps the SPM to determine the origin and destination worlds in an FF-A ABI invocation. In
particular the SPM shall filter unauthorized transactions in its world switch routine. It must not be permitted
for a VM to use a secure FF-A ID as origin world by spoofing:

• A VM-to-SP direct request/response shall set the origin world to be non-secure (FF-A ID bit 15 clear)
and destination world to be secure (FF-A ID bit 15 set).

• Similarly, an SP-to-LSP direct request/response shall set the FF-A ID bit 15 for both origin and desti-
nation IDs.

An incoming direct message request arriving at SPMD from NWd is forwarded to SPMC without a specific
check. The SPMC is resumed through eret and “knows” the message is coming from normal world in this
specific code path. Thus the origin endpoint ID must be checked by SPMC for being a normal world ID.

254 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

An SP sending a direct message request must have bit 15 set in its origin endpoint ID and this can be checked
by the SPMC when the SP invokes the ABI.

The SPMC shall reject the direct message if the claimed world in origin endpoint ID is not consistent:

• It is either forwarded by SPMD and thus origin endpoint ID must be a “normal world ID”,

• or initiated by an SP and thus origin endpoint ID must be a “secure world ID”.

FFA_MSG_SEND_DIRECT_REQ

FFA_MSG_SEND_DIRECT_RESP

This is a mandatory interface for secure partitions participating in direct request and responses with the fol-
lowing rules:

• An SP can send a direct request to LSP.

• An LSP can send a direct response to SP.

• An SP cannot send a direct request to an Hypervisor or OS kernel.

• An Hypervisor or OS kernel can send a direct request to an SP or LSP.

• An SP and LSP can send a direct response to an Hypervisor or OS kernel.

• SPMD can send direct request to SPMC.

FFA_SPM_ID_GET

Returns the FF-A ID allocated to an SPM component which can be one of SPMD or SPMC.

At initialization, the SPMCqueries the SPMD for the SPMC ID, using the FFA_ID_GET interface, and records
it. The SPMC can also query the SPMD ID using the FFA_SPM_ID_GET interface at the secure physical FF-A
instance.

Secure partitions call this interface at the virtual FF-A instance, to which the SPMC returns the SPMC ID.

The Hypervisor or OS kernel can issue the FFA_SPM_ID_GET call handled by the SPMD, which returns the
SPMC ID.

FFA_ID_GET

Returns the FF-A ID of the calling endpoint.

4.15. EL3 Secure Partition Manager 255

Trusted Firmware-A, Release 2.10.4

FFA_MEM_SHARE

FFA_MEM_LEND

• If SP is borrower in thememory transaction, these calls are forwarded to SPMC. SPMCperforms Relayer
responsibilities, caches the memory descriptors in the datastore, and allocates FF-A memory handle.

• If format of descriptor was v1.0, SPMC converts the descriptor to v1.1 before caching. In case of
fragmented sharing, conversion of memory descriptors happens after last fragment has been received.

• Multiple borrowers (including NWd endpoint) and fragmented memory sharing are supported.

FFA_MEM_RETRIEVE_REQ

FFA_MEM_RETRIEVE_RESP

• Memory retrieve is supported only from SP.

• SPMC fetches the cached memory descriptor from the datastore,

• Performs Relayer responsiilities and sends FFA_MEM_RETRIEVE_RESP back to SP.

• If descriptor size is more than RX buffer size, SPMC will send the descriptor in fragments.

• SPMC will set NS Bit to 1 in memory descriptor response.

FFA_MEM_FRAG_RX

FFA_MEM_FRAG_TX

FFA_MEM_FRAG_RX is to be used by:

• SP if FFA_MEM_RETRIEVE_RESP returned descriptor with fragment length less than total length.

• or by SPMC if FFA_MEM_SHARE/FFA_MEM_LEND is called with fragment length less than total
length.

SPMC validates handle and Endpoint ID and returns response with FFA_MEM_FRAG_TX.

FFA_SECONDARY_EP_REGISTER

When the SPMC boots, secure partition is initialized on its primary Execution Context.

The FFA_SECONDARY_EP_REGISTER interface is to be used by a secure partition from its first execution
context, to provide the entry point address for secondary execution contexts.

A secondary EC is first resumed either upon invocation of PSCI_CPU_ON from the NWd or by invocation of
FFA_RUN.

256 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.15.9 Power management

In platforms with or without secure virtualization:

• The NWd owns the platform PM policy.

• The Hypervisor or OS kernel is the component initiating PSCI service calls.

• The EL3 PSCI library is in charge of the PM coordination and control (eventually writing to platform
registers).

• While coordinating PM events, the PSCI library calls backs into the Secure Payload Dispatcher for events
the latter has statically registered to.

When using the SPMD as a Secure Payload Dispatcher:

• A power management event is relayed through the SPD hook to the SPMC.

• In the current implementation CPU_ON (svc_on_finish), CPU_OFF (svc_off), CPU_SUSPEND
(svc_suspend) and CPU_SUSPEND_RESUME (svc_suspend_finish) hooks are registered.

4.15.10 Secure partitions scheduling

The FF-A specification [1] provides two ways to relinquinsh CPU time to secure partitions. For this a VM
(Hypervisor or OS kernel), or SP invokes one of:

• the FFA_MSG_SEND_DIRECT_REQ interface.

• the FFA_RUN interface.

Additionally a secure interrupt can pre-empt the normal world execution and give CPU cycles by transitioning
to EL3.

4.15.11 Partition Runtime State and Model

EL3 SPMC implements Partition runtime states are described in v1.1 FF-A specification [1]

An SP can be in one of the following state:

• RT_STATE_WAITING

• RT_STATE_RUNNING

• RT_STATE_PREEMPTED

• RT_STATE_BLOCKED

An SP will transition to one of the following runtime model when not in waiting state:

• RT_MODEL_DIR_REQ

• RT_MODEL_RUN

• RT_MODEL_INIT

• RT_MODEL_INTR

4.15. EL3 Secure Partition Manager 257

Trusted Firmware-A, Release 2.10.4

4.15.12 Platform topology

SPMC only supports a single Pinned MP S-EL1 SP. The execution-ctx-count SP manifest field should match
the number of physical PE.

4.15.13 Interrupt handling

Secure Interrupt handling

• SPMC is capable of forwarding Secure interrupt to S-EL1 SP which has preempted the normal world.

• Interrupt is forwarded to SP using FFA_INTERRUPT interface.

• Interrupt Number is not passed, S-EL1 SP can access the GIC registers directly.

• Upon completion of Interrupt handling SP is expected to return to SPMC using FFA_MSG_WAIT
interface.

• SPMC returns to normal world after interrupt handling is completed.

In the scenario when secure interrupt occurs while the secure partition is running, the SPMC is not involved
and the handling is implementation defined in the TOS.

Non-Secure Interrupt handling

The ‘managed exit’ scenario is the responsibility of the TOS and the SPMC is not involved.

4.15.14 Test Secure Payload (TSP)

• TSP provides reference implementation of FF-A programming model.

• TSP has the following support:

– SP initialization on all CPUs.

– Consuming Power Messages including CPU_ON, CPU_OFF, CPU_SUSPEND,
CPU_SUSPEND_RESUME.

– Event Loop to receive Direct Requests.

– Sending Direct Response.

– Memory Sharing helper library.

– Ability to handle secure interrupt (timer).

258 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

TSP Tests in CI

• TSP Tests are exercised in the TF-A CI using prebuilt FF-A Linux Test driver in NWd.

• Expected output:

#ioctl 255
Test: Echo Message to SP.
Status: Completed Test Case: 1
Test Executed Successfully

Test: Message Relay vis SP to EL3 LSP.
Status: Completed Test Case: 2
Test Executed Successfully

Test: Memory Send.
Verified 1 constituents successfully
Status: Completed Test Case: 3
Test Executed Successfully

Test: Memory Send in Fragments.
Verified 256 constituents successfully
Status: Completed Test Case: 4
Test Executed Successfully

Test: Memory Lend.
Verified 1 constituents successfully
Status: Completed Test Case: 5
Test Executed Successfully

Test: Memory Lend in Fragments.
Verified 256 constituents successfully
Status: Completed Test Case: 6
Test Executed Successfully

Test: Memory Send with Multiple Endpoints.
random: fast init done
Verified 256 constituents successfully
Status: Completed Test Case: 7
Test Executed Successfully

Test: Memory Lend with Multiple Endpoints.
Verified 256 constituents successfully
Status: Completed Test Case: 8
Test Executed Successfully

Test: Ensure Duplicate Memory Send Requests are Rejected.
Status: Completed Test Case: 9
Test Executed Successfully

Test: Ensure Duplicate Memory Lend Requests are Rejected.
Status: Completed Test Case: 10
Test Executed Successfully

(continues on next page)

4.15. EL3 Secure Partition Manager 259

Trusted Firmware-A, Release 2.10.4

(continued from previous page)

0 Tests Failed

Exiting Test Application - Total Failures: 0

4.15.15 References

[1] Arm Firmware Framework for Arm A-profile

[2] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fvp_el3_spmc_
logical_sp.c

[3] Trusted Boot Board Requirements Client

[4] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fvp_el3_spmc.c

[5] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/include/platform_
def.h

[6] https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html

[7] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_tsp_sp_
manifest.dts

[8] https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/
CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/

[9] https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#
dynamic-configuration-during-cold-boot

Copyright (c) 2020-2022, Arm Limited and Contributors. All rights reserved.

4.16 Secure Partition Manager (MM)

4.16.1 Foreword

This document describes the implementation where the Secure Partition Manager resides at EL3 and man-
agement services run from isolated Secure Partitions at S-EL0. The communication protocol is established
through the Management Mode (MM) interface.

260 Chapter 4. Components

https://developer.arm.com/docs/den0077/latest
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fvp_el3_spmc_logical_sp.c
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fvp_el3_spmc_logical_sp.c
https://developer.arm.com/documentation/den0006/d/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fvp_el3_spmc.c
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/include/platform_def.h
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/include/platform_def.h
https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_tsp_sp_manifest.dts
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_tsp_sp_manifest.dts
https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/
https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#dynamic-configuration-during-cold-boot
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#dynamic-configuration-during-cold-boot

Trusted Firmware-A, Release 2.10.4

4.16.2 Background

In some market segments that primarily deal with client-side devices like mobile phones, tablets, STBs and
embedded devices, a Trusted OS instantiates trusted applications to provide security services like DRM, secure
payment and authentication. The Global Platform TEE Client API specification defines the API used by Non-
secure world applications to access these services. A Trusted OS fulfils the requirements of a security service
as described above.

Management services are typically implemented at the highest level of privilege in the system, i.e. EL3 in
Trusted Firmware-A (TF-A). The service requirements are fulfilled by the execution environment provided by
TF-A.

The following diagram illustrates the corresponding software stack:

In other market segments that primarily deal with server-side devices (e.g. data centres and enterprise servers)
the secure software stack typically does not include a Global Platform Trusted OS. Security functions are
accessed through other interfaces (e.g. ACPI TCG TPM interface, UEFI runtime variable service).

Placement of management and security functions with diverse requirements in a privileged Exception Level
(i.e. EL3 or S-EL1) makes security auditing of firmware more difficult and does not allow isolation of unrelated
services from each other either.

4.16. Secure Partition Manager (MM) 261

Trusted Firmware-A, Release 2.10.4

4.16.3 Introduction

A Secure Partition is a software execution environment instantiated in S-EL0 that can be used to implement
simple management and security services. Since S-EL0 is an unprivileged Exception Level, a Secure Partition
relies on privileged firmware (i.e. TF-A) to be granted access to system and processor resources. Essentially,
it is a software sandbox in the Secure world that runs under the control of privileged software, provides one or
more services and accesses the following system resources:

• Memory and device regions in the system address map.

• PE system registers.

• A range of synchronous exceptions (e.g. SMC function identifiers).

Note that currently TF-A only supports handling one Secure Partition.

A Secure Partition enables TF-A to implement only the essential secure services in EL3 and instantiate the rest
in a partition in S-EL0. Furthermore, multiple Secure Partitions can be used to isolate unrelated services from
each other.

The following diagram illustrates the place of a Secure Partition in a typical Armv8-A software stack. A single
or multiple Secure Partitions provide secure services to software components in the Non-secure world and other
Secure Partitions.

The TF-A build system is responsible for including the Secure Partition image in the FIP. During boot, BL2

262 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

includes support to authenticate and load the Secure Partition image. A BL31 component called Secure Par-
tition Manager (SPM) is responsible for managing the partition. This is semantically similar to a hypervisor
managing a virtual machine.

The SPM is responsible for the following actions during boot:

• Allocate resources requested by the Secure Partition.

• Perform architectural and system setup required by the Secure Partition to fulfil a service request.

• Implement a standard interface that is used for initialising a Secure Partition.

The SPM is responsible for the following actions during runtime:

• Implement a standard interface that is used by a Secure Partition to fulfil service requests.

• Implement a standard interface that is used by the Non-secure world for accessing the services exported
by a Secure Partition. A service can be invoked through a SMC.

Alternatively, a partition can be viewed as a thread of execution running under the control of the SPM. Hence
common programming concepts described below are applicable to a partition.

4.16.4 Description

The previous section introduced some general aspects of the software architecture of a Secure Partition. This
section describes the specific choices made in the current implementation of this software architecture. Sub-
sequent revisions of the implementation will include a richer set of features that enable a more flexible archi-
tecture.

Building TF-A with Secure Partition support

SPM is supported on the Arm FVP exclusively at the moment. The current implementation supports inclusion
of only a single Secure Partition in which a service always runs to completion (e.g. the requested services
cannot be preempted to give control back to the Normal world).

It is not currently possible for BL31 to integrate SPM support and a Secure Payload Dispatcher (SPD) at the
same time; they are mutually exclusive. In the SPM bootflow, a Secure Partition image executing at S-EL0
replaces the Secure Payload image executing at S-EL1 (e.g. a Trusted OS). Both are referred to as BL32.

A working prototype of a SP has been implemented by re-purposing the EDK2 code and tools, leveraging
the concept of the Standalone Management Mode (MM) in the UEFI specification (see the PI v1.6 Volume 4:
Management Mode Core Interface). This will be referred to as the Standalone MM Secure Partition in the rest
of this document.

To enable SPM support in TF-A, the source code must be compiled with the build flag SPM_MM=1, along with
EL3_EXCEPTION_HANDLING=1 and ENABLE_SVE_FOR_NS=0. On Arm platforms the build option
ARM_BL31_IN_DRAM must be set to 1. Also, the location of the binary that contains the BL32 image
(BL32=path/to/image.bin) must be specified.

First, build the Standalone MM Secure Partition. To build it, refer to the instructions in the EDK2 repository.

Then build TF-A with SPM support and include the Standalone MM Secure Partition image in the FIP:

4.16. Secure Partition Manager (MM) 263

https://github.com/tianocore/edk2-staging/blob/AArch64StandaloneMm/HowtoBuild.MD

Trusted Firmware-A, Release 2.10.4

BL32=path/to/standalone/mm/sp BL33=path/to/bl33.bin \
make PLAT=fvp SPM_MM=1 EL3_EXCEPTION_HANDLING=1 ENABLE_SVE_FOR_NS=0 ARM_BL31_
↪→IN_DRAM=1 all fip

Describing Secure Partition resources

TF-A exports a porting interface that enables a platform to specify the system resources required by the Secure
Partition. Some instructions are given below. However, this interface is under development and it may change
as new features are implemented.

• A Secure Partition is considered a BL32 image, so the same defines that apply to BL32 images apply to
a Secure Partition: BL32_BASE and BL32_LIMIT.

• The following defines are needed to allocate space for the translation tables used by the Secure Partition:
PLAT_SP_IMAGE_MMAP_REGIONS and PLAT_SP_IMAGE_MAX_XLAT_TABLES.

• The functions plat_get_secure_partition_mmap() and
plat_get_secure_partition_boot_info() have to be implemented. The file plat/
arm/board/fvp/fvp_common.c can be used as an example. It uses the defines in include/
plat/arm/common/arm_spm_def.h.

– plat_get_secure_partition_mmap() returns an array of mmap regions that describe
the memory regions that the SPM needs to allocate for a Secure Partition.

– plat_get_secure_partition_boot_info() returns a spm_mm_boot_info_t
struct that is populated by the platform with information about the memory map of the Secure
Partition.

For an example of all the changes in context, you may refer to commit e29efeb1b4, in which the port for
FVP was introduced.

Accessing Secure Partition services

The SMC Calling Convention (Arm DEN 0028B) describes SMCs as a conduit for accessing services imple-
mented in the Secure world. The MM_COMMUNICATE interface defined in the Management Mode Interface
Specification (Arm DEN 0060A) is used to invoke a Secure Partition service as a Fast Call.

The mechanism used to identify a service within the partition depends on the service implementation. It is
assumed that the caller of the service will be able to discover this mechanism through standard platform dis-
covery mechanisms like ACPI and Device Trees. For example, Volume 4: Platform Initialisation Specification
v1.6. Management Mode Core Interface specifies that a GUID is used to identify a management mode ser-
vice. A client populates the GUID in the EFI_MM_COMMUNICATE_HEADER. The header is populated in
the communication buffer shared with the Secure Partition.

A Fast Call appears to be atomic from the perspective of the caller and returns when the requested operation has
completed. A service invoked through the MM_COMMUNICATE SMC will run to completion in the partition
on a given CPU. The SPM is responsible for guaranteeing this behaviour. This means that there can only be a
single outstanding Fast Call in a partition on a given CPU.

264 Chapter 4. Components

https://developer.arm.com/docs/den0028/latest
http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf

Trusted Firmware-A, Release 2.10.4

Exchanging data with the Secure Partition

The exchange of data between the Non-secure world and the partition takes place through a shared memory
region. The location of data in the shared memory area is passed as a parameter to the MM_COMMUNICATE
SMC. The shared memory area is statically allocated by the SPM and is expected to be either implicitly known
to the Non-secure world or discovered through a platform discovery mechanism e.g. ACPI table or device tree.
It is possible for the Non-secure world to exchange data with a partition only if it has been populated in this
shared memory area. The shared memory area is implemented as per the guidelines specified in Section 3.2.3
of the Management Mode Interface Specification (Arm DEN 0060A).

The format of data structures used to encapsulate data in the shared memory is agreed between the Non-
secure world and the Secure Partition. For example, in the Management Mode Interface specification (Arm
DEN 0060A), Section 4 describes that the communication buffer shared between the Non-secure world and
the Management Mode (MM) in the Secure world must be of the type EFI_MM_COMMUNICATE_HEADER.
This data structure is defined in Volume 4: Platform Initialisation Specification v1.6. Management Mode Core
Interface. Any caller of aMM service will have to use the EFI_MM_COMMUNICATE_HEADER data structure.

4.16.5 Runtime model of the Secure Partition

This section describes how the Secure Partition interfaces with the SPM.

Interface with SPM

In order to instantiate one or more secure services in the Secure Partition in S-EL0, the SPM should define the
following types of interfaces:

• Interfaces that enable access to privileged operations from S-EL0. These operations typically require
access to system resources that are either shared amongst multiple software components in the Secure
world or cannot be directly accessed from an unprivileged Exception Level.

• Interfaces that establish the control path between the SPM and the Secure Partition.

This section describes the APIs currently exported by the SPM that enable a Secure Partition to initialise itself
and export its services in S-EL0. These interfaces are not accessible from the Non-secure world.

Conduit

The SMC Calling Convention (Arm DEN 0028B) specification describes the SMC and HVC conduits for ac-
cessing firmware services and their availability depending on the implemented Exception levels. In S-EL0, the
Supervisor Call exception (SVC) is the only architectural mechanism available for unprivileged software to
make a request for an operation implemented in privileged software. Hence, the SVC conduit must be used by
the Secure Partition to access interfaces implemented by the SPM.

A SVC causes an exception to be taken to S-EL1. TF-A assumes ownership of S-EL1 and installs a simple
exception vector table in S-EL1 that relays a SVC request from a Secure Partition as a SMC request to the SPM
in EL3. Upon servicing the SMC request, Trusted Firmware-A returns control directly to S-EL0 through an
ERET instruction.

4.16. Secure Partition Manager (MM) 265

http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

Calling conventions

The SMC Calling Convention (Arm DEN 0028B) specification describes the 32-bit and 64-bit calling conven-
tions for the SMC and HVC conduits. The SVC conduit introduces the concept of SVC32 and SVC64 calling
conventions. The SVC32 and SVC64 calling conventions are equivalent to the 32-bit (SMC32) and the 64-bit
(SMC64) calling conventions respectively.

Communication initiated by SPM

A service request is initiated from the SPM through an exception return instruction (ERET) to S-EL0. Later,
the Secure Partition issues an SVC instruction to signal completion of the request. Some example use cases are
given below:

• A request to initialise the Secure Partition during system boot.

• A request to handle a runtime service request.

Communication initiated by Secure Partition

A request is initiated from the Secure Partition by executing a SVC instruction. An ERET instruction is used
by TF-A to return to S-EL0 with the result of the request.

For instance, a request to perform privileged operations on behalf of a partition (e.g. management of memory
attributes in the translation tables for the Secure EL1&0 translation regime).

Interfaces

The current implementation reserves function IDs for Fast Calls in the Standard Secure Service calls range (see
SMC Calling Convention (Arm DEN 0028B) specification) for each API exported by the SPM. This section
defines the function prototypes for each function ID. The function IDs specify whether one or both of the
SVC32 and SVC64 calling conventions can be used to invoke the corresponding interface.

Secure Partition Event Management

The Secure Partition provides an Event Management interface that is used by the SPM to delegate service
requests to the Secure Partition. The interface also allows the Secure Partition to:

• Register with the SPM a service that it provides.

• Indicate completion of a service request delegated by the SPM

266 Chapter 4. Components

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

Miscellaneous interfaces

SPM_MM_VERSION_AARCH32

• Description

Returns the version of the interface exported by SPM.

• Parameters

– uint32 - Function ID

∗ SVC32 Version: 0x84000060

• Return parameters

– int32 - Status

On success, the format of the value is as follows:

∗ Bit [31]: Must be 0

∗ Bits [30:16]: Major Version. Must be 0 for this revision of the SPM interface.

∗ Bits [15:0]: Minor Version. Must be 1 for this revision of the SPM interface.

On error, the format of the value is as follows:

∗ NOT_SUPPORTED: SPM interface is not supported or not available for the client.

• Usage

This function returns the version of the Secure Partition Manager implementation. The major version
is 0 and the minor version is 1. The version number is a 31-bit unsigned integer, with the upper 15 bits
denoting the major revision, and the lower 16 bits denoting the minor revision. The following rules apply
to the version numbering:

– Different major revision values indicate possibly incompatible functions.

– For two revisions, A and B, for which the major revision values are identical, if the minor revision
value of revision B is greater than the minor revision value of revision A, then every function in
revision A must work in a compatible way with revision B. However, it is possible for revision B to
have a higher function count than revision A.

• Implementation responsibilities

If this function returns a valid version number, all the functions that are described subsequently must be
implemented, unless it is explicitly stated that a function is optional.

See Error Codes for integer values that are associated with each return code.

4.16. Secure Partition Manager (MM) 267

Trusted Firmware-A, Release 2.10.4

Secure Partition Initialisation

The SPM is responsible for initialising the architectural execution context to enable initialisation of a service
in S-EL0. The responsibilities of the SPM are listed below. At the end of initialisation, the partition issues a
MM_SP_EVENT_COMPLETE_AARCH64 call (described later) to signal readiness for handling requests for
services implemented by the Secure Partition. The initialisation event is executed as a Fast Call.

Entry point invocation

The entry point for service requests that should be handled as Fast Calls is used as the target of the ERET
instruction to start initialisation of the Secure Partition.

Architectural Setup

At cold boot, system registers accessible from S-EL0 will be in their reset state unless otherwise specified. The
SPM will perform the following architectural setup to enable execution in S-EL0

MMU setup

The platform port of a Secure Partition specifies to the SPM a list of regions that it needs access to and their
attributes. The SPM validates this resource description and initialises the Secure EL1&0 translation regime as
follows.

1. Device regions are mapped with nGnRE attributes and Execute Never instruction access permissions.

2. Code memory regions are mapped with RO data and Executable instruction access permissions.

3. Read Only data memory regions are mapped with RO data and Execute Never instruction access per-
missions.

4. Read Write data memory regions are mapped with RW data and Execute Never instruction access per-
missions.

5. If the resource description does not explicitly describe the type of memory regions then all memory
regions will be marked with Code memory region attributes.

6. The UXN and PXN bits are set for regions that are not executable by S-EL0 or S-EL1.

System Register Setup

System registers that influence software execution in S-EL0 are setup by the SPM as follows:

1. SCTLR_EL1

• UCI=1

• EOE=0

• WXN=1

268 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• nTWE=1

• nTWI=1

• UCT=1

• DZE=1

• I=1

• UMA=0

• SA0=1

• C=1

• A=1

• M=1

2. CPACR_EL1

• FPEN=b'11

3. PSTATE

• D,A,I,F=1

• CurrentEL=0 (EL0)

• SpSel=0 (Thread mode)

• NRW=0 (AArch64)

General Purpose Register Setup

SPM will invoke the entry point of a service by executing an ERET instruction. This transition into S-EL0 is
special since it is not in response to a previous request through a SVC instruction. This is the first entry into
S-EL0. The general purpose register usage at the time of entry will be as specified in the “Return State” column
of Table 3-1 in Section 3.1 “Register use in AArch64 SMC calls” of the SMC Calling Convention (Arm DEN
0028B) specification. In addition, certain other restrictions will be applied as described below.

1. SP_EL0

A non-zero value will indicate that the SPM has initialised the stack pointer for the current CPU.

The value will be 0 otherwise.

2. X4-X30

The values of these registers will be 0.

3. X0-X3

Parameters passed by the SPM.

• X0: Virtual address of a buffer shared between EL3 and S-EL0. The buffer will be mapped in the
Secure EL1&0 translation regime with read-only memory attributes described earlier.

4.16. Secure Partition Manager (MM) 269

https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

• X1: Size of the buffer in bytes.

• X2: Cookie value (IMPLEMENTATION DEFINED).

• X3: Cookie value (IMPLEMENTATION DEFINED).

Runtime Event Delegation

The SPM receives requests for Secure Partition services through a synchronous invocation (i.e. a SMC from
the Non-secure world). These requests are delegated to the partition by programming a return from the last
MM_SP_EVENT_COMPLETE_AARCH64 call received from the partition. The last call was made to signal
either completion of Secure Partition initialisation or completion of a partition service request.

MM_SP_EVENT_COMPLETE_AARCH64

• Description

Signal completion of the last SP service request.

• Parameters

– uint32 - Function ID

∗ SVC64 Version: 0xC4000061

– int32 - Event Status Code

Zero or a positive value indicates that the event was handled successfully. The values depend upon
the original event that was delegated to the Secure partition. They are described as follows.

∗ SUCCESS : Used to indicate that the Secure Partition was initialised or a runtime request was
handled successfully.

∗ Any other value greater than 0 is used to pass a specific Event Status code in response to a
runtime event.

A negative value indicates an error. The values of Event Status code depend on the original event.

• Return parameters

– int32 - Event ID/Return Code

Zero or a positive value specifies the unique ID of the event being delegated to the partition by the
SPM.

In the current implementation, this parameter contains the function ID of the MM_COMMUNICATE
SMC. This value indicates to the partition that an event has been delegated to it in response to an
MM_COMMUNICATE request from the Non-secure world.

A negative value indicates an error. The format of the value is as follows:

∗ NOT_SUPPORTED: Function was called from the Non-secure world.

See Error Codes for integer values that are associated with each return code.

270 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

– uint32 - Event Context Address

Address of a buffer shared between the SPM and Secure Partition to pass event specific information.
The format of the data populated in the buffer is implementation defined.

The buffer is mapped in the Secure EL1&0 translation regime with read-only memory attributes
described earlier.

For the SVC64 version, this parameter is a 64-bit Virtual Address (VA).

For the SVC32 version, this parameter is a 32-bit Virtual Address (VA).

– uint32 - Event context size

Size of the memory starting at Event Address.

– uint32/uint64 - Event Cookie

This is an optional parameter. If unused its value is SBZ.

• Usage

This function signals to the SPM that the handling of the last event delegated to a partition has completed.
The partition is ready to handle its next event. A return from this function is in response to the next event
that will be delegated to the partition. The return parameters describe the next event.

• Caller responsibilities

A Secure Partition must only call MM_SP_EVENT_COMPLETE_AARCH64 to signal completion of a
request that was delegated to it by the SPM.

• Callee responsibilities

When the SPM receives this call from a Secure Partition, the corresponding syndrome information can
be used to return control through an ERET instruction, to the instruction immediately after the call in the
Secure Partition context. This syndrome information comprises of general purpose and system register
values when the call was made.

The SPMmust save this syndrome information and use it to delegate the next event to the Secure Partition.
The return parameters of this interface must specify the properties of the event and be populated in
X0-X3/W0-W3 registers.

Secure Partition Memory Management

A Secure Partition executes at S-EL0, which is an unprivileged Exception Level. The SPM is responsible
for enabling access to regions of memory in the system address map from a Secure Partition. This is done by
mapping these regions in the Secure EL1&0 Translation regime with appropriate memory attributes. Attributes
refer to memory type, permission, cacheability and shareability attributes used in the Translation tables. The
definitions of these attributes and their usage can be found in the Armv8-A ARM (Arm DDI 0487).

All memory required by the Secure Partition is allocated upfront in the SPM, even before handing over to the
Secure Partition for the first time. The initial access permissions of the memory regions are statically provided
by the platform port and should allow the Secure Partition to run its initialisation code.

4.16. Secure Partition Manager (MM) 271

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Trusted Firmware-A, Release 2.10.4

However, they might not suit the final needs of the Secure Partition because its final memory layout might not be
known until the Secure Partition initialises itself. As the Secure Partition initialises its runtime environment it
might, for example, load dynamically some modules. For instance, a Secure Partition could implement a loader
for a standard executable file format (e.g. an PE-COFF loader for loading executable files at runtime). These
executable files will be a part of the Secure Partition image. The location of various sections in an executable
file and their permission attributes (e.g. read-write data, read-only data and code) will be known only when the
file is loaded into memory.

In this case, the Secure Partition needs a way to change the access permissions of its memory regions. The
SPM provides this feature through the MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64 SVC interface.
This interface is available to the Secure Partition during a specific time window: from the first entry into the
Secure Partition up to the first SP_EVENT_COMPLETE call that signals the Secure Partition has finished its
initialisation. Once the initialisation is complete, the SPM does not allow changes to the memory attributes.

This section describes the standard SVC interface that is implemented by the SPM to determine and change
permission attributes of memory regions that belong to a Secure Partition.

MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64

• Description

Request the permission attributes of a memory region from S-EL0.

• Parameters

– uint32 Function ID

∗ SVC64 Version: 0xC4000064

– uint64 Base Address

This parameter is a 64-bit Virtual Address (VA).

There are no alignment restrictions on the Base Address. The permission attributes of the transla-
tion granule it lies in are returned.

• Return parameters

– int32 - Memory Attributes/Return Code

On success the format of the Return Code is as follows:

∗ Bits[1:0] : Data access permission

· b’00 : No access

· b’01 : Read-Write access

· b’10 : Reserved

· b’11 : Read-only access

∗ Bit[2]: Instruction access permission

· b’0 : Executable

· b’1 : Non-executable

272 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

∗ Bit[30:3] : Reserved. SBZ.

∗ Bit[31] : Must be 0

On failure the following error codes are returned:

∗ INVALID_PARAMETERS: The Secure Partition is not allowed to access the memory region
the Base Address lies in.

∗ NOT_SUPPORTED : The SPM does not support retrieval of attributes of any memory page
that is accessible by the Secure Partition, or the function was called from theNon-secure world.
Also returned if it is used after MM_SP_EVENT_COMPLETE_AARCH64.

See Error Codes for integer values that are associated with each return code.

• Usage

This function is used to request the permission attributes for S-EL0 on a memory region accessible from
a Secure Partition. The size of the memory region is equal to the Translation Granule size used in the
Secure EL1&0 translation regime. Requests to retrieve other memory region attributes are not currently
supported.

• Caller responsibilities

The caller must obtain the Translation Granule Size of the Secure EL1&0 translation regime from the
SPM through an implementation defined method.

• Callee responsibilities

The SPM must not return the memory access controls for a page of memory that is not accessible from
a Secure Partition.

MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64

• Description

Set the permission attributes of a memory region from S-EL0.

• Parameters

– uint32 - Function ID

∗ SVC64 Version: 0xC4000065

– uint64 - Base Address

This parameter is a 64-bit Virtual Address (VA).

The alignment of the Base Address must be greater than or equal to the size of the Translation
Granule Size used in the Secure EL1&0 translation regime.

– uint32 - Page count

Number of pages starting from the Base Address whose memory attributes should be changed. The
page size is equal to the Translation Granule Size.

– uint32 - Memory Access Controls

4.16. Secure Partition Manager (MM) 273

Trusted Firmware-A, Release 2.10.4

∗ Bits[1:0] : Data access permission

· b’00 : No access

· b’01 : Read-Write access

· b’10 : Reserved

· b’11 : Read-only access

∗ Bit[2] : Instruction access permission

· b’0 : Executable

· b’1 : Non-executable

∗ Bits[31:3] : Reserved. SBZ.

A combination of attributes that mark the region with RW and Executable permissions is prohib-
ited. A request to mark a device memory region with Executable permissions is prohibited.

• Return parameters

– int32 - Return Code

∗ SUCCESS: The Memory Access Controls were changed successfully.

∗ DENIED: The SPM is servicing a request to change the attributes of a memory region that
overlaps with the region specified in this request.

∗ INVALID_PARAMETER: An invalid combination of Memory Access Controls has been
specified. The Base Address is not correctly aligned. The Secure Partition is not allowed
to access part or all of the memory region specified in the call.

∗ NO_MEMORY: The SPM does not have memory resources to change the attributes of the mem-
ory region in the translation tables.

∗ NOT_SUPPORTED: The SPM does not permit change of attributes of any memory region
that is accessible by the Secure Partition. Function was called from the Non-secure world.
Also returned if it is used after MM_SP_EVENT_COMPLETE_AARCH64.

See Error Codes for integer values that are associated with each return code.

• Usage

This function is used to change the permission attributes for S-EL0 on a memory region accessible from
a Secure Partition. The size of the memory region is equal to the Translation Granule size used in the
Secure EL1&0 translation regime. Requests to change other memory region attributes are not currently
supported.

This function is only available at boot time. This interface is revoked after the Secure Partition sends
the first MM_SP_EVENT_COMPLETE_AARCH64 to signal that it is initialised and ready to receive
run-time requests.

• Caller responsibilities

The caller must obtain the Translation Granule Size of the Secure EL1&0 translation regime from the
SPM through an implementation defined method.

274 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• Callee responsibilities

The SPM must preserve the original memory access controls of the region of memory in case of an
unsuccessful call.  The SPMmust preserve the consistency of the S-EL1 translation regime if this function
is called on different PEs concurrently and the memory regions specified overlap.

Error Codes

Name Value
SUCCESS 0
NOT_SUPPORTED -1
INVALID_PARAMETER -2
DENIED -3
NO_MEMORY -5
NOT_PRESENT -7

Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.

4.17 Translation (XLAT) Tables Library

This document describes the design of the translation tables library (version 2) used by Trusted Firmware-A
(TF-A). This library provides APIs to create page tables based on a description of the memory layout, as well
as setting up system registers related to the Memory Management Unit (MMU) and performing the required
Translation Lookaside Buffer (TLB) maintenance operations.

More specifically, some use cases that this library aims to support are:

1. Statically allocate translation tables and populate them (at run-time) based upon a description of the
memory layout. The memory layout is typically provided by the platform port as a list of memory
regions;

2. Support for generating translation tables pertaining to a different translation regime than the exception
level the library code is executing at;

3. Support for dynamic mapping and unmapping of regions, even while the MMU is on. This can be used
to temporarily map some memory regions and unmap them later on when no longer needed;

4. Support for non-identity virtual to physical mappings to compress the virtual address space;

5. Support for changing memory attributes of memory regions at run-time.

4.17. Translation (XLAT) Tables Library 275

Trusted Firmware-A, Release 2.10.4

4.17.1 About version 1, version 2 and MPU libraries

This document focuses on version 2 of the library, whose sources are available in the lib/
xlat_tables_v2 directory. Version 1 of the library can still be found in lib/xlat_tables directory
but it is less flexible and doesn’t support dynamic mapping. lib/xlat_mpu, which configures Arm’s MPU
equivalently, is also addressed here. The lib/xlat_mpu is experimental, meaning that its API may change.
It currently strives for consistency and code-reuse with xlat_tables_v2. Future versions may be more MPU-
specific (e.g., removing all mentions of virtual addresses). Although potential bug fixes will be applied to all
versions of the xlat_* libs, future feature enhancements will focus on version 2 and might not be back-ported
to version 1 and MPU versions. Therefore, it is recommended to use version 2, especially for new platform
ports (unless the platform uses an MPU).

However, please note that version 2 and the MPU version are still in active development and is not considered
stable yet. Hence, compatibility breaks might be introduced.

From this point onwards, this document will implicitly refer to version 2 of the library, unless stated otherwise.

4.17.2 Design concepts and interfaces

This section presents some of the key concepts and data structures used in the translation tables library.

mmap regions

An mmap_region is an abstract, concise way to represent a memory region to map. It is one of the key
interfaces to the library. It is identified by:

• its physical base address;

• its virtual base address;

• its size;

• its attributes;

• its mapping granularity (optional).

See the struct mmap_region type in xlat_tables_v2.h.

The user usually provides a list of such mmap regions to map and lets the library transpose that in a set of
translation tables. As a result, the library might create new translation tables, update or split existing ones.

The region attributes specify the type of memory (for example device or cached normal memory) as well as the
memory access permissions (read-only or read-write, executable or not, secure or non-secure, and so on). In
the case of the EL1&0 translation regime, the attributes also specify whether the region is a User region (EL0)
or Privileged region (EL1). See the MT_xxx definitions in xlat_tables_v2.h. Note that for the EL1&0
translation regime the Execute Never attribute is set simultaneously for both EL1 and EL0.

The granularity controls the translation table level to go down to when mapping the region. For example,
assuming the MMU has been configured to use a 4KB granule size, the library might map a 2MB memory
region using either of the two following options:

• using a single level-2 translation table entry;

276 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

• using a level-2 intermediate entry to a level-3 translation table (which contains 512 entries, each mapping
4KB).

The first solution potentially requires less translation tables, hence potentially less memory. However, if part of
this 2MB region is later remapped with different memory attributes, the library might need to split the existing
page tables to refine the mappings. If a single level-2 entry has been used here, a level-3 table will need to be
allocated on the fly and the level-2 modified to point to this new level-3 table. This has a performance cost at
run-time.

If the user knows upfront that such a remapping operation is likely to happen then they might enforce a 4KB
mapping granularity for this 2MB region from the beginning; remapping some of these 4KB pages on the fly
then becomes a lightweight operation.

The region’s granularity is an optional field; if it is not specified the library will choose the mapping granularity
for this region as it sees fit (more details can be found in The memory mapping algorithm section below).

The MPU library also uses struct mmap_region to specify translations, but the MPU’s translations are
limited to specification of valid addresses and access permissions. If the requested virtual and physical addresses
mismatch the system will panic. Being register-based for deterministic memory-reference timing, the MPU
hardware does not involve memory-resident translation tables.

Currently, the MPU library is also limited to MPU translation at EL2 with no MMU translation at other ELs.
These limitations, however, are expected to be overcome in future library versions.

Translation Context

The library can create or modify translation tables pertaining to a different translation regime than the exception
level the library code is executing at. For example, the library might be used by EL3 software (for instance
BL31) to create translation tables pertaining to the S-EL1&0 translation regime.

This flexibility comes from the use of translation contexts. A translation context constitutes the superset of
information used by the library to track the status of a set of translation tables for a given translation regime.

The library internally allocates a default translation context, which pertains to the translation regime of the
current exception level. Additional contexts may be explicitly allocated and initialized using the REGIS-
TER_XLAT_CONTEXT() macro. Separate APIs are provided to act either on the default translation context
or on an alternative one.

To register a translation context, the user must provide the library with the following information:

• A name.

The resulting translation context variable will be called after this name, to which _xlat_ctx is
appended. For example, if the macro name parameter is foo, the context variable name will be
foo_xlat_ctx.

• The maximum number of mmap regions to map.

Should account for both static and dynamic regions, if applicable.

• The number of sub-translation tables to allocate.

4.17. Translation (XLAT) Tables Library 277

Trusted Firmware-A, Release 2.10.4

Number of translation tables to statically allocate for this context, excluding the initial lookup level trans-
lation table, which is always allocated. For example, if the initial lookup level is 1, this parameter would
specify the number of level-2 and level-3 translation tables to pre-allocate for this context.

• The size of the virtual address space.

Size in bytes of the virtual address space to map using this context. This will incidentally determine the
number of entries in the initial lookup level translation table : the library will allocate as many entries as
is required to map the entire virtual address space.

• The size of the physical address space.

Size in bytes of the physical address space to map using this context.

The default translation context is internally initialized using information coming (for the most part) from
platform-specific defines:

• name: hard-coded to tf ; hence the name of the default context variable is tf_xlat_ctx;

• number of mmap regions: MAX_MMAP_REGIONS;

• number of sub-translation tables: MAX_XLAT_TABLES;

• size of the virtual address space: PLAT_VIRT_ADDR_SPACE_SIZE;

• size of the physical address space: PLAT_PHY_ADDR_SPACE_SIZE.

Please refer to the Porting Guide for more details about these macros.

Static and dynamic memory regions

The library optionally supports dynamic memory mapping. This feature may be enabled using the
PLAT_XLAT_TABLES_DYNAMIC platform build flag.

When dynamic memory mapping is enabled, the library categorises mmap regions as static or dynamic.

• Static regions are fixed for the lifetime of the system. They can only be added early on, before the
translation tables are created and populated. They cannot be removed afterwards.

• Dynamic regions can be added or removed any time.

When the dynamic memory mapping feature is disabled, only static regions exist.

The dynamic memory mapping feature may be used to map and unmap transient memory areas. This is useful
when the user needs to access some memory for a fixed period of time, after which the memory may be
discarded and reclaimed. For example, a memory region that is only required at boot time while the system is
initializing, or to temporarily share a memory buffer between the normal world and trusted world. Note that it
is up to the caller to ensure that these regions are not accessed concurrently while the regions are being added
or removed.

Although this feature provides some level of dynamic memory allocation, this does not allow dynamically
allocating an arbitrary amount of memory at an arbitrary memory location. The user is still required to declare
at compile-time the limits of these allocations ; the library will deny any mapping request that does not fit within
this pre-allocated pool of memory.

278 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.17.3 Library APIs

The external APIs exposed by this library are declared and documented in the xlat_tables_v2.h header
file. This should be the reference point for getting information about the usage of the different APIs this library
provides. This section just provides some extra details and clarifications.

Although the mmap_region structure is a publicly visible type, it is not recommended to populate these
structures by hand. Instead, wherever APIs expect function arguments of typemmap_region_t, these should
be constructed using the MAP_REGION*() family of helper macros. This is to limit the risk of compatibility
breaks, should the mmap_region structure type evolve in the future.

The MAP_REGION() and MAP_REGION_FLAT() macros do not allow specifying a mapping granularity,
which leaves the library implementation free to choose it. However, in cases where a specific granularity is
required, the MAP_REGION2()macro might be used instead. Using MAP_REGION_FLAT() only to define
regions for the MPU library is strongly recommended.

As explained earlier in this document, when the dynamic mapping feature is disabled, there is no notion of
dynamic regions. Conceptually, there are only static regions. For this reason (and to retain backward com-
patibility with the version 1 of the library), the APIs that map static regions do not embed the word static in
their functions names (for example mmap_add_region()), in contrast with the dynamic regions APIs (for
example mmap_add_dynamic_region()).

Although the definition of static and dynamic regions is not based on the state of the MMU, the two are
still related in some way. Static regions can only be added before init_xlat_tables() is called and
init_xlat_tables() must be called while the MMU is still off. As a result, static regions cannot be
added once the MMU has been enabled. Dynamic regions can be added with the MMU on or off. In practice,
the usual call flow would look like this:

1. The MMU is initially off.

2. Add some static regions, add some dynamic regions.

3. Initialize translation tables based on the list of mmap regions (using one of the
init_xlat_tables*() APIs).

4. At this point, it is no longer possible to add static regions. Dynamic regions can still be added or removed.

5. Enable the MMU.

6. Dynamic regions can continue to be added or removed.

Because static regions are added early on at boot time and are all in the control of the platform initialization
code, the mmap_add*() family of APIs are not expected to fail. They do not return any error code.

Nonetheless, these APIs will check upfront whether the region can be successfully added before updating the
translation context structure. If the library detects that there is insufficient memory to meet the request, or that
the new region will overlap another one in an invalid way, or if any other unexpected error is encountered, they
will print an error message on the UART. Additionally, when asserts are enabled (typically in debug builds),
an assertion will be triggered. Otherwise, the function call will just return straight away, without adding the
offending memory region.

4.17. Translation (XLAT) Tables Library 279

Trusted Firmware-A, Release 2.10.4

4.17.4 Library limitations

Dynamic regions are not allowed to overlap each other. Static regions are allowed to overlap as long as one
of them is fully contained inside the other one. This is allowed for backwards compatibility with the previous
behaviour in the version 1 of the library.

4.17.5 Implementation details

Code structure

The library is divided into 4 modules:

• Core module

Provides the main functionality of the library, such as the initialization of translation tables
contexts and mapping/unmapping memory regions. This module provides functions such as
mmap_add_region_ctx that let the caller specify the translation tables context affected by them.

See xlat_tables_core.c.

• Active context module

Instantiates the context that is used by the current BL image and provides helpers to manipulate it,
abstracting it from the rest of the code. This module provides functions such as mmap_add_region,
that directly affect the BL image using them.

See xlat_tables_context.c.

• Utilities module

Provides additional functionality like debug print of the current state of the translation tables and helpers
to query memory attributes and to modify them.

See xlat_tables_utils.c.

• Architectural module

Provides functions that are dependent on the current execution state (AArch32/AArch64), such as the
functions used for TLB invalidation, setup the MMU, or calculate the Physical Address Space size. They
do not need a translation context to work on.

See aarch32/xlat_tables_arch.c and aarch64/xlat_tables_arch.c.

From mmap regions to translation tables

A translation context contains a list of mmap_region_t, which holds the information of all the regions that
are mapped at any given time. Whenever there is a request to map (resp. unmap) a memory region, it is added
to (resp. removed from) the mmap_region_t list.

The mmap regions list is a conceptual way to represent the memory layout. At some point, the library has to
convert this information into actual translation tables to program into the MMU.

280 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Before the init_xlat_tables() API is called, the library only acts on the mmap regions list. Adding a
static or dynamic region at this point through one of the mmap_add*() APIs does not affect the translation
tables in any way, they only get registered in the internal mmap region list. It is only when the user calls
the init_xlat_tables() that the translation tables are populated in memory based on the list of mmap
regions registered so far. This is an optimization that allows creation of the initial set of translation tables in
one go, rather than having to edit them every time while the MMU is disabled.

After the init_xlat_tables()API has been called, only dynamic regions can be added. Changes to the
translation tables (as well as the mmap regions list) will take effect immediately.

The memory mapping algorithm

The mapping function is implemented as a recursive algorithm. It is however bound by the level of depth of
the translation tables (the Armv8-A architecture allows up to 4 lookup levels).

By default1, the algorithm will attempt to minimize the number of translation tables created to satisfy the user’s
request. It will favour mapping a region using the biggest possible blocks, only creating a sub-table if it is strictly
necessary. This is to reduce the memory footprint of the firmware.

The most common reason for needing a sub-table is when a specific mapping requires a finer granularity.
Misaligned regions also require a finer granularity than what the user may had originally expected, using a lot
more memory than expected. The reason is that all levels of translation are restricted to address translations
of the same granularity as the size of the blocks of that level. For example, for a 4 KiB page size, a level 2
block entry can only translate up to a granularity of 2 MiB. If the Physical Address is not aligned to 2 MiB then
additional level 3 tables are also needed.

Note that not every translation level allows any type of descriptor. Depending on the page size, levels 0 and
1 of translation may only allow table descriptors. If a block entry could be able to describe a translation, but
that level does not allow block descriptors, a table descriptor will have to be used instead, as well as additional
tables at the next level.

1 That is, when mmap regions do not enforce their mapping granularity.

4.17. Translation (XLAT) Tables Library 281

Trusted Firmware-A, Release 2.10.4

The mmap regions are sorted in a way that simplifies the code that maps them. Even though this ordering is
only strictly needed for overlapping static regions, it must also be applied for dynamic regions to maintain a
consistent order of all regions at all times. As each new region is mapped, existing entries in the translation
tables are checked to ensure consistency. Please refer to the comments in the source code of the core module
for more details about the sorting algorithm in use.

This mapping algorithm does not apply to the MPU library, since the MPU hardware directly maps regions by
“base” and “limit” (bottom and top) addresses.

282 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

TLB maintenance operations

The library takes care of performing TLB maintenance operations when required. For example, when the user
requests removing a dynamic region, the library invalidates all TLB entries associated to that region to ensure
that these changes are visible to subsequent execution, including speculative execution, that uses the changed
translation table entries.

A counter-example is the initialization of translation tables. In this case, explicit TLB maintenance is not
required. The Armv8-A architecture guarantees that all TLBs are disabled from reset and their contents have
no effect on address translation at reset2. Therefore, the TLBs invalidation is deferred to theenable_mmu*()
family of functions, just before the MMU is turned on.

Regarding enabling and disabling memory management, for the MPU library, to reduce confusion, calls to
enable or disable the MPU use mpu in their names in place of mmu. For example, the enable_mmu_el2()
call is changed to enable_mpu_el2().

TLB invalidation is not required when adding dynamic regions either. Dynamic regions are not allowed to
overlap existing memory region. Therefore, if the dynamic mapping request is deemed legitimate, it automat-
ically concerns memory that was not mapped in this translation regime and the library will have initialized
its corresponding translation table entry to an invalid descriptor. Given that the TLBs are not architecturally
permitted to hold any invalid translation table entry3, this means that this mapping cannot be cached in the
TLBs.

Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.

4.18 Chain of trust bindings

The device tree allows to describe the chain of trust with the help of ‘cot’ node which contain ‘manifests’ and
‘images’ as sub-nodes. ‘manifests’ and ‘images’ nodes contains number of sub-nodes (i.e. ‘certificate’ and ‘image’
nodes) mentioning properties of the certificate and image respectively.

Also, device tree describes ‘non-volatile-counters’ node which contains number of sub-nodes mentioning prop-
erties of all non-volatile-counters used in the chain of trust.

4.18.1 cot

This is root node which contains ‘manifests’ and ‘images’ as sub-nodes
2 See section D4.9 Translation Lookaside Buffers (TLBs), subsection TLB behavior at reset in Armv8-A,

rev C.a.
3 See section D4.10.1 General TLB maintenance requirements in Armv8-A, rev C.a.

4.18. Chain of trust bindings 283

Trusted Firmware-A, Release 2.10.4

4.18.2 Manifests and Certificate node bindings definition

• Manifests node
Description: Container of certificate nodes.

PROPERTIES

– compatible:
Usage: required

Value type: <string>

Definition: must be “arm, cert-descs”

• Certificate node
Description:

Describes certificate properties which are used during the authentication process.

PROPERTIES

– root-certificate
Usage:

Required for the certificate with no parent. In other words, certificates which are validated
using root of trust public key.

Value type: <boolean>

– image-id
Usage: Required for every certificate with unique id.

Value type: <u32>

– parent
Usage:

It refers to their parent image, which typically contains information to authenticate the
certificate. This property is required for all non-root certificates.

This property is not required for root-certificates as root-certificates are validated using
root of trust public key provided by platform.

Value type: <phandle>

– signing-key
Usage:

This property is used to refer public key node present in parent certificate node and it
is required property for all non-root certificates which are authenticated using public-key
present in parent certificate.

This property is not required for root-certificates as root-certificates are validated using
root of trust public key provided by platform.

Value type: <phandle>

284 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

– antirollback-counter
Usage:

This property is used by all certificates which are protected against rollback attacks using
a non-volatile counter and it is an optional property.

This property is used to refer one of the non-volatile counter sub-node present in ‘non-
volatile counters’ node.

Value type: <phandle>

SUBNODES

– Description:

Hash and public key information present in the certificate are shown by these nodes.

– public key node
Description: Provide public key information in the certificate.

PROPERTIES

∗ oid
Usage:

This property provides the Object ID of public key provided in the certificate
which the help of which public key information can be extracted.

Value type: <string>

– hash node
Description: Provide the hash information in the certificate.

PROPERTIES

∗ oid
Usage:

This property provides the Object ID of hash provided in the certificate which the
help of which hash information can be extracted.

Value type: <string>

Example:

cot {
manifests {

compatible = "arm, cert-descs”

trusted-key-cert: trusted-key-cert {
root-certificate;
image-id = <TRUSTED_KEY_CERT_ID>;
antirollback-counter = <&trusted_nv_counter>;

trusted-world-pk: trusted-world-pk {
oid = TRUSTED_WORLD_PK_OID;

};

(continues on next page)

4.18. Chain of trust bindings 285

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
non-trusted-world-pk: non-trusted-world-pk {

oid = NON_TRUSTED_WORLD_PK_OID;
};

};

scp_fw_key_cert: scp_fw_key_cert {
image-id = <SCP_FW_KEY_CERT_ID>;
parent = <&trusted-key-cert>;
signing-key = <&trusted_world_pk>;
antirollback-counter = <&trusted_nv_counter>;

scp_fw_content_pk: scp_fw_content_pk {
oid = SCP_FW_CONTENT_CERT_PK_OID;

};
};
.
.
.

next-certificate {

};
};

};

4.18.3 Images and Image node bindings definition

• Images node
Description: Container of image nodes

PROPERTIES

– compatible:
Usage: required

Value type: <string>

Definition: must be “arm, img-descs”

• Image node
Description:

Describes image properties which will be used during authentication process.

PROPERTIES

– image-id
Usage: Required for every image with unique id.

Value type: <u32>

– parent
Usage:

286 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Required for every image to provide a reference to its parent image, which contains the
necessary information to authenticate it.

Value type: <phandle>

– hash
Usage:

Required for all images which are validated using hash method. This property is used to
refer hash node present in parent certificate node.

Value type: <phandle>

Note:

Currently, all images are validated using ‘hash’ method. In future, there may be multiple
methods can be used to validate the image.

Example:

cot {
images {

compatible = "arm, img-descs";

scp_bl2_image {
image-id = <SCP_BL2_IMAGE_ID>;
parent = <&scp_fw_content_cert>;
hash = <&scp_fw_hash>;

};

.

.

.

next-img {

};
};

};

4.18.4 non-volatile counter node binding definition

• non-volatile counters node
Description: Contains properties for non-volatile counters.

PROPERTIES

– compatible:
Usage: required

Value type: <string>

Definition: must be “arm, non-volatile-counter”

4.18. Chain of trust bindings 287

Trusted Firmware-A, Release 2.10.4

– #address-cells
Usage: required

Value type: <u32>

Definition:

Must be set according to address size of non-volatile counter register

– #size-cells
Usage: required

Value type: <u32>

Definition: must be set to 0

SUBNODE

– counters node
Description: Contains various non-volatile counters present in the platform.

PROPERTIES

– id
Usage: Required for every nv-counter with unique id.

Value type: <u32>

– reg
Usage:

Register base address of non-volatile counter and it is required property.

Value type: <u32>

– oid
Usage:

This property provides the Object ID of non-volatile counter provided in the certifi-
cate and it is required property.

Value type: <string>

Example: Below is non-volatile counters example for ARM platform

non_volatile_counters: non_volatile_counters {
compatible = "arm, non-volatile-counter";
#address-cells = <1>;
#size-cells = <0>;

trusted-nv-counter: trusted_nv_counter {
id = <TRUSTED_NV_CTR_ID>;
reg = <TFW_NVCTR_BASE>;
oid = TRUSTED_FW_NVCOUNTER_OID;

};

non_trusted_nv_counter: non_trusted_nv_counter {

(continues on next page)

288 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
id = <NON_TRUSTED_NV_CTR_ID>;
reg = <NTFW_CTR_BASE>;
oid = NON_TRUSTED_FW_NVCOUNTER_OID;

};
};

4.18.5 Future update to chain of trust binding

This binding document needs to be revisited to generalise some terminologies which are currently specific to
X.509 certificates for e.g. Object IDs.

Copyright (c) 2020, Arm Limited. All rights reserved.

4.19 Realm Management Extension (RME)

FEAT_RME (or RME for short) is an Armv9-A extension and is one component of the Arm Confidential
Compute Architecture (Arm CCA). TF-A supports RME starting from version 2.6. This chapter discusses the
changes to TF-A to support RME and provides instructions on how to build and run TF-A with RME.

4.19.1 RME support in TF-A

The following diagram shows an Arm CCA software architecture with TF-A as the EL3 firmware. In the
Arm CCA architecture there are two additional security states and address spaces: Root and Realm. TF-A
firmware runs in the Root world. In the realm world, a RealmManagement Monitor firmware (RMM)manages
the execution of Realm VMs and their interaction with the hypervisor.

RME is the hardware extension to support Arm CCA. To support RME, various changes have been introduced
to TF-A. We discuss those changes below.

4.19. Realm Management Extension (RME) 289

https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.trustedfirmware.org/projects/tf-rmm/

Trusted Firmware-A, Release 2.10.4

Changes to translation tables library

RME adds Root and Realm Physical address spaces. To support this, two newmemory type macros, MT_ROOT
and MT_REALM, have been added to the Translation (XLAT) Tables Library. These macros are used to con-
figure memory regions as Root or Realm respectively.

Note: Only version 2 of the translation tables library supports the new memory types.

Changes to context management

A new CPU context for the Realm world has been added. The existing CPU context management API can be
used to manage Realm context.

Boot flow changes

In a typical TF-A boot flow, BL2 runs at Secure-EL1. However when RME is enabled, TF-A runs in the Root
world at EL3. Therefore, the boot flow is modified to run BL2 at EL3 when RME is enabled. In addition to
this, a Realm-world firmware (RMM) is loaded by BL2 in the Realm physical address space.

The boot flow when RME is enabled looks like the following:

1. BL1 loads and executes BL2 at EL3

2. BL2 loads images including RMM

3. BL2 transfers control to BL31

4. BL31 initializes SPM (if SPM is enabled)

5. BL31 initializes RMM

6. BL31 transfers control to Normal-world software

Granule Protection Tables (GPT) library

Isolation between the four physical address spaces is enforced by a process called Granule Protection Check
(GPC) performed by the MMU downstream any address translation. GPC makes use of Granule Protection
Table (GPT) in the Root world that describes the physical address space assignment of every page (granule). A
GPT library that provides APIs to initialize GPTs and to transition granules between different physical address
spaces has been added. More information about the GPT library can be found in the Granule Protection Tables
Library chapter.

290 Chapter 4. Components

https://www.trustedfirmware.org/projects/tf-rmm/

Trusted Firmware-A, Release 2.10.4

RMM Dispatcher (RMMD)

RMMD is a new standard runtime service that handles the switch to the Realm world. It initializes the RMM
and handles Realm Management Interface (RMI) SMC calls from Non-secure.

There is a contract between RMM and RMMD that defines the arguments that the former needs to take in order
to initialize and also the possible return values. This contract is defined in the RMM Boot Interface, which can
be found at RMM Boot Interface.

There is also a specification of the runtime services provided by TF-A to RMM. This can be found at RMM-EL3
Runtime Interface.

Test Realm Payload (TRP)

TRP is a small test payload that runs at R-EL2 and implements a subset of the Realm Management Interface
(RMI) commands to primarily test EL3 firmware and the interface between R-EL2 and EL3. When building
TF-A with RME enabled, if the path to an RMM image is not provided, TF-A builds the TRP by default and
uses it as the R-EL2 payload.

4.19.2 Building and running TF-A with RME

This section describes how you can build and run TF-A with RME enabled. We assume you have read the
Prerequisites to build TF-A.

The following instructions show you how to build and run TF-A with RME on FVP for two scenarios:

• Three-world execution: This is the configuration to use if Secure world functionality is not needed. TF-A
is tested with the following software entities in each world as listed below:

– NS Host (RME capable Linux or TF-A Tests),

– Root (TF-A)

– R-EL2 (RMM or TRP)

• Four-world execution: This is the configuration to use if both Secure and Realm world functionality is
needed. TF-A is tested with the following software entities in each world as listed below:

– NS Host (RME capable Linux or TF-A Tests),

– Root (TF-A)

– R-EL2 (RMM or TRP)

– S-EL2 (Hafnium SPM)

To run the tests, you need an FVPmodel. Please use the latest version of FVP_Base_RevC-2xAEMvAmodel. If
NS Host is Linux, then the below instructions assume that a suitable RME enabled kernel image and associated
root filesystem are available.

4.19. Realm Management Extension (RME) 291

https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/

Trusted Firmware-A, Release 2.10.4

Three-world execution

1. Clone and build RMM Image

Please refer to the RMM Getting Started on how to setup Host Environment and build RMM. The build com-
mands assume that an AArch64 toolchain and CMake executable are available in the shell PATH variable and
CROSS_COMPILE variable has been setup appropriately.

To clone RMM and build using the default build options for FVP:

git clone --recursive https://git.trustedfirmware.org/TF-RMM/tf-rmm.git
cd tf-rmm
cmake -DRMM_CONFIG=fvp_defcfg -S . -B build
cmake --build build

This will generate rmm.img in build/Release folder.

2. Clone and build TF-A Tests with Realm Payload

This step is only needed if NS Host is TF-A Tests. The full set of instructions to setup build host and build
options for TF-A-Tests can be found in the TFTF Getting Started. TF-A Tests can test Realm world with either
RMM or TRP in R-EL2. In the TRP case, some tests which are not applicable will be skipped.

Use the following instructions to build TF-A with TF-A Tests as the non-secure payload (BL33).

git clone https://git.trustedfirmware.org/TF-A/tf-a-tests.git
cd tf-a-tests
make CROSS_COMPILE=aarch64-none-elf- PLAT=fvp DEBUG=1 ENABLE_REALM_PAYLOAD_
↪→TESTS=1 all

This produces a TF-A Tests binary (tftf.bin) with Realm payload packaged and sp_layout.json in the
build/fvp/debug directory.

3. Build RME Enabled TF-A

The TF-A Getting Started has the necessary instructions to setup Host machine and build TF-A.

To build for RME, set ENABLE_RME build option to 1 and provide the path to the RMM binary rmm.img
using RMM build option.

Note: ENABLE_RME build option is currently experimental.

Note: If the RMM option is not specified, TF-A builds the TRP to load and run at R-EL2.

git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
cd trusted-firmware-a
make CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \
ENABLE_RME=1 \
RMM=<path/to/rmm.img> \

(continues on next page)

292 Chapter 4. Components

https://tf-rmm.readthedocs.io/en/latest/getting_started/index.html
https://www.trustedfirmware.org/projects/tf-rmm/
https://www.trustedfirmware.org/projects/tf-rmm/
https://trustedfirmware-a-tests.readthedocs.io/en/latest/getting_started/index.html
https://www.trustedfirmware.org/projects/tf-rmm/
https://trustedfirmware-a-tests.readthedocs.io/en/latest
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/index.html
https://www.trustedfirmware.org/projects/tf-rmm/

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
DEBUG=1 \
BL33=<path/to/bl33> \
all fip

BL33 can point to a Non Secure Bootloader like UEFI/U-Boot or the TF-A Tests binary(tftf.bin) from the
previous step.

This produces bl1.bin and fip.bin binaries in the build/fvp/debug directory.

TF-A can also directly boot Linux kernel on the FVP. The kernel needs to be preloaded to a suit-
able memory location and this needs to be specified via PRELOADED_BL33_BASE build option. Also
TF-A should implement the Linux kernel register conventions for boot and this can be set using the
ARM_LINUX_KERNEL_AS_BL33 option.

cd trusted-firmware-a
make CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \
ENABLE_RME=1 \
RMM=<path/to/rmm.img> \
FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
DEBUG=1 \
ARM_LINUX_KERNEL_AS_BL33=1 \
PRELOADED_BL33_BASE=0x84000000 \
all fip

The above command assumes that the Linux kernel will be placed in FVP memory at 0x84000000 via suitable
FVP option (see the next step).

4. Running FVP for 3 world setup

Use the following command to run the tests on FVP.

FVP_Base_RevC-2xAEMvA \
-C bp.refcounter.non_arch_start_at_default=1 \
-C bp.secureflashloader.fname=<path/to/bl1.bin> \
-C bp.flashloader0.fname=<path/to/fip.bin> \
-C bp.refcounter.use_real_time=0 \
-C bp.ve_sysregs.exit_on_shutdown=1 \
-C cache_state_modelled=1 \
-C bp.dram_size=4 \
-C bp.secure_memory=1 \
-C pci.pci_smmuv3.mmu.SMMU_ROOT_IDR0=3 \
-C pci.pci_smmuv3.mmu.SMMU_ROOT_IIDR=0x43B \
-C pci.pci_smmuv3.mmu.root_register_page_offset=0x20000 \
-C cluster0.NUM_CORES=4 \
-C cluster0.PA_SIZE=48 \
-C cluster0.ecv_support_level=2 \
-C cluster0.gicv3.cpuintf-mmap-access-level=2 \
-C cluster0.gicv3.without-DS-support=1 \
-C cluster0.gicv4.mask-virtual-interrupt=1 \
-C cluster0.has_arm_v8-6=1 \

(continues on next page)

4.19. Realm Management Extension (RME) 293

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
-C cluster0.has_amu=1 \
-C cluster0.has_branch_target_exception=1 \
-C cluster0.rme_support_level=2 \
-C cluster0.has_rndr=1 \
-C cluster0.has_v8_7_pmu_extension=2 \
-C cluster0.max_32bit_el=-1 \
-C cluster0.stage12_tlb_size=1024 \
-C cluster0.check_memory_attributes=0 \
-C cluster0.ish_is_osh=1 \
-C cluster0.restriction_on_speculative_execution=2 \
-C cluster0.restriction_on_speculative_execution_aarch32=2 \
-C cluster1.NUM_CORES=4 \
-C cluster1.PA_SIZE=48 \
-C cluster1.ecv_support_level=2 \
-C cluster1.gicv3.cpuintf-mmap-access-level=2 \
-C cluster1.gicv3.without-DS-support=1 \
-C cluster1.gicv4.mask-virtual-interrupt=1 \
-C cluster1.has_arm_v8-6=1 \
-C cluster1.has_amu=1 \
-C cluster1.has_branch_target_exception=1 \
-C cluster1.rme_support_level=2 \
-C cluster1.has_rndr=1 \
-C cluster1.has_v8_7_pmu_extension=2 \
-C cluster1.max_32bit_el=-1 \
-C cluster1.stage12_tlb_size=1024 \
-C cluster1.check_memory_attributes=0 \
-C cluster1.ish_is_osh=1 \
-C cluster1.restriction_on_speculative_execution=2 \
-C cluster1.restriction_on_speculative_execution_aarch32=2 \
-C pctl.startup=0.0.0.0 \
-C bp.smsc_91c111.enabled=1 \
-C bp.hostbridge.userNetworking=1 \
-C bp.virtioblockdevice.image_path=<path/to/rootfs.ext4>

The bp.virtioblockdevice.image_path option presents the rootfs as a virtio block device to Linux
kernel. It can be ignored if NS Host is TF-A-Tests or rootfs is accessed by some other mechanism.

If TF-A was built to expect a preloaded Linux kernel, then use the following FVP argument to load the kernel
image at the expected address.

--data cluster0.cpu0=<path_to_kernel_Image>@0x84000000 \

Tip:

Tips to boot and run Linux faster on the FVP :

1. Set the FVP option cache_state_modelled to 0.

2. Disable the CPU Idle driver in Linux either by setting the kernel command line parameter “cpui-
dle.off=1” or by disabling the CONFIG_CPU_IDLE kernel config.

294 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

If the NS Host is TF-A-Tests, then the default test suite in TFTF will execute on the FVP and this includes
Realm world tests. The tail of the output from uart0 should look something like the following.

...

> Test suite 'FF-A Interrupt'
Passed

> Test suite 'SMMUv3 tests'
Passed

> Test suite 'PMU Leakage'
Passed

> Test suite 'DebugFS'
Passed

> Test suite 'RMI and SPM tests'
Passed

> Test suite 'Realm payload at EL1'
Passed

> Test suite 'Invalid memory access'
Passed

...

Four-world execution

Four-world execution involves software components in each security state: root, secure, realm and non-secure.
This section describes how to build TF-A with four-world support.

We use TF-A as the root firmware, Hafnium SPM is the reference Secure world component running at S-EL2.
RMM can be built as described in previous section. The examples below assume TF-A-Tests as the NS Host
and utilize SPs from TF-A-Tests.

1. Obtain and build Hafnium SPM

git clone --recurse-submodules https://git.trustedfirmware.org/hafnium/
↪→hafnium.git
cd hafnium
Use the default prebuilt LLVM/clang toolchain
PATH=$PWD/prebuilts/linux-x64/clang/bin:$PWD/prebuilts/linux-x64/dtc:$PATH

Feature MTE needs to be disabled in Hafnium build, apply following patch to project/reference submodule

diff --git a/BUILD.gn b/BUILD.gn
index cc6a78f..234b20a 100644
--- a/BUILD.gn
+++ b/BUILD.gn
@@ -83,7 +83,6 @@ aarch64_toolchains("secure_aem_v8a_fvp") {

pl011_base_address = "0x1c090000"
smmu_base_address = "0x2b400000"
smmu_memory_size = "0x100000"

- enable_mte = "1"
plat_log_level = "LOG_LEVEL_INFO"

}
}

4.19. Realm Management Extension (RME) 295

https://www.trustedfirmware.org/projects/hafnium
https://www.trustedfirmware.org/projects/tf-rmm/

Trusted Firmware-A, Release 2.10.4

make PROJECT=reference

The Hafnium binary should be located at out/reference/secure_aem_v8a_fvp_clang/hafnium.bin

2. Build RME enabled TF-A with SPM

Build TF-A with RME as well as SPM enabled.

Use the sp_layout.json previously generated in TF-A Tests build to run SP tests.

make CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \
ENABLE_RME=1 \
FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
SPD=spmd \
BRANCH_PROTECTION=1 \
CTX_INCLUDE_PAUTH_REGS=1 \
DEBUG=1 \
SP_LAYOUT_FILE=<path/to/sp_layout.json> \
BL32=<path/to/hafnium.bin> \
BL33=<path/to/tftf.bin> \
RMM=<path/to/rmm.img> \
all fip

3. Running the FVP for a 4 world setup

Use the following arguments in addition to the FVP options mentioned in 4. Running FVP for 3 world setup to
run tests for 4 world setup.

-C pci.pci_smmuv3.mmu.SMMU_AIDR=2 \
-C pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B \
-C pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 \
-C pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714 \
-C pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0475 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0

4.20 RMM-EL3 Communication interface

This document defines the communication interface between RMM and EL3. There are two parts in this
interface: the boot interface and the runtime interface.

The Boot Interface defines the ABI between EL3 and RMM when the CPU enters R-EL2 for the first time
after boot. The cold boot interface defines the ABI for the cold boot path and the warm boot interface defines
the same for the warm path.

The RMM-EL3 runtime interface defines the ABI for EL3 services which can be invoked by RMM as well as
the register save-restore convention when handling an SMC call from NS.

The below sections discuss these interfaces more in detail.

296 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.20.1 RMM-EL3 Interface versioning

The RMM Boot and Runtime Interface uses a version number to check compatibility with the register argu-
ments passed as part of Boot Interface and RMM-EL3 runtime interface.

The Boot Manifest, discussed later in section Boot Manifest, uses a separate version number but with the same
scheme.

The version number is a 32-bit type with the following fields:

Bits Value
[0:15] VERSION_MINOR

[16:30] VERSION_MAJOR

[31] RES0

The version numbers are sequentially increased and the rules for updating them are explained below:

• VERSION_MAJOR: This value is increased when changes break compatibility with previous versions. If
the changes on the ABI are compatible with the previous one, VERSION_MAJOR remains unchanged.

• VERSION_MINOR: This value is increased on any change that is backwards compatible with the previ-
ous version. When VERSION_MAJOR is increased, VERSION_MINOR must be set to 0.

• RES0: Bit 31 of the version number is reserved 0 as to maintain consistency with the versioning schemes
used in other parts of RMM.

This document specifies the 0.2 version of Boot Interface ABI and RMM-EL3 services specification and the
0.2 version of the Boot Manifest.

4.20.2 RMM Boot Interface

This section deals with the Boot Interface part of the specification.

One of the goals of the Boot Interface is to allow EL3 firmware to pass down into RMMcertain platform specific
information dynamically. This allows RMM to be less platform dependent and be more generic across platform
variations. It also allows RMM to be decoupled from the other boot loader images in the boot sequence and
remain agnostic of any particular format used for configuration files.

The Boot Interface ABI defines a set of register conventions and also a memory based manifest file to pass
information from EL3 to RMM. The Boot Manifest and the associated platform data in it can be dynamically
created by EL3 and there is no restriction on how the data can be obtained (e.g by DTB, hoblist or other).

The register convention and the manifest are versioned separately to manage future enhancements and com-
patibility.

RMM completes the boot by issuing the RMM_BOOT_COMPLETE SMC (0xC40001CF) back to EL3. After
the RMM has finished the boot process, it can only be entered from EL3 as part of RMI handling.

If RMM returns an error during boot (in any CPU), then RMM must not be entered from any CPU.

4.20. RMM-EL3 Communication interface 297

Trusted Firmware-A, Release 2.10.4

Cold Boot Interface

During cold boot RMM expects the following register values:

Register Value
x0 Linear index of this PE. This index starts from 0 and must be less than the maximum

number of CPUs to be supported at runtime (see x2).
x1 Version for this Boot Interface as defined in RMM-EL3 Interface versioning.
x2 Maximum number of CPUs to be supported at runtime. RMM should ensure that it can

support this maximum number.
x3 Base address for the shared buffer used for communication between EL3 firmware and

RMM. This buffer must be of 4KB size (1 page). The Boot Manifest must be present at
the base of this shared buffer during cold boot.

During cold boot, EL3 firmware needs to allocate a 4KB page that will be passed to RMM in x3. This memory
will be used as shared buffer for communication between EL3 and RMM. It must be assigned to Realm world
and must be mapped with Normal memory attributes (IWB-OWB-ISH) at EL3. At boot, this memory will be
used to populate the Boot Manifest. Since the Boot Manifest can be accessed by RMM prior to enabling its
MMU, EL3 must ensure that proper cache maintenance operations are performed after the Boot Manifest is
populated.

EL3 should also ensure that this shared buffer is always available for use by RMM during the lifetime of the
system and that it can be used for runtime communication between RMM and EL3. For example, when RMM
invokes attestation service commands in EL3, this buffer can be used to exchange data between RMM and
EL3. It is also allowed for RMM to invoke runtime services provided by EL3 utilizing this buffer during the
boot phase, prior to return back to EL3 via RMM_BOOT_COMPLETE SMC.

RMM should map this memory page into its Stage 1 page-tables using Normal memory attributes.

During runtime, it is the RMM which initiates any communication with EL3. If that communication requires
the use of the shared area, it is expected that RMM needs to do the necessary concurrency protection to prevent
the use of the same buffer by other PEs.

The following sequence diagram shows how a generic EL3 Firmware would boot RMM.

298 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Warm Boot Interface

At warm boot, RMM is already initialized and only some per-CPU initialization is still pending. The only
argument that is required by RMM at this stage is the CPU Id, which will be passed through register x0 whilst
x1 to x3 are RES0. This is summarized in the following table:

Register Value
x0 Linear index of this PE. This index starts from 0 and must be less than the maximum

number of CPUs to be supported at runtime (see x2).
x1 - x3 RES0

4.20. RMM-EL3 Communication interface 299

Trusted Firmware-A, Release 2.10.4

Boot error handling and return values

After boot up and initialization, RMM returns control back to EL3 through a RMM_BOOT_COMPLETE SMC
call. The only argument of this SMC call will be returned in x1 and it will encode a signed integer with the
error reason as per the following table:

Error code Description ID
E_RMM_BOOT_SUCCESS Boot successful 0
E_RMM_BOOT_ERR_UNKNOWNUnknown error -1
E_RMM_BOOT_VERSION_NOT_VALIDBoot Interface version reported by EL3 is not supported by

RMM
-2

E_RMM_BOOT_CPUS_OUT_OF_RANGENumber of CPUs reported by EL3 larger than maximum
supported by RMM

-3

E_RMM_BOOT_CPU_ID_OUT_OF_RANGECurrent CPU Id is higher or equal than the number of CPUs
supported by RMM

-4

E_RMM_BOOT_INVALID_SHARED_BUFFERInvalid pointer to shared memory area -5
E_RMM_BOOT_MANIFEST_VERSION_NOT_SUPPORTEDVersion reported by the Boot Manifest not supported by

RMM
-6

E_RMM_BOOT_MANIFEST_DATA_ERRORError parsing core Boot Manifest -7

For any error detected in RMM during cold or warm boot, RMM will return back to EL3 using
RMM_BOOT_COMPLETE SMC with an appropriate error code. It is expected that EL3 will take necessary
action to disable Realm world for further entry from NS Host on receiving an error. This will be done across
all the PEs in the system so as to present a symmetric view to the NS Host. Any further warm boot by any PE
should not enter RMM using the warm boot interface.

Boot Manifest

During cold boot, EL3 Firmware passes a memory Boot Manifest to RMM containing platform information.

This Boot Manifest is versioned independently of the Boot Interface, to help evolve the former independent of
the latter. The current version for the Boot Manifest is v0.2 and the rules explained in RMM-EL3 Interface
versioning apply on this version as well.

The Boot Manifest v0.2 has the following fields:

• version : Version of the Manifest (v0.2)

• plat_data : Pointer to the platform specific data and not specified by this document. These data are
optional and can be NULL.

• plat_dram : Structure encoding the NS DRAM information on the platform. This field is also optional
and platform can choose to zero out this structure if RMM does not need EL3 to send this information
during the boot.

For the current version of the Boot Manifest, the core manifest contains a pointer to the platform data. EL3
must ensure that the whole Boot Manifest, including the platform data, if available, fits inside the RMM EL3
shared buffer.

For the data structure specification of Boot Manifest, refer to RMM-EL3 Boot Manifest structure

300 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.20.3 RMM-EL3 Runtime Interface

This section defines the RMM-EL3 runtime interface which specifies the ABI for EL3 services expected by
RMM at runtime as well as the register save and restore convention between EL3 and RMM as part of RMI call
handling. It is important to note that RMM is allowed to invoke EL3-RMM runtime interface services during
the boot phase as well. The EL3 runtime service handling must not result in a world switch to another world
unless specified. Both the RMM and EL3 are allowed to make suitable optimizations based on this assumption.

If the interface requires the use of memory, then the memory references should be within the shared buffer
communicated as part of the boot interface. See Cold Boot Interface for properties of this shared buffer which
both EL3 and RMM must adhere to.

RMM-EL3 runtime service return codes

The return codes from EL3 to RMM is a 32 bit signed integer which encapsulates error condition as described
in the following table:

Error code Description ID
E_RMM_OK No errors detected 0
E_RMM_UNK Unknown/Generic error -1
E_RMM_BAD_ADDR The value of an address used as argument was invalid -2
E_RMM_BAD_PAS Incorrect PAS -3
E_RMM_NOMEM Not enough memory to perform an operation -4
E_RMM_INVAL The value of an argument was invalid -5

If multiple failure conditions are detected in an RMM to EL3 command, then EL3 is allowed to return an error
code corresponding to any of the failure conditions.

RMM-EL3 runtime services

The following table summarizes the RMM runtime services that need to be implemented by EL3 Firmware.

FID Command
0xC400018F RMM_RMI_REQ_COMPLETE

0xC40001B0 RMM_GTSI_DELEGATE

0xC40001B1 RMM_GTSI_UNDELEGATE

0xC40001B2 RMM_ATTEST_GET_REALM_KEY

0xC40001B3 RMM_ATTEST_GET_PLAT_TOKEN

4.20. RMM-EL3 Communication interface 301

Trusted Firmware-A, Release 2.10.4

RMM_RMI_REQ_COMPLETE command

Notifies the completion of an RMI call to the Non-Secure world.

This call is the only function currently in RMM-EL3 runtime interface which results in a world switch to NS.
This call is the reply to the original RMI call and it is forwarded by EL3 to the NS world.

FID

0xC400018F

Input values

Name Regis-
ter

Field Type Description

fid x0 [63:0] UInt64 Command FID
err_code x1 [63:0] Rmi-

Com-
man-
dReturn-
Code

Error code returned by the RMI service invoked by NS
World. See Realm Management Monitor specification for
more info

Output values

This call does not return.

Failure conditions

Since this call does not return to RMM, there is no failure condition which can be notified back to RMM.

RMM_GTSI_DELEGATE command

Delegate a memory granule by changing its PAS from Non-Secure to Realm.

302 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

FID

0xC40001B0

Input values

Name Regis-
ter

Field Type Description

fid x0 [63:0] UInt64 Command FID
base_pa x1 [63:0] Address PA of the start of the granule to be delegated

Output values

Name Regis-
ter

Field Type Description

Result x0 [63:0] Error Code Command return status

Failure conditions

The table below shows all the possible error codes returned in Result upon a failure. The errors are ordered
by condition check.

ID Condition
E_RMM_BAD_ADDRPA does not correspond to a valid granule address
E_RMM_BAD_PASThe granule pointed by PA does not belong to Non-Secure PAS
E_RMM_OK No errors detected

RMM_GTSI_UNDELEGATE command

Undelegate a memory granule by changing its PAS from Realm to Non-Secure.

FID

0xC40001B1

4.20. RMM-EL3 Communication interface 303

Trusted Firmware-A, Release 2.10.4

Input values

Name Regis-
ter

Field Type Description

fid x0 [63:0] UInt64 Command FID
base_pa x1 [63:0] Address PA of the start of the granule to be undelegated

Output values

Name Regis-
ter

Field Type Description

Result x0 [63:0] Error Code Command return status

Failure conditions

The table below shows all the possible error codes returned in Result upon a failure. The errors are ordered
by condition check.

ID Condition
E_RMM_BAD_ADDRPA does not correspond to a valid granule address
E_RMM_BAD_PASThe granule pointed by PA does not belong to Realm PAS
E_RMM_OK No errors detected

RMM_ATTEST_GET_REALM_KEY command

Retrieve the Realm Attestation Token Signing key from EL3.

FID

0xC40001B2

304 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Input values

Name Regis-
ter

Field Type Description

fid x0 [63:0] UInt64 Command FID
buf_pa x1 [63:0] Address PA where the Realm Attestation Key must be stored by

EL3. The PA must belong to the shared buffer
buf_size x2 [63:0] Size Size in bytes of the Realm Attestation Key buffer. bufPa

+ bufSize must lie within the shared buffer
ecc_curve x3 [63:0] Enum Type of the elliptic curve to which the requested attestation

key belongs to. See Supported ECC Curves

Output values

Name Regis-
ter

Field Type Description

Result x0 [63:0] Error
Code

Command return status

keySize x1 [63:0] Size Size of the Realm Attestation Key

Failure conditions

The table below shows all the possible error codes returned in Result upon a failure. The errors are ordered
by condition check.

ID Condition
E_RMM_BAD_ADDRPA is outside the shared buffer
E_RMM_INVAL PA + BSize is outside the shared buffer
E_RMM_INVAL Curve is not one of the listed in Supported ECC Curves
E_RMM_UNK An unknown error occurred whilst processing the command
E_RMM_OK No errors detected

Supported ECC Curves

ID Curve
0 ECC SECP384R1

4.20. RMM-EL3 Communication interface 305

Trusted Firmware-A, Release 2.10.4

RMM_ATTEST_GET_PLAT_TOKEN command

Retrieve the Platform Token from EL3.

FID

0xC40001B3

Input values

Name Regis-
ter

Field Type Description

fid x0 [63:0] UInt64 Command FID
buf_pa x1 [63:0] Address PA of the platform attestation token. The challenge object

is passed in this buffer. The PA must belong to the shared
buffer

buf_size x2 [63:0] Size Size in bytes of the platform attestation token buffer.
bufPa + bufSize must lie within the shared buffer

c_size x3 [63:0] Size Size in bytes of the challenge object. It corresponds to the
size of one of the defined SHA algorithms

Output values

Name Regis-
ter

Field Type Description

Result x0 [63:0] Error
Code

Command return status

token-
Size

x1 [63:0] Size Size of the platform token

Failure conditions

The table below shows all the possible error codes returned in Result upon a failure. The errors are ordered
by condition check.

ID Condition
E_RMM_BAD_ADDRPA is outside the shared buffer
E_RMM_INVAL PA + BSize is outside the shared buffer
E_RMM_INVAL CSize does not represent the size of a supported SHA algorithm
E_RMM_UNK An unknown error occurred whilst processing the command
E_RMM_OK No errors detected

306 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

4.20.4 RMM-EL3 world switch register save restore convention

As part of NS world switch, EL3 is expected to maintain a register context specific to each world and will
save and restore the registers appropriately. This section captures the contract between EL3 and RMM on the
register set to be saved and restored.

EL3 must maintain a separate register context for the following:

1. General purpose registers (x0-x30) and sp_el0, sp_el2 stack pointers

2. EL2 system register context for all enabled features by EL3. These include system registers with the
_EL2 prefix. The EL2 physical and virtual timer registers must not be included in this.

As part of SMC forwarding between the NS world and Realm world, EL3 allows x0-x7 to be passed as argu-
ments to Realm and x0-x4 to be used for return arguments back to Non Secure. As per SMCCCv1.2, x4 must
be preserved if not being used as return argument by the SMC function and it is the responsibility of RMM to
preserve this or use this as a return argument. EL3 will always copy x0-x4 from Realm context to NS Context.

EL3 must save and restore the following as part of world switch:

1. EL2 system registers with the exception of zcr_el2 register.

2. PAuth key registers (APIA, APIB, APDA, APDB, APGA).

EL3 will not save some registers as mentioned in the below list. It is the responsibility of RMM to ensure that
these are appropriately saved if the Realm World makes use of them:

1. FP/SIMD registers

2. SVE registers

3. SME registers

4. EL1/0 registers with the exception of PAuth key registers as mentioned above.

5. zcr_el2 register.

It is essential that EL3 honors this contract to maintain the Confidentiality and integrity of the Realm world.

SMCCC v1.3 allows NS world to specify whether SVE context is in use. In this case, RMM could choose to
not save the incoming SVE context but must ensure to clear SVE registers if they have been used in Realm
World. The same applies to SME registers.

4.20.5 Types

RMM-EL3 Boot Manifest structure

The RMM-EL3 Boot Manifest v0.2 structure contains platform boot information passed from EL3 to RMM.
The size of the Boot Manifest is 40 bytes.

The members of the RMM-EL3 Boot Manifest structure are shown in the following table:

4.20. RMM-EL3 Communication interface 307

Trusted Firmware-A, Release 2.10.4

Name Offset Type Description
version 0 uint32_t Boot Manifest version
padding 4 uint32_t Reserved, set to 0
plat_data 8 uintptr_t Pointer to Platform Data section
plat_dram 16 ns_dram_info NS DRAM Layout Info structure

NS DRAM Layout Info structure

NS DRAM Layout Info structure contains information about platform Non-secure DRAM layout. The mem-
bers of this structure are shown in the table below:

Name Offset Type Description
num_banks 0 uint64_t Number of NS DRAM banks
banks 8 ns_dram_bank * Pointer to ‘ns_dram_bank’[] array
checksum 16 uint64_t Checksum

Checksum is calculated as two’s complement sum of ‘num_banks’, ‘banks’ pointer and DRAM banks data array
pointed by it.

NS DRAM Bank structure

NS DRAM Bank structure contains information about each Non-secure DRAM bank:

Name Offset Type Description
base 0 uintptr_t Base address
size 8 uint64_t Size of bank in bytes

4.21 Granule Protection Tables Library

This document describes the design of the granule protection tables (GPT) library used by Trusted Firmware-
A (TF-A). This library provides the APIs needed to initialize the GPTs based on a data structure containing
information about the systemsmemory layout, configure the system registers to enable granule protection checks
based on these tables, and transition granules between different PAS (physical address spaces) at runtime.

Arm CCA adds two new security states for a total of four: root, realm, secure, and non-secure. In addition to
new security states, corresponding physical address spaces have been added to control memory access for each
state. The PAS access allowed to each security state can be seen in the table below.

308 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

Table 1: Security states and PAS access rights
Root state Realm state Secure state Non-secure state

Root PAS yes no no no
Realm PAS yes yes no no
Secure PAS yes no yes no
Non-secure PAS yes yes yes yes

The GPT can function as either a 1 level or 2 level lookup depending on how a PAS region is configured. The
first step is the level 0 table, each entry in the level 0 table controls access to a relatively large region in memory
(block descriptor), and the entire region can belong to a single PAS when a one step mapping is used, or a
level 0 entry can link to a level 1 table where relatively small regions (granules) of memory can be assigned to
different PAS with a 2 step mapping. The type of mapping used for each PAS is determined by the user when
setting up the configuration structure.

4.21.1 Design Concepts and Interfaces

This section covers some important concepts and data structures used in the GPT library.

There are three main parameters that determine how the tables are organized and function: the PPS (protected
physical space) which is the total amount of protected physical address space in the system, PGS (physical
granule size) which is how large each level 1 granule is, and L0GPTSZ (level 0 GPT size) which determines
how much physical memory is governed by each level 0 entry. A granule is the smallest unit of memory that
can be independently assigned to a PAS.

L0GPTSZ is determined by the hardware and is read from the GPCCR_EL3 register. PPS and PGS are passed
into the APIs at runtime and can be determined in whatever way is best for a given platform, either through
some algorithm or hard coded in the firmware.

GPT setup is split into two parts: table creation and runtime initialization. In the table creation step, a data
structure containing information about the desired PAS regions is passed into the library which validates the
mappings, creates the tables in memory, and enables granule protection checks. In the runtime initialization
step, the runtime firmware locates the existing tables in memory using the GPT register configuration and saves
important data to a structure used by the granule transition service which will be covered more below.

In the reference implementation for FVP models, you can find an example of PAS region definitions in
the file include/plat/arm/common/arm_pas_def.h. Table creation API calls can be found in
plat/arm/common/arm_bl2_setup.c and runtime initialization API calls can be seen in plat/
arm/common/arm_bl31_setup.c.

4.21. Granule Protection Tables Library 309

Trusted Firmware-A, Release 2.10.4

Defining PAS regions

A pas_region_t structure is a way to represent a physical address space and its attributes that can be used
by the GPT library to initialize the tables.

This structure is composed of the following:

1. The base physical address

2. The region size

3. The desired attributes of this memory region (mapping type, PAS type)

See the pas_region_t type in include/lib/gpt_rme/gpt_rme.h.

The programmer should provide the API with an array containing pas_region_t structures, then the library
will check the desired memory access layout for validity and create tables to implement it.

pas_region_t is a public type, however it is recommended that the macros GPT_MAP_REGION_BLOCK
and GPT_MAP_REGION_GRANULE be used to populate these structures instead of doing it manually to re-
duce the risk of future compatibility issues. These macros take the base physical address, region size, and PAS
type as arguments to generate the pas_region_t structure. As the names imply, GPT_MAP_REGION_BLOCK
creates a region using only L0 mapping while GPT_MAP_REGION_GRANULE creates a region using L0 and
L1 mappings.

Level 0 and Level 1 Tables

The GPT initialization APIs require memory to be passed in for the tables to be constructed,
gpt_init_l0_tables takes a memory address and size for building the level 0 tables and
gpt_init_pas_l1_tables takes an address and size for building the level 1 tables which are linked
from level 0 descriptors. The tables should have PAS type GPT_GPI_ROOT and a typical system might place
its level 0 table in SRAM and its level 1 table(s) in DRAM.

Granule Transition Service

The Granule Transition Service allows memory mapped with GPT_MAP_REGION_GRANULE ownership
to be changed using SMC calls. Non-secure granules can be transitioned to either realm or secure space, and
realm and secure granules can be transitioned back to non-secure. This library only allows memory mapped as
granules to be transitioned, memory mapped as blocks have their GPIs fixed after table creation.

4.21.2 Library APIs

The public APIs and types can be found in include/lib/gpt_rme/gpt_rme.h and this section is
intended to provide additional details and clarifications.

To create the GPTs and enable granule protection checks the APIs need to be called in the correct order and
at the correct time during the system boot process.

1. Firmware must enable the MMU.

310 Chapter 4. Components

Trusted Firmware-A, Release 2.10.4

2. Firmware must call gpt_init_l0_tables to initialize the level 0 tables to a default state, that is,
initializing all of the L0 descriptors to allow all accesses to all memory. The PPS is provided to this
function as an argument.

3. DDR discovery and initialization by the system, the discovered DDR region(s) are then added to the L1
PAS regions to be initialized in the next step and used by the GTSI at runtime.

4. Firmware must call gpt_init_pas_l1_tables with a pointer to an array of pas_region_t
structures containing the desired memory access layout. The PGS is provided to this function as an
argument.

5. Firmware must call gpt_enable to enable granule protection checks by setting the correct register
values.

6. In systems that make use of the granule transition service, runtime firmware must call
gpt_runtime_init to set up the data structures needed by the GTSI to find the tables and tran-
sition granules between PAS types.

API Constraints

The values allowed by the API for PPS and PGS are enumerated types defined in the file include/lib/
gpt_rme/gpt_rme.h.

Allowable values for PPS along with their corresponding size.

• GPCCR_PPS_4GB (4GB protected space, 0x100000000 bytes)

• GPCCR_PPS_64GB (64GB protected space, 0x1000000000 bytes)

• GPCCR_PPS_1TB (1TB protected space, 0x10000000000 bytes)

• GPCCR_PPS_4TB (4TB protected space, 0x40000000000 bytes)

• GPCCR_PPS_16TB (16TB protected space, 0x100000000000 bytes)

• GPCCR_PPS_256TB (256TB protected space, 0x1000000000000 bytes)

• GPCCR_PPS_4PB (4PB protected space, 0x10000000000000 bytes)

Allowable values for PGS along with their corresponding size.

• GPCCR_PGS_4K (4KB granules, 0x1000 bytes)

• GPCCR_PGS_16K (16KB granules, 0x4000 bytes)

• GPCCR_PGS_64K (64KB granules, 0x10000 bytes)

Allowable values for L0GPTSZ along with the corresponding size.

• GPCCR_L0GPTSZ_30BITS (1GB regions, 0x40000000 bytes)

• GPCCR_L0GPTSZ_34BITS (16GB regions, 0x400000000 bytes)

• GPCCR_L0GPTSZ_36BITS (64GB regions, 0x1000000000 bytes)

• GPCCR_L0GPTSZ_39BITS (512GB regions, 0x8000000000 bytes)

4.21. Granule Protection Tables Library 311

Trusted Firmware-A, Release 2.10.4

Note that the value of the PPS, PGS, and L0GPTSZ definitions is an encoded value corresponding to the size,
not the size itself. The decoded hex representations of the sizes have been provided for convenience.

The L0 table memory has some constraints that must be taken into account.

• The L0 table must be aligned to either the table size or 4096 bytes, whichever is greater. L0 table size is
the total protected space (PPS) divided by the size of each L0 region (L0GPTSZ) multiplied by the size
of each L0 descriptor (8 bytes). ((PPS / L0GPTSZ) * 8)

• The L0 memory size must be greater than or equal to the table size.

• The L0 memory must fall within a PAS of type GPT_GPI_ROOT.

The L1 memory also has some constraints.

• The L1 tables must be aligned to their size. The size of each L1 table is the size of each L0 region
(L0GPTSZ) divided by the granule size (PGS) divided by the granules controlled in each byte (2).
((L0GPTSZ / PGS) / 2)

• There must be enough L1 memory supplied to build all requested L1 tables.

• The L1 memory must fall within a PAS of type GPT_GPI_ROOT.

If an invalid combination of parameters is supplied, the APIs will print an error message and return a negative
value. The return values of APIs should be checked to ensure successful configuration.

Sample Calculation for L0 memory size and alignment

Let PPS=GPCCR_PPS_4GB and L0GPTSZ=GPCCR_L0GPTSZ_30BITS

We can find the total L0 table size with ((PPS / L0GPTSZ) * 8)

Substitute values to get this: ((0x100000000 / 0x40000000) * 8)

And solve to get 32 bytes. In this case, 4096 is greater than 32, so the L0 tables must be aligned to 4096 bytes.

Sample calculation for L1 table size and alignment

Let PGS=GPCCR_PGS_4K and L0GPTSZ=GPCCR_L0GPTSZ_30BITS

We can find the size of each L1 table with ((L0GPTSZ / PGS) / 2).

Substitute values: ((0x40000000 / 0x1000) / 2)

And solve to get 0x20000 bytes per L1 table.

312 Chapter 4. Components

CHAPTER

FIVE

SYSTEM DESIGN

5.1 Alternative Boot Flows

5.1.1 EL3 payloads alternative boot flow

On a pre-production system, the ability to execute arbitrary, bare-metal code at the highest exception level is
required. It allows full, direct access to the hardware, for example to run silicon soak tests.

Although it is possible to implement some baremetal secure firmware from scratch, this is a complex task on
some platforms, depending on the level of configuration required to put the system in the expected state.

Rather than booting a baremetal application, a possible compromise is to boot EL3 payloads through TF-A
instead. This is implemented as an alternative boot flow, where a modified BL2 boots an EL3 payload, instead
of loading the other BL images and passing control to BL31. It reduces the complexity of developing EL3
baremetal code by:

• putting the system into a known architectural state;

• taking care of platform secure world initialization;

• loading the SCP_BL2 image if required by the platform.

When booting an EL3 payload on Arm standard platforms, the configuration of the TrustZone controller is
simplified such that only region 0 is enabled and is configured to permit secure access only. This gives full
access to the whole DRAM to the EL3 payload.

The system is left in the same state as when entering BL31 in the default boot flow. In particular:

• Running in EL3;

• Current state is AArch64;

• Little-endian data access;

• All exceptions disabled;

• MMU disabled;

• Caches disabled.

313

Trusted Firmware-A, Release 2.10.4

Booting an EL3 payload

The EL3 payload image is a standalone image and is not part of the FIP. It is not loaded by TF-A. Therefore,
there are 2 possible scenarios:

• The EL3 payload may reside in non-volatile memory (NVM) and execute in place. In this case, booting
it is just a matter of specifying the right address in NVM through EL3_PAYLOAD_BASEwhen building
TF-A.

• The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at run-time.

To help in the latter scenario, the SPIN_ON_BL1_EXIT=1 build option can be used. The infinite loop that
it introduces in BL1 stops execution at the right moment for a debugger to take control of the target and load
the payload (for example, over JTAG).

It is expected that this loading method will work in most cases, as a debugger connection is usually available
in a pre-production system. The user is free to use any other platform-specific mechanism to load the EL3
payload, though.

5.1.2 Preloaded BL33 alternative boot flow

Some platforms have the ability to preload BL33 into memory instead of relying on TF-A to load it. This may
simplify packaging of the normal world code and improve performance in a development environment. When
secure world cold boot is complete, TF-A simply jumps to a BL33 base address provided at build time.

For this option to be used, the PRELOADED_BL33_BASE build option has to be used when compiling TF-A.
For example, the following command will create a FIP without a BL33 and prepare to jump to a BL33 image
loaded at address 0x80000000:

make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip

Copyright (c) 2019, Arm Limited. All rights reserved.

5.2 Authentication Framework & Chain of Trust

The aim of this document is to describe the authentication framework implemented in Trusted Firmware-A
(TF-A). This framework fulfills the following requirements:

1. It should be possible for a platform port to specify the Chain of Trust in terms of certificate hierarchy
and the mechanisms used to verify a particular image/certificate.

2. The framework should distinguish between:

• The mechanism used to encode and transport information, e.g. DER encoded X.509v3 certificates
to ferry Subject Public Keys, hashes and non-volatile counters.

• The mechanism used to verify the transported information i.e. the cryptographic libraries.

The framework has been designed following a modular approach illustrated in the next diagram:

314 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

+---------------+---------------+------------+
Trusted	Trusted	Trusted
Firmware	Firmware	Firmware
Generic	IO Framework	Platform
Code i.e.	(IO)	Port
BL1/BL2 (GEN)		(PP)
+---------------+---------------+------------+

^ ^ ^
| | |
v v v

+-----------+ +-----------+ +-----------+
				Image
Crypto		Auth		Parser
Module	<->	Module	<->	Module
(CM)		(AM)		(IPM)
+-----------+ +-----------+ +-----------+

^ ^
| |
v v

+----------------+ +-----------------+
| Cryptographic | | Image Parser |
| Libraries (CL) | | Libraries (IPL) |
+----------------+ +-----------------+

| |
| |
| |
v v
+-----------------+
| Misc. Libs e.g. |
| ASN.1 decoder |
| |
+-----------------+

DIAGRAM 1.

This document describes the inner details of the authentication framework and the abstraction mechanisms
available to specify a Chain of Trust.

5.2.1 Framework design

This section describes some aspects of the framework design and the rationale behind them. These aspects are
key to verify a Chain of Trust.

5.2. Authentication Framework & Chain of Trust 315

Trusted Firmware-A, Release 2.10.4

Chain of Trust

A CoT is basically a sequence of authentication images which usually starts with a root of trust and culminates
in a single data image. The following diagram illustrates how this maps to a CoT for the BL31 image described
in the TBBR-Client specification.

+------------------+ +-------------------+
| ROTPK/ROTPK Hash |------>| Trusted Key |
+------------------+ | Certificate |

| (Auth Image) |
/+-------------------+
/ |

/ |
/ |
/ |

L v
+------------------+ +-------------------+
| Trusted World |------>| BL31 Key |
| Public Key | | Certificate |
+------------------+ | (Auth Image) |

+-------------------+
/ |
/ |

/ |
/ |
/ v

+------------------+ L +-------------------+
| BL31 Content |------>| BL31 Content |
| Certificate PK | | Certificate |
+------------------+ | (Auth Image) |

+-------------------+
/ |
/ |

/ |
/ |
/ v

+------------------+ L +-------------------+
| BL31 Hash |------>| BL31 Image |
| | | (Data Image) |
+------------------+ | |

+-------------------+

DIAGRAM 2.

The root of trust is usually a public key (ROTPK) that has been burnt in the platform and cannot be modified.

316 Chapter 5. System Design

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

Trusted Firmware-A, Release 2.10.4

Image types

Images in a CoT are categorised as authentication and data images. An authentication image contains informa-
tion to authenticate a data image or another authentication image. A data image is usually a boot loader binary,
but it could be any other data that requires authentication.

Component responsibilities

For every image in a Chain of Trust, the following high level operations are performed to verify it:

1. Allocate memory for the image either statically or at runtime.

2. Identify the image and load it in the allocated memory.

3. Check the integrity of the image as per its type.

4. Authenticate the image as per the cryptographic algorithms used.

5. If the image is an authentication image, extract the information that will be used to authenticate the next
image in the CoT.

In Diagram 1, each component is responsible for one or more of these operations. The responsibilities are
briefly described below.

TF-A Generic code and IO framework (GEN/IO)

These components are responsible for initiating the authentication process for a particular image in BL1 or
BL2. For each BL image that requires authentication, the Generic code asks recursively the Authentication
module what is the parent image until either an authenticated image or the ROT is reached. Then the Generic
code calls the IO framework to load the image and calls the Authentication module to authenticate it, following
the CoT from ROT to Image.

TF-A Platform Port (PP)

The platform is responsible for:

1. Specifying the CoT for each image that needs to be authenticated. Details of how a CoT can be specified
by the platform are explained later. The platform also specifies the authentication methods and the
parsing method used for each image.

2. Statically allocating memory for each parameter in each image which is used for verifying the CoT, e.g.
memory for public keys, hashes etc.

3. Providing the ROTPK or a hash of it.

4. Providing additional information to the IPM to enable it to identify and extract authentication parameters
contained in an image, e.g. if the parameters are stored as X509v3 extensions, the corresponding OID
must be provided.

5. Fulfill any othermemory requirements of the IPM and the CM (not currently described in this document).

5.2. Authentication Framework & Chain of Trust 317

Trusted Firmware-A, Release 2.10.4

6. Export functions to verify an image which uses an authentication method that cannot be interpreted by
the CM, e.g. if an image has to be verified using a NV counter, then the value of the counter to compare
with can only be provided by the platform.

7. Export a custom IPM if a proprietary image format is being used (described later).

Authentication Module (AM)

It is responsible for:

1. Providing the necessary abstraction mechanisms to describe a CoT. Amongst other things, the authenti-
cation and image parsing methods must be specified by the PP in the CoT.

2. Verifying the CoT passed by GEN by utilising functionality exported by the PP, IPM and CM.

3. Tracking which images have been verified. In case an image is a part of multiple CoTs then it should be
verified only once e.g. the TrustedWorld Key Certificate in the TBBR-Client spec. contains information
to verify SCP_BL2, BL31, BL32 each of which have a separate CoT. (This responsibility has not been
described in this document but should be trivial to implement).

4. Reusing memory meant for a data image to verify authentication images e.g. in the CoT described in
Diagram 2, each certificate can be loaded and verified in the memory reserved by the platform for the
BL31 image. By the time BL31 (the data image) is loaded, all information to authenticate it will have
been extracted from the parent image i.e. BL31 content certificate. It is assumed that the size of an
authentication image will never exceed the size of a data image. It should be possible to verify this at
build time using asserts.

Cryptographic Module (CM)

The CM is responsible for providing an API to:

1. Verify a digital signature.

2. Verify a hash.

The CM does not include any cryptography related code, but it relies on an external library to perform the cryp-
tographic operations. A Crypto-Library (CL) linking the CM and the external library must be implemented.
The following functions must be provided by the CL:

void (*init)(void);
int (*verify_signature)(void *data_ptr, unsigned int data_len,

void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len);

int (*calc_hash)(enum crypto_md_algo alg, void *data_ptr,
unsigned int data_len,
unsigned char output[CRYPTO_MD_MAX_SIZE])

int (*verify_hash)(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len);

int (*auth_decrypt)(enum crypto_dec_algo dec_algo, void *data_ptr,

(continues on next page)

318 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
size_t len, const void *key, unsigned int key_len,
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len);

These functions are registered in the CM using the macro:

REGISTER_CRYPTO_LIB(_name,
_init,
_verify_signature,
_calc_hash,
_verify_hash,
_auth_decrypt,
_convert_pk);

_name must be a string containing the name of the CL. This name is used for debugging purposes.

Crypto module provides a function _calc_hash to calculate and return the hash of the given data using
the provided hash algorithm. This function is mainly used in the MEASURED_BOOT and DRTM_SUPPORT
features to calculate the hashes of various images/data.

Optionally, a platform function can be provided to convert public key (_convert_pk). It is only used if the
platform saves a hash of the ROTPK. Most platforms save the hash of the ROTPK, but some may save slightly
different information - e.g the hash of the ROTPK plus some related information. Defining this function allows
to transform the ROTPK used to verify the signature to the buffer (a platform specific public key) which hash
is saved in OTP.

int (*convert_pk)(void *full_pk_ptr, unsigned int full_pk_len,
void **hashed_pk_ptr, unsigned int *hashed_pk_len);

• full_pk_ptr: Pointer to Distinguished Encoding Rules (DER) ROTPK.

• full_pk_len: DER ROTPK size.

• hashed_pk_ptr: to return a pointer to a buffer, which hash should be the one saved in OTP.

• hashed_pk_len: previous buffer size

Image Parser Module (IPM)

The IPM is responsible for:

1. Checking the integrity of each image loaded by the IO framework.

2. Extracting parameters used for authenticating an image based upon a description provided by the plat-
form in the CoT descriptor.

Images may have different formats (for example, authentication images could be x509v3 certificates, signed
ELF files or any other platform specific format). The IPM allows to register an Image Parser Library (IPL) for
every image format used in the CoT. This library must implement the specific methods to parse the image. The

5.2. Authentication Framework & Chain of Trust 319

Trusted Firmware-A, Release 2.10.4

IPM obtains the image format from the CoT and calls the right IPL to check the image integrity and extract
the authentication parameters.

See Section “Describing the image parsing methods” for more details about the mechanism the IPM provides
to define and register IPLs.

Authentication methods

The AM supports the following authentication methods:

1. Hash

2. Digital signature

The platformmay specify these methods in the CoT in case it decides to define a custom CoT instead of reusing
a predefined one.

If a data image uses multiple methods, then all the methods must be a part of the same CoT. The number and
type of parameters are method specific. These parameters should be obtained from the parent image using the
IPM.

1. Hash

Parameters:

1. A pointer to data to hash

2. Length of the data

3. A pointer to the hash

4. Length of the hash

The hash will be represented by the DER encoding of the following ASN.1 type:

DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithmIdentifier,
digest Digest

}

This ASN.1 structure makes it possible to remove any assumption about the type of hash algorithm used
as this information accompanies the hash. This should allow the Cryptography Library (CL) to support
multiple hash algorithm implementations.

2. Digital Signature

Parameters:

1. A pointer to data to sign

2. Length of the data

3. Public Key Algorithm

4. Public Key value

5. Digital Signature Algorithm

320 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

6. Digital Signature value

The Public Key parameters will be represented by the DER encoding of the following ASN.1 type:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier{PUBLIC-KEY,

↪→{PublicKeyAlgorithms}},
subjectPublicKey BIT STRING }

The Digital Signature Algorithm will be represented by the DER encoding of the following ASN.1 types.

AlgorithmIdentifier {ALGORITHM:IOSet } ::= SEQUENCE {
algorithm ALGORITHM.&id({IOSet}),
parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL

}

The digital signature will be represented by:

signature ::= BIT STRING

The authentication framework will use the image descriptor to extract all the information related to authenti-
cation.

5.2.2 Specifying a Chain of Trust

A CoT can be described as a set of image descriptors linked together in a particular order. The order dictates
the sequence in which they must be verified. Each image has a set of properties which allow the AM to verify
it. These properties are described below.

The PP is responsible for defining a single or multiple CoTs for a data image. Unless otherwise specified, the
data structures described in the following sections are populated by the PP statically.

Describing the image parsing methods

The parsing method refers to the format of a particular image. For example, an authentication image that
represents a certificate could be in the X.509v3 format. A data image that represents a boot loader stage could
be in raw binary or ELF format. The IPM supports three parsing methods. An image has to use one of the
three methods described below. An IPL is responsible for interpreting a single parsing method. There has to
be one IPL for every method used by the platform.

1. Raw format: This format is effectively a nop as an image using this method is treated as being in raw
binary format e.g. boot loader images used by TF-A. This method should only be used by data images.

2. X509V3 method: This method uses industry standards like X.509 to represent PKI certificates (authen-
tication images). It is expected that open source libraries will be available which can be used to parse an
image represented by this method. Such libraries can be used to write the corresponding IPL e.g. the
X.509 parsing library code in mbed TLS.

3. Platform defined method: This method caters for platform specific proprietary standards to represent
authentication or data images. For example, The signature of a data image could be appended to the data

5.2. Authentication Framework & Chain of Trust 321

Trusted Firmware-A, Release 2.10.4

image raw binary. A header could be prepended to the combined blob to specify the extents of each
component. The platform will have to implement the corresponding IPL to interpret such a format.

The following enum can be used to define these three methods.

typedef enum img_type_enum {
IMG_RAW, /* Binary image */
IMG_PLAT, /* Platform specific format */
IMG_CERT, /* X509v3 certificate */
IMG_MAX_TYPES,

} img_type_t;

An IPL must provide functions with the following prototypes:

void init(void);
int check_integrity(void *img, unsigned int img_len);
int get_auth_param(const auth_param_type_desc_t *type_desc,

void *img, unsigned int img_len,
void **param, unsigned int *param_len);

An IPL for each type must be registered using the following macro:

REGISTER_IMG_PARSER_LIB(_type, _name, _init, _check_int, _get_param)

• _type: one of the types described above.

• _name: a string containing the IPL name for debugging purposes.

• _init: initialization function pointer.

• _check_int: check image integrity function pointer.

• _get_param: extract authentication parameter function pointer.

The init() function will be used to initialize the IPL.

The check_integrity() function is passed a pointer to the memory where the image has been loaded by
the IO framework and the image length. It should ensure that the image is in the format corresponding to the
parsing method and has not been tampered with. For example, RFC-2459 describes a validation sequence for
an X.509 certificate.

The get_auth_param() function is passed a parameter descriptor containing information about the pa-
rameter (type_desc and cookie) to identify and extract the data corresponding to that parameter from an
image. This data will be used to verify either the current or the next image in the CoT sequence.

Each image in the CoT will specify the parsing method it uses. This information will be used by the IPM to
find the right parser descriptor for the image.

322 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Describing the authentication method(s)

As part of the CoT, each image has to specify one or more authentication methods which will be used to verify
it. As described in the Section “Authentication methods”, there are three methods supported by the AM.

typedef enum {
AUTH_METHOD_NONE,
AUTH_METHOD_HASH,
AUTH_METHOD_SIG,
AUTH_METHOD_NUM

} auth_method_type_t;

The AM defines the type of each parameter used by an authentication method. It uses this information to:

1. Specify to the get_auth_param() function exported by the IPM, which parameter should be ex-
tracted from an image.

2. Correctly marshall the parameters while calling the verification function exported by the CM and PP.

3. Extract authentication parameters from a parent image in order to verify a child image e.g. to verify the
certificate image, the public key has to be obtained from the parent image.

typedef enum {
AUTH_PARAM_NONE,
AUTH_PARAM_RAW_DATA, /* Raw image data */
AUTH_PARAM_SIG, /* The image signature */
AUTH_PARAM_SIG_ALG, /* The image signature algorithm */
AUTH_PARAM_HASH, /* A hash (including the algorithm) */
AUTH_PARAM_PUB_KEY, /* A public key */

} auth_param_type_t;

The AM defines the following structure to identify an authentication parameter required to verify an image.

typedef struct auth_param_type_desc_s {
auth_param_type_t type;
void *cookie;

} auth_param_type_desc_t;

cookie is used by the platform to specify additional information to the IPM which enables it to uniquely
identify the parameter that should be extracted from an image. For example, the hash of a BL3x image in its
corresponding content certificate is stored in an X509v3 custom extension field. An extension field can only be
identified using an OID. In this case, the cookie could contain the pointer to the OID defined by the platform
for the hash extension field while the type field could be set to AUTH_PARAM_HASH. A value of 0 for the
cookie field means that it is not used.

For each method, the AM defines a structure with the parameters required to verify the image.

/*
* Parameters for authentication by hash matching
*/

typedef struct auth_method_param_hash_s {
auth_param_type_desc_t *data; /* Data to hash */

(continues on next page)

5.2. Authentication Framework & Chain of Trust 323

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
auth_param_type_desc_t *hash; /* Hash to match with */

} auth_method_param_hash_t;

/*
* Parameters for authentication by signature
*/

typedef struct auth_method_param_sig_s {
auth_param_type_desc_t *pk; /* Public key */
auth_param_type_desc_t *sig; /* Signature to check */
auth_param_type_desc_t *alg; /* Signature algorithm */
auth_param_type_desc_t *tbs; /* Data signed */

} auth_method_param_sig_t;

The AM defines the following structure to describe an authentication method for verifying an image

/*
* Authentication method descriptor
*/

typedef struct auth_method_desc_s {
auth_method_type_t type;
union {

auth_method_param_hash_t hash;
auth_method_param_sig_t sig;

} param;
} auth_method_desc_t;

Using the method type specified in the type field, the AM finds out what field needs to access within the
param union.

Storing Authentication parameters

A parameter described by auth_param_type_desc_t to verify an image could be obtained from either
the image itself or its parent image. The memory allocated for loading the parent image will be reused for
loading the child image. Hence parameters which are obtained from the parent for verifying a child image
need to have memory allocated for them separately where they can be stored. This memory must be statically
allocated by the platform port.

The AM defines the following structure to store the data corresponding to an authentication parameter.

typedef struct auth_param_data_desc_s {
void *auth_param_ptr;
unsigned int auth_param_len;

} auth_param_data_desc_t;

The auth_param_ptr field is initialized by the platform. The auth_param_len field is used to specify
the length of the data in the memory.

For parameters that can be obtained from the child image itself, the IPM is responsible for populating the
auth_param_ptr and auth_param_len fields while executing the img_get_auth_param() func-
tion.

324 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

The AM defines the following structure to enable an image to describe the parameters that should be extracted
from it and used to verify the next image (child) in a CoT.

typedef struct auth_param_desc_s {
auth_param_type_desc_t type_desc;
auth_param_data_desc_t data;

} auth_param_desc_t;

Describing an image in a CoT

An image in a CoT is a consolidation of the following aspects of a CoT described above.

1. A unique identifier specified by the platform which allows the IO framework to locate the image in a FIP
and load it in the memory reserved for the data image in the CoT.

2. A parsing method which is used by the AM to find the appropriate IPM.

3. Authentication methods and their parameters as described in the previous section. These are used to
verify the current image.

4. Parameters which are used to verify the next image in the current CoT. These parameters are specified
only by authentication images and can be extracted from the current image once it has been verified.

The following data structure describes an image in a CoT.

typedef struct auth_img_desc_s {
unsigned int img_id;
const struct auth_img_desc_s *parent;
img_type_t img_type;
const auth_method_desc_t *const img_auth_methods;
const auth_param_desc_t *const authenticated_data;

} auth_img_desc_t;

ACoT is defined as an array of pointers to auth_image_desc_t structures linked together by the parent
field. Those nodes with no parent must be authenticated using the ROTPK stored in the platform.

5.2.3 Implementation example

This section is a detailed guide explaining a trusted boot implementation using the authentication framework.
This example corresponds to the Applicative Functional Mode (AFM) as specified in the TBBR-Client docu-
ment. It is recommended to read this guide along with the source code.

5.2. Authentication Framework & Chain of Trust 325

Trusted Firmware-A, Release 2.10.4

The TBBR CoT

CoT specific to BL1 and BL2 can be found in drivers/auth/tbbr/tbbr_cot_bl1.c and
drivers/auth/tbbr/tbbr_cot_bl2.c respectively. The common CoT used across BL1 and BL2
can be found in drivers/auth/tbbr/tbbr_cot_common.c. This CoT consists of an array of point-
ers to image descriptors and it is registered in the framework using themacroREGISTER_COT(cot_desc),
where cot_descmust be the name of the array (passing a pointer or any other type of indirection will cause
the registration process to fail).

The number of images participating in the boot process depends on the CoT. There is, however, a minimum
set of images that are mandatory in TF-A and thus all CoTs must present:

• BL2

• SCP_BL2 (platform specific)

• BL31

• BL32 (optional)

• BL33

The TBBR specifies the additional certificates that must accompany these images for a proper authentication.
Details about the TBBR CoT may be found in the Trusted Board Boot document.

Following the Porting Guide, a platform must provide unique identifiers for all the images and certificates that
will be loaded during the boot process. If a platform is using the TBBR as a reference for trusted boot, these
identifiers can be obtained from include/common/tbbr/tbbr_img_def.h. Arm platforms include
this file in include/plat/arm/common/arm_def.h. Other platforms may also include this file or
provide their own identifiers.

Important: the authentication module uses these identifiers to index the CoT array, so the descriptors location
in the array must match the identifiers.

Each image descriptor must specify:

• img_id: the corresponding image unique identifier defined by the platform.

• img_type: the image parser module uses the image type to call the proper parsing library to check the
image integrity and extract the required authentication parameters. Three types of images are currently
supported:

– IMG_RAW: image is a raw binary. No parsing functions are available, other than reading the whole
image.

– IMG_PLAT: image format is platform specific. The platform may use this type for custom images
not directly supported by the authentication framework.

– IMG_CERT: image is an x509v3 certificate.

• parent: pointer to the parent image descriptor. The parent will contain the information required to
authenticate the current image. If the parent is NULL, the authentication parameters will be obtained
from the platform (i.e. the BL2 and Trusted Key certificates are signed with the ROT private key, whose
public part is stored in the platform).

326 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

• img_auth_methods: this points to an array which defines the authentication methods that must be
checked to consider an image authenticated. Each method consists of a type and a list of parameter de-
scriptors. A parameter descriptor consists of a type and a cookie which will point to specific information
required to extract that parameter from the image (i.e. if the parameter is stored in an x509v3 exten-
sion, the cookie will point to the extension OID). Depending on the method type, a different number of
parameters must be specified. This pointer should not be NULL. Supported methods are:

– AUTH_METHOD_HASH: the hash of the image must match the hash extracted from the parent
image. The following parameter descriptors must be specified:

∗ data: data to be hashed (obtained from current image)

∗ hash: reference hash (obtained from parent image)

– AUTH_METHOD_SIG: the image (usually a certificate) must be signed with the private key whose
public part is extracted from the parent image (or the platform if the parent is NULL). The following
parameter descriptors must be specified:

∗ pk: the public key (obtained from parent image)

∗ sig: the digital signature (obtained from current image)

∗ alg: the signature algorithm used (obtained from current image)

∗ data: the data to be signed (obtained from current image)

• authenticated_data: this array pointer indicates what authentication parameters must be ex-
tracted from an image once it has been authenticated. Each parameter consists of a parameter descriptor
and the buffer address/size to store the parameter. The CoT is responsible for allocating the required
memory to store the parameters. This pointer may be NULL.

In the tbbr_cot*.c file, a set of buffers are allocated to store the parameters extracted from the certificates.
In the case of the TBBR CoT, these parameters are hashes and public keys. In DER format, an RSA-4096
public key requires 550 bytes, and a hash requires 51 bytes. Depending on the CoT and the authentication
process, some of the buffers may be reused at different stages during the boot.

Next in that file, the parameter descriptors are defined. These descriptors will be used to extract the parameter
data from the corresponding image.

Example: the BL31 Chain of Trust

Four image descriptors form the BL31 Chain of Trust:

static const auth_img_desc_t trusted_key_cert = {
.img_id = TRUSTED_KEY_CERT_ID,
.img_type = IMG_CERT,
.parent = NULL,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {

[0] = {
.type = AUTH_METHOD_SIG,
.param.sig = {

.pk = &subject_pk,

.sig = &sig,
(continues on next page)

5.2. Authentication Framework & Chain of Trust 327

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
.alg = &sig_alg,
.data = &raw_data

}
},
[1] = {

.type = AUTH_METHOD_NV_CTR,

.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr

}
}

},
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_

↪→PARAMS]) {
[0] = {

.type_desc = &trusted_world_pk,

.data = {
.ptr = (void *)trusted_world_pk_buf,
.len = (unsigned int)PK_DER_LEN

}
},
[1] = {

.type_desc = &non_trusted_world_pk,

.data = {
.ptr = (void *)non_trusted_world_pk_buf,
.len = (unsigned int)PK_DER_LEN

}
}

}
};
static const auth_img_desc_t soc_fw_key_cert = {

.img_id = SOC_FW_KEY_CERT_ID,

.img_type = IMG_CERT,

.parent = &trusted_key_cert,

.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[0] = {

.type = AUTH_METHOD_SIG,

.param.sig = {
.pk = &trusted_world_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data

}
},
[1] = {

.type = AUTH_METHOD_NV_CTR,

.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr

}
}

},
(continues on next page)

328 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_

↪→PARAMS]) {
[0] = {

.type_desc = &soc_fw_content_pk,

.data = {
.ptr = (void *)content_pk_buf,
.len = (unsigned int)PK_DER_LEN

}
}

}
};
static const auth_img_desc_t soc_fw_content_cert = {

.img_id = SOC_FW_CONTENT_CERT_ID,

.img_type = IMG_CERT,

.parent = &soc_fw_key_cert,

.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[0] = {

.type = AUTH_METHOD_SIG,

.param.sig = {
.pk = &soc_fw_content_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data

}
},
[1] = {

.type = AUTH_METHOD_NV_CTR,

.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr

}
}

},
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_

↪→PARAMS]) {
[0] = {

.type_desc = &soc_fw_hash,

.data = {
.ptr = (void *)soc_fw_hash_buf,
.len = (unsigned int)HASH_DER_LEN

}
},
[1] = {

.type_desc = &soc_fw_config_hash,

.data = {
.ptr = (void *)soc_fw_config_hash_buf,
.len = (unsigned int)HASH_DER_LEN

}
}

}
};
static const auth_img_desc_t bl31_image = {

(continues on next page)

5.2. Authentication Framework & Chain of Trust 329

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
.img_id = BL31_IMAGE_ID,
.img_type = IMG_RAW,
.parent = &soc_fw_content_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {

[0] = {
.type = AUTH_METHOD_HASH,
.param.hash = {

.data = &raw_data,

.hash = &soc_fw_hash
}

}
}

};

The Trusted Key certificate is signed with the ROT private key and contains the Trusted World public key
and the Non-Trusted World public key as x509v3 extensions. This must be specified in the image descriptor
using the img_auth_methods and authenticated_data arrays, respectively.

The Trusted Key certificate is authenticated by checking its digital signature using the ROTPK. Four parameters
are required to check a signature: the public key, the algorithm, the signature and the data that has been signed.
Therefore, four parameter descriptors must be specified with the authentication method:

• subject_pk: parameter descriptor of type AUTH_PARAM_PUB_KEY. This type is used to extract a
public key from the parent image. If the cookie is an OID, the key is extracted from the corresponding
x509v3 extension. If the cookie is NULL, the subject public key is retrieved. In this case, because the
parent image is NULL, the public key is obtained from the platform (this key will be the ROTPK).

• sig: parameter descriptor of type AUTH_PARAM_SIG. It is used to extract the signature from the
certificate.

• sig_alg: parameter descriptor of type AUTH_PARAM_SIG. It is used to extract the signature algo-
rithm from the certificate.

• raw_data: parameter descriptor of type AUTH_PARAM_RAW_DATA. It is used to extract the data to
be signed from the certificate.

Once the signature has been checked and the certificate authenticated, the TrustedWorld public key needs to be
extracted from the certificate. A new entry is created in the authenticated_data array for that purpose.
In that entry, the corresponding parameter descriptor must be specified along with the buffer address to store
the parameter value. In this case, the trusted_world_pk descriptor is used to extract the public key from
an x509v3 extension with OID TRUSTED_WORLD_PK_OID. The BL31 key certificate will use this descriptor
as parameter in the signature authentication method. The key is stored in the trusted_world_pk_buf
buffer.

The BL31 Key certificate is authenticated by checking its digital signature using the Trusted World public key
obtained previously from the Trusted Key certificate. In the image descriptor, we specify a single authentication
method by signature whose public key is the trusted_world_pk. Once this certificate has been authenti-
cated, we have to extract the BL31 public key, stored in the extension specified by soc_fw_content_pk.
This key will be copied to the content_pk_buf buffer.

The BL31 certificate is authenticated by checking its digital signature using the BL31 public key obtained pre-
viously from the BL31 Key certificate. We specify the authentication method using soc_fw_content_pk

330 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

as public key. After authentication, we need to extract the BL31 hash, stored in the extension specified by
soc_fw_hash. This hash will be copied to the soc_fw_hash_buf buffer.

The BL31 image is authenticated by calculating its hash and matching it with the hash obtained from the BL31
certificate. The image descriptor contains a single authentication method by hash. The parameters to the hash
method are the reference hash, soc_fw_hash, and the data to be hashed. In this case, it is the whole image,
so we specify raw_data.

The image parser library

The image parser module relies on libraries to check the image integrity and extract the authentication param-
eters. The number and type of parser libraries depend on the images used in the CoT. Raw images do not need
a library, so only an x509v3 library is required for the TBBR CoT.

Arm platforms will use an x509v3 library based on mbed TLS. This library may be found in drivers/
auth/mbedtls/mbedtls_x509_parser.c. It exports three functions:

void init(void);
int check_integrity(void *img, unsigned int img_len);
int get_auth_param(const auth_param_type_desc_t *type_desc,

void *img, unsigned int img_len,
void **param, unsigned int *param_len);

The library is registered in the framework using the macro REGISTER_IMG_PARSER_LIB(). Each time
the image parser module needs to access an image of type IMG_CERT, it will call the corresponding function
exported in this file.

The build system must be updated to include the corresponding library and mbed TLS sources. Arm platforms
use the arm_common.mk file to pull the sources.

The cryptographic library

The cryptographic module relies on a library to perform the required operations, i.e. verify a hash or a dig-
ital signature. Arm platforms will use a library based on mbed TLS, which can be found in drivers/
auth/mbedtls/mbedtls_crypto.c. This library is registered in the authentication framework using
the macro REGISTER_CRYPTO_LIB() and exports below functions:

void init(void);
int verify_signature(void *data_ptr, unsigned int data_len,

void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len);

int crypto_mod_calc_hash(enum crypto_md_algo alg, void *data_ptr,
unsigned int data_len,
unsigned char output[CRYPTO_MD_MAX_SIZE])

int verify_hash(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len);

int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
size_t len, const void *key, unsigned int key_len,

(continues on next page)

5.2. Authentication Framework & Chain of Trust 331

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)

The mbedTLS library algorithm support is configured by both the TF_MBEDTLS_KEY_ALG and
TF_MBEDTLS_KEY_SIZE variables.

• TF_MBEDTLS_KEY_ALG can take in 3 values: rsa, ecdsa or rsa+ecdsa. This variable allows theMake-
file to include the corresponding sources in the build for the various algorithms. Setting the variable to
rsa+ecdsa enables support for both rsa and ecdsa algorithms in the mbedTLS library.

• TF_MBEDTLS_KEY_SIZE sets the supported RSA key size for TFA. Valid values include 1024, 2048,
3072 and 4096.

• TF_MBEDTLS_USE_AES_GCM enables the authenticated decryption support based on AES-GCM al-
gorithm. Valid values are 0 and 1.

Note: If code size is a concern, the build option MBEDTLS_SHA256_SMALLER can be defined in the
platform Makefile. It will make mbed TLS use an implementation of SHA-256 with smaller memory footprint
(~1.5 KB less) but slower (~30%).

Copyright (c) 2017-2023, Arm Limited and Contributors. All rights reserved.

5.3 Arm CPU Specific Build Macros

This document describes the various build options present in the CPU specific operations framework to enable
errata workarounds and to enable optimizations for a specific CPU on a platform.

5.3.1 Security Vulnerability Workarounds

TF-A exports a series of build flags which control which security vulnerability workarounds should be applied
at runtime.

• WORKAROUND_CVE_2017_5715: Enables the security workaround for CVE-2017-5715. This flag
can be set to 0 by the platform if none of the PEs in the system need the workaround. Setting this
flag to 0 provides no performance benefit for non-affected platforms, it just helps to comply with the
recommendation in the spec regarding workaround discovery. Defaults to 1.

• WORKAROUND_CVE_2018_3639: Enables the security workaround for CVE-2018-3639. Defaults
to 1. The TF-A project recommends to keep the default value of 1 even on platforms that are unaffected
by CVE-2018-3639, in order to comply with the recommendation in the spec regarding workaround
discovery.

• DYNAMIC_WORKAROUND_CVE_2018_3639: Enables dynamic mitigation for CVE-2018-3639.
This build option should be set to 1 if the target platform contains at least 1 CPU that requires dynamic
mitigation. Defaults to 0.

332 Chapter 5. System Design

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639

Trusted Firmware-A, Release 2.10.4

• WORKAROUND_CVE_2022_23960: Enables mitigation for CVE-2022-23960. This build option
should be set to 1 if the target platform contains at least 1 CPU that requires this mitigation. Defaults to
1.

5.3.2 CPU Errata Workarounds

TF-A exports a series of build flags which control the errata workarounds that are applied to each CPU by the
reset handler. The errata details can be found in the CPU specific errata documents published by Arm:

• Cortex-A53 MPCore Software Developers Errata Notice

• Cortex-A57 MPCore Software Developers Errata Notice

• Cortex-A72 MPCore Software Developers Errata Notice

The errata workarounds are implemented for a particular revision or a set of processor revisions. This is
checked by the reset handler at runtime. Each errata workaround is identified by its ID as specified in the
processor’s errata notice document. The format of the define used to enable/disable the errata workaround
is ERRATA_<Processor name>_<ID>, where the Processor name is for example A57 for the
Cortex_A57 CPU.

Refer to CPU errata implementation for information on how to write errata workaround functions.

All workarounds are disabled by default. The platform is responsible for enabling these workarounds according
to its requirement by defining the errata workaround build flags in the platform specific makefile. In case these
workarounds are enabled for the wrong CPU revision then the errata workaround is not applied. In the DEBUG
build, this is indicated by printing a warning to the crash console.

In the current implementation, a platform which has more than 1 variant with different revisions of a processor
has no runtime mechanism available for it to specify which errata workarounds should be enabled or not.

The value of the build flags is 0 by default, that is, disabled. A value of 1 will enable it.

For Cortex-A9, the following errata build flags are defined :

• ERRATA_A9_794073: This applies errata 794073 workaround to Cortex-A9 CPU. This needs to be
enabled for all revisions of the CPU.

For Cortex-A15, the following errata build flags are defined :

• ERRATA_A15_816470: This applies errata 816470 workaround to Cortex-A15 CPU. This needs to
be enabled only for revision >= r3p0 of the CPU.

• ERRATA_A15_827671: This applies errata 827671 workaround to Cortex-A15 CPU. This needs to
be enabled only for revision >= r3p0 of the CPU.

For Cortex-A17, the following errata build flags are defined :

• ERRATA_A17_852421: This applies errata 852421 workaround to Cortex-A17 CPU. This needs to
be enabled only for revision <= r1p2 of the CPU.

• ERRATA_A17_852423: This applies errata 852423 workaround to Cortex-A17 CPU. This needs to
be enabled only for revision <= r1p2 of the CPU.

For Cortex-A35, the following errata build flags are defined :

5.3. Arm CPU Specific Build Macros 333

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23960
http://infocenter.arm.com/help/topic/com.arm.doc.epm048406/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm049219/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm012079/index.html

Trusted Firmware-A, Release 2.10.4

• ERRATA_A35_855472: This applies errata 855472 workaround to Cortex-A35 CPUs. This needs to
be enabled only for revision r0p0 of Cortex-A35.

For Cortex-A53, the following errata build flags are defined :

• ERRATA_A53_819472: This applies errata 819472workaround to all CPUs. This needs to be enabled
only for revision <= r0p1 of Cortex-A53.

• ERRATA_A53_824069: This applies errata 824069workaround to all CPUs. This needs to be enabled
only for revision <= r0p2 of Cortex-A53.

• ERRATA_A53_826319: This applies errata 826319 workaround to Cortex-A53 CPU. This needs to
be enabled only for revision <= r0p2 of the CPU.

• ERRATA_A53_827319: This applies errata 827319workaround to all CPUs. This needs to be enabled
only for revision <= r0p2 of Cortex-A53.

• ERRATA_A53_835769: This applies erratum 835769 workaround at compile and link time to Cortex-
A53 CPU. This needs to be enabled for some variants of revision <= r0p4. This workaround can lead
the linker to create *.stub sections.

• ERRATA_A53_836870: This applies errata 836870 workaround to Cortex-A53 CPU. This needs to
be enabled only for revision <= r0p3 of the CPU. From r0p4 and onwards, this errata is enabled by
default in hardware. Identical to A53_DISABLE_NON_TEMPORAL_HINT.

• ERRATA_A53_843419: This applies erratum 843419 workaround at link time to Cortex-A53 CPU.
This needs to be enabled for some variants of revision <= r0p4. This workaround can lead the linker to
emit *.stub sections which are 4kB aligned.

• ERRATA_A53_855873: This applies errata 855873 workaround to Cortex-A53 CPUs. Though the
erratum is present in every revision of the CPU, this workaround is only applied to CPUs from r0p3
onwards, which feature a chicken bit in CPUACTLR_EL1 to enable a hardware workaround. Earlier
revisions of the CPU have other errata which require the same workaround in software, so they should
be covered anyway.

• ERRATA_A53_1530924: This applies errata 1530924 workaround to all revisions of Cortex-A53
CPU.

For Cortex-A55, the following errata build flags are defined :

• ERRATA_A55_768277: This applies errata 768277 workaround to Cortex-A55 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A55_778703: This applies errata 778703 workaround to Cortex-A55 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A55_798797: This applies errata 798797 workaround to Cortex-A55 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A55_846532: This applies errata 846532 workaround to Cortex-A55 CPU. This needs to
be enabled only for revision <= r0p1 of the CPU.

• ERRATA_A55_903758: This applies errata 903758 workaround to Cortex-A55 CPU. This needs to
be enabled only for revision <= r0p1 of the CPU.

334 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

• ERRATA_A55_1221012: This applies errata 1221012 workaround to Cortex-A55 CPU. This needs
to be enabled only for revision <= r1p0 of the CPU.

• ERRATA_A55_1530923: This applies errata 1530923 workaround to all revisions of Cortex-A55
CPU.

For Cortex-A57, the following errata build flags are defined :

• ERRATA_A57_806969: This applies errata 806969 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A57_813419: This applies errata 813419 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A57_813420: This applies errata 813420 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A57_814670: This applies errata 814670 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A57_817169: This applies errata 817169 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r0p1 of the CPU.

• ERRATA_A57_826974: This applies errata 826974 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r1p1 of the CPU.

• ERRATA_A57_826977: This applies errata 826977 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r1p1 of the CPU.

• ERRATA_A57_828024: This applies errata 828024 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r1p1 of the CPU.

• ERRATA_A57_829520: This applies errata 829520 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r1p2 of the CPU.

• ERRATA_A57_833471: This applies errata 833471 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r1p2 of the CPU.

• ERRATA_A57_859972: This applies errata 859972 workaround to Cortex-A57 CPU. This needs to
be enabled only for revision <= r1p3 of the CPU.

• ERRATA_A57_1319537: This applies errata 1319537 workaround to all revisions of Cortex-A57
CPU.

For Cortex-A72, the following errata build flags are defined :

• ERRATA_A72_859971: This applies errata 859971 workaround to Cortex-A72 CPU. This needs to
be enabled only for revision <= r0p3 of the CPU.

• ERRATA_A72_1319367: This applies errata 1319367 workaround to all revisions of Cortex-A72
CPU.

For Cortex-A73, the following errata build flags are defined :

• ERRATA_A73_852427: This applies errata 852427 workaround to Cortex-A73 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

5.3. Arm CPU Specific Build Macros 335

Trusted Firmware-A, Release 2.10.4

• ERRATA_A73_855423: This applies errata 855423 workaround to Cortex-A73 CPU. This needs to
be enabled only for revision <= r0p1 of the CPU.

For Cortex-A75, the following errata build flags are defined :

• ERRATA_A75_764081: This applies errata 764081 workaround to Cortex-A75 CPU. This needs to
be enabled only for revision r0p0 of the CPU.

• ERRATA_A75_790748: This applies errata 790748 workaround to Cortex-A75
CPU. This needs to be enabled only for revision r0p0 of the CPU.

For Cortex-A76, the following errata build flags are defined :

• ERRATA_A76_1073348: This applies errata 1073348 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r1p0 of the CPU.

• ERRATA_A76_1130799: This applies errata 1130799 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r2p0 of the CPU.

• ERRATA_A76_1220197: This applies errata 1220197 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r2p0 of the CPU.

• ERRATA_A76_1257314: This applies errata 1257314 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_A76_1262606: This applies errata 1262606 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_A76_1262888: This applies errata 1262888 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_A76_1275112: This applies errata 1275112 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_A76_1791580: This applies errata 1791580 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r4p0 of the CPU.

• ERRATA_A76_1165522: This applies errata 1165522 workaround to all revisions of Cortex-A76
CPU. This errata is fixed in r3p0 but due to limitation of errata framework this errata is applied to all
revisions of Cortex-A76 CPU.

• ERRATA_A76_1868343: This applies errata 1868343 workaround to Cortex-A76 CPU. This needs
to be enabled only for revision <= r4p0 of the CPU.

• ERRATA_A76_1946160: This applies errata 1946160 workaround to Cortex-A76 CPU. This needs
to be enabled only for revisions r3p0 - r4p1 of the CPU.

• ERRATA_A76_2743102: This applies errata 2743102 workaround to Cortex-A76 CPU. This needs
to be enabled for all revisions <= r4p1 of the CPU and is still open.

For Cortex-A77, the following errata build flags are defined :

• ERRATA_A77_1508412: This applies errata 1508412 workaround to Cortex-A77 CPU. This needs
to be enabled only for revision <= r1p0 of the CPU.

• ERRATA_A77_1925769: This applies errata 1925769 workaround to Cortex-A77 CPU. This needs
to be enabled only for revision <= r1p1 of the CPU.

336 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

• ERRATA_A77_1946167: This applies errata 1946167 workaround to Cortex-A77 CPU. This needs
to be enabled only for revision <= r1p1 of the CPU.

• ERRATA_A77_1791578: This applies errata 1791578 workaround to Cortex-A77 CPU. This needs
to be enabled for r0p0, r1p0, and r1p1, it is still open.

• ERRATA_A77_2356587: This applies errata 2356587 workaround to Cortex-A77 CPU. This needs
to be enabled for r0p0, r1p0, and r1p1, it is still open.

• ERRATA_A77_1800714: This applies errata 1800714 workaround to Cortex-A77 CPU. This needs
to be enabled for revisions <= r1p1 of the CPU.

• ERRATA_A77_2743100: This applies errata 2743100 workaround to Cortex-A77 CPU. This needs
to be enabled for r0p0, r1p0, and r1p1, it is still open.

For Cortex-A78, the following errata build flags are defined :

• ERRATA_A78_1688305: This applies errata 1688305 workaround to Cortex-A78 CPU. This needs
to be enabled only for revision r0p0 - r1p0 of the CPU.

• ERRATA_A78_1941498: This applies errata 1941498 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r0p0, r1p0, and r1p1 of the CPU.

• ERRATA_A78_1951500: This applies errata 1951500 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r1p0 and r1p1, r0p0 has the same issue but there is no workaround for that
revision.

• ERRATA_A78_1821534: This applies errata 1821534 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r0p0 and r1p0.

• ERRATA_A78_1952683: This applies errata 1952683 workaround to Cortex-A78 CPU. This needs
to be enabled for revision r0p0, it is fixed in r1p0.

• ERRATA_A78_2132060: This applies errata 2132060 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1, and r1p2. It is still open.

• ERRATA_A78_2242635: This applies errata 2242635 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r1p0, r1p1, and r1p2. The issue is present in r0p0 but there is no workaround.
It is still open.

• ERRATA_A78_2376745: This applies errata 2376745 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1, and r1p2, and it is still open.

• ERRATA_A78_2395406: This applies errata 2395406 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1, and r1p2, and it is still open.

• ERRATA_A78_2712571: This applies erratum 2712571 workaround to Cortex-A78
CPU, this erratum affects system configurations that do not use an ARM interconnect IP. This
needs to be enabled for revisions r0p0, r1p0, r1p1 and r1p2 and it is still open.

• ERRATA_A78_2742426: This applies erratum 2742426 workaround to Cortex-A78CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1 and r1p2 and it is still open.

• ERRATA_A78_2772019: This applies errata 2772019 workaround to Cortex-A78 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1, and r1p2, and it is still open.

5.3. Arm CPU Specific Build Macros 337

Trusted Firmware-A, Release 2.10.4

• ERRATA_A78_2779479: This applies erratum 2779479 workaround to Cortex-A78CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1 and r1p2 and it is still open.

For Cortex-A78AE, the following errata build flags are defined :

• ERRATA_A78_AE_1941500
[This applies errata 1941500 workaround to] Cortex-A78AE CPU. This needs to be enabled for
revisions r0p0 and r0p1. This erratum is still open.

• ERRATA_A78_AE_1951502 : This applies errata 1951502workaround to Cortex-A78AECPU. This
needs to be enabled for revisions r0p0 and r0p1. This erratum is still open.

• ERRATA_A78_AE_2376748 : This applies errata 2376748workaround to Cortex-A78AECPU. This
needs to be enabled for revisions r0p0, r0p1 and r0p2. This erratum is still open.

• ERRATA_A78_AE_2395408 : This applies errata 2395408workaround to Cortex-A78AECPU. This
needs to be enabled for revisions r0p0 and r0p1. This erratum is still open.

• ERRATA_A78_AE_2712574 : This applies erratum 2712574 workaround to Cortex-A78AE CPU.
This erratum affects system configurations that do not use an ARM interconnect IP. This needs to be
enabled for revisions r0p0, r0p1 and r0p2. This erratum is still open.

For Cortex-A78C, the following errata build flags are defined :

• ERRATA_A78C_1827430 : This applies errata 1827430 workaround to Cortex-A78C CPU. This
needs to be enabled for revision r0p0. The erratum is fixed in r0p1.

• ERRATA_A78C_1827440 : This applies errata 1827440 workaround to Cortex-A78C CPU. This
needs to be enabled for revision r0p0. The erratum is fixed in r0p1.

• ERRATA_A78C_2132064 : This applies errata 2132064 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1, r0p2 and it is still open.

• ERRATA_A78C_2242638 : This applies errata 2242638 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1, r0p2 and it is still open.

• ERRATA_A78C_2376749 : This applies errata 2376749 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1 and r0p2. This erratum is still open.

• ERRATA_A78C_2395411 : This applies errata 2395411 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1 and r0p2. This erratum is still open.

• ERRATA_A78C_2683027 : This applies errata 2683027 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1 and r0p2. This erratum is still open.

• ERRATA_A78C_2712575 : This applies erratum 2712575 workaround to Cortex-A78C CPU, this
erratum affects system configurations that do not use an ARM interconnect IP. This needs to be enabled
for revisions r0p1 and r0p2 and is still open.

• ERRATA_A78C_2743232 : This applies erratum 2743232 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1 and r0p2. This erratum is still open.

• ERRATA_A78C_2772121 : This applies errata 2772121 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p0, r0p1 and r0p2. This erratum is still open.

• ERRATA_A78C_2779484 : This applies errata 2779484 workaround to Cortex-A78C CPU. This
needs to be enabled for revisions r0p1 and r0p2. This erratum is still open.

338 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

For Cortex-X1 CPU, the following errata build flags are defined:

• ERRATA_X1_1821534
[This applies errata 1821534 workaround to Cortex-X1] CPU. This needs to be enabled only for
revision <= r1p0 of the CPU.

• ERRATA_X1_1688305
[This applies errata 1688305 workaround to Cortex-X1] CPU. This needs to be enabled only for
revision <= r1p0 of the CPU.

• ERRATA_X1_1827429
[This applies errata 1827429 workaround to Cortex-X1] CPU. This needs to be enabled only for
revision <= r1p0 of the CPU.

For Neoverse N1, the following errata build flags are defined :

• ERRATA_N1_1073348: This applies errata 1073348 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision r0p0 and r1p0 of the CPU.

• ERRATA_N1_1130799: This applies errata 1130799 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r2p0 of the CPU.

• ERRATA_N1_1165347: This applies errata 1165347 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r2p0 of the CPU.

• ERRATA_N1_1207823: This applies errata 1207823 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r2p0 of the CPU.

• ERRATA_N1_1220197: This applies errata 1220197 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r2p0 of the CPU.

• ERRATA_N1_1257314: This applies errata 1257314 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_N1_1262606: This applies errata 1262606 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_N1_1262888: This applies errata 1262888 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_N1_1275112: This applies errata 1275112 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_N1_1315703: This applies errata 1315703 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r3p0 of the CPU.

• ERRATA_N1_1542419: This applies errata 1542419 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revisions r3p0 - r4p0 of the CPU.

• ERRATA_N1_1868343: This applies errata 1868343 workaround to Neoverse-N1 CPU. This needs
to be enabled only for revision <= r4p0 of the CPU.

• ERRATA_N1_1946160: This applies errata 1946160 workaround to Neoverse-N1 CPU. This needs
to be enabled for revisions r3p0, r3p1, r4p0, and r4p1, for revisions r0p0, r1p0, and r2p0 there is no
workaround.

5.3. Arm CPU Specific Build Macros 339

Trusted Firmware-A, Release 2.10.4

• ERRATA_N1_2743102: This applies errata 2743102 workaround to Neoverse-N1 CPU. This needs
to be enabled for all revisions <= r4p1 of the CPU and is still open.

For Neoverse V1, the following errata build flags are defined :

• ERRATA_V1_1618635: This applies errata 1618635 workaround to Neoverse-V1 CPU. This needs
to be enabled for revision r0p0 of the CPU, it is fixed in r1p0.

• ERRATA_V1_1774420: This applies errata 1774420 workaround to Neoverse-V1 CPU. This needs
to be enabled only for revisions r0p0 and r1p0, it is fixed in r1p1.

• ERRATA_V1_1791573: This applies errata 1791573 workaround to Neoverse-V1 CPU. This needs
to be enabled only for revisions r0p0 and r1p0, it is fixed in r1p1.

• ERRATA_V1_1852267: This applies errata 1852267 workaround to Neoverse-V1 CPU. This needs
to be enabled only for revisions r0p0 and r1p0, it is fixed in r1p1.

• ERRATA_V1_1925756: This applies errata 1925756 workaround to Neoverse-V1 CPU. This needs
to be enabled for r0p0, r1p0, and r1p1, it is still open.

• ERRATA_V1_1940577: This applies errata 1940577 workaround to Neoverse-V1 CPU. This needs
to be enabled only for revision r1p0 and r1p1 of the CPU.

• ERRATA_V1_1966096: This applies errata 1966096 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r1p0 and r1p1 of the CPU, the issue is present in r0p0 as well but there is no
workaround for that revision. It is still open.

• ERRATA_V1_2139242: This applies errata 2139242 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0, and r1p1 of the CPU. It is still open.

• ERRATA_V1_2108267: This applies errata 2108267 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0, and r1p1 of the CPU. It is still open.

• ERRATA_V1_2216392: This applies errata 2216392 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r1p0 and r1p1 of the CPU, the issue is present in r0p0 as well but there is no
workaround for that revision. It is still open.

• ERRATA_V1_2294912: This applies errata 2294912 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0, and r1p1 and r1p2 of the CPU.

• ERRATA_V1_2348377: This applies errata 2348377 workaroud to Neoverse-V1 CPU. This needs to
be enabled for revisions r0p0, r1p0 and r1p1 of the CPU. It has been fixed in r1p2.

• ERRATA_V1_2372203: This applies errata 2372203 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0 and r1p1 of the CPU. It is still open.

• ERRATA_V1_2701953: This applies erratum 2701953 workaround to Neoverse-V1
CPU, this erratum affects system configurations that do not use an ARM interconnect IP. This
needs to be enabled for revisions r0p0, r1p0 and r1p1. It has been fixed in r1p2.

• ERRATA_V1_2743093: This applies errata 2743093 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1 and r1p2 of the CPU. It is still open.

• ERRATA_V1_2743233: This applies erratum 2743233 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1, and r1p2 of the CPU. It is still open.

340 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

• ERRATA_V1_2779461: This applies erratum 2779461 workaround to Neoverse-V1 CPU. This needs
to be enabled for revisions r0p0, r1p0, r1p1, r1p2 of the CPU. It is still open.

For Neoverse V2, the following errata build flags are defined :

• ERRATA_V2_2331132: This applies errata 2331132 workaround to Neoverse-V2 CPU. This needs
to be enabled for revisions r0p0, r0p1 and r0p2. It is still open.

• ERRATA_V2_2618597: This applies errata 2618597 workaround to Neoverse-V2 CPU. This needs
to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_V2_2662553: This applies errata 2662553 workaround to Neoverse-V2 CPU. This needs
to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_V2_2719103: This applies errata 2719103 workaround to Neoverse-V2 CPU, this affects
system configurations that do not use and ARM interconnect IP. This needs to be enabled for revisions
r0p0 and r0p1. It has been fixed in r0p2.

• ERRATA_V2_2719105: This applies errata 2719105 workaround to Neoverse-V2 CPU. This needs
to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_V2_2743011: This applies errata 2743011 workaround to Neoverse-V2 CPU. This needs
to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_V2_2779510: This applies errata 2779510 workaround to Neoverse-V2 CPU. This needs
to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_V2_2801372: This applies errata 2801372 workaround to Neoverse-V2 CPU, this affects
all configurations. This needs to be enabled for revisions r0p0 and r0p1. It has been fixed in r0p2.

For Cortex-A710, the following errata build flags are defined :

• ERRATA_A710_1987031: This applies errata 1987031 workaround to Cortex-A710 CPU. This
needs to be enabled only for revisions r0p0, r1p0 and r2p0 of the CPU. It is still open.

• ERRATA_A710_2081180: This applies errata 2081180 workaround to Cortex-A710 CPU. This
needs to be enabled only for revisions r0p0, r1p0 and r2p0 of the CPU. It is still open.

• ERRATA_A710_2055002: This applies errata 2055002 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r1p0, r2p0 of the CPU and is still open.

• ERRATA_A710_2017096: This applies errata 2017096 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is still open.

• ERRATA_A710_2083908: This applies errata 2083908 workaround to Cortex-A710 CPU. This
needs to be enabled for revision r2p0 of the CPU and is still open.

• ERRATA_A710_2058056: This applies errata 2058056 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 and r2p1 of the CPU and is still open.

• ERRATA_A710_2267065: This applies errata 2267065 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is fixed in r2p1.

• ERRATA_A710_2136059: This applies errata 2136059 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is fixed in r2p1.

5.3. Arm CPU Specific Build Macros 341

Trusted Firmware-A, Release 2.10.4

• ERRATA_A710_2147715: This applies errata 2147715 workaround to Cortex-A710 CPU. This
needs to be enabled for revision r2p0 of the CPU and is fixed in r2p1.

• ERRATA_A710_2216384: This applies errata 2216384 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is fixed in r2p1.

• ERRATA_A710_2282622: This applies errata 2282622 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

• ERRATA_A710_2291219: This applies errata 2291219 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is
fixed in r2p1.

• ERRATA_A710_2008768: This applies errata 2008768 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is fixed in r2p1.

• ERRATA_A710_2371105: This applies errata 2371105 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is fixed in r2p1.

• ERRATA_A710_2701952: This applies erratum 2701952 workaround to Cortex-A710 CPU, and
applies to system configurations that do not use and ARM interconnect IP. This needs to be enabled for
r0p0, r1p0, r2p0 and r2p1 and is still open.

• ERRATA_A710_2742423: This applies errata 2742423 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

• ERRATA_A710_2768515: This applies errata 2768515 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

• ERRATA_A710_2778471: This applies errata 2778471 workaround to Cortex-A710 CPU. This
needs to be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

For Neoverse N2, the following errata build flags are defined :

• ERRATA_N2_2002655: This applies errata 2002655 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2009478: This applies errata 2009478 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2067956: This applies errata 2067956 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2025414: This applies errata 2025414 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2189731: This applies errata 2189731 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2138956: This applies errata 2138956 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2138953: This applies errata 2138953 workaround to Neoverse-N2 CPU. This needs
to be enabled for revisions r0p0, r0p1, r0p2, r0p3 and is still open.

• ERRATA_N2_2242415: This applies errata 2242415 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

342 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

• ERRATA_N2_2138958: This applies errata 2138958 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2242400: This applies errata 2242400 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2280757: This applies errata 2280757 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU and is fixed in r0p1.

• ERRATA_N2_2326639: This applies errata 2326639 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU, it is fixed in r0p1.

• ERRATA_N2_2340933: This applies errata 2340933 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU, it is fixed in r0p1.

• ERRATA_N2_2346952: This applies errata 2346952 workaround to Neoverse-N2 CPU. This needs
to be enabled for revisions r0p0, r0p1 and r0p2 of the CPU, it is fixed in r0p3.

• ERRATA_N2_2376738: This applies errata 2376738 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0, r0p1, r0p2, r0p3 and is still open.

• ERRATA_N2_2388450: This applies errata 2388450 workaround to Neoverse-N2 CPU. This needs
to be enabled for revision r0p0 of the CPU, it is fixed in r0p1.

• ERRATA_N2_2743014: This applies errata 2743014 workaround to Neoverse-N2 CPU. This needs
to be enabled for revisions r0p0, r0p1 and r0p2. It is fixed in r0p3.

• ERRATA_N2_2743089: This applies errata 2743089 workaround to Neoverse-N2 CPU. This needs
to be enabled for revisions r0p0, r0p1 and r0p2. It is fixed in r0p3.

• ERRATA_N2_2728475: This applies erratum 2728475 workaround to Neoverse-N2
CPU, this erratum affects system configurations that do not use and ARM interconnect IP. This
needs to be enabled for revisions r0p0, r0p1 and r0p2. It is fixed in r0p3.

• ERRATA_N2_2779511: This applies errata 2779511 workaround to Neoverse-N2 CPU. This needs
to be enabled for revisions r0p0, r0p1 and r0p2. It is fixed in r0p3.

For Cortex-X2, the following errata build flags are defined :

• ERRATA_X2_2002765: This applies errata 2002765 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0, and r2p0 of the CPU, it is still open.

• ERRATA_X2_2058056: This applies errata 2058056 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU, it is still open.

• ERRATA_X2_2083908: This applies errata 2083908 workaround to Cortex-X2 CPU. This needs to
be enabled for revision r2p0 of the CPU, it is still open.

• ERRATA_X2_2017096: This applies errata 2017096 workaround to Cortex-X2 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r2p0 of the CPU, it is fixed in r2p1.

• ERRATA_X2_2081180: This applies errata 2081180 workaround to Cortex-X2 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r2p0 of the CPU, it is fixed in r2p1.

• ERRATA_X2_2216384: This applies errata 2216384 workaround to Cortex-X2 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r2p0 of the CPU, it is fixed in r2p1.

5.3. Arm CPU Specific Build Macros 343

Trusted Firmware-A, Release 2.10.4

• ERRATA_X2_2147715: This applies errata 2147715 workaround to Cortex-X2 CPU. This needs to
be enabled only for revision r2p0 of the CPU, it is fixed in r2p1.

• ERRATA_X2_2282622: This applies errata 2282622 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

• ERRATA_X2_2371105: This applies errata 2371105 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0 and r2p0 of the CPU and is fixed in r2p1.

• ERRATA_X2_2701952: This applies erratum 2701952 workaround to Cortex-X2
CPU and affects system configurations that do not use an ARM interconnect IP. This needs to be
enabled for revisions r0p0, r1p0, r2p0 and r2p1 and is still open.

• ERRATA_X2_2742423: This applies errata 2742423 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

• ERRATA_X2_2768515: This applies errata 2768515 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and is still open.

• ERRATA_X2_2778471: This applies errata 2778471 workaround to Cortex-X2 CPU. This needs to
be enabled for revisions r0p0, r1p0, r2p0 and r2p1 of the CPU and it is still open.

For Cortex-X3, the following errata build flags are defined :

• ERRATA_X3_2070301: This applies errata 2070301 workaround to the Cortex-X3 CPU. This needs
to be enabled only for revisions r0p0, r1p0, r1p1 and r1p2 of the CPU and is still open.

• ERRATA_X3_2266875: This applies errata 2266875 workaround to the Cortex-X3 CPU. This needs
to be enabled only for revisions r0p0 and r1p0 of the CPU, it is fixed in r1p1.

• ERRATA_X3_2302506: This applies errata 2302506 workaround to the Cortex-X3 CPU. This needs
to be enabled only for revisions r0p0, r1p0 and r1p1, it is fixed in r1p2.

• ERRATA_X3_2313909: This applies errata 2313909 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0 and r1p0 of the CPU, it is fixed in r1p1.

• ERRATA_X3_2372204: This applies errata 2372204 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0 and r1p0 of the CPU, it is fixed in r1p1.

• ERRATA_X3_2615812: This applies errata 2615812 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r1p1 of the CPU, it is fixed in r1p2.

• ERRATA_X3_2641945: This applies errata 2641945 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0 and r1p0 of the CPU. It is fixed in r1p1.

• ERRATA_X3_2701951: This applies erratum 2701951 workaround to Cortex-X3 CPU and affects
system configurations that do not use an ARM interconnect IP. This needs to be applied to revisions
r0p0, r1p0 and r1p1. It is fixed in r1p2.

• ERRATA_X3_2742421: This applies errata 2742421 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r1p1. It is fixed in r1p2.

• ERRATA_X3_2743088: This applies errata 2743088 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r1p1. It is fixed in r1p2.

• ERRATA_X3_2779509: This applies errata 2779509 workaround to Cortex-X3 CPU. This needs to
be enabled only for revisions r0p0, r1p0 and r1p1 of the CPU. It is fixed in r1p2.

344 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

For Cortex-X4, the following errata build flags are defined :

• ERRATA_X4_2701112: This applies erratum 2701112 workaround to Cortex-X4 CPU and affects
system configurations that do not use an Arm interconnect IP. This needs to be enabled for revisions
r0p0 and is fixed in r0p1. The workaround for this erratum is not implemented in EL3, but the flag can
be enabled/disabled at the platform level. The flag is used when the errata ABI feature is enabled and
can assist the Kernel in the process of mitigation of the erratum.

• ERRATA_X4_2740089: This applies errata 2740089 workaround to Cortex-X4 CPU. This needs to
be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_X4_2763018: This applies errata 2763018 workaround to Cortex-X4 CPU. This needs to
be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

For Cortex-A510, the following errata build flags are defined :

• ERRATA_A510_1922240: This applies errata 1922240 workaround to Cortex-A510 CPU. This
needs to be enabled only for revision r0p0, it is fixed in r0p1.

• ERRATA_A510_2288014: This applies errata 2288014 workaround to Cortex-A510 CPU. This
needs to be enabled only for revisions r0p0, r0p1, r0p2, r0p3 and r1p0, it is fixed in r1p1.

• ERRATA_A510_2042739: This applies errata 2042739 workaround to Cortex-A510 CPU. This
needs to be enabled only for revisions r0p0, r0p1 and r0p2, it is fixed in r0p3.

• ERRATA_A510_2041909: This applies errata 2041909 workaround to Cortex-A510 CPU. This
needs to be enabled only for revision r0p2 and is fixed in r0p3. The issue is also present in r0p0 and r0p1
but there is no workaround for those revisions.

• ERRATA_A510_2080326: This applies errata 2080326 workaround to Cortex-A510 CPU. This
needs to be enabled only for revision r0p2 and is fixed in r0p3. This issue is also present in r0p0 and
r0p1 but there is no workaround for those revisions.

• ERRATA_A510_2250311: This applies errata 2250311 workaround to Cortex-A510 CPU. This
needs to be enabled for revisions r0p0, r0p1, r0p2, r0p3 and r1p0, it is fixed in r1p1. This workaround
disables MPMM even if ENABLE_MPMM=1.

• ERRATA_A510_2218950: This applies errata 2218950 workaround to Cortex-A510 CPU. This
needs to be enabled for revisions r0p0, r0p1, r0p2, r0p3 and r1p0, it is fixed in r1p1.

• ERRATA_A510_2172148: This applies errata 2172148 workaround to Cortex-A510 CPU. This
needs to be enabled for revisions r0p0, r0p1, r0p2, r0p3 and r1p0, it is fixed in r1p1.

• ERRATA_A510_2347730: This applies errata 2347730 workaround to Cortex-A510 CPU. This
needs to be enabled for revisions r0p0, r0p1, r0p2, r0p3, r1p0 and r1p1. It is fixed in r1p2.

• ERRATA_A510_2371937: This applies errata 2371937 workaround to Cortex-A510 CPU. This
needs to applied for revisions r0p0, r0p1, r0p2, r0p3, r1p0, r1p1, and is fixed in r1p2.

• ERRATA_A510_2666669: This applies errata 2666669 workaround to Cortex-A510 CPU. This
needs to applied for revisions r0p0, r0p1, r0p2, r0p3, r1p0, r1p1. It is fixed in r1p2.

• ERRATA_A510_2684597: This applies erratum 2684597 workaround to Cortex-A510 CPU. This
needs to be applied to revision r0p0, r0p1, r0p2, r0p3, r1p0, r1p1 and r1p2. It is fixed in r1p3.

For Cortex-A520, the following errata build flags are defined :

5.3. Arm CPU Specific Build Macros 345

Trusted Firmware-A, Release 2.10.4

• ERRATA_A520_2630792: This applies errata 2630792 workaround to Cortex-A520 CPU. This
needs to applied for revisions r0p0, r0p1 of the CPU and is still open.

• ERRATA_A520_2858100: This applies errata 2858100 workaround to Cortex-A520 CPU. This
needs to be enabled for revisions r0p0 and r0p1. It is still open.

For Cortex-A715, the following errata build flags are defined :

• ERRATA_A715_2331818: This applies errata 2331818 workaround to Cortex-A715 CPU. This
needs to be enabled for revisions r0p0 and r1p0. It is fixed in r1p1.

• ERRATA_A715_2344187: This applies errata 2344187 workaround to
Cortex-A715 CPU. This needs to be enabled for revisions r0p0 and r1p0. It is fixed in r1p1.

• ERRATA_A715_2413290: This applies errata 2413290 workaround to Cortex-A715 CPU. This
needs to be enabled only for revision r1p0 and when SPE(Statistical profiling extension)=True. The
errata is fixed in r1p1.

• ERRATA_A715_2420947: This applies errata 2420947 workaround to Cortex-A715 CPU. This
needs to be enabled only for revision r1p0. It is fixed in r1p1.

• ERRATA_A715_2429384: This applies errata 2429384 workaround to Cortex-A715 CPU. This
needs to be enabled for revision r1p0. There is no workaround for revision r0p0. It is fixed in r1p1.

• ERRATA_A715_2561034: This applies errata 2561034 workaround to Cortex-A715 CPU. This
needs to be enabled only for revision r1p0. It is fixed in r1p1.

• ERRATA_A715_2728106: This applies errata 2728106 workaround to Cortex-A715 CPU. This
needs to be enabled for revisions r0p0, r1p0 and r1p1. It is fixed in r1p2.

For Cortex-A720, the following errata build flags are defined :

• ERRATA_A720_2926083: This applies errata 2926083 workaround to Cortex-A720 CPU. This
needs to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

• ERRATA_A720_2940794: This applies errata 2940794 workaround to Cortex-A720 CPU. This
needs to be enabled for revisions r0p0 and r0p1. It is fixed in r0p2.

5.3.3 DSU Errata Workarounds

Similar to CPU errata, TF-A also implements workarounds for DSU (DynamIQ Shared Unit) errata. The DSU
errata details can be found in the respective Arm documentation:

• Arm DSU Software Developers Errata Notice.

Each erratum is identified by an ID, as defined in the DSU errata notice document. Thus, the build flags
which enable/disable the errata workarounds have the format ERRATA_DSU_<ID>. The implementation and
application logic of DSU errata workarounds are similar to CPU errata workarounds.

For DSU errata, the following build flags are defined:

• ERRATA_DSU_798953: This applies errata 798953 workaround for the affected DSU configurations.
This errata applies only for those DSUs that revision is r0p0 (on r0p1 it is fixed). However, please note
that this workaround results in increased DSU power consumption on idle.

346 Chapter 5. System Design

http://infocenter.arm.com/help/topic/com.arm.doc.epm138168/index.html

Trusted Firmware-A, Release 2.10.4

• ERRATA_DSU_936184: This applies errata 936184 workaround for the affected DSU configurations.
This errata applies only for those DSUs that contain the ACP interface and the DSU revision is older
than r2p0 (on r2p0 it is fixed). However, please note that this workaround results in increased DSU
power consumption on idle.

• ERRATA_DSU_2313941: This applies errata 2313941 workaround for the affected DSU configura-
tions. This errata applies for those DSUs with revisions r0p0, r1p0, r2p0, r2p1, r3p0, r3p1 and is still
open. However, please note that this workaround results in increased DSU power consumption on idle.

5.3.4 CPU Specific optimizations

This section describes some of the optimizations allowed by the CPU micro architecture that can be enabled
by the platform as desired.

• SKIP_A57_L1_FLUSH_PWR_DWN: This flag enables an optimization in the Cortex-A57 cluster
power down sequence by not flushing the Level 1 data cache. The L1 data cache and the L2 unified
cache are inclusive. A flush of the L2 by set/way flushes any dirty lines from the L1 as well. This is
a known safe deviation from the Cortex-A57 TRM defined power down sequence. Each Cortex-A57
based platform must make its own decision on whether to use the optimization.

• A53_DISABLE_NON_TEMPORAL_HINT: This flag disables the cache non-temporal hint. The
LDNP/STNP instructions as implemented on Cortex-A53 do not behave in a way most programmers ex-
pect, and will most probably result in a significant speed degradation to any code that employs them. The
Armv8-A architecture (see Arm DDI 0487A.h, section D3.4.3) allows cores to ignore the non-temporal
hint and treat LDNP/STNP as LDP/STP instead. Enabling this flag enforces this behaviour. This needs
to be enabled only for revisions <= r0p3 of the CPU and is enabled by default.

• A57_DISABLE_NON_TEMPORAL_HINT: This flag has the same behaviour as
A53_DISABLE_NON_TEMPORAL_HINT but for Cortex-A57. This needs to be enabled only
for revisions <= r1p2 of the CPU and is enabled by default, as recommended in section “4.7
Non-Temporal Loads/Stores” of the Cortex-A57 Software Optimization Guide.

• ‘’A57_ENABLE_NON_CACHEABLE_LOAD_FWD’’: This flag enables non-cacheable
streaming enhancement feature for Cortex-A57 CPUs. Platforms can set this bit only if their
memory system meets the requirement that cache line fill requests from the Cortex-A57 processor
are atomic. Each Cortex-A57 based platform must make its own decision on whether to use the
optimization. This flag is disabled by default.

• NEOVERSE_Nx_EXTERNAL_LLC: This flag indicates that an external last level cache(LLC) is present
in the system, and that the DataSource field on the master CHI interface indicates when data is returned
from the LLC. This is used to control how the LL_CACHE* PMU events count. Default value is 0
(Disabled).

5.3. Arm CPU Specific Build Macros 347

http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf

Trusted Firmware-A, Release 2.10.4

5.3.5 GIC Errata Workarounds

• GIC600_ERRATA_WA_2384374: This flag applies part 2 of errata 2384374 workaround for the
affected GIC600 and GIC600-AE implementations. It applies to implementations of GIC600 and
GIC600-AE with revisions less than or equal to r1p6 and r0p2 respectively. If the platform sets
GICV3_SUPPORT_GIC600, then this flag is enabled; otherwise, it is 0 (Disabled).

Copyright (c) 2014-2024, Arm Limited and Contributors. All rights reserved.

5.4 Firmware Design

Trusted Firmware-A (TF-A) implements a subset of the Trusted Board Boot Requirements (TBBR) Platform
Design Document (PDD) for Arm reference platforms.

The TBB sequence starts when the platform is powered on and runs up to the stage where it hands-off control
to firmware running in the normal world in DRAM. This is the cold boot path.

TF-A also implements the PSCI as a runtime service. PSCI is the interface from normal world software to
firmware implementing power management use-cases (for example, secondary CPU boot, hotplug and idle).
Normal world software can access TF-A runtime services via the Arm SMC (Secure Monitor Call) instruction.
The SMC instruction must be used as mandated by the SMC Calling Convention (SMCCC).

TF-A implements a framework for configuring and managing interrupts generated in either security state. The
details of the interrupt management framework and its design can be found in Interrupt Management Frame-
work.

TF-A also implements a library for setting up and managing the translation tables. The details of this library
can be found in Translation (XLAT) Tables Library.

TF-A can be built to support either AArch64 or AArch32 execution state.

Note: The descriptions in this chapter are for the Arm TrustZone architecture. For changes to the firmware
design for the Arm Confidential Compute Architecture (Arm CCA) please refer to the chapter Realm Man-
agement Extension (RME).

5.4.1 Cold boot

The cold boot path starts when the platform is physically turned on. IfCOLD_BOOT_SINGLE_CPU=0, one of
the CPUs released from reset is chosen as the primary CPU, and the remaining CPUs are considered secondary
CPUs. The primary CPU is chosen through platform-specific means. The cold boot path is mainly executed
by the primary CPU, other than essential CPU initialization executed by all CPUs. The secondary CPUs are
kept in a safe platform-specific state until the primary CPU has performed enough initialization to boot them.

Refer to the CPU Reset for more information on the effect of the COLD_BOOT_SINGLE_CPU platform build
option.

348 Chapter 5. System Design

https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture

Trusted Firmware-A, Release 2.10.4

The cold boot path in this implementation of TF-A depends on the execution state. For AArch64, it is divided
into five steps (in order of execution):

• Boot Loader stage 1 (BL1) AP Trusted ROM

• Boot Loader stage 2 (BL2) Trusted Boot Firmware

• Boot Loader stage 3-1 (BL31) EL3 Runtime Software

• Boot Loader stage 3-2 (BL32) Secure-EL1 Payload (optional)

• Boot Loader stage 3-3 (BL33) Non-trusted Firmware

For AArch32, it is divided into four steps (in order of execution):

• Boot Loader stage 1 (BL1) AP Trusted ROM

• Boot Loader stage 2 (BL2) Trusted Boot Firmware

• Boot Loader stage 3-2 (BL32) EL3 Runtime Software

• Boot Loader stage 3-3 (BL33) Non-trusted Firmware

Arm development platforms (Fixed Virtual Platforms (FVPs) and Juno) implement a combination of the fol-
lowing types of memory regions. Each bootloader stage uses one or more of these memory regions.

• Regions accessible from both non-secure and secure states. For example, non-trusted SRAM, ROM and
DRAM.

• Regions accessible from only the secure state. For example, trusted SRAM and ROM. The FVPs also
implement the trusted DRAM which is statically configured. Additionally, the Base FVPs and Juno
development platform configure the TrustZone Controller (TZC) to create a region in the DRAM which
is accessible only from the secure state.

The sections below provide the following details:

• dynamic configuration of Boot Loader stages

• initialization and execution of the first three stages during cold boot

• specification of the EL3 Runtime Software (BL31 for AArch64 and BL32 for AArch32) entrypoint
requirements for use by alternative Trusted Boot Firmware in place of the provided BL1 and BL2

Dynamic Configuration during cold boot

Each of the Boot Loader stages may be dynamically configured if required by the platform. The Boot Loader
stage may optionally specify a firmware configuration file and/or hardware configuration file as listed below:

• FW_CONFIG - The firmware configuration file. Holds properties shared across all BLx images. An
example is the “dtb-registry” node, which contains the information about the other device tree configu-
rations (load-address, size, image_id).

• HW_CONFIG - The hardware configuration file. Can be shared by all Boot Loader stages and also by
the Normal World Rich OS.

• TB_FW_CONFIG - Trusted Boot Firmware configuration file. Shared between BL1 and BL2.

5.4. Firmware Design 349

Trusted Firmware-A, Release 2.10.4

• SOC_FW_CONFIG - SoC Firmware configuration file. Used by BL31.

• TOS_FW_CONFIG - Trusted OS Firmware configuration file. Used by Trusted OS (BL32).

• NT_FW_CONFIG - Non Trusted Firmware configuration file. Used by Non-trusted firmware (BL33).

The Arm development platforms use the Flattened Device Tree format for the dynamic configuration files.

Each Boot Loader stage can pass up to 4 arguments via registers to the next stage. BL2 passes the list of the
next images to execute to the EL3 Runtime Software (BL31 for AArch64 and BL32 for AArch32) via arg0.
All the other arguments are platform defined. The Arm development platforms use the following convention:

• BL1 passes the address of a meminfo_t structure to BL2 via arg1. This structure contains the memory
layout available to BL2.

• When dynamic configuration files are present, the firmware configuration for the next Boot Loader stage
is populated in the first available argument and the generic hardware configuration is passed the next
available argument. For example,

– FW_CONFIG is loaded by BL1, then its address is passed in arg0 to BL2.

– TB_FW_CONFIG address is retrieved by BL2 from FW_CONFIG device tree.

– If HW_CONFIG is loaded by BL1, then its address is passed in arg2 to BL2. Note, arg1 is
already used for meminfo_t.

– If SOC_FW_CONFIG is loaded by BL2, then its address is passed in arg1 to BL31. Note, arg0
is used to pass the list of executable images.

– Similarly, if HW_CONFIG is loaded by BL1 or BL2, then its address is passed in arg2 to BL31.

– For other BL3x images, if the firmware configuration file is loaded by BL2, then its address is
passed in arg0 and if HW_CONFIG is loaded then its address is passed in arg1.

– In case SPMC_AT_EL3 is enabled, populate the BL32 image base, size and max limit in the entry
point information, since there is no platform function to retrieve these in generic code. We choose
arg2, arg3 and arg4 since the generic code uses arg1 for stashing the SP manifest size. The
SPMC setup uses these arguments to update SP manifest with actual SP’s base address and it size.

– In case of the Arm FVP platform, FW_CONFIG address passed in arg1 to BL31/SP_MIN, and
the SOC_FW_CONFIG and HW_CONFIG details are retrieved from FW_CONFIG device tree.

BL1

This stage begins execution from the platform’s reset vector at EL3. The reset address is platform dependent
but it is usually located in a Trusted ROM area. The BL1 data section is copied to trusted SRAM at runtime.

On the Arm development platforms, BL1 code starts execution from the reset vector defined by the con-
stant BL1_RO_BASE. The BL1 data section is copied to the top of trusted SRAM as defined by the constant
BL1_RW_BASE.

The functionality implemented by this stage is as follows.

350 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Determination of boot path

Whenever a CPU is released from reset, BL1 needs to distinguish between a warm boot and a cold boot.
This is done using platform-specific mechanisms (see the plat_get_my_entrypoint() function in the
Porting Guide). In the case of a warm boot, a CPU is expected to continue execution from a separate en-
trypoint. In the case of a cold boot, the secondary CPUs are placed in a safe platform-specific state (see
the plat_secondary_cold_boot_setup() function in the Porting Guide) while the primary CPU
executes the remaining cold boot path as described in the following sections.

This step only applies when PROGRAMMABLE_RESET_ADDRESS=0. Refer to the CPU Reset for more in-
formation on the effect of the PROGRAMMABLE_RESET_ADDRESS platform build option.

Architectural initialization

BL1 performs minimal architectural initialization as follows.

• Exception vectors

BL1 sets up simple exception vectors for both synchronous and asynchronous exceptions. The default
behavior upon receiving an exception is to populate a status code in the general purpose register X0/R0
and call the plat_report_exception() function (see the Porting Guide). The status code is one
of:

For AArch64:

0x0 : Synchronous exception from Current EL with SP_EL0
0x1 : IRQ exception from Current EL with SP_EL0
0x2 : FIQ exception from Current EL with SP_EL0
0x3 : System Error exception from Current EL with SP_EL0
0x4 : Synchronous exception from Current EL with SP_ELx
0x5 : IRQ exception from Current EL with SP_ELx
0x6 : FIQ exception from Current EL with SP_ELx
0x7 : System Error exception from Current EL with SP_ELx
0x8 : Synchronous exception from Lower EL using aarch64
0x9 : IRQ exception from Lower EL using aarch64
0xa : FIQ exception from Lower EL using aarch64
0xb : System Error exception from Lower EL using aarch64
0xc : Synchronous exception from Lower EL using aarch32
0xd : IRQ exception from Lower EL using aarch32
0xe : FIQ exception from Lower EL using aarch32
0xf : System Error exception from Lower EL using aarch32

For AArch32:

0x10 : User mode
0x11 : FIQ mode
0x12 : IRQ mode
0x13 : SVC mode
0x16 : Monitor mode
0x17 : Abort mode
0x1a : Hypervisor mode

(continues on next page)

5.4. Firmware Design 351

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
0x1b : Undefined mode
0x1f : System mode

The plat_report_exception() implementation on the Arm FVP port programs the Versatile
Express System LED register in the following format to indicate the occurrence of an unexpected ex-
ception:

SYS_LED[0] - Security state (Secure=0/Non-Secure=1)
SYS_LED[2:1] - Exception Level (EL3=0x3, EL2=0x2, EL1=0x1, EL0=0x0)

For AArch32 it is always 0x0
SYS_LED[7:3] - Exception Class (Sync/Async & origin). This is the value

of the status code

A write to the LED register reflects in the System LEDs (S6LED0..7) in the CLCD window of the FVP.

BL1 does not expect to receive any exceptions other than the SMC exception. For the latter, BL1 installs
a simple stub. The stub expects to receive a limited set of SMC types (determined by their function IDs
in the general purpose register X0/R0):

– BL1_SMC_RUN_IMAGE: This SMC is raised by BL2 to make BL1 pass control to EL3 Runtime
Software.

– All SMCs listed in section “BL1 SMC Interface” in the Firmware Update (FWU) Design Guide
are supported for AArch64 only. These SMCs are currently not supported when BL1 is built for
AArch32.

Any other SMC leads to an assertion failure.

• CPU initialization

BL1 calls the reset_handler() function which in turn calls the CPU specific reset handler function
(see the section: “CPU specific operations framework”).

Platform initialization

On Arm platforms, BL1 performs the following platform initializations:

• Enable the Trusted Watchdog.

• Initialize the console.

• Configure the Interconnect to enable hardware coherency.

• Enable the MMU and map the memory it needs to access.

• Configure any required platform storage to load the next bootloader image (BL2).

• If the BL1 dynamic configuration file, TB_FW_CONFIG, is available, then load it to the platform defined
address and make it available to BL2 via arg0.

• Configure the system timer and program theCNTFRQ_EL0 for use by NS-BL1U andNS-BL2U firmware
update images.

352 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Firmware Update detection and execution

After performing platform setup, BL1 common code calls bl1_plat_get_next_image_id() to de-
termine if Firmware Update (FWU) is required or to proceed with the normal boot process. If the platform
code returns BL2_IMAGE_ID then the normal boot sequence is executed as described in the next section,
else BL1 assumes that Firmware Update (FWU) is required and execution passes to the first image in the
Firmware Update (FWU) process. In either case, BL1 retrieves a descriptor of the next image by calling
bl1_plat_get_image_desc(). The image descriptor contains an entry_point_info_t struc-
ture, which BL1 uses to initialize the execution state of the next image.

BL2 image load and execution

In the normal boot flow, BL1 execution continues as follows:

1. BL1 prints the following string from the primary CPU to indicate successful execution of the BL1 stage:

"Booting Trusted Firmware"

2. BL1 loads a BL2 raw binary image from platform storage, at a platform-specific base address. Prior
to the load, BL1 invokes bl1_plat_handle_pre_image_load() which allows the platform to
update or use the image information. If the BL2 image file is not present or if there is not enough free
trusted SRAM the following error message is printed:

"Failed to load BL2 firmware."

3. BL1 invokes bl1_plat_handle_post_image_load() which again is intended for platforms
to take further action after image load. This function must populate the necessary arguments for BL2,
which may also include the memory layout. Further description of the memory layout can be found later
in this document.

4. BL1 passes control to the BL2 image at Secure EL1 (for AArch64) or at Secure SVC mode (for
AArch32), starting from its load address.

BL2

BL1 loads and passes control to BL2 at Secure-EL1 (for AArch64) or at Secure SVC mode (for AArch32) .
BL2 is linked against and loaded at a platform-specific base address (more information can be found later in
this document). The functionality implemented by BL2 is as follows.

5.4. Firmware Design 353

Trusted Firmware-A, Release 2.10.4

Architectural initialization

For AArch64, BL2 performs the minimal architectural initialization required for subsequent stages of TF-A
and normal world software. EL1 and EL0 are given access to Floating Point and Advanced SIMD registers by
setting the CPACR.FPEN bits.

For AArch32, the minimal architectural initialization required for subsequent stages of TF-A and normal world
software is taken care of in BL1 as both BL1 and BL2 execute at PL1.

Platform initialization

On Arm platforms, BL2 performs the following platform initializations:

• Initialize the console.

• Configure any required platform storage to allow loading further bootloader images.

• Enable the MMU and map the memory it needs to access.

• Perform platform security setup to allow access to controlled components.

• Reserve some memory for passing information to the next bootloader image EL3 Runtime Software and
populate it.

• Define the extents of memory available for loading each subsequent bootloader image.

• If BL1 has passed TB_FW_CONFIG dynamic configuration file in arg0, then parse it.

Image loading in BL2

BL2 generic code loads the images based on the list of loadable images provided by the platform. BL2 passes
the list of executable images provided by the platform to the next handover BL image.

The list of loadable images provided by the platform may also contain dynamic configuration files. The files
are loaded and can be parsed as needed in the bl2_plat_handle_post_image_load() function.
These configuration files can be passed to next Boot Loader stages as arguments by updating the corresponding
entrypoint information in this function.

SCP_BL2 (System Control Processor Firmware) image load

Some systems have a separate System Control Processor (SCP) for power, clock, reset and system control.
BL2 loads the optional SCP_BL2 image from platform storage into a platform-specific region of secure mem-
ory. The subsequent handling of SCP_BL2 is platform specific. For example, on the Juno Arm development
platform port the image is transferred into SCP’s internal memory using the Boot Over MHU (BOM) protocol
after being loaded in the trusted SRAM memory. The SCP executes SCP_BL2 and signals to the Application
Processor (AP) for BL2 execution to continue.

354 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

EL3 Runtime Software image load

BL2 loads the EL3 Runtime Software image from platform storage into a platform- specific address in trusted
SRAM. If there is not enough memory to load the image or image is missing it leads to an assertion failure.

AArch64 BL32 (Secure-EL1 Payload) image load

BL2 loads the optional BL32 image from platform storage into a platform- specific region of secure memory.
The image executes in the secure world. BL2 relies on BL31 to pass control to the BL32 image, if present.
Hence, BL2 populates a platform-specific area of memory with the entrypoint/load-address of the BL32 image.
The value of the Saved Processor Status Register (SPSR) for entry into BL32 is not determined by BL2, it is
initialized by the Secure-EL1 Payload Dispatcher (see later) within BL31, which is responsible for managing
interaction with BL32. This information is passed to BL31.

BL33 (Non-trusted Firmware) image load

BL2 loads the BL33 image (e.g. UEFI or other test or boot software) from platform storage into non-secure
memory as defined by the platform.

BL2 relies on EL3Runtime Software to pass control to BL33 once secure state initialization is complete. Hence,
BL2 populates a platform-specific area of memory with the entrypoint and Saved Program Status Register
(SPSR) of the normal world software image. The entrypoint is the load address of the BL33 image. The
SPSR is determined as specified in Section 5.13 of the PSCI. This information is passed to the EL3 Runtime
Software.

AArch64 BL31 (EL3 Runtime Software) execution

BL2 execution continues as follows:

1. BL2 passes control back to BL1 by raising an SMC, providing BL1 with the BL31 entrypoint. The
exception is handled by the SMC exception handler installed by BL1.

2. BL1 turns off the MMU and flushes the caches. It clears the SCTLR_EL3.M/I/C bits, flushes the data
cache to the point of coherency and invalidates the TLBs.

3. BL1 passes control to BL31 at the specified entrypoint at EL3.

Running BL2 at EL3 execution level

Some platforms have a non-TF-A Boot ROM that expects the next boot stage to execute at EL3. On these
platforms, TF-A BL1 is a waste of memory as its only purpose is to ensure TF-A BL2 is entered at S-EL1. To
avoid this waste, a special mode enables BL2 to execute at EL3, which allows a non-TF-A Boot ROM to load
and jump directly to BL2. This mode is selected when the build flag RESET_TO_BL2 is enabled. The main
differences in this mode are:

5.4. Firmware Design 355

https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

1. BL2 includes the reset code and the mailbox mechanism to differentiate cold boot and warm boot. It
runs at EL3 doing the arch initialization required for EL3.

2. BL2 does not receive the meminfo information from BL1 anymore. This information can be passed by
the Boot ROM or be internal to the BL2 image.

3. Since BL2 executes at EL3, BL2 jumps directly to the next image, instead of invoking the RUN_IMAGE
SMC call.

We assume 3 different types of BootROM support on the platform:

1. The Boot ROM always jumps to the same address, for both cold and warm boot. In this case, we will
need to keep a resident part of BL2 whose memory cannot be reclaimed by any other image. The linker
script defines the symbols __TEXT_RESIDENT_START__ and __TEXT_RESIDENT_END__ that
allows the platform to configure correctly the memory map.

2. The platform has some mechanism to indicate the jump address to the Boot ROM. Platform code can
then program the jump address with psci_warmboot_entrypoint during cold boot.

3. The platform has some mechanism to program the reset address using the PRO-
GRAMMABLE_RESET_ADDRESS feature. Platform code can then program the reset address
with psci_warmboot_entrypoint during cold boot, bypassing the boot ROM for warm boot.

In the last 2 cases, no part of BL2 needs to remain resident at runtime. In the first 2 cases, we expect the Boot
ROM to be able to differentiate between warm and cold boot, to avoid loading BL2 again during warm boot.

This functionality can be tested with FVP loading the image directly in memory and changing the address where
the system jumps at reset. For example:

-C cluster0.cpu0.RVBAR=0x4022000 –data cluster0.cpu0=bl2.bin@0x4022000

With this configuration, FVP is like a platform of the first case, where the Boot ROM jumps always to the
same address. For simplification, BL32 is loaded in DRAM in this case, to avoid other images reclaiming BL2
memory.

AArch64 BL31

The image for this stage is loaded by BL2 and BL1 passes control to BL31 at EL3. BL31 executes solely in
trusted SRAM. BL31 is linked against and loaded at a platform-specific base address (more information can
be found later in this document). The functionality implemented by BL31 is as follows.

Architectural initialization

Currently, BL31 performs a similar architectural initialization to BL1 as far as system register settings are
concerned. Since BL1 code resides in ROM, architectural initialization in BL31 allows override of any previous
initialization done by BL1.

BL31 initializes the per-CPU data framework, which provides a cache of frequently accessed per-CPU data
optimised for fast, concurrent manipulation on different CPUs. This buffer includes pointers to per-CPU con-
texts, crash buffer, CPU reset and power down operations, PSCI data, platform data and so on.

356 Chapter 5. System Design

mailto:cluster0.cpu0=bl2.bin@0x4022000

Trusted Firmware-A, Release 2.10.4

It then replaces the exception vectors populated by BL1 with its own. BL31 exception vectors implement
more elaborate support for handling SMCs since this is the only mechanism to access the runtime services
implemented by BL31 (PSCI for example). BL31 checks each SMC for validity as specified by the SMC
Calling Convention before passing control to the required SMC handler routine.

BL31 programs the CNTFRQ_EL0 register with the clock frequency of the system counter, which is provided
by the platform.

Platform initialization

BL31 performs detailed platform initialization, which enables normal world software to function correctly.

On Arm platforms, this consists of the following:

• Initialize the console.

• Configure the Interconnect to enable hardware coherency.

• Enable the MMU and map the memory it needs to access.

• Initialize the generic interrupt controller.

• Initialize the power controller device.

• Detect the system topology.

Runtime services initialization

BL31 is responsible for initializing the runtime services. One of them is PSCI.

As part of the PSCI initializations, BL31 detects the system topology. It also initializes the data structures that
implement the state machine used to track the state of power domain nodes. The state can be one of OFF,
RUN or RETENTION. All secondary CPUs are initially in the OFF state. The cluster that the primary CPU
belongs to is ON; any other cluster is OFF. It also initializes the locks that protect them. BL31 accesses the state
of a CPU or cluster immediately after reset and before the data cache is enabled in the warm boot path. It is
not currently possible to use ‘exclusive’ based spinlocks, therefore BL31 uses locks based on Lamport’s Bakery
algorithm instead.

The runtime service framework and its initialization is described in more detail in the “EL3 runtime services
framework” section below.

Details about the status of the PSCI implementation are provided in the “Power State Coordination Interface”
section below.

5.4. Firmware Design 357

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

AArch64 BL32 (Secure-EL1 Payload) image initialization

If a BL32 image is present then there must be a matching Secure-EL1 Payload Dispatcher (SPD) service (see
later for details). During initialization that service must register a function to carry out initialization of BL32
once the runtime services are fully initialized. BL31 invokes such a registered function to initialize BL32 before
running BL33. This initialization is not necessary for AArch32 SPs.

Details on BL32 initialization and the SPD’s role are described in the Secure-EL1 Payloads and Dispatchers
section below.

BL33 (Non-trusted Firmware) execution

EL3 Runtime Software initializes the EL2 or EL1 processor context for normal- world cold boot, ensuring
that no secure state information finds its way into the non-secure execution state. EL3 Runtime Software uses
the entrypoint information provided by BL2 to jump to the Non-trusted firmware image (BL33) at the highest
available Exception Level (EL2 if available, otherwise EL1).

Using alternative Trusted Boot Firmware in place of BL1 & BL2 (AArch64 only)

Some platforms have existing implementations of Trusted Boot Firmware that would like to use TF-A BL31 for
the EL3 Runtime Software. To enable this firmware architecture it is important to provide a fully documented
and stable interface between the Trusted Boot Firmware and BL31.

Future changes to the BL31 interface will be done in a backwards compatible way, and this enables these
firmware components to be independently enhanced/ updated to develop and exploit new functionality.

Required CPU state when calling bl31_entrypoint() during cold boot

This function must only be called by the primary CPU.

On entry to this function the calling primary CPUmust be executing in AArch64 EL3, little-endian data access,
and all interrupt sources masked:

PSTATE.EL = 3
PSTATE.RW = 1
PSTATE.DAIF = 0xf
SCTLR_EL3.EE = 0

X0 and X1 can be used to pass information from the Trusted Boot Firmware to the platform code in BL31:

X0 : Reserved for common TF-A information
X1 : Platform specific information

BL31 zero-init sections (e.g. .bss) should not contain valid data on entry, these will be zero filled prior to
invoking platform setup code.

358 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Use of the X0 and X1 parameters

The parameters are platform specific and passed from bl31_entrypoint() to
bl31_early_platform_setup(). The value of these parameters is never directly used by the
common BL31 code.

The convention is that X0 conveys information regarding the BL31, BL32 and BL33 images from the Trusted
Boot firmware and X1 can be used for other platform specific purpose. This convention allows platforms which
use TF-A’s BL1 and BL2 images to transfer additional platform specific information from Secure Boot without
conflicting with future evolution of TF-A using X0 to pass a bl31_params structure.

BL31 common and SPD initialization code depends on image and entrypoint information about BL33 and
BL32, which is provided via BL31 platform APIs. This information is required until the start of execution of
BL33. This information can be provided in a platform defined manner, e.g. compiled into the platform code
in BL31, or provided in a platform defined memory location by the Trusted Boot firmware, or passed from the
Trusted Boot Firmware via the Cold boot Initialization parameters. This data may need to be cleaned out of
the CPU caches if it is provided by an earlier boot stage and then accessed by BL31 platform code before the
caches are enabled.

TF-A’s BL2 implementation passes a bl31_params structure in X0 and the Arm development platforms
interpret this in the BL31 platform code.

MMU, Data caches & Coherency

BL31 does not depend on the enabled state of the MMU, data caches or interconnect coherency on
entry to bl31_entrypoint(). If these are disabled on entry, these should be enabled during
bl31_plat_arch_setup().

Data structures used in the BL31 cold boot interface

These structures are designed to support compatibility and independent evolution of the structures and the
firmware images. For example, a version of BL31 that can interpret the BL3x image information from different
versions of BL2, a platform that uses an extended entry_point_info structure to convey additional register
information to BL31, or a ELF image loader that can convey more details about the firmware images.

To support these scenarios the structures are versioned and sized, which enables BL31 to detect which infor-
mation is present and respond appropriately. The param_header is defined to capture this information:

typedef struct param_header {
uint8_t type; /* type of the structure */
uint8_t version; /* version of this structure */
uint16_t size; /* size of this structure in bytes */
uint32_t attr; /* attributes: unused bits SBZ */

} param_header_t;

The structures using this format are entry_point_info, image_info and bl31_params. The
code that allocates and populates these structures must set the header fields appropriately, and the
SET_PARAM_HEAD() a macro is defined to simplify this action.

5.4. Firmware Design 359

Trusted Firmware-A, Release 2.10.4

Required CPU state for BL31 Warm boot initialization

When requesting a CPU power-on, or suspending a running CPU, TF-A provides the platform power man-
agement code with a Warm boot initialization entry-point, to be invoked by the CPU immediately after the
reset handler. On entry to the Warm boot initialization function the calling CPU must be in AArch64 EL3,
little-endian data access and all interrupt sources masked:

PSTATE.EL = 3
PSTATE.RW = 1
PSTATE.DAIF = 0xf
SCTLR_EL3.EE = 0

The PSCI implementation will initialize the processor state and ensure that the platform power management
code is then invoked as required to initialize all necessary system, cluster and CPU resources.

AArch32 EL3 Runtime Software entrypoint interface

To enable this firmware architecture it is important to provide a fully documented and stable interface between
the Trusted Boot Firmware and the AArch32 EL3 Runtime Software.

Future changes to the entrypoint interface will be done in a backwards compatible way, and this enables these
firmware components to be independently enhanced/updated to develop and exploit new functionality.

Required CPU state when entering during cold boot

This function must only be called by the primary CPU.

On entry to this function the calling primary CPUmust be executing in AArch32 EL3, little-endian data access,
and all interrupt sources masked:

PSTATE.AIF = 0x7
SCTLR.EE = 0

R0 and R1 are used to pass information from the Trusted Boot Firmware to the platform code in AArch32
EL3 Runtime Software:

R0 : Reserved for common TF-A information
R1 : Platform specific information

360 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Use of the R0 and R1 parameters

The parameters are platform specific and the convention is that R0 conveys information regarding the BL3x
images from the Trusted Boot firmware andR1 can be used for other platform specific purpose. This convention
allows platforms which use TF-A’s BL1 and BL2 images to transfer additional platform specific information
from Secure Boot without conflicting with future evolution of TF-A using R0 to pass a bl_params structure.

The AArch32 EL3 Runtime Software is responsible for entry into BL33. This information can be obtained in
a platform defined manner, e.g. compiled into the AArch32 EL3 Runtime Software, or provided in a platform
defined memory location by the Trusted Boot firmware, or passed from the Trusted Boot Firmware via the
Cold boot Initialization parameters. This data may need to be cleaned out of the CPU caches if it is provided
by an earlier boot stage and then accessed by AArch32 EL3 Runtime Software before the caches are enabled.

When using AArch32 EL3 Runtime Software, the Arm development platforms pass a bl_params structure
in R0 from BL2 to be interpreted by AArch32 EL3 Runtime Software platform code.

MMU, Data caches & Coherency

AArch32 EL3Runtime Softwaremust not depend on the enabled state of theMMU, data caches or interconnect
coherency in its entrypoint. They must be explicitly enabled if required.

Data structures used in cold boot interface

The AArch32 EL3 Runtime Software cold boot interface uses bl_params instead of bl31_params. The
bl_params structure is based on the convention described in AArch64 BL31 cold boot interface section.

Required CPU state for warm boot initialization

When requesting a CPU power-on, or suspending a running CPU, AArch32 EL3 Runtime Software
must ensure execution of a warm boot initialization entrypoint. If TF-A BL1 is used and the PRO-
GRAMMABLE_RESET_ADDRESS build flag is false, then AArch32 EL3 Runtime Software must en-
sure that BL1 branches to the warm boot entrypoint by arranging for the BL1 platform function,
plat_get_my_entrypoint(), to return a non-zero value.

In this case, the warm boot entrypoint must be in AArch32 EL3, little-endian data access and all interrupt
sources masked:

PSTATE.AIF = 0x7
SCTLR.EE = 0

The warm boot entrypoint may be implemented by using TF-A psci_warmboot_entrypoint() func-
tion. In that case, the platform must fulfil the pre-requisites mentioned in the PSCI Library Integration guide
for Armv8-A AArch32 systems.

5.4. Firmware Design 361

Trusted Firmware-A, Release 2.10.4

5.4.2 EL3 runtime services framework

Software executing in the non-secure state and in the secure state at exception levels lower than EL3 will request
runtime services using the Secure Monitor Call (SMC) instruction. These requests will follow the convention
described in the SMC Calling Convention PDD (SMCCC). The SMCCC assigns function identifiers to each
SMC request and describes how arguments are passed and returned.

The EL3 runtime services framework enables the development of services by different providers that can be
easily integrated into final product firmware. The following sections describe the framework which facilitates
the registration, initialization and use of runtime services in EL3 Runtime Software (BL31).

The design of the runtime services depends heavily on the concepts and definitions described in the SMCCC,
in particular SMC Function IDs, Owning Entity Numbers (OEN), Fast and Yielding calls, and the SMC32 and
SMC64 calling conventions. Please refer to that document for more detailed explanation of these terms.

The following runtime services are expected to be implemented first. They have not all been instantiated in the
current implementation.

1. Standard service calls

This service is for management of the entire system. The Power State Coordination Interface (PSCI) is
the first set of standard service calls defined by Arm (see PSCI section later).

2. Secure-EL1 Payload Dispatcher service

If a system runs a Trusted OS or other Secure-EL1 Payload (SP) then it also requires a Secure Monitor
at EL3 to switch the EL1 processor context between the normal world (EL1/EL2) and trusted world
(Secure-EL1). The Secure Monitor will make these world switches in response to SMCs. The SMCCC
provides for such SMCs with the Trusted OS Call and Trusted Application Call OEN ranges.

The interface between the EL3 Runtime Software and the Secure-EL1 Payload is not defined by the
SMCCC or any other standard. As a result, each Secure-EL1 Payload requires a specific Secure Mon-
itor that runs as a runtime service - within TF-A this service is referred to as the Secure-EL1 Payload
Dispatcher (SPD).

TF-A provides a Test Secure-EL1 Payload (TSP) and its associated Dispatcher (TSPD). Details of SPD
design and TSP/TSPD operation are described in the Secure-EL1 Payloads and Dispatchers section be-
low.

3. CPU implementation service

This service will provide an interface to CPU implementation specific services for a given platform e.g.
access to processor errata workarounds. This service is currently unimplemented.

Additional services for Arm Architecture, SiP and OEM calls can be implemented. Each implemented service
handles a range of SMC function identifiers as described in the SMCCC.

362 Chapter 5. System Design

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

Registration

A runtime service is registered using the DECLARE_RT_SVC() macro, specifying the name of the service,
the range of OENs covered, the type of service and initialization and call handler functions. This macro
instantiates a const struct rt_svc_desc for the service with these details (see runtime_svc.
h). This structure is allocated in a special ELF section .rt_svc_descs, enabling the framework to find all
service descriptors included into BL31.

The specific service for a SMC Function is selected based on the OEN and call type of the Function ID, and
the framework uses that information in the service descriptor to identify the handler for the SMC Call.

The service descriptors do not include information to identify the precise set of SMC function identifiers sup-
ported by this service implementation, the security state from which such calls are valid nor the capability to
support 64-bit and/or 32-bit callers (using SMC32 or SMC64). Responding appropriately to these aspects of
a SMC call is the responsibility of the service implementation, the framework is focused on integration of
services from different providers and minimizing the time taken by the framework before the service handler
is invoked.

Details of the parameters, requirements and behavior of the initialization and call handling functions are pro-
vided in the following sections.

Initialization

runtime_svc_init() in runtime_svc.c initializes the runtime services framework running on the
primary CPU during cold boot as part of the BL31 initialization. This happens prior to initializing a Trusted OS
and running Normal world boot firmware that might in turn use these services. Initialization involves validating
each of the declared runtime service descriptors, calling the service initialization function and populating the
index used for runtime lookup of the service.

The BL31 linker script collects all of the declared service descriptors into a single array and defines symbols
that allow the framework to locate and traverse the array, and determine its size.

The framework does basic validation of each descriptor to halt firmware initialization if service declaration
errors are detected. The framework does not check descriptors for the following error conditions, and may
behave in an unpredictable manner under such scenarios:

1. Overlapping OEN ranges

2. Multiple descriptors for the same range of OENs and call_type

3. Incorrect range of owning entity numbers for a given call_type

Once validated, the service init() callback is invoked. This function carries out any essential EL3 initial-
ization before servicing requests. The init() function is only invoked on the primary CPU during cold boot.
If the service uses per-CPU data this must either be initialized for all CPUs during this call, or be done lazily
when a CPU first issues an SMC call to that service. If init() returns anything other than 0, this is treated
as an initialization error and the service is ignored: this does not cause the firmware to halt.

The OEN and call type fields present in the SMC Function ID cover a total of 128 distinct services, but in
practice a single descriptor can cover a range of OENs, e.g. SMCs to call a Trusted OS function. To op-
timize the lookup of a service handler, the framework uses an array of 128 indices that map every distinct
OEN/call-type combination either to one of the declared services or to indicate the service is not handled.

5.4. Firmware Design 363

Trusted Firmware-A, Release 2.10.4

This rt_svc_descs_indices[] array is populated for all of the OENs covered by a service after the
service init() function has reported success. So a service that fails to initialize will never have it’s han-
dle() function invoked.

The following figure shows how the rt_svc_descs_indices[] index maps the SMC Function ID call
type and OEN onto a specific service handler in the rt_svc_descs[] array.

364 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.4. Firmware Design 365

Trusted Firmware-A, Release 2.10.4

Handling an SMC

When the EL3 runtime services framework receives a Secure Monitor Call, the SMC Function ID is passed in
W0 from the lower exception level (as per the SMCCC). If the calling register width is AArch32, it is invalid
to invoke an SMC Function which indicates the SMC64 calling convention: such calls are ignored and return
the Unknown SMC Function Identifier result code 0xFFFFFFFF in R0/X0.

Bit[31] (fast/yielding call) and bits[29:24] (owning entity number) of the SMC Function ID are combined to
index into the rt_svc_descs_indices[] array. The resulting value might indicate a service that has no
handler, in this case the framework will also report an Unknown SMC Function ID. Otherwise, the value is
used as a further index into the rt_svc_descs[] array to locate the required service and handler.

The service’s handle() callback is provided with five of the SMC parameters directly, the others are saved
into memory for retrieval (if needed) by the handler. The handler is also provided with an opaque handle
for use with the supporting library for parameter retrieval, setting return values and context manipulation. The
flags parameter indicates the security state of the caller and the state of the SVE hint bit per the SMCCCv1.3.
The framework finally sets up the execution stack for the handler, and invokes the serviceshandle() function.

On return from the handler the result registers are populated in X0-X7 as needed before restoring the stack and
CPU state and returning from the original SMC.

5.4.3 Exception Handling Framework

Please refer to the Exception Handling Framework document.

5.4.4 Power State Coordination Interface

TODO: Provide design walkthrough of PSCI implementation.

The PSCI v1.1 specification categorizes APIs as optional and mandatory. All the mandatory APIs in PSCI
v1.1, PSCI v1.0 and in PSCI v0.2 draft specification PSCI are implemented. The table lists the PSCI v1.1
APIs and their support in generic code.

AnAPI implementationmight have a dependency on platform code e.g. CPU_SUSPEND requires the platform
to export a part of the implementation. Hence the level of support of the mandatory APIs depends upon the
support exported by the platform port as well. The Juno and FVP (all variants) platforms export all the required
support.

366 Chapter 5. System Design

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

PSCI v1.1 API Supported Comments
PSCI_VERSION Yes The version returned is 1.1
CPU_SUSPEND Yes*
CPU_OFF Yes*
CPU_ON Yes*
AFFINITY_INFO Yes
MIGRATE Yes**
MIGRATE_INFO_TYPE Yes**
MIGRATE_INFO_CPU Yes**
SYSTEM_OFF Yes*
SYSTEM_RESET Yes*
PSCI_FEATURES Yes
CPU_FREEZE No
CPU_DEFAULT_SUSPEND No
NODE_HW_STATE Yes*
SYSTEM_SUSPEND Yes*
PSCI_SET_SUSPEND_MODE No
PSCI_STAT_RESIDENCY Yes*
PSCI_STAT_COUNT Yes*
SYSTEM_RESET2 Yes*
MEM_PROTECT Yes*
MEM_PROTECT_CHECK_RANGE Yes*

*Note : These PSCI APIs require platform power management hooks to be registered with the generic PSCI
code to be supported.

**Note : These PSCI APIs require appropriate Secure Payload Dispatcher hooks to be registered with the
generic PSCI code to be supported.

The PSCI implementation in TF-A is a library which can be integrated with AArch64 or AArch32 EL3 Run-
time Software for Armv8-A systems. A guide to integrating PSCI library with AArch32 EL3Runtime Software
can be found at PSCI Library Integration guide for Armv8-A AArch32 systems.

5.4.5 Secure-EL1 Payloads and Dispatchers

On a production system that includes a Trusted OS running in Secure-EL1/EL0, the Trusted OS is coupled
with a companion runtime service in the BL31 firmware. This service is responsible for the initialisation of the
Trusted OS and all communications with it. The Trusted OS is the BL32 stage of the boot flow in TF-A. The
firmware will attempt to locate, load and execute a BL32 image.

TF-A uses a more general term for the BL32 software that runs at Secure-EL1 - the Secure-EL1 Payload - as
it is not always a Trusted OS.

TF-A provides a Test Secure-EL1 Payload (TSP) and a Test Secure-EL1 Payload Dispatcher (TSPD) service as
an example of how a Trusted OS is supported on a production system using the Runtime Services Framework.
On such a system, the Test BL32 image and service are replaced by the Trusted OS and its dispatcher service.
The TF-A build system expects that the dispatcher will define the build flag NEED_BL32 to enable it to include

5.4. Firmware Design 367

Trusted Firmware-A, Release 2.10.4

the BL32 in the build either as a binary or to compile from source depending on whether the BL32 build option
is specified or not.

The TSP runs in Secure-EL1. It is designed to demonstrate synchronous communication with the normal-world
software running in EL1/EL2. Communication is initiated by the normal-world software

• either directly through a Fast SMC (as defined in the SMCCC)

• or indirectly through a PSCI SMC. The PSCI implementation in turn informs the TSPD about the re-
quested power management operation. This allows the TSP to prepare for or respond to the power state
change

The TSPD service is responsible for.

• Initializing the TSP

• Routing requests and responses between the secure and the non-secure states during the two types of
communications just described

Initializing a BL32 Image

The Secure-EL1 Payload Dispatcher (SPD) service is responsible for initializing the BL32 image. It needs
access to the information passed by BL2 to BL31 to do so. This is provided by:

entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t);

which returns a reference to the entry_point_info structure corresponding to the image which will be
run in the specified security state. The SPD uses this API to get entry point information for the SECURE
image, BL32.

In the absence of a BL32 image, BL31 passes control to the normal world bootloader image (BL33). When
the BL32 image is present, it is typical that the SPD wants control to be passed to BL32 first and then later to
BL33.

To do this the SPD has to register a BL32 initialization function during initialization of the SPD service. The
BL32 initialization function has this prototype:

int32_t init(void);

and is registered using the bl31_register_bl32_init() function.

TF-A supports two approaches for the SPD to pass control to BL32 before returning through EL3 and running
the non-trusted firmware (BL33):

1. In the BL32 setup function, use bl31_set_next_image_type() to request that the exit from
bl31_main() is to the BL32 entrypoint in Secure-EL1. BL31 will exit to BL32 using the asyn-
chronous method by calling bl31_prepare_next_image_entry() and el3_exit().

When the BL32 has completed initialization at Secure-EL1, it returns to BL31 by issuing an SMC, using
a Function ID allocated to the SPD. On receipt of this SMC, the SPD service handler should switch
the CPU context from trusted to normal world and use the bl31_set_next_image_type() and
bl31_prepare_next_image_entry() functions to set up the initial return to the normal world
firmware BL33. On return from the handler the framework will exit to EL2 and run BL33.

368 Chapter 5. System Design

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

2. The BL32 setup function registers an initialization function using bl31_register_bl32_init()
which provides a SPD-defined mechanism to invoke a ‘world-switch synchronous call’ to Secure-EL1 to
run the BL32 entrypoint.

Note: The Test SPD service included with TF-A provides one implementation of such a mechanism.

On completion BL32 returns control to BL31 via a SMC, and on receipt the SPD service handler invokes
the synchronous call return mechanism to return to the BL32 initialization function. On return from this
function, bl31_main() will set up the return to the normal world firmware BL33 and continue the
boot process in the normal world.

5.4.6 Exception handling in BL31

When exception occurs, PE must execute handler corresponding to exception. The location in memory where
the handler is stored is called the exception vector. For ARM architecture, exception vectors are stored in a
table, called the exception vector table.

Each EL (except EL0) has its own vector table, VBAR_ELn register stores the base of vector table. Refer to
AArch64 exception vector table

Current EL with SP_EL0

• Sync exception : Not expected except for BRK instruction, its debugging tool which a programmer may
place at specific points in a program, to check the state of processor flags at these points in the code.

• IRQ/FIQ : Unexpected exception, panic

• SError : “plat_handle_el3_ea”, defaults to panic

Current EL with SP_ELx

• Sync exception : Unexpected exception, panic

• IRQ/FIQ : Unexpected exception, panic

• SError : “plat_handle_el3_ea” Except for special handling of lower EL’s SError exception which gets
triggered in EL3 when PSTATE.A is unmasked. Its only applicable when lower EL’s EA is routed to
EL3 (FFH_SUPPORT=1).

5.4. Firmware Design 369

https://developer.arm.com/documentation/100933/0100/AArch64-exception-vector-table

Trusted Firmware-A, Release 2.10.4

Lower EL Exceptions

Applies to all the exceptions in both AArch64/AArch32 mode of lower EL.

Before handling any lower EL exception, we synchronize the errors at EL3 entry to ensure that any errors
pertaining to lower EL is isolated/identified. If we continue without identifying these errors early on then these
errors will trigger in EL3 (as SError from current EL) any time after PSTATE.A is unmasked. This is wrong
because the error originated in lower EL but exception happened in EL3.

To solve this problem, synchronize the errors at EL3 entry and check for any pending errors (async EA). If
there is no pending error then continue with original exception. If there is a pending error then, handle them
based on routing model of EA’s. Refer to Reliability, Availability, and Serviceability (RAS) Extensions for details
about routing models.

• KFH : Reflect it back to lower EL using reflect_pending_async_ea_to_lower_el()

• FFH : Handle the synchronized error first using handle_pending_async_ea() after that continue with
original exception. It is the only scenario where EL3 is capable of doing nested exception handling.

After synchronizing and handling lower EL SErrors, unmask EA (PSTATE.A) to ensure that any further EA’s
caused by EL3 are caught.

5.4.7 Crash Reporting in BL31

BL31 implements a scheme for reporting the processor state when an unhandled exception is encountered. The
reporting mechanism attempts to preserve all the register contents and report it via a dedicated UART (PL011
console). BL31 reports the general purpose, EL3, Secure EL1 and some EL2 state registers.

A dedicated per-CPU crash stack is maintained by BL31 and this is retrieved via the per-CPU pointer
cache. The implementation attempts to minimise the memory required for this feature. The file
crash_reporting.S contains the implementation for crash reporting.

The sample crash output is shown below.

x0 = 0x000000002a4a0000
x1 = 0x0000000000000001
x2 = 0x0000000000000002
x3 = 0x0000000000000003
x4 = 0x0000000000000004
x5 = 0x0000000000000005
x6 = 0x0000000000000006
x7 = 0x0000000000000007
x8 = 0x0000000000000008
x9 = 0x0000000000000009
x10 = 0x0000000000000010
x11 = 0x0000000000000011
x12 = 0x0000000000000012
x13 = 0x0000000000000013
x14 = 0x0000000000000014
x15 = 0x0000000000000015
x16 = 0x0000000000000016
x17 = 0x0000000000000017

(continues on next page)

370 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
x18 = 0x0000000000000018
x19 = 0x0000000000000019
x20 = 0x0000000000000020
x21 = 0x0000000000000021
x22 = 0x0000000000000022
x23 = 0x0000000000000023
x24 = 0x0000000000000024
x25 = 0x0000000000000025
x26 = 0x0000000000000026
x27 = 0x0000000000000027
x28 = 0x0000000000000028
x29 = 0x0000000000000029
x30 = 0x0000000088000b78
scr_el3 = 0x000000000003073d
sctlr_el3 = 0x00000000b0cd183f
cptr_el3 = 0x0000000000000000
tcr_el3 = 0x000000008080351c
daif = 0x00000000000002c0
mair_el3 = 0x00000000004404ff
spsr_el3 = 0x0000000060000349
elr_el3 = 0x0000000088000114
ttbr0_el3 = 0x0000000004018201
esr_el3 = 0x00000000be000000
far_el3 = 0x0000000000000000
spsr_el1 = 0x0000000000000000
elr_el1 = 0x0000000000000000
spsr_abt = 0x0000000000000000
spsr_und = 0x0000000000000000
spsr_irq = 0x0000000000000000
spsr_fiq = 0x0000000000000000
sctlr_el1 = 0x0000000030d00800
actlr_el1 = 0x0000000000000000
cpacr_el1 = 0x0000000000000000
csselr_el1 = 0x0000000000000000
sp_el1 = 0x0000000000000000
esr_el1 = 0x0000000000000000
ttbr0_el1 = 0x0000000000000000
ttbr1_el1 = 0x0000000000000000
mair_el1 = 0x0000000000000000
amair_el1 = 0x0000000000000000
tcr_el1 = 0x0000000000000000
tpidr_el1 = 0x0000000000000000
tpidr_el0 = 0x0000000000000000
tpidrro_el0 = 0x0000000000000000
par_el1 = 0x0000000000000000
mpidr_el1 = 0x0000000080000000
afsr0_el1 = 0x0000000000000000
afsr1_el1 = 0x0000000000000000
contextidr_el1 = 0x0000000000000000
vbar_el1 = 0x0000000000000000
cntp_ctl_el0 = 0x0000000000000000
cntp_cval_el0 = 0x0000000000000000

(continues on next page)

5.4. Firmware Design 371

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
cntv_ctl_el0 = 0x0000000000000000
cntv_cval_el0 = 0x0000000000000000
cntkctl_el1 = 0x0000000000000000
sp_el0 = 0x0000000004014940
isr_el1 = 0x0000000000000000
dacr32_el2 = 0x0000000000000000
ifsr32_el2 = 0x0000000000000000
icc_hppir0_el1 = 0x00000000000003ff
icc_hppir1_el1 = 0x00000000000003ff
icc_ctlr_el3 = 0x0000000000080400
gicd_ispendr regs (Offsets 0x200-0x278)
Offset Value
0x200: 0x0000000000000000
0x208: 0x0000000000000000
0x210: 0x0000000000000000
0x218: 0x0000000000000000
0x220: 0x0000000000000000
0x228: 0x0000000000000000
0x230: 0x0000000000000000
0x238: 0x0000000000000000
0x240: 0x0000000000000000
0x248: 0x0000000000000000
0x250: 0x0000000000000000
0x258: 0x0000000000000000
0x260: 0x0000000000000000
0x268: 0x0000000000000000
0x270: 0x0000000000000000
0x278: 0x0000000000000000

5.4.8 Guidelines for Reset Handlers

TF-A implements a framework that allows CPU and platform ports to perform actions very early after a CPU
is released from reset in both the cold and warm boot paths. This is done by calling the reset_handler()
function in both the BL1 and BL31 images. It in turn calls the platform and CPU specific reset handling
functions.

Details for implementing a CPU specific reset handler can be found in CPU specific Reset Handling. Details for
implementing a platform specific reset handler can be found in the Porting Guide (see the``plat_reset_handler()``
function).

When adding functionality to a reset handler, keep in mind that if a different reset handling behavior is required
between the first and the subsequent invocations of the reset handling code, this should be detected at runtime.
In other words, the reset handler should be able to detect whether an action has already been performed and
act as appropriate. Possible courses of actions are, e.g. skip the action the second time, or undo/redo it.

372 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.4.9 Configuring secure interrupts

The GIC driver is responsible for performing initial configuration of secure interrupts on the platform. To this
end, the platform is expected to provide the GIC driver (either GICv2 or GICv3, as selected by the platform)
with the interrupt configuration during the driver initialisation.

Secure interrupt configuration are specified in an array of secure interrupt properties. In this scheme, in both
GICv2 and GICv3 driver data structures, the interrupt_props member points to an array of interrupt
properties. Each element of the array specifies the interrupt number and its attributes (priority, group, configu-
ration). Each element of the array shall be populated by the macro INTR_PROP_DESC(). The macro takes
the following arguments:

• 13-bit interrupt number,

• 8-bit interrupt priority,

• Interrupt type (one of INTR_TYPE_EL3, INTR_TYPE_S_EL1, INTR_TYPE_NS),

• Interrupt configuration (either GIC_INTR_CFG_LEVEL or GIC_INTR_CFG_EDGE).

5.4.10 CPU specific operations framework

Certain aspects of the Armv8-A architecture are implementation defined, that is, certain behaviours are not
architecturally defined, but must be defined and documented by individual processor implementations. TF-
A implements a framework which categorises the common implementation defined behaviours and allows a
processor to export its implementation of that behaviour. The categories are:

1. Processor specific reset sequence.

2. Processor specific power down sequences.

3. Processor specific register dumping as a part of crash reporting.

4. Errata status reporting.

Each of the above categories fulfils a different requirement.

1. allows any processor specific initialization before the caches and MMU are turned on, like implementa-
tion of errata workarounds, entry into the intra-cluster coherency domain etc.

2. allows each processor to implement the power down sequence mandated in its Technical Reference
Manual (TRM).

3. allows a processor to provide additional information to the developer in the event of a crash, for example
Cortex-A53 has registers which can expose the data cache contents.

4. allows a processor to define a function that inspects and reports the status of all errata workarounds on
that processor.

Please note that only 2. is mandated by the TRM.

The CPU specific operations framework scales to accommodate a large number of different CPUs during power
down and reset handling. The platform can specify any CPU optimization it wants to enable for each CPU. It
can also specify the CPU errata workarounds to be applied for each CPU type during reset handling by defining

5.4. Firmware Design 373

Trusted Firmware-A, Release 2.10.4

CPU errata compile time macros. Details on these macros can be found in the Arm CPU Specific Build Macros
document.

The CPU specific operations framework depends on the cpu_ops structure which needs to be exported for
each type of CPU in the platform. It is defined in include/lib/cpus/aarch64/cpu_macros.S and
has the following fields : midr, reset_func(), cpu_pwr_down_ops (array of power down functions)
and cpu_reg_dump().

The CPU specific files inlib/cpus export acpu_ops data structure with suitable handlers for that CPU. For
example, lib/cpus/aarch64/cortex_a53.S exports the cpu_ops for Cortex-A53 CPU. According
to the platform configuration, these CPU specific files must be included in the build by the platform makefile.
The generic CPU specific operations framework code exists in lib/cpus/aarch64/cpu_helpers.S.

CPU PCS

All assembly functions in CPU files are asked to follow amodified version of the Procedure Call Standard (PCS)
in their internals. This is done to ensure calling these functions from outside the file doesn’t unexpectedly corrupt
registers in the very early environment and to help the internals to be easier to understand. Please see the CPU
errata implementation for any function specific restrictions.

register use
x0 - x15 scratch
x16, x17 do not use (used by the linker)
x18 do not use (platform register)
x19 - x28 callee saved
x29, x30 FP, LR

CPU specific Reset Handling

After a reset, the state of the CPU when it calls generic reset handler is: MMU turned off, both instruction and
data caches turned off, not part of any coherency domain and no stack.

The BL entrypoint code first invokes the plat_reset_handler() to allow the platform to perform
any system initialization required and any system errata workarounds that needs to be applied. The
get_cpu_ops_ptr() reads the current CPU midr, finds the matching cpu_ops entry in the cpu_ops
array and returns it. Note that only the part number and implementer fields in midr are used to find the match-
ing cpu_ops entry. The reset_func() in the returned cpu_ops is then invoked which executes the
required reset handling for that CPU and also any errata workarounds enabled by the platform.

It should be defined using the cpu_reset_func_{start,end} macros and its body may only clobber
x0 to x14 with x14 being the cpu_rev parameter.

374 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

CPU specific power down sequence

During the BL31 initialization sequence, the pointer to the matching cpu_ops entry is stored in per-CPU
data by init_cpu_ops() so that it can be quickly retrieved during power down sequences.

Various CPU drivers register handlers to perform power down at certain power levels for that specific CPU.
The PSCI service, upon receiving a power down request, determines the highest power level at which to execute
power down sequence for a particular CPU. It uses the prepare_cpu_pwr_dwn() function to pick the
right power down handler for the requested level. The function retrieves cpu_ops pointer member of per-
CPU data, and from that, further retrieves cpu_pwr_down_ops array, and indexes into the required level.
If the requested power level is higher than what a CPU driver supports, the handler registered for highest level
is invoked.

At runtime the platform hooks for power down are invoked by the PSCI service to perform platform specific
operations during a power down sequence, for example turning off CCI coherency during a cluster power down.

CPU specific register reporting during crash

If the crash reporting is enabled in BL31, when a crash occurs, the crash reporting framework calls
do_cpu_reg_dumpwhich retrieves the matching cpu_ops using get_cpu_ops_ptr() function. The
cpu_reg_dump() in cpu_ops is invoked, which then returns the CPU specific register values to be re-
ported and a pointer to the ASCII list of register names in a format expected by the crash reporting framework.

CPU errata implementation

Errata workarounds for CPUs supported in TF-A are applied during both cold and warm boots, shortly after
reset. Individual Errata workarounds are enabled as build options. Some errata workarounds have potential
run-time implications; therefore some are enabled by default, others not. Platform ports shall override build
options to enable or disable errata as appropriate. The CPU drivers take care of applying errata workarounds
that are enabled and applicable to a given CPU.

Each erratum has a build flag in lib/cpus/cpu-ops.mk of the form: ER-
RATA_<cpu_num>_<erratum_id>. It also has a short description in CPU Errata Workarounds
on when it should apply.

Errata framework

The errata framework is a convention and a small library to allow errata to be automatically discovered. It
enables compliant errata to be automatically applied and reported at runtime (either by status reporting or the
errata ABI).

To write a compliant mitigation for erratum number erratum_id on a cpu that declared itself (with de-
clare_cpu_ops) as cpu_name one needs 3 things:

1. A CPU revision checker function: check_erratum_<cpu_name>_<erratum_id>

5.4. Firmware Design 375

Trusted Firmware-A, Release 2.10.4

It should check whether this erratum applies on this revision of this CPU. It will be called with
the CPU revision as its first parameter (x0) and should return one of ERRATA_APPLIES or ER-
RATA_NOT_APPLIES.

It may only clobber x0 to x4. The rest should be treated as callee-saved.

2. A workaround function: erratum_<cpu_name>_<erratum_id>_wa

It should obtain the cpu revision (with cpu_get_rev_var), call its revision checker, and perform the
mitigation, should the erratum apply.

It may only clobber x0 to x8. The rest should be treated as callee-saved.

3. Register itself to the framework

Do this with add_erratum_entry <cpu_name>, ERRATUM(<erratum_id>),
<errata_flag> where the errata_flag is the enable flag in cpu-ops.mk described above.

See the next section on how to do this easily.

Note: CVEs have the format CVE_<year>_<number>. To fit them in the framework, the erra-
tum_id for the checker and the workaround functions become the number part of its name and the ERRA-
TUM(<number>) part of the registration should instead be CVE(<year>, <number>). In the extremely
unlikely scenario where a CVE and an erratum numbers clash, the CVE number should be prefixed with a zero.

Also, their build flag should be WORKAROUND_CVE_<year>_<number>.

Note: AArch32 uses the legacy convention. The checker function has the for-
mat check_errata_<erratum_id> and the workaround has the format er-
rata_<cpu_number>_<erratum_id>_wa where cpu_number is the shortform letter and number
name of the CPU.

For CVEs the erratum_id also becomes cve_<year>_<number>.

Errata framework helpers

Writing these errata involves lots of boilerplate and repetitive code. On AArch64 there are helpers to omit
most of this. They are located in include/lib/cpus/aarch64/cpu_macros.S and the preferred
way to implement errata. Please see their comments on how to use them.

The most common type of erratum workaround, one that just sets a “chicken” bit in some arbitrary register,
would have an implementation for the Cortex-A77, erratum #1925769 like:

workaround_reset_start cortex_a77, ERRATUM(1925769), ERRATA_A77_1925769
sysreg_bit_set CORTEX_A77_CPUECTLR_EL1, CORTEX_A77_CPUECTLR_EL1_BIT_8

workaround_reset_end cortex_a77, ERRATUM(1925769)

check_erratum_ls cortex_a77, ERRATUM(1925769), CPU_REV(1, 1)

376 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Status reporting

In a debug build of TF-A, on a CPU that comes out of reset, both BL1 and the runtime firmware (BL31
in AArch64, and BL32 in AArch32) will invoke a generic errata status reporting function. It will read the
errata_entries list of that cpu and will report whether each known erratum was applied and, if not,
whether it should have been.

Reporting the status of errata workaround is for informational purpose only; it has no functional significance.

5.4.11 Memory layout of BL images

Each bootloader image can be divided in 2 parts:

• the static contents of the image. These are data actually stored in the binary on the disk. In the ELF
terminology, they are called PROGBITS sections;

• the run-time contents of the image. These are data that don’t occupy any space in the binary on the disk.
The ELF binary just contains some metadata indicating where these data will be stored at run-time and
the corresponding sections need to be allocated and initialized at run-time. In the ELF terminology, they
are called NOBITS sections.

All PROGBITS sections are grouped together at the beginning of the image, followed by all NOBITS sections.
This is true for all TF-A images and it is governed by the linker scripts. This ensures that the raw binary images
are as small as possible. If a NOBITS section was inserted in between PROGBITS sections then the resulting
binary file would contain zero bytes in place of this NOBITS section, making the image unnecessarily bigger.
Smaller images allow faster loading from the FIP to the main memory.

For BL31, a platform can specify an alternate location for NOBITS sections (other than immediately following
PROGBITS sections) by setting SEPARATE_NOBITS_REGION to 1 and defining BL31_NOBITS_BASE
and BL31_NOBITS_LIMIT.

Linker scripts and symbols

Each bootloader stage image layout is described by its own linker script. The linker scripts export some symbols
into the program symbol table. Their values correspond to particular addresses. TF-A code can refer to these
symbols to figure out the image memory layout.

Linker symbols follow the following naming convention in TF-A.

• __<SECTION>_START__

Start address of a given section named <SECTION>.

• __<SECTION>_END__

End address of a given section named <SECTION>. If there is an alignment constraint on the section’s
end address then __<SECTION>_END__ corresponds to the end address of the section’s actual con-
tents, rounded up to the right boundary. Refer to the value of __<SECTION>_UNALIGNED_END__
to know the actual end address of the section’s contents.

5.4. Firmware Design 377

Trusted Firmware-A, Release 2.10.4

• __<SECTION>_UNALIGNED_END__

End address of a given section named <SECTION> without any padding or rounding up due to some
alignment constraint.

• __<SECTION>_SIZE__

Size (in bytes) of a given section named <SECTION>. If there is an alignment constraint on
the section’s end address then __<SECTION>_SIZE__ corresponds to the size of the section’s
actual contents, rounded up to the right boundary. In other words, __<SECTION>_SIZE__
= __<SECTION>_END__ - _<SECTION>_START__. Refer to the value of
__<SECTION>_UNALIGNED_SIZE__ to know the actual size of the section’s contents.

• __<SECTION>_UNALIGNED_SIZE__

Size (in bytes) of a given section named <SECTION> without any padding or rounding up
due to some alignment constraint. In other words, __<SECTION>_UNALIGNED_SIZE__ =
__<SECTION>_UNALIGNED_END__ - __<SECTION>_START__.

Some of the linker symbols are mandatory as TF-A code relies on them to be defined. They are listed in the
following subsections. Some of them must be provided for each bootloader stage and some are specific to a
given bootloader stage.

The linker scripts define some extra, optional symbols. They are not actually used by any code but they help in
understanding the bootloader images’ memory layout as they are easy to spot in the link map files.

Common linker symbols

All BL images share the following requirements:

• The BSS section must be zero-initialised before executing any C code.

• The coherent memory section (if enabled) must be zero-initialised as well.

• The MMU setup code needs to know the extents of the coherent and read-only memory regions to
set the right memory attributes. When SEPARATE_CODE_AND_RODATA=1, it needs to know more
specifically how the read-only memory region is divided between code and data.

The following linker symbols are defined for this purpose:

• __BSS_START__

• __BSS_SIZE__

• __COHERENT_RAM_START__Must be aligned on a page-size boundary.

• __COHERENT_RAM_END__Must be aligned on a page-size boundary.

• __COHERENT_RAM_UNALIGNED_SIZE__

• __RO_START__

• __RO_END__

• __TEXT_START__

• __TEXT_END_UNALIGNED__

378 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

• __TEXT_END__

• __RODATA_START__

• __RODATA_END_UNALIGNED__

• __RODATA_END__

BL1’s linker symbols

BL1 being the ROM image, it has additional requirements. BL1 resides in ROM and it is entirely executed in
place but it needs some read-write memory for its mutable data. Its .data section (i.e. its allocated read-write
data) must be relocated from ROM to RAM before executing any C code.

The following additional linker symbols are defined for BL1:

• __BL1_ROM_END__ End address of BL1’s ROM contents, covering its code and .data section in
ROM.

• __DATA_ROM_START__ Start address of the .data section in ROM. Must be aligned on a 16-byte
boundary.

• __DATA_RAM_START__ Address in RAM where the .data section should be copied over. Must be
aligned on a 16-byte boundary.

• __DATA_SIZE__ Size of the .data section (in ROM or RAM).

• __BL1_RAM_START__ Start address of BL1 read-write data.

• __BL1_RAM_END__ End address of BL1 read-write data.

How to choose the right base addresses for each bootloader stage image

There is currently no support for dynamic image loading in TF-A. This means that all bootloader images need
to be linked against their ultimate runtime locations and the base addresses of each image must be chosen
carefully such that images don’t overlap each other in an undesired way. As the code grows, the base addresses
might need adjustments to cope with the new memory layout.

The memory layout is completely specific to the platform and so there is no general recipe for choosing the right
base addresses for each bootloader image. However, there are tools to aid in understanding the memory layout.
These are the link map files: build/<platform>/<build-type>/bl<x>/bl<x>.map, with <x>
being the stage bootloader. They provide a detailed view of the memory usage of each image. Among other
useful information, they provide the end address of each image.

• bl1.map link map file provides __BL1_RAM_END__ address.

• bl2.map link map file provides __BL2_END__ address.

• bl31.map link map file provides __BL31_END__ address.

• bl32.map link map file provides __BL32_END__ address.

5.4. Firmware Design 379

Trusted Firmware-A, Release 2.10.4

For each bootloader image, the platform code must provide its start address as well as a limit address that it
must not overstep. The latter is used in the linker scripts to check that the image doesn’t grow past that address.
If that happens, the linker will issue a message similar to the following:

aarch64-none-elf-ld: BLx has exceeded its limit.

Additionally, if the platform memory layout implies some image overlaying like on FVP, BL31 and TSP need
to know the limit address that their PROGBITS sections must not overstep. The platform code must provide
those.

TF-A does not provide any mechanism to verify at boot time that the memory to load a new image is free to
prevent overwriting a previously loaded image. The platform must specify the memory available in the system
for all the relevant BL images to be loaded.

For example, in the case of BL1 loading BL2, bl1_plat_sec_mem_layout() will return the region
defined by the platform where BL1 intends to load BL2. The load_image() function performs bounds
check for the image size based on the base and maximum image size provided by the platforms. Platforms
must take this behaviour into account when defining the base/size for each of the images.

Memory layout on Arm development platforms

The following list describes the memory layout on the Arm development platforms:

• A 4KB page of shared memory is used for communication between Trusted Firmware and the platform’s
power controller. This is located at the base of Trusted SRAM. The amount of Trusted SRAM available
to load the bootloader images is reduced by the size of the shared memory.

The shared memory is used to store the CPUs’ entrypoint mailbox. On Juno, this is also used for the
MHU payload when passing messages to and from the SCP.

• Another 4 KB page is reserved for passing memory layout between BL1 and BL2 and also the dynamic
firmware configurations.

• On FVP, BL1 is originally sitting in the Trusted ROM at address 0x0. On Juno, BL1 resides in flash
memory at address 0x0BEC0000. BL1 read-write data are relocated to the top of Trusted SRAM at
runtime.

• BL2 is loaded below BL1 RW

• EL3 Runtime Software, BL31 for AArch64 and BL32 for AArch32 (e.g. SP_MIN), is loaded at the
top of the Trusted SRAM, such that its NOBITS sections will overwrite BL1 R/W data and BL2. This
implies that BL1 global variables remain valid only until execution reaches the EL3 Runtime Software
entry point during a cold boot.

• On Juno, SCP_BL2 is loaded temporarily into the EL3Runtime Softwarememory region and transferred
to the SCP before being overwritten by EL3 Runtime Software.

• BL32 (for AArch64) can be loaded in one of the following locations:

– Trusted SRAM

– Trusted DRAM (FVP only)

380 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

– Secure region of DRAM (top 16MB of DRAM configured by the TrustZone controller)

When BL32 (for AArch64) is loaded into Trusted SRAM, it is loaded below BL31.

The location of the BL32 image will result in different memory maps. This is illustrated for both FVP and Juno
in the following diagrams, using the TSP as an example.

Note: Loading the BL32 image in TZC secured DRAM doesn’t change the memory layout of the other images
in Trusted SRAM.

CONFIG section in memory layouts shown below contains:

+--------------------+
bl2_mem_params_descs
fw_configs
+--------------------+

bl2_mem_params_descs contains parameters passed from BL2 to next the BL image during boot.

fw_configs includes soc_fw_config, tos_fw_config, tb_fw_config and fw_config.

FVP with TSP in Trusted SRAM with firmware configs : (These diagrams only cover the AArch64 case)

DRAM
0xffffffff +----------+

| EL3 TZC |
0xffe00000 |----------| (secure)

| AP TZC |
0xff000000 +----------+

: :
0x82100000 |----------|

|HW_CONFIG |
0x82000000 |----------| (non-secure)

| |
0x80000000 +----------+

Trusted DRAM
0x08000000 +----------+

|HW_CONFIG |
0x07f00000 |----------|

: :
| |

0x06000000 +----------+

Trusted SRAM
0x04040000 +----------+ loaded by BL2 +----------------+

BL1 (rw)	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	BL31 NOBITS
BL2	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	----------------
	<<<<<<<<<<<<<	BL31 PROGBITS

(continues on next page)

5.4. Firmware Design 381

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
| | <<<<<<<<<<<<< |----------------|
| | <<<<<<<<<<<<< | BL32 |

0x04003000 +----------+ +----------------+
| CONFIG |

0x04001000 +----------+
| Shared |

0x04000000 +----------+

Trusted ROM
0x04000000 +----------+

| BL1 (ro) |
0x00000000 +----------+

FVP with TSP in Trusted DRAM with firmware configs (default option):

DRAM
0xffffffff +--------------+

| EL3 TZC |
0xffe00000 |--------------| (secure)

| AP TZC |
0xff000000 +--------------+

: :
0x82100000 |--------------|

| HW_CONFIG |
0x82000000 |--------------| (non-secure)

| |
0x80000000 +--------------+

Trusted DRAM
0x08000000 +--------------+

| HW_CONFIG |
0x07f00000 |--------------|

: :
| BL32 |

0x06000000 +--------------+

Trusted SRAM
0x04040000 +--------------+ loaded by BL2 +----------------+

BL1 (rw)	<<<<<<<<<<<<<	
--------------	<<<<<<<<<<<<<	BL31 NOBITS
BL2	<<<<<<<<<<<<<	
--------------	<<<<<<<<<<<<<	----------------
	<<<<<<<<<<<<<	BL31 PROGBITS
	+----------------+	

0x04003000 +--------------+
| CONFIG |

0x04001000 +--------------+
| Shared |

0x04000000 +--------------+

Trusted ROM
0x04000000 +--------------+

(continues on next page)

382 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
| BL1 (ro) |

0x00000000 +--------------+

FVP with TSP in TZC-Secured DRAM with firmware configs :

DRAM
0xffffffff +----------+

| EL3 TZC |
0xffe00000 |----------| (secure)

| AP TZC |
| (BL32) |

0xff000000 +----------+
| |

0x82100000 |----------|
|HW_CONFIG |

0x82000000 |----------| (non-secure)
| |

0x80000000 +----------+

Trusted DRAM
0x08000000 +----------+

|HW_CONFIG |
0x7f000000 |----------|

: :
| |

0x06000000 +----------+

Trusted SRAM
0x04040000 +----------+ loaded by BL2 +----------------+

BL1 (rw)	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	BL31 NOBITS
BL2	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	----------------
	<<<<<<<<<<<<<	BL31 PROGBITS
	+----------------+	

0x04003000 +----------+
| CONFIG |

0x04001000 +----------+
| Shared |

0x04000000 +----------+

Trusted ROM
0x04000000 +----------+

| BL1 (ro) |
0x00000000 +----------+

Juno with BL32 in Trusted SRAM :

DRAM
0xFFFFFFFF +----------+

| SCP TZC |

(continues on next page)

5.4. Firmware Design 383

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
0xFFE00000 |----------|

| EL3 TZC |
0xFFC00000 |----------| (secure)

| AP TZC |
0xFF000000 +----------+

| |
: : (non-secure)
| |

0x80000000 +----------+

Flash0
0x0C000000 +----------+

: :
0x0BED0000 |----------|

| BL1 (ro) |
0x0BEC0000 |----------|

: :
0x08000000 +----------+ BL31 is loaded

after SCP_BL2 has
Trusted SRAM been sent to SCP

0x04040000 +----------+ loaded by BL2 +----------------+
BL1 (rw)	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	BL31 NOBITS
BL2	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	----------------
SCP_BL2	<<<<<<<<<<<<<	BL31 PROGBITS
	<<<<<<<<<<<<<	----------------
	<<<<<<<<<<<<<	BL32
	+----------------+	

0x04001000 +----------+
| MHU |

0x04000000 +----------+

Juno with BL32 in TZC-secured DRAM :

DRAM
0xFFFFFFFF +----------+

| SCP TZC |
0xFFE00000 |----------|

| EL3 TZC |
0xFFC00000 |----------| (secure)

| AP TZC |
| (BL32) |

0xFF000000 +----------+
| |
: : (non-secure)
| |

0x80000000 +----------+

Flash0
(continues on next page)

384 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
0x0C000000 +----------+

: :
0x0BED0000 |----------|

| BL1 (ro) |
0x0BEC0000 |----------|

: :
0x08000000 +----------+ BL31 is loaded

after SCP_BL2 has
Trusted SRAM been sent to SCP

0x04040000 +----------+ loaded by BL2 +----------------+
BL1 (rw)	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	BL31 NOBITS
BL2	<<<<<<<<<<<<<	
----------	<<<<<<<<<<<<<	----------------
SCP_BL2	<<<<<<<<<<<<<	BL31 PROGBITS
	+----------------+	

0x04001000 +----------+
| MHU |

0x04000000 +----------+

5.4.12 Firmware Image Package (FIP)

Using a Firmware Image Package (FIP) allows for packing bootloader images (and potentially other payloads)
into a single archive that can be loaded by TF-A from non-volatile platform storage. A driver to load images
from a FIP has been added to the storage layer and allows a package to be read from supported platform storage.
A tool to create Firmware Image Packages is also provided and described below.

Firmware Image Package layout

The FIP layout consists of a table of contents (ToC) followed by payload data. The ToC itself has a header
followed by one or more table entries. The ToC is terminated by an end marker entry, and since the size of
the ToC is 0 bytes, the offset equals the total size of the FIP file. All ToC entries describe some payload data
that has been appended to the end of the binary package. With the information provided in the ToC entry the
corresponding payload data can be retrieved.

ToC Header
ToC Entry 0

ToC Entry 1

ToC End Marker

Data 0

(continues on next page)

5.4. Firmware Design 385

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
| |
| Data 1 |

The ToC header and entry formats are described in the header file include/tools_share/
firmware_image_package.h. This file is used by both the tool and TF-A.

The ToC header has the following fields:

`name`: The name of the ToC. This is currently used to validate the header.
`serial_number`: A non-zero number provided by the creation tool
`flags`: Flags associated with this data.

Bits 0-31: Reserved
Bits 32-47: Platform defined
Bits 48-63: Reserved

A ToC entry has the following fields:

`uuid`: All files are referred to by a pre-defined Universally Unique
IDentifier [UUID] . The UUIDs are defined in
`include/tools_share/firmware_image_package.h`. The platform translates
the requested image name into the corresponding UUID when accessing the
package.

`offset_address`: The offset address at which the corresponding payload data
can be found. The offset is calculated from the ToC base address.

`size`: The size of the corresponding payload data in bytes.
`flags`: Flags associated with this entry. None are yet defined.

Firmware Image Package creation tool

The FIP creation tool can be used to pack specified images into a binary package that can be loaded by TF-A
from platform storage. The tool currently only supports packing bootloader images. Additional image defini-
tions can be added to the tool as required.

The tool can be found in tools/fiptool.

Loading from a Firmware Image Package (FIP)

The Firmware Image Package (FIP) driver can load images from a binary package on non-volatile platform
storage. For the Arm development platforms, this is currently NOR FLASH.

Bootloader images are loaded according to the platform policy as specified by the function
plat_get_image_source(). For the Arm development platforms, this means the platform will
attempt to load images from a Firmware Image Package located at the start of NOR FLASH0.

The Arm development platforms’ policy is to only allow loading of a known set of images. The platform policy
can be modified to allow additional images.

386 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.4.13 Use of coherent memory in TF-A

There might be loss of coherency when physical memory with mismatched shareability, cacheability and mem-
ory attributes is accessed by multiple CPUs (refer to section B2.9 of Arm ARM for more details). This possi-
bility occurs in TF-A during power up/down sequences when coherency, MMU and caches are turned on/off
incrementally.

TF-A defines coherent memory as a region of memory with Device nGnRE attributes in the translation tables.
The translation granule size in TF-A is 4KB. This is the smallest possible size of the coherent memory region.

By default, all data structures which are susceptible to accesses with mismatched attributes from various CPUs
are allocated in a coherent memory region (refer to section 2.1 of Porting Guide). The coherent memory region
accesses are Outer Shareable, non-cacheable and they can be accessed with the Device nGnRE attributes when
the MMU is turned on. Hence, at the expense of at least an extra page of memory, TF-A is able to work around
coherency issues due to mismatched memory attributes.

The alternative to the above approach is to allocate the susceptible data structures in Normal WriteBack
WriteAllocate Inner shareable memory. This approach requires the data structures to be designed so that it
is possible to work around the issue of mismatched memory attributes by performing software cache mainte-
nance on them.

Disabling the use of coherent memory in TF-A

It might be desirable to avoid the cost of allocating coherent memory on platforms which are mem-
ory constrained. TF-A enables inclusion of coherent memory in firmware images through the build flag
USE_COHERENT_MEM. This flag is enabled by default. It can be disabled to choose the second approach
described above.

The below sections analyze the data structures allocated in the coherentmemory region and the changes required
to allocate them in normal memory.

Coherent memory usage in PSCI implementation

The psci_non_cpu_pd_nodes data structure stores the platform’s power domain tree information for
state management of power domains. By default, this data structure is allocated in the coherent memory region
in TF-A because it can be accessed by multiple CPUs, either with caches enabled or disabled.

typedef struct non_cpu_pwr_domain_node {
/*
* Index of the first CPU power domain node level 0 which has this node
* as its parent.
*/

unsigned int cpu_start_idx;

/*
* Number of CPU power domains which are siblings of the domain indexed
* by 'cpu_start_idx' i.e. all the domains in the range 'cpu_start_idx
* -> cpu_start_idx + ncpus' have this node as their parent.
*/

(continues on next page)

5.4. Firmware Design 387

https://developer.arm.com/docs/ddi0487/latest

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
unsigned int ncpus;

/*
* Index of the parent power domain node.
*/

unsigned int parent_node;

plat_local_state_t local_state;

unsigned char level;

/* For indexing the psci_lock array*/
unsigned char lock_index;

} non_cpu_pd_node_t;

In order to move this data structure to normal memory, the use of each of its fields must be analyzed. Fields
like cpu_start_idx, ncpus, parent_node level and lock_index are only written once during
cold boot. Hence removing them from coherent memory involves only doing a clean and invalidate of the cache
lines after these fields are written.

The field local_state can be concurrently accessed by multiple CPUs in different cache states. A Lam-
port’s Bakery lock psci_locks is used to ensure mutual exclusion to this field and a clean and invalidate is
needed after it is written.

Bakery lock data

The bakery lock data structure bakery_lock_t is allocated in coherent memory and is accessed by multiple
CPUs with mismatched attributes. bakery_lock_t is defined as follows:

typedef struct bakery_lock {
/*
* The lock_data is a bit-field of 2 members:
* Bit[0] : choosing. This field is set when the CPU is
* choosing its bakery number.
* Bits[1 - 15] : number. This is the bakery number allocated.
*/

volatile uint16_t lock_data[BAKERY_LOCK_MAX_CPUS];
} bakery_lock_t;

It is a characteristic of Lamport’s Bakery algorithm that the volatile per-CPU fields can be read by all CPUs
but only written to by the owning CPU.

Depending upon the data cache line size, the per-CPU fields of the bakery_lock_t structure for multiple
CPUs may exist on a single cache line. These per-CPU fields can be read and written during lock contention by
multiple CPUs with mismatched memory attributes. Since these fields are a part of the lock implementation,
they do not have access to any other locking primitive to safeguard against the resulting coherency issues. As
a result, simple software cache maintenance is not enough to allocate them in coherent memory. Consider the
following example.

CPU0 updates its per-CPU field with data cache enabled. This write updates a local cache line which contains

388 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

a copy of the fields for other CPUs as well. Now CPU1 updates its per-CPU field of the bakery_lock_t
structure with data cache disabled. CPU1 then issues a DCIVAC operation to invalidate any stale copies of its
field in any other cache line in the system. This operation will invalidate the update made by CPU0 as well.

To use bakery locks when USE_COHERENT_MEM is disabled, the lock data structure has been redesigned. The
changes utilise the characteristic of Lamport’s Bakery algorithm mentioned earlier. The bakery_lock structure
only allocates the memory for a single CPU. The macro DEFINE_BAKERY_LOCK allocates all the bakery
locks needed for a CPU into a section.bakery_lock. The linker allocates thememory for other cores by us-
ing the total size allocated for the bakery_lock section and multiplying it with (PLATFORM_CORE_COUNT
- 1). This enables software to perform software cache maintenance on the lock data structure without running
into coherency issues associated with mismatched attributes.

The bakery lock data structure bakery_info_t is defined for use when USE_COHERENT_MEM is disabled
as follows:

typedef struct bakery_info {
/*
* The lock_data is a bit-field of 2 members:
* Bit[0] : choosing. This field is set when the CPU is
* choosing its bakery number.
* Bits[1 - 15] : number. This is the bakery number allocated.
*/
volatile uint16_t lock_data;

} bakery_info_t;

The bakery_info_t represents a single per-CPU field of one lock and the combination of corresponding
bakery_info_t structures for all CPUs in the system represents the complete bakery lock. The view in
memory for a system with n bakery locks are:

.bakery_lock section start
|----------------|
| `bakery_info_t`| <-- Lock_0 per-CPU field
| Lock_0 | for CPU0
|----------------|
| `bakery_info_t`| <-- Lock_1 per-CPU field
| Lock_1 | for CPU0
|----------------|
....
`bakery_info_t`
Lock_N

| XXXXX |
| Padding to |
| next Cache WB | <--- Calculate PERCPU_BAKERY_LOCK_SIZE, allocate
| Granule | continuous memory for remaining CPUs.

| `bakery_info_t`| <-- Lock_0 per-CPU field
| Lock_0 | for CPU1
|----------------|
| `bakery_info_t`| <-- Lock_1 per-CPU field
| Lock_1 | for CPU1

(continues on next page)

5.4. Firmware Design 389

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
|----------------|
....
`bakery_info_t`
Lock_N

| XXXXX |
| Padding to |
| next Cache WB |
Granule

Consider a system of 2 CPUs with ‘N’ bakery locks as shown above. For an operation on Lock_N, the cor-
responding bakery_info_t in both CPU0 and CPU1 .bakery_lock section need to be fetched and
appropriate cache operations need to be performed for each access.

On Arm Platforms, bakery locks are used in psci (psci_locks) and power controller driver (arm_lock).

Non Functional Impact of removing coherent memory

Removal of the coherent memory region leads to the additional software overhead of performing cache main-
tenance for the affected data structures. However, since the memory where the data structures are allocated is
cacheable, the overhead is mostly mitigated by an increase in performance.

There is however a performance impact for bakery locks, due to:

• Additional cache maintenance operations, and

• Multiple cache line reads for each lock operation, since the bakery locks for each CPU are distributed
across different cache lines.

The implementation has been optimized to minimize this additional overhead. Measurements indicate that
when bakery locks are allocated in Normal memory, the minimum latency of acquiring a lock is on an average
3-4 micro seconds whereas in Device memory the same is 2 micro seconds. The measurements were done on
the Juno Arm development platform.

As mentioned earlier, almost a page of memory can be saved by disabling USE_COHERENT_MEM. Each
platform needs to consider these trade-offs to decide whether coherent memory should be used. If a platform
disables USE_COHERENT_MEM and needs to use bakery locks in the porting layer, it can optionally define
macro PLAT_PERCPU_BAKERY_LOCK_SIZE (see the Porting Guide). Refer to the reference platform
code for examples.

390 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.4.14 Isolating code and read-only data on separate memory pages

In the Armv8-A VMSA, translation table entries include fields that define the properties of the target memory
region, such as its access permissions. The smallest unit of memory that can be addressed by a translation table
entry is a memory page. Therefore, if software needs to set different permissions on two memory regions then
it needs to map them using different memory pages.

The default memory layout for each BL image is as follows:

| ... |
+-------------------+
| Read-write data |
+-------------------+ Page boundary
| <Padding> |
+-------------------+
| Exception vectors |
+-------------------+ 2 KB boundary
| <Padding> |
+-------------------+
| Read-only data |
+-------------------+
| Code |
+-------------------+ BLx_BASE

Note: The 2KB alignment for the exception vectors is an architectural requirement.

The read-write data start on a new memory page so that they can be mapped with read-write permissions,
whereas the code and read-only data below are configured as read-only.

However, the read-only data are not aligned on a page boundary. They are contiguous to the code. Therefore,
the end of the code section and the beginning of the read-only data one might share a memory page. This forces
both to be mapped with the same memory attributes. As the code needs to be executable, this means that the
read-only data stored on the same memory page as the code are executable as well. This could potentially be
exploited as part of a security attack.

TF provides the build flag SEPARATE_CODE_AND_RODATA to isolate the code and read-only data on sepa-
ratememory pages. This in turn allows independent control of the access permissions for the code and read-only
data. In this case, platform code gets a finer-grained view of the image layout and can appropriately map the
code region as executable and the read-only data as execute-never.

This has an impact on memory footprint, as padding bytes need to be introduced between the code and read-
only data to ensure the segregation of the two. To limit the memory cost, this flag also changes the memory
layout such that the code and exception vectors are now contiguous, like so:

| ... |
+-------------------+
| Read-write data |
+-------------------+ Page boundary
| <Padding> |
+-------------------+

(continues on next page)

5.4. Firmware Design 391

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
| Read-only data |
+-------------------+ Page boundary
| <Padding> |
+-------------------+
| Exception vectors |
+-------------------+ 2 KB boundary
| <Padding> |
+-------------------+
| Code |
+-------------------+ BLx_BASE

With this more condensed memory layout, the separation of read-only data will add zero or one page to the
memory footprint of each BL image. Each platform should consider the trade-off between memory footprint
and security.

This build flag is disabled by default, minimising memory footprint. On Arm platforms, it is enabled.

5.4.15 Publish and Subscribe Framework

The Publish and Subscribe Framework allows EL3 components to define and publish events, to which other
EL3 components can subscribe.

The following macros are provided by the framework:

• REGISTER_PUBSUB_EVENT(event): Defines an event, and takes one argument, the event name,
which must be a valid C identifier. All calls to REGISTER_PUBSUB_EVENTmacro must be placed in
the file pubsub_events.h.

• PUBLISH_EVENT_ARG(event, arg): Publishes a defined event, by iterating subscribed handlers
and calling them in turn. The handlers will be passed the parameter arg. The expected use-case is to
broadcast an event.

• PUBLISH_EVENT(event): Like PUBLISH_EVENT_ARG, except that the value NULL is passed to
subscribed handlers.

• SUBSCRIBE_TO_EVENT(event, handler): Registers the handler to subscribe to event.
The handler will be executed whenever the event is published.

• for_each_subscriber(event, subscriber): Iterates through all handlers subscribed for
event. subscriber must be a local variable of type pubsub_cb_t *, and will point to each
subscribed handler in turn during iteration. This macro can be used for those patterns that none of the
PUBLISH_EVENT_*() macros cover.

Publishing an event that wasn’t defined using REGISTER_PUBSUB_EVENT will result in build error. Sub-
scribing to an undefined event however won’t.

Subscribed handlers must be of type pubsub_cb_t, with following function signature:

typedef void* (*pubsub_cb_t)(const void *arg);

392 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Theremay be arbitrary number of handlers registered to the same event. The order in which subscribed handlers
are notified when that event is published is not defined. Subscribed handlers may be executed in any order;
handlers should not assume any relative ordering amongst them.

Publishing an event on a PE will result in subscribed handlers executing on that PE only; it won’t cause handlers
to execute on a different PE.

Note that publishing an event on a PE blocks until all the subscribed handlers finish executing on the PE.

TF-A generic code publishes and subscribes to some events within. Platform ports are discouraged from sub-
scribing to them. These events may be withdrawn, renamed, or have their semantics altered in the future.
Platforms may however register, publish, and subscribe to platform-specific events.

Publish and Subscribe Example

A publisher that wants to publish event foo would:

• Define the event foo in the pubsub_events.h.

REGISTER_PUBSUB_EVENT(foo);

• Depending on the nature of event, use one of PUBLISH_EVENT_*() macros to publish the event at
the appropriate path and time of execution.

A subscriber that wants to subscribe to event foo published above would implement:

void *foo_handler(const void *arg)
{

void *result;

/* Do handling ... */

return result;
}

SUBSCRIBE_TO_EVENT(foo, foo_handler);

Reclaiming the BL31 initialization code

A significant amount of the code used for the initialization of BL31 is never needed again after boot time. In
order to reduce the runtime memory footprint, the memory used for this code can be reclaimed after initial-
ization has finished and be used for runtime data.

The build option RECLAIM_INIT_CODE can be set to mark this boot time code with a .text.init.*
attribute which can be filtered and placed suitably within the BL image for later reclamation by the platform.
The platform can specify the filter and the memory region for this init section in BL31 via the plat.ld.S linker
script. For example, on the FVP, this section is placed overlapping the secondary CPU stacks so that after the
cold boot is done, this memory can be reclaimed for the stacks. The init memory section is initially mapped
with RO, EXECUTE attributes. After BL31 initialization has completed, the FVP changes the attributes of this
section to RW, EXECUTE_NEVER allowing it to be used for runtime data. The memory attributes are changed

5.4. Firmware Design 393

Trusted Firmware-A, Release 2.10.4

within the bl31_plat_runtime_setup platform hook. The init section section can be reclaimed for any
data which is accessed after cold boot initialization and it is upto the platform to make the decision.

5.4.16 Performance Measurement Framework

The Performance Measurement Framework (PMF) facilitates collection of timestamps by registered services
and provides interfaces to retrieve them from within TF-A. A platform can choose to expose appropriate SMCs
to retrieve these collected timestamps.

By default, the global physical counter is used for the timestamp value and is read via CNTPCT_EL0. The
framework allows to retrieve timestamps captured by other CPUs.

Timestamp identifier format

A PMF timestamp is uniquely identified across the system via the timestamp ID or tid. The tid is composed
as follows:

Bits 0-7: The local timestamp identifier.
Bits 8-9: Reserved.
Bits 10-15: The service identifier.
Bits 16-31: Reserved.

1. The service identifier. Each PMF service is identified by a service name and a service identifier. Both
the service name and identifier are unique within the system as a whole.

2. The local timestamp identifier. This identifier is unique within a given service.

Registering a PMF service

To register a PMF service, the PMF_REGISTER_SERVICE() macro from pmf.h is used. The arguments
required are the service name, the service ID, the total number of local timestamps to be captured and a set of
flags.

The flags field can be specified as a bitwise-OR of the following values:

PMF_STORE_ENABLE: The timestamp is stored in memory for later retrieval.
PMF_DUMP_ENABLE: The timestamp is dumped on the serial console.

The PMF_REGISTER_SERVICE() reserves memory to store captured timestamps in a PMF specific linker
section at build time. Additionally, it defines necessary functions to capture and retrieve a particular timestamp
for the given service at runtime.

The macro PMF_REGISTER_SERVICE() only enables capturing PMF timestamps from within TF-A. In
order to retrieve timestamps from outside of TF-A, the PMF_REGISTER_SERVICE_SMC() macro must
be used instead. This macro accepts the same set of arguments as the PMF_REGISTER_SERVICE()macro
but additionally supports retrieving timestamps using SMCs.

394 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Capturing a timestamp

PMF timestamps are stored in a per-service timestamp region. On a system with multiple CPUs, each times-
tamp is captured and stored in a per-CPU cache line aligned memory region.

Having registered the service, thePMF_CAPTURE_TIMESTAMP()macro can be used to capture a timestamp
at the location where it is used. The macro takes the service name, a local timestamp identifier and a flag as
arguments.

The flags field argument can be zero, or PMF_CACHE_MAINT which instructs PMF to do cache mainte-
nance following the capture. Cache maintenance is required if any of the service’s timestamps are captured
with data cache disabled.

To capture a timestamp in assembly code, the caller should use pmf_calc_timestamp_addr macro
(defined in pmf_asm_macros.S) to calculate the address of where the timestamp would be stored. The
caller should then read CNTPCT_EL0 register to obtain the timestamp and store it at the determined address
for later retrieval.

Retrieving a timestamp

From within TF-A, timestamps for individual CPUs can be retrieved using either
PMF_GET_TIMESTAMP_BY_MPIDR() or PMF_GET_TIMESTAMP_BY_INDEX() macros. These
macros accept the CPU’s MPIDR value, or its ordinal position respectively.

From outside TF-A, timestamps for individual CPUs can be retrieved by calling intopmf_smc_handler().

Interface : pmf_smc_handler()
Argument : unsigned int smc_fid, u_register_t x1,

u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags

Return : uintptr_t

smc_fid: Holds the SMC identifier which is either `PMF_SMC_GET_TIMESTAMP_32`
when the caller of the SMC is running in AArch32 mode
or `PMF_SMC_GET_TIMESTAMP_64` when the caller is running in AArch64 mode.

x1: Timestamp identifier.
x2: The `mpidr` of the CPU for which the timestamp has to be retrieved.

This can be the `mpidr` of a different core to the one initiating
the SMC. In that case, service specific cache maintenance may be
required to ensure the updated copy of the timestamp is returned.

x3: A flags value that is either 0 or `PMF_CACHE_MAINT`. If
`PMF_CACHE_MAINT` is passed, then the PMF code will perform a
cache invalidate before reading the timestamp. This ensures
an updated copy is returned.

The remaining arguments, x4, cookie, handle and flags are unused in this implementation.

5.4. Firmware Design 395

Trusted Firmware-A, Release 2.10.4

PMF code structure

1. pmf_main.c consists of core functions that implement service registration, initialization, storing,
dumping and retrieving timestamps.

2. pmf_smc.c contains the SMC handling for registered PMF services.

3. pmf.h contains the public interface to Performance Measurement Framework.

4. pmf_asm_macros.S consists of macros to facilitate capturing timestamps in assembly code.

5. pmf_helpers.h is an internal header used by pmf.h.

5.4.17 Armv8-A Architecture Extensions

TF-A makes use of Armv8-A Architecture Extensions where applicable. This section lists the usage of Archi-
tecture Extensions, and build flags controlling them.

Build options

ARM_ARCH_MAJOR and ARM_ARCH_MINOR

These build options serve dual purpose

• Determine the architecture extension support in TF-A build: All the mandatory architectural features up
to ARM_ARCH_MAJOR.ARM_ARCH_MINOR are included and unconditionally enabled by TF-A build
system.

• ARM_ARCH_MAJOR and ARM_ARCH_MINOR are passed to a march.mk build utility this will try to
come up with an appropriate -march value to be passed to compiler by probing the compiler and check-
ing what’s supported by the compiler and what’s best that can be used. But if platform provides a
MARCH_DIRECTIVE then it will used directly and compiler probing will be skipped.

The build system requires that the platform provides a valid numeric value based on CPU architecture extension,
otherwise it defaults to base Armv8.0-A architecture. Subsequent Arm Architecture versions also support
extensions which were introduced in previous versions.

See also:

Build Options

For details on the Architecture Extension and available features, please refer to the respective Architecture
Extension Supplement.

396 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Armv8.1-A

This Architecture Extension is targeted when ARM_ARCH_MAJOR >= 8, or when ARM_ARCH_MAJOR == 8
and ARM_ARCH_MINOR >= 1.

• By default, a load-/store-exclusive instruction pair is used to implement spinlocks. The
USE_SPINLOCK_CAS build option when set to 1 selects the spinlock implementation using the
ARMv8.1-LSE Compare and Swap instruction. Notice this instruction is only available in AArch64
execution state, so the option is only available to AArch64 builds.

Armv8.2-A

• The presence of ARMv8.2-TTCNP is detected at runtime. When it is present, the Common not Pri-
vate (TTBRn_ELx.CnP) bit is enabled to indicate that multiple Processing Elements in the same Inner
Shareable domain use the same translation table entries for a given stage of translation for a particular
translation regime.

Armv8.3-A

• Pointer authentication features of Armv8.3-A are unconditionally enabled in the Non-secure world so
that lower ELs are allowed to use them without causing a trap to EL3.

In order to enable the Secure world to use it, CTX_INCLUDE_PAUTH_REGS must be set to 1. This
will add all pointer authentication system registers to the context that is saved when doing a world switch.

The TF-A itself has support for pointer authentication at runtime that can be enabled by setting
BRANCH_PROTECTION option to non-zero and CTX_INCLUDE_PAUTH_REGS to 1. This enables
pointer authentication in BL1, BL2, BL31, and the TSP if it is used.

Note that Pointer Authentication is enabled for Non-secure world irrespective of the value of these build
flags if the CPU supports it.

If ARM_ARCH_MAJOR == 8 and ARM_ARCH_MINOR >= 3 the code footprint of enabling PAuth
is lower because the compiler will use the optimized PAuth instructions rather than the backwards-
compatible ones.

Armv8.5-A

• Branch Target Identification feature is selected by BRANCH_PROTECTION option set to 1. This option
defaults to 0.

• Memory Tagging Extension feature is unconditionally enabled for both worlds (at EL0 and S-EL0) if it
is only supported at EL0. If instead it is implemented at all ELs, it is unconditionally enabled for only the
normal world. To enable it for the secure world as well, the build option CTX_INCLUDE_MTE_REGS
is required. If the hardware does not implement MTE support at all, it is always disabled, no matter what
build options are used.

5.4. Firmware Design 397

Trusted Firmware-A, Release 2.10.4

Armv7-A

This Architecture Extension is targeted when ARM_ARCH_MAJOR == 7.

There are several Armv7-A extensions available. Obviously the TrustZone extension is mandatory to support
the TF-A bootloader and runtime services.

Platform implementing an Armv7-A system can to define from its target Cortex-A architecture through
ARM_CORTEX_A<X> = yes in their platform.mk script. For example ARM_CORTEX_A15=yes
for a Cortex-A15 target.

Platform can also set ARM_WITH_NEON=yes to enable neon support. Note that using neon at runtime has
constraints on non secure world context. TF-A does not yet provide VFP context management.

Directive ARM_CORTEX_A<x> and ARM_WITH_NEON are used to set the toolchain target architecture di-
rective.

Platform may choose to not define straight the toolchain target architecture directive by defining
MARCH_DIRECTIVE. I.e:

MARCH_DIRECTIVE := -march=armv7-a

5.4.18 Code Structure

TF-A code is logically divided between the three boot loader stages mentioned in the previous sections. The
code is also divided into the following categories (present as directories in the source code):

• Platform specific. Choice of architecture specific code depends upon the platform.

• Common code. This is platform and architecture agnostic code.

• Library code. This code comprises of functionality commonly used by all other code. The PSCI im-
plementation and other EL3 runtime frameworks reside as Library components.

• Stage specific. Code specific to a boot stage.

• Drivers.

• Services. EL3 runtime services (eg: SPD). Specific SPD services reside in the services/spd direc-
tory (e.g. services/spd/tspd).

Each boot loader stage uses code from one or more of the above mentioned categories. Based upon the above,
the code layout looks like this:

Directory Used by BL1? Used by BL2? Used by BL31?
bl1 Yes No No
bl2 No Yes No
bl31 No No Yes
plat Yes Yes Yes
drivers Yes No Yes
common Yes Yes Yes
lib Yes Yes Yes
services No No Yes

398 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

The build system provides a non configurable build option IMAGE_BLx for each boot loader stage (where x
= BL stage). e.g. for BL1 , IMAGE_BL1 will be defined by the build system. This enables TF-A to compile
certain code only for specific boot loader stages

All assembler files have the .S extension. The linker source files for each boot stage have the extension .ld.S.
These are processed by GCC to create the linker scripts which have the extension .ld.

FDTs provide a description of the hardware platform and are used by the Linux kernel at boot time. These can
be found in the fdts directory.

References

• Trusted Board Boot Requirements CLIENT (TBBR-CLIENT) Armv8-A (ARM DEN0006D)

• PSCI

• SMC Calling Convention

• Interrupt Management Framework

Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.

5.5 Interrupt Management Framework

This framework is responsible for managing interrupts routed to EL3. It also allows EL3 software to configure
the interrupt routing behavior. Its main objective is to implement the following two requirements.

1. It should be possible to route interrupts meant to be handled by secure software (Secure interrupts) to
EL3, when execution is in non-secure state (normal world). The framework should then take care of
handing control of the interrupt to either software in EL3 or Secure-EL1 depending upon the software
configuration and the GIC implementation. This requirement ensures that secure interrupts are under
the control of the secure software with respect to their delivery and handling without the possibility of
intervention from non-secure software.

2. It should be possible to route interrupts meant to be handled by non-secure software (Non-secure inter-
rupts) to the last executed exception level in the normal world when the execution is in secure world at
exception levels lower than EL3. This could be done with or without the knowledge of software exe-
cuting in Secure-EL1/Secure-EL0. The choice of approach should be governed by the secure software.
This requirement ensures that non-secure software is able to execute in tandem with the secure software
without overriding it.

5.5. Interrupt Management Framework 399

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

5.5.1 Concepts

Interrupt types

The framework categorises an interrupt to be one of the following depending upon the exception level(s) it is
handled in.

1. Secure EL1 interrupt. This type of interrupt can be routed to EL3 or Secure-EL1 depending upon the
security state of the current execution context. It is always handled in Secure-EL1.

2. Non-secure interrupt. This type of interrupt can be routed to EL3, Secure-EL1, Non-secure EL1 or
EL2 depending upon the security state of the current execution context. It is always handled in either
Non-secure EL1 or EL2.

3. EL3 interrupt. This type of interrupt can be routed to EL3 or Secure-EL1 depending upon the security
state of the current execution context. It is always handled in EL3.

The following constants define the various interrupt types in the framework implementation.

#define INTR_TYPE_S_EL1 0
#define INTR_TYPE_EL3 1
#define INTR_TYPE_NS 2

Routing model

A type of interrupt can be either generated as an FIQ or an IRQ. The target exception level of an interrupt
type is configured through the FIQ and IRQ bits in the Secure Configuration Register at EL3 (SCR_EL3.FIQ
and SCR_EL3.IRQ bits). When SCR_EL3.FIQ=1, FIQs are routed to EL3. Otherwise they are routed to
the First Exception Level (FEL) capable of handling interrupts. When SCR_EL3.IRQ=1, IRQs are routed
to EL3. Otherwise they are routed to the FEL. This register is configured independently by EL3 software for
each security state prior to entry into a lower exception level in that security state.

A routing model for a type of interrupt (generated as FIQ or IRQ) is defined as its target exception level for
each security state. It is represented by a single bit for each security state. A value of 0means that the interrupt
should be routed to the FEL. A value of 1 means that the interrupt should be routed to EL3. A routing model
is applicable only when execution is not in EL3.

The default routing model for an interrupt type is to route it to the FEL in either security state.

Valid routing models

The framework considers certain routing models for each type of interrupt to be incorrect as they conflict with
the requirements mentioned in Section 1. The following sub-sections describe all the possible routing models
and specify which ones are valid or invalid. EL3 interrupts are currently supported only for GIC version 3.0
(Arm GICv3) and only the Secure-EL1 and Non-secure interrupt types are supported for GIC version 2.0
(Arm GICv2) (see Assumptions in Interrupt Management Framework). The terminology used in the following
sub-sections is explained below.

1. CSS. Current Security State. 0 when secure and 1 when non-secure

400 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

2. TEL3. Target Exception Level 3. 0 when targeted to the FEL. 1 when targeted to EL3.

Secure-EL1 interrupts

1. CSS=0, TEL3=0. Interrupt is routed to the FEL when execution is in secure state. This is a valid
routing model as secure software is in control of handling secure interrupts.

2. CSS=0, TEL3=1. Interrupt is routed to EL3 when execution is in secure state. This is a valid routing
model as secure software in EL3 can handover the interrupt to Secure-EL1 for handling.

3. CSS=1, TEL3=0. Interrupt is routed to the FELwhen execution is in non-secure state. This is an invalid
routing model as a secure interrupt is not visible to the secure software which violates the motivation
behind the Arm Security Extensions.

4. CSS=1, TEL3=1. Interrupt is routed to EL3 when execution is in non-secure state. This is a valid
routing model as secure software in EL3 can handover the interrupt to Secure-EL1 for handling.

Non-secure interrupts

1. CSS=0, TEL3=0. Interrupt is routed to the FEL when execution is in secure state. This allows the
secure software to trap non-secure interrupts, perform its book-keeping and hand the interrupt to the
non-secure software through EL3. This is a valid routing model as secure software is in control of how
its execution is preempted by non-secure interrupts.

2. CSS=0, TEL3=1. Interrupt is routed to EL3 when execution is in secure state. This is a valid routing
model as secure software in EL3 can save the state of software in Secure-EL1/Secure-EL0 before hand-
ing the interrupt to non-secure software. This model requires additional coordination between Secure-
EL1 and EL3 software to ensure that the former’s state is correctly saved by the latter.

3. CSS=1, TEL3=0. Interrupt is routed to FEL when execution is in non-secure state. This is a valid
routing model as a non-secure interrupt is handled by non-secure software.

4. CSS=1, TEL3=1. Interrupt is routed to EL3 when execution is in non-secure state. This is an invalid
routing model as there is no valid reason to route the interrupt to EL3 software and then hand it back to
non-secure software for handling.

EL3 interrupts

1. CSS=0, TEL3=0. Interrupt is routed to the FEL when execution is in Secure-EL1/Secure-EL0. This
is a valid routing model as secure software in Secure-EL1/Secure-EL0 is in control of how its execution
is preempted by EL3 interrupt and can handover the interrupt to EL3 for handling.

However, when EL3_EXCEPTION_HANDLING is 1, this routing model is invalid as EL3 interrupts
are unconditionally routed to EL3, and EL3 interrupts will always preempt Secure EL1/EL0 execution.
See exception handling documentation.

2. CSS=0, TEL3=1. Interrupt is routed to EL3 when execution is in Secure-EL1/Secure-EL0. This is a
valid routing model as secure software in EL3 can handle the interrupt.

5.5. Interrupt Management Framework 401

Trusted Firmware-A, Release 2.10.4

3. CSS=1, TEL3=0. Interrupt is routed to the FELwhen execution is in non-secure state. This is an invalid
routing model as a secure interrupt is not visible to the secure software which violates the motivation
behind the Arm Security Extensions.

4. CSS=1, TEL3=1. Interrupt is routed to EL3 when execution is in non-secure state. This is a valid
routing model as secure software in EL3 can handle the interrupt.

Mapping of interrupt type to signal

The framework is meant to work with any interrupt controller implemented by a platform. A interrupt con-
troller could generate a type of interrupt as either an FIQ or IRQ signal to the CPU depending upon the
current security state. The mapping between the type and signal is known only to the platform. The frame-
work uses this information to determine whether the IRQ or the FIQ bit should be programmed in SCR_EL3
while applying the routing model for a type of interrupt. The platform provides this information through the
plat_interrupt_type_to_line() API (described in the Porting Guide). For example, on the FVP
port when the platform uses an Arm GICv2 interrupt controller, Secure-EL1 interrupts are signaled through
the FIQ signal while Non-secure interrupts are signaled through the IRQ signal. This applies when execution
is in either security state.

Effect of mapping of several interrupt types to one signal

It should be noted that if more than one interrupt type maps to a single interrupt signal, and if any one of the
interrupt type sets TEL3=1 for a particular security state, then interrupt signal will be routed to EL3 when in
that security state. This means that all the other interrupt types using the same interrupt signal will be forced to
the same routing model. This should be borne in mind when choosing the routing model for an interrupt type.

For example, in Arm GICv3, when the execution context is Secure-EL1/ Secure-EL0, both the EL3 and the
non secure interrupt types map to the FIQ signal. So if either one of the interrupt type sets the routing model
so that TEL3=1 when CSS=0, the FIQ bit in SCR_EL3 will be programmed to route the FIQ signal to EL3
when executing in Secure-EL1/Secure-EL0, thereby effectively routing the other interrupt type also to EL3.

5.5.2 Assumptions in Interrupt Management Framework

The framework makes the following assumptions to simplify its implementation.

1. Although the framework has support for 2 types of secure interrupts (EL3 and Secure-EL1 interrupt),
only interrupt controller architectures like Arm GICv3 has architectural support for EL3 interrupts in
the form of Group 0 interrupts. In Arm GICv2, all secure interrupts are assumed to be handled in
Secure-EL1. They can be delivered to Secure-EL1 via EL3 but they cannot be handled in EL3.

2. Interrupt exceptions (PSTATE.I and F bits) are masked during execution in EL3.

3. Interrupt management: the following sections describe how interrupts are managed by the interrupt
handling framework. This entails:

1. Providing an interface to allow registration of a handler and specification of the routing model for
a type of interrupt.

402 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

2. Implementing support to hand control of an interrupt type to its registered handler when the inter-
rupt is generated.

Both aspects of interrupt management involve various components in the secure software stack spanning from
EL3 to Secure-EL1. These components are described in the section Software components. The framework
stores information associated with each type of interrupt in the following data structure.

typedef struct intr_type_desc {
interrupt_type_handler_t handler;
uint32_t flags;
uint32_t scr_el3[2];

} intr_type_desc_t;

The flags field stores the routing model for the interrupt type in bits[1:0]. Bit[0] stores the routing model
when execution is in the secure state. Bit[1] stores the routing model when execution is in the non-secure state.
As mentioned in Section Routing model, a value of 0 implies that the interrupt should be targeted to the FEL.
A value of 1 implies that it should be targeted to EL3. The remaining bits are reserved and SBZ. The helper
macro set_interrupt_rm_flag() should be used to set the bits in the flags parameter.

The scr_el3[2] field also stores the routing model but as a mapping of the model in the flags field to the
corresponding bit in the SCR_EL3 for each security state.

The framework also depends upon the platform port to configure the interrupt controller to distinguish between
secure and non-secure interrupts. The platform is expected to be aware of the secure devices present in the
system and their associated interrupt numbers. It should configure the interrupt controller to enable the secure
interrupts, ensure that their priority is always higher than the non-secure interrupts and target them to the
primary CPU. It should also export the interface described in the Porting Guide to enable handling of interrupts.

In the remainder of this document, for the sake of simplicity a Arm GICv2 system is considered and it is
assumed that the FIQ signal is used to generate Secure-EL1 interrupts and the IRQ signal is used to generate
non-secure interrupts in either security state. EL3 interrupts are not considered.

5.5.3 Software components

Roles and responsibilities for interrupt management are sub-divided between the following components of
software running in EL3 and Secure-EL1. Each component is briefly described below.

1. EL3 Runtime Firmware. This component is common to all ports of TF-A.

2. Secure Payload Dispatcher (SPD) service. This service interfaces with the Secure Payload (SP) software
which runs in Secure-EL1/Secure-EL0 and is responsible for switching execution between secure and
non-secure states. A switch is triggered by a Secure Monitor Call and it uses the APIs exported by
the Context management library to implement this functionality. Switching execution between the two
security states is a requirement for interrupt management as well. This results in a significant dependency
on the SPD service. TF-A implements an example Test Secure Payload Dispatcher (TSPD) service.

An SPD service plugs into the EL3 runtime firmware and could be common to some ports of TF-A.

3. Secure Payload (SP). On a production system, the Secure Payload corresponds to a Secure OS which
runs in Secure-EL1/Secure-EL0. It interfaces with the SPD service to manage communication with non-
secure software. TF-A implements an example secure payload called Test Secure Payload (TSP) which
runs only in Secure-EL1.

5.5. Interrupt Management Framework 403

Trusted Firmware-A, Release 2.10.4

A Secure payload implementation could be common to some ports of TF-A, just like the SPD service.

5.5.4 Interrupt registration

This section describes in detail the role of each software component (see Software components) during the
registration of a handler for an interrupt type.

EL3 runtime firmware

This component declares the following prototype for a handler of an interrupt type.

typedef uint64_t (*interrupt_type_handler_t)(uint32_t id,
uint32_t flags,
void *handle,
void *cookie);

The id is parameter is reserved and could be used in the future for passing the interrupt id of the
highest pending interrupt only if there is a foolproof way of determining the id. Currently it contains
INTR_ID_UNAVAILABLE.

The flags parameter contains miscellaneous information as follows.

1. Security state, bit[0]. This bit indicates the security state of the lower exception level when the interrupt
was generated. A value of 1 means that it was in the non-secure state. A value of 0 indicates that it was
in the secure state. This bit can be used by the handler to ensure that interrupt was generated and routed
as per the routing model specified during registration.

2. Reserved, bits[31:1]. The remaining bits are reserved for future use.

The handle parameter points to the cpu_context structure of the current CPU for the security state
specified in the flags parameter.

Once the handler routine completes, execution will return to either the secure or non-secure state. The handler
routine must return a pointer to cpu_context structure of the current CPU for the target security state. On
AArch64, this return value is currently ignored by the caller as the appropriate cpu_context to be used
is expected to be set by the handler via the context management library APIs. A portable interrupt handler
implementation must set the target context both in the structure pointed to by the returned pointer and via
the context management library APIs. The handler should treat all error conditions as critical errors and take
appropriate action within its implementation e.g. use assertion failures.

The runtime firmware provides the following API for registering a handler for a particular type of interrupt. A
Secure Payload Dispatcher service should use this API to register a handler for Secure-EL1 and optionally for
non-secure interrupts. This API also requires the caller to specify the routing model for the type of interrupt.

int32_t register_interrupt_type_handler(uint32_t type,
interrupt_type_handler handler,
uint64_t flags);

The type parameter can be one of the three interrupt types listed above i.e. INTR_TYPE_S_EL1,
INTR_TYPE_NS & INTR_TYPE_EL3. The flags parameter is as described in Section 2.

404 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

The function will return 0 upon a successful registration. It will return -EALREADY in case a handler for the
interrupt type has already been registered. If the type is unrecognised or the flags or the handler are
invalid it will return -EINVAL.

Interrupt routing is governed by the configuration of the SCR_EL3.FIQ/IRQ bits prior to entry into a lower
exception level in either security state. The context management library maintains a copy of the SCR_EL3
system register for each security state in the cpu_context structure of each CPU. It exports the following
APIs to let EL3 Runtime Firmware program and retrieve the routing model for each security state for the
current CPU. The value of SCR_EL3 stored in the cpu_context is used by the el3_exit() function to
program the SCR_EL3 register prior to returning from the EL3 exception level.

uint32_t cm_get_scr_el3(uint32_t security_state);
void cm_write_scr_el3_bit(uint32_t security_state,

uint32_t bit_pos,
uint32_t value);

cm_get_scr_el3() returns the value of the SCR_EL3 register for the specified security state
of the current CPU. cm_write_scr_el3_bit() writes a 0 or 1 to the bit specified by
bit_pos. register_interrupt_type_handler() invokes set_routing_model() API
which programs the SCR_EL3 according to the routing model using the cm_get_scr_el3() and
cm_write_scr_el3_bit() APIs.

It is worth noting that in the current implementation of the framework, the EL3 runtime firmware is responsible
for programming the routing model. The SPD is responsible for ensuring that the routing model has been
adhered to upon receiving an interrupt.

Secure payload dispatcher

A SPD service is responsible for determining and maintaining the interrupt routing model supported by it-
self and the Secure Payload. It is also responsible for ferrying interrupts between secure and non-secure
software depending upon the routing model. It could determine the routing model at build time or at
runtime. It must use this information to register a handler for each interrupt type using the regis-
ter_interrupt_type_handler() API in EL3 runtime firmware.

If the routing model is not known to the SPD service at build time, then it must be provided by the SP as the
result of its initialisation. The SPD should program the routing model only after SP initialisation has completed
e.g. in the SPD initialisation function pointed to by the bl32_init variable.

The SPD should determine the mechanism to pass control to the Secure Payload after receiving an interrupt
from the EL3 runtime firmware. This information could either be provided to the SPD service at build time or
by the SP at runtime.

5.5. Interrupt Management Framework 405

Trusted Firmware-A, Release 2.10.4

Test secure payload dispatcher behavior

Note: Where this document discusses TSP_NS_INTR_ASYNC_PREEMPT as being 1, the same results also
apply when EL3_EXCEPTION_HANDLING is 1.

The TSPD only handles Secure-EL1 interrupts and is provided with the following routing model at build time.

• Secure-EL1 interrupts are routed to EL3 when execution is in non-secure state and are routed to the
FEL when execution is in the secure state i.e CSS=0, TEL3=0 & CSS=1, TEL3=1 for Secure-EL1
interrupts

• When the build flag TSP_NS_INTR_ASYNC_PREEMPT is zero, the default routing model is used
for non-secure interrupts. They are routed to the FEL in either security state i.e CSS=0, TEL3=0 &
CSS=1, TEL3=0 for Non-secure interrupts.

• When the build flag TSP_NS_INTR_ASYNC_PREEMPT is defined to 1, then the non secure interrupts
are routed to EL3 when execution is in secure state i.e CSS=0, TEL3=1 for non-secure interrupts.
This effectively preempts Secure-EL1. The default routing model is used for non secure interrupts in
non-secure state. i.e CSS=1, TEL3=0.

It performs the following actions in the tspd_init() function to fulfill the requirements mentioned earlier.

1. It passes control to the Test Secure Payload to perform its initialisation. The TSP provides the address
of the vector table tsp_vectors in the SP which also includes the handler for Secure-EL1 interrupts
in the sel1_intr_entry field. The TSPD passes control to the TSP at this address when it receives
a Secure-EL1 interrupt.

The handover agreement between the TSP and the TSPD requires that the TSPD masks all interrupts
(PSTATE.DAIF bits) when it calls tsp_sel1_intr_entry(). The TSP has to preserve the callee
saved general purpose, SP_EL1/Secure-EL0, LR, VFP and system registers. It can use x0-x18 to
enable its C runtime.

2. The TSPD implements a handler function for Secure-EL1 interrupts. This function is registered with
the EL3 runtime firmware using the register_interrupt_type_handler() API as follows

/* Forward declaration */
interrupt_type_handler tspd_secure_el1_interrupt_handler;
int32_t rc, flags = 0;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,

tspd_secure_el1_interrupt_handler,
flags);

if (rc)
panic();

3. When the build flag TSP_NS_INTR_ASYNC_PREEMPT is defined to 1, the TSPD implements a han-
dler function for non-secure interrupts. This function is registered with the EL3 runtime firmware using
the register_interrupt_type_handler() API as follows

406 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

/* Forward declaration */
interrupt_type_handler tspd_ns_interrupt_handler;
int32_t rc, flags = 0;
set_interrupt_rm_flag(flags, SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_NS,

tspd_ns_interrupt_handler,
flags);

if (rc)
panic();

Secure payload

A Secure Payload must implement an interrupt handling framework at Secure-EL1 (Secure-EL1 IHF) to sup-
port its chosen interrupt routing model. Secure payload execution will alternate between the below cases.

1. In the code where IRQ, FIQ or both interrupts are enabled, if an interrupt type is targeted to the FEL,
then it will be routed to the Secure-EL1 exception vector table. This is defined as the asynchronous
mode of handling interrupts. This mode applies to both Secure-EL1 and non-secure interrupts.

2. In the code where both interrupts are disabled, if an interrupt type is targeted to the FEL, then execution
will eventually migrate to the non-secure state. Any non-secure interrupts will be handled as described
in the routing model where CSS=1 and TEL3=0. Secure-EL1 interrupts will be routed to EL3 (as per
the routing model where CSS=1 and TEL3=1) where the SPD service will hand them to the SP. This
is defined as the synchronous mode of handling interrupts.

The interrupt handling framework implemented by the SP should support one or both these interrupt handling
models depending upon the chosen routing model.

The following list briefly describes how the choice of a valid routing model (see Valid routing models) effects
the implementation of the Secure-EL1 IHF. If the choice of the interrupt routing model is not known to the
SPD service at compile time, then the SP should pass this information to the SPD service at runtime during its
initialisation phase.

As mentioned earlier, an Arm GICv2 system is considered and it is assumed that the FIQ signal is used to
generate Secure-EL1 interrupts and the IRQ signal is used to generate non-secure interrupts in either security
state.

Secure payload IHF design w.r.t secure-EL1 interrupts

1. CSS=0, TEL3=0. If PSTATE.F=0, Secure-EL1 interrupts will be triggered at one of the Secure-EL1
FIQ exception vectors. The Secure-EL1 IHF should implement support for handling FIQ interrupts
asynchronously.

If PSTATE.F=1 then Secure-EL1 interrupts will be handled as per the synchronous interrupt handling
model. The SP could implement this scenario by exporting a separate entrypoint for Secure-EL1 in-
terrupts to the SPD service during the registration phase. The SPD service would also need to know
the state of the system, general purpose and the PSTATE registers in which it should arrange to return
execution to the SP. The SP should provide this information in an implementation defined way during
the registration phase if it is not known to the SPD service at build time.

5.5. Interrupt Management Framework 407

Trusted Firmware-A, Release 2.10.4

2. CSS=1, TEL3=1. Interrupts are routed to EL3 when execution is in non-secure state. They should be
handled through the synchronous interrupt handling model as described in 1. above.

3. CSS=0, TEL3=1. Secure-EL1 interrupts are routed to EL3 when execution is in secure state. They will
not be visible to the SP. The PSTATE.F bit in Secure-EL1/Secure-EL0 will not mask FIQs. The EL3
runtime firmware will call the handler registered by the SPD service for Secure-EL1 interrupts. Secure-
EL1 IHF should then handle all Secure-EL1 interrupt through the synchronous interrupt handling model
described in 1. above.

Secure payload IHF design w.r.t non-secure interrupts

1. CSS=0, TEL3=0. If PSTATE.I=0, non-secure interrupts will be triggered at one of the Secure-
EL1 IRQ exception vectors . The Secure-EL1 IHF should co-ordinate with the SPD service to transfer
execution to the non-secure state where the interrupt should be handled e.g the SP could allocate a
function identifier to issue a SMC64 or SMC32 to the SPD service which indicates that the SP execution
has been preempted by a non-secure interrupt. If this function identifier is not known to the SPD service
at compile time then the SP could provide it during the registration phase.

If PSTATE.I=1 then the non-secure interrupt will pend until execution resumes in the non-secure state.

2. CSS=0, TEL3=1. Non-secure interrupts are routed to EL3. They will not be visible to the SP. The
PSTATE.I bit in Secure-EL1/Secure-EL0 will have not effect. The SPD service should register a non-
secure interrupt handler which should save the SP state correctly and resume execution in the non-secure
state where the interrupt will be handled. The Secure-EL1 IHF does not need to take any action.

3. CSS=1, TEL3=0. Non-secure interrupts are handled in the FEL in non-secure state (EL1/EL2) and
are not visible to the SP. This routing model does not affect the SP behavior.

A Secure Payload must also ensure that all Secure-EL1 interrupts are correctly configured at the interrupt
controller by the platform port of the EL3 runtime firmware. It should configure any additional Secure-EL1
interrupts which the EL3 runtime firmware is not aware of through its platform port.

Test secure payload behavior

The routing model for Secure-EL1 and non-secure interrupts chosen by the TSP is described in Section Secure
Payload Dispatcher. It is known to the TSPD service at build time.

The TSP implements an entrypoint (tsp_sel1_intr_entry()) for handling Secure-EL1 interrupts taken
in non-secure state and routed through the TSPD service (synchronous handling model). It passes the reference
to this entrypoint via tsp_vectors to the TSPD service.

The TSP also replaces the default exception vector table referenced through the early_exceptions vari-
able, with a vector table capable of handling FIQ and IRQ exceptions taken at the same (Secure-EL1) ex-
ception level. This table is referenced through the tsp_exceptions variable and programmed into the
VBAR_EL1. It caters for the asynchronous handling model.

The TSP also programs the Secure Physical Timer in the Arm Generic Timer block to raise a periodic interrupt
(every half a second) for the purpose of testing interrupt management across all the software components listed
in Software components.

408 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.5.5 Interrupt handling

This section describes in detail the role of each software component (see Section Software components) in
handling an interrupt of a particular type.

EL3 runtime firmware

The EL3 runtime firmware populates the IRQ and FIQ exception vectors referenced by the run-
time_exceptions variable as follows.

1. IRQ and FIQ exceptions taken from the current exception level with SP_EL0 or SP_EL3 are reported
as irrecoverable error conditions. As mentioned earlier, EL3 runtime firmware always executes with the
PSTATE.I and PSTATE.F bits set.

2. The following text describes how the IRQ and FIQ exceptions taken from a lower exception level using
AArch64 or AArch32 are handled.

When an interrupt is generated, the vector for each interrupt type is responsible for:

1. Saving the entire general purpose register context (x0-x30) immediately upon exception entry. The
registers are saved in the per-cpu cpu_context data structure referenced by the SP_EL3register.

2. Saving the ELR_EL3, SP_EL0 and SPSR_EL3 system registers in the per-cpu cpu_context data
structure referenced by the SP_EL3 register.

3. Switching to the C runtime stack by restoring the CTX_RUNTIME_SP value from the per-cpu
cpu_context data structure in SP_EL0 and executing the msr spsel, #0 instruction.

4. Determining the type of interrupt. Secure-EL1 interrupts will be signaled at the FIQ vector. Non-secure
interrupts will be signaled at the IRQ vector. The platform should implement the following API to
determine the type of the pending interrupt.

uint32_t plat_ic_get_interrupt_type(void);

It should return either INTR_TYPE_S_EL1 or INTR_TYPE_NS.

5. Determining the handler for the type of interrupt that has been generated. The following API has been
added for this purpose.

interrupt_type_handler get_interrupt_type_handler(uint32_t interrupt_
↪→type);

It returns the reference to the registered handler for this interrupt type. The handler is retrieved from
the intr_type_desc_t structure as described in Section 2. NULL is returned if no handler has been
registered for this type of interrupt. This scenario is reported as an irrecoverable error condition.

6. Calling the registered handler function for the interrupt type generated. The id parameter is set to
INTR_ID_UNAVAILABLE currently. The id along with the current security state and a reference to
the cpu_context_t structure for the current security state are passed to the handler function as its
arguments.

The handler function returns a reference to the per-cpu cpu_context_t structure for the target se-
curity state.

5.5. Interrupt Management Framework 409

Trusted Firmware-A, Release 2.10.4

7. Calling el3_exit() to return from EL3 into a lower exception level in the security state determined
by the handler routine. The el3_exit() function is responsible for restoring the register context from
the cpu_context_t data structure for the target security state.

Secure payload dispatcher

Interrupt entry

The SPD service begins handling an interrupt when the EL3 runtime firmware calls the handler function for
that type of interrupt. The SPD service is responsible for the following:

1. Validating the interrupt. This involves ensuring that the interrupt was generated according to the interrupt
routing model specified by the SPD service during registration. It should use the security state of the
exception level (passed in the flags parameter of the handler) where the interrupt was taken from to
determine this. If the interrupt is not recognised then the handler should treat it as an irrecoverable error
condition.

An SPD service can register a handler for Secure-EL1 and/or Non-secure interrupts. A non-secure inter-
rupt should never be routed to EL3 from from non-secure state. Also if a routing model is chosen where
Secure-EL1 interrupts are routed to S-EL1 when execution is in Secure state, then a S-EL1 interrupt
should never be routed to EL3 from secure state. The handler could use the security state flag to check
this.

2. Determining whether a context switch is required. This depends upon the routing model and interrupt
type. For non secure and S-EL1 interrupt, if the security state of the execution context where the interrupt
was generated is not the same as the security state required for handling the interrupt, a context switch
is required. The following 2 cases require a context switch from secure to non-secure or vice-versa:

1. A Secure-EL1 interrupt taken from the non-secure state should be routed to the Secure Payload.

2. A non-secure interrupt taken from the secure state should be routed to the last known non-secure
exception level.

The SPD service must save the system register context of the current security state. It
must then restore the system register context of the target security state. It should use the
cm_set_next_eret_context()API to ensure that the next cpu_context to be restored is of
the target security state.

If the target state is secure then execution should be handed to the SP as per the synchronous interrupt
handlingmodel it implements. A Secure-EL1 interrupt can be routed to EL3while execution is in the SP.
This implies that SP execution can be preempted while handling an interrupt by a another higher priority
Secure-EL1 interrupt or a EL3 interrupt. The SPD service should be able to handle this preemption or
manage secure interrupt priorities before handing control to the SP.

3. Setting the return value of the handler to the per-cpu cpu_context if the interrupt has been success-
fully validated and ready to be handled at a lower exception level.

The routing model allows non-secure interrupts to interrupt Secure-EL1 when in secure state if it has been
configured to do so. The SPD service and the SP should implement a mechanism for routing these interrupts
to the last known exception level in the non-secure state. The former should save the SP context, restore the
non-secure context and arrange for entry into the non-secure state so that the interrupt can be handled.

410 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

Interrupt exit

When the Secure Payload has finished handling a Secure-EL1 interrupt, it could return control back to the SPD
service through a SMC32 or SMC64. The SPD service should handle this secure monitor call so that execution
resumes in the exception level and the security state from where the Secure-EL1 interrupt was originally taken.

Test secure payload dispatcher Secure-EL1 interrupt handling

The example TSPD service registers a handler for Secure-EL1 interrupts taken from the non-secure state.
During execution in S-EL1, the TSPD expects that the Secure-EL1 interrupts are handled in S-EL1 by TSP.
Its handler tspd_secure_el1_interrupt_handler() expects only to be invoked for Secure-EL1
originating from the non-secure state. It takes the following actions upon being invoked.

1. It uses the security state provided in the flags parameter to ensure that the secure interrupt originated
from the non-secure state. It asserts if this is not the case.

2. It saves the system register context for the non-secure state by calling
cm_el1_sysregs_context_save(NON_SECURE);.

3. It sets the ELR_EL3 system register to tsp_sel1_intr_entry and sets the SPSR_EL3.DAIF
bits in the secure CPU context. It sets x0 to TSP_HANDLE_SEL1_INTR_AND_RETURN. If the TSP
was preempted earlier by a non secure interrupt during yielding SMC processing, save the registers
that will be trashed, which is the ELR_EL3 and SPSR_EL3, in order to be able to re-enter TSP for
Secure-EL1 interrupt processing. It does not need to save any other secure context since the TSP is
expected to preserve it (see section Test secure payload dispatcher behavior).

4. It restores the system register context for the secure state by calling
cm_el1_sysregs_context_restore(SECURE);.

5. It ensures that the secure CPU context is used to program the next exception return from EL3 by calling
cm_set_next_eret_context(SECURE);.

6. It returns the per-cpu cpu_context to indicate that the interrupt can now be handled by the SP. x1
is written with the value of elr_el3 register for the non-secure state. This information is used by the
SP for debugging purposes.

The figure below describes how the interrupt handling is implemented by the TSPD when a Secure-EL1 inter-
rupt is generated when execution is in the non-secure state.

5.5. Interrupt Management Framework 411

Trusted Firmware-A, Release 2.10.4

The TSP issues an SMC with TSP_HANDLED_S_EL1_INTR as the function identifier to signal completion
of interrupt handling.

The TSPD service takes the following actions in tspd_smc_handler() function upon receiving an SMC
with TSP_HANDLED_S_EL1_INTR as the function identifier:

1. It ensures that the call originated from the secure state otherwise execution returns to the non-secure
state with SMC_UNK in x0.

2. It restores the saved ELR_EL3 and SPSR_EL3 system registers back to the secure CPU context (see
step 3 above) in case the TSP had been preempted by a non secure interrupt earlier.

3. It restores the system register context for the non-secure state by calling
cm_el1_sysregs_context_restore(NON_SECURE).

4. It ensures that the non-secure CPU context is used to program the next exception return from EL3 by
calling cm_set_next_eret_context(NON_SECURE).

412 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5. tspd_smc_handler() returns a reference to the non-secure cpu_context as the return value.

Test secure payload dispatcher non-secure interrupt handling

The TSP in Secure-EL1 can be preempted by a non-secure interrupt during yielding SMC
processing or by a higher priority EL3 interrupt during Secure-EL1 interrupt processing. When
EL3_EXCEPTION_HANDLING is 0, only non-secure interrupts can cause preemption of TSP since there
are no EL3 interrupts in the system. With EL3_EXCEPTION_HANDLING=1 however, any EL3 interrupt
may preempt Secure execution.

It should be noted that while TSP is preempted, the TSPD only allows entry into the TSP either for Secure-EL1
interrupt handling or for resuming the preempted yielding SMC in response to the TSP_FID_RESUME
SMC from the normal world. (See Section Implication of preempted SMC on Non-Secure Software).

The non-secure interrupt triggered in Secure-EL1 during yielding SMC processing can be routed
to either EL3 or Secure-EL1 and is controlled by build option TSP_NS_INTR_ASYNC_PREEMPT
(see Section Test secure payload dispatcher behavior). If the build option is set, the TSPD will set
the routing model for the non-secure interrupt to be routed to EL3 from secure state i.e. TEL3=1,
CSS=0 and registers tspd_ns_interrupt_handler() as the non-secure interrupt handler. The
tspd_ns_interrupt_handler() on being invoked ensures that the interrupt originated from the se-
cure state and disables routing of non-secure interrupts from secure state to EL3. This is to prevent further
preemption (by a non-secure interrupt) when TSP is reentered for handling Secure-EL1 interrupts that trig-
gered while execution was in the normal world. The tspd_ns_interrupt_handler() then invokes
tspd_handle_sp_preemption() for further handling.

If the TSP_NS_INTR_ASYNC_PREEMPT build option is zero (default), the default routing model for
non-secure interrupt in secure state is in effect i.e. TEL3=0, CSS=0. During yielding SMC pro-
cessing, the IRQ exceptions are unmasked i.e. PSTATE.I=0, and a non-secure interrupt will trigger at
Secure-EL1 IRQ exception vector. The TSP saves the general purpose register context and issues an SMC
with TSP_PREEMPTED as the function identifier to signal preemption of TSP. The TSPD SMC handler,
tspd_smc_handler(), ensures that the SMC call originated from the secure state otherwise execution re-
turns to the non-secure state with SMC_UNK in x0. It then invokes tspd_handle_sp_preemption()
for further handling.

The tspd_handle_sp_preemption() takes the following actions upon being invoked:

1. It saves the system register context for the secure state by calling
cm_el1_sysregs_context_save(SECURE).

2. It restores the system register context for the non-secure state by calling
cm_el1_sysregs_context_restore(NON_SECURE).

3. It ensures that the non-secure CPU context is used to program the next exception return from EL3 by
calling cm_set_next_eret_context(NON_SECURE).

4. SMC_PREEMPTED is set in x0 and return to non secure state after restoring non secure context.

The Normal World is expected to resume the TSP after the yielding SMC preemption by issuing an SMC
with TSP_FID_RESUME as the function identifier (see section Implication of preempted SMC on Non-Secure
Software). The TSPD service takes the following actions intspd_smc_handler() function upon receiving
this SMC:

5.5. Interrupt Management Framework 413

Trusted Firmware-A, Release 2.10.4

1. It ensures that the call originated from the non secure state. An assertion is raised otherwise.

2. Checks whether the TSP needs a resume i.e check if it was preempted. It then saves the system register
context for the non-secure state by calling cm_el1_sysregs_context_save(NON_SECURE).

3. Restores the secure context by calling cm_el1_sysregs_context_restore(SECURE)

4. It ensures that the secure CPU context is used to program the next exception return from EL3 by calling
cm_set_next_eret_context(SECURE).

5. tspd_smc_handler() returns a reference to the secure cpu_context as the return value.

The figure below describes how the TSP/TSPD handle a non-secure interrupt when it is generated during
execution in the TSP with PSTATE.I = 0 when the TSP_NS_INTR_ASYNC_PREEMPT build flag is 0.

414 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.5. Interrupt Management Framework 415

Trusted Firmware-A, Release 2.10.4

Secure payload interrupt handling

The SP should implement one or both of the synchronous and asynchronous interrupt handling models depend-
ing upon the interrupt routing model it has chosen (as described in section Secure Payload).

In the synchronous model, it should begin handling a Secure-EL1 interrupt after receiving control from the
SPD service at an entrypoint agreed upon during build time or during the registration phase. Before handling
the interrupt, the SP should save any Secure-EL1 system register context which is needed for resuming normal
execution in the SP later e.g. SPSR_EL1, ELR_EL1. After handling the interrupt, the SP could return control
back to the exception level and security state where the interrupt was originally taken from. The SP should use
an SMC32 or SMC64 to ask the SPD service to do this.

In the asynchronous model, the Secure Payload is responsible for handling non-secure and Secure-EL1 inter-
rupts at the IRQ and FIQ vectors in its exception vector table when PSTATE.I and PSTATE.F bits are 0.
As described earlier, when a non-secure interrupt is generated, the SP should coordinate with the SPD service
to pass control back to the non-secure state in the last known exception level. This will allow the non-secure
interrupt to be handled in the non-secure state.

Test secure payload behavior

The TSPD hands control of a Secure-EL1 interrupt to the TSP at the tsp_sel1_intr_entry().
The TSP handles the interrupt while ensuring that the handover agreement described in Sec-
tion Test secure payload dispatcher behavior is maintained. It updates some statistics by calling
tsp_update_sync_sel1_intr_stats(). It then calls tsp_common_int_handler() which.

1. Checks whether the interrupt is the secure physical timer interrupt. It uses the platform API
plat_ic_get_pending_interrupt_id() to get the interrupt number. If it is not the se-
cure physical timer interrupt, then that means that a higher priority interrupt has preempted it. In-
voke tsp_handle_preemption() to handover control back to EL3 by issuing an SMC with
TSP_PREEMPTED as the function identifier.

2. Handles the secure timer interrupt interrupt by acknowledging it us-
ing the plat_ic_acknowledge_interrupt() platform API, calling
tsp_generic_timer_handler() to reprogram the secure physical generic timer and calling
the plat_ic_end_of_interrupt() platform API to signal end of interrupt processing.

The TSP passes control back to the TSPD by issuing an SMC64 with TSP_HANDLED_S_EL1_INTR as the
function identifier.

The TSP handles interrupts under the asynchronous model as follows.

1. Secure-EL1 interrupts are handled by calling the tsp_common_int_handler() function. The
function has been described above.

2. Non-secure interrupts are handled by calling the tsp_common_int_handler() function which
ends up invoking tsp_handle_preemption() and issuing an SMC64 with TSP_PREEMPTED
as the function identifier. Execution resumes at the instruction that follows this SMC instruction when
the TSPD hands control to the TSP in response to an SMC with TSP_FID_RESUME as the function
identifier from the non-secure state (see section Test secure payload dispatcher non-secure interrupt han-
dling).

416 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.5.6 Other considerations

Implication of preempted SMC on Non-Secure Software

A yielding SMC call to Secure payload can be preempted by a non-secure interrupt and the execution can
return to the non-secure world for handling the interrupt (For details on yielding SMC refer SMC calling
convention). In this case, the SMC call has not completed its execution and the execution must return back to
the secure payload to resume the preempted SMC call. This can be achieved by issuing an SMC call which
instructs to resume the preempted SMC.

A fast SMC cannot be preempted and hence this case will not happen for a fast SMC call.

In the Test Secure Payload implementation, TSP_FID_RESUME is designated as the resume SMC FID. It is
important to note that TSP_FID_RESUME is a yielding SMC which means it too can be be preempted.
The typical non secure software sequence for issuing a yielding SMC would look like this, assuming P.
STATE.I=0 in the non secure state :

int rc;
rc = smc(TSP_YIELD_SMC_FID, ...); /* Issue a Yielding SMC call */
/* The pending non-secure interrupt is handled by the interrupt handler

and returns back here. */
while (rc == SMC_PREEMPTED) { /* Check if the SMC call is preempted */

rc = smc(TSP_FID_RESUME); /* Issue resume SMC call */
}

The TSP_YIELD_SMC_FID is any yielding SMC function identifier and the smc() function invokes a
SMC call with the required arguments. The pending non-secure interrupt causes an IRQ exception and the
IRQ handler registered at the exception vector handles the non-secure interrupt and returns. The return value
from the SMC call is tested for SMC_PREEMPTED to check whether it is preempted. If it is, then the resume
SMC call TSP_FID_RESUME is issued. The return value of the SMC call is tested again to check if it is
preempted. This is done in a loop till the SMC call succeeds or fails. If a yielding SMC is preempted, until
it is resumed using TSP_FID_RESUME SMC and completed, the current TSPD prevents any other SMC call
from re-entering TSP by returning SMC_UNK error.

Copyright (c) 2014-2020, Arm Limited and Contributors. All rights reserved.

5.6 PSCI Power Domain Tree Structure

5.6.1 Requirements

1. A platform must export the plat_get_aff_count() and plat_get_aff_state() APIs to
enable the generic PSCI code to populate a tree that describes the hierarchy of power domains in the
system. This approach is inflexible because a change to the topology requires a change in the code.

It would be much simpler for the platform to describe its power domain tree in a data structure.

2. The generic PSCI code generates MPIDRs in order to populate the power domain tree. It also uses an
MPIDR to find a node in the tree. The assumption that a platform will use exactly the same MPIDRs as

5.6. PSCI Power Domain Tree Structure 417

https://developer.arm.com/docs/den0028/latest
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

generated by the generic PSCI code is not scalable. The use of an MPIDR also restricts the number of
levels in the power domain tree to four.

Therefore, there is a need to decouple allocation of MPIDRs from the mechanism used to populate the
power domain topology tree.

3. The current arrangement of the power domain tree requires a binary search over the sibling nodes at a
particular level to find a specified power domain node. During a power management operation, the tree
is traversed from a ‘start’ to an ‘end’ power level. The binary search is required to find the node at each
level. The natural way to perform this traversal is to start from a leaf node and follow the parent node
pointer to reach the end level.

Therefore, there is a need to define data structures that implement the tree in a way which facilitates such
a traversal.

4. The attributes of a core power domain differ from the attributes of power domains at higher levels.
For example, only a core power domain can be identified using an MPIDR. There is no requirement to
perform state coordination while performing a power management operation on the core power domain.

Therefore, there is a need to implement the tree in a way which facilitates this distinction between a leaf
and non-leaf node and any associated optimizations.

5.6.2 Design

Describing a power domain tree

To fulfill requirement 1., the existing platform APIs plat_get_aff_count() and
plat_get_aff_state() have been removed. A platform must define an array of unsigned chars
such that:

1. The first entry in the array specifies the number of power domains at the highest power level implemented
in the platform. This caters for platforms where the power domain tree does not have a single root node,
for example, the FVP has two cluster power domains at the highest level (1).

2. Each subsequent entry corresponds to a power domain and contains the number of power domains that
are its direct children.

3. The size of the array minus the first entry will be equal to the number of non-leaf power domains.

4. The value in each entry in the array is used to find the number of entries to consider at the next level.
The sum of the values (number of children) of all the entries at a level specifies the number of entries in
the array for the next level.

The following example power domain topology tree will be used to describe the above text further. The leaf
and non-leaf nodes in this tree have been numbered separately.

+-+
|0|
+-+
/ \

(continues on next page)

418 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
/ \

/ \
/ \

/ \
/ \

/ \
/ \
/ \

/ \
+-+ +-+
|1| |2|
+-+ +-+

/ \ / \
/ \ / \
/ \ / \

/ \ / \
+-+ +-+ +-+ +-+
|3| |4| |5| |6|
+-+ +-+ +-+ +-+

+---+-----+ +----+----| +----+----+ +----+-----+-----+
| | | | | | | | | | | | |
| | | | | | | | | | | | |
v v v v v v v v v v v v v

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +--+ +--+ +--+
|0| |1| |2| |3| |4| |5| |6| |7| |8| |9| |10| |11| |12|
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +--+ +--+ +--+

This tree is defined by the platform as the array described above as follows:

#define PLAT_NUM_POWER_DOMAINS 20
#define PLATFORM_CORE_COUNT 13
#define PSCI_NUM_NON_CPU_PWR_DOMAINS \

(PLAT_NUM_POWER_DOMAINS - PLATFORM_CORE_COUNT)

unsigned char plat_power_domain_tree_desc[] = { 1, 2, 2, 2, 3, 3, 3, 4};

Removing assumptions about MPIDRs used in a platform

To fulfill requirement 2., it is assumed that the platform assigns a unique number (core index) between 0 and
PLAT_CORE_COUNT - 1 to each core power domain. MPIDRs could be allocated in any manner and will
not be used to populate the tree.

plat_core_pos_by_mpidr(mpidr) will return the core index for the core corresponding to the
MPIDR. It will return an error (-1) if an MPIDR is passed which is not allocated or corresponds to an ab-
sent core. The semantics of this platform API have changed since it is required to validate the passed MPIDR.
It has been made a mandatory API as a result.

Another mandatory API, plat_my_core_pos() has been added to return the core index for the calling
core. This API provides a more lightweight mechanism to get the index since there is no need to validate the
MPIDR of the calling core.

5.6. PSCI Power Domain Tree Structure 419

Trusted Firmware-A, Release 2.10.4

The platform should assign the core indices (as illustrated in the diagram above) such that, if the core nodes
are numbered from left to right, then the index for a core domain will be the same as the index returned by
plat_core_pos_by_mpidr() or plat_my_core_pos() for that core. This relationship allows the
core nodes to be allocated in a separate array (requirement 4.) during psci_setup() in such an order that
the index of the core in the array is the same as the return value from these APIs.

Dealing with holes in MPIDR allocation

For platforms where the number of allocated MPIDRs is equal to the number of core power domains, for
example, Juno and FVPs, the logic to convert an MPIDR to a core index should remain unchanged. Both Juno
and FVP use a simple collision proof hash function to do this.

It is possible that on some platforms, the allocation of MPIDRs is not contiguous or certain cores have been
disabled. This essentially means that the MPIDRs have been sparsely allocated, that is, the size of the range of
MPIDRs used by the platform is not equal to the number of core power domains.

The platform could adopt one of the following approaches to deal with this scenario:

1. Implement more complex logic to convert a valid MPIDR to a core index while maintaining the rela-
tionship described earlier. This means that the power domain tree descriptor will not describe any core
power domains which are disabled or absent. Entries will not be allocated in the tree for these domains.

2. Treat unallocated MPIDRs and disabled cores as absent but still describe them in the power domain
descriptor, that is, the number of core nodes described is equal to the size of the range of MPIDRs
allocated. This approach will lead to memory wastage since entries will be allocated in the tree but will
allow use of a simpler logic to convert an MPIDR to a core index.

Traversing through and distinguishing between core and non-core power domains

To fulfill requirement 3 and 4, separate data structures have been defined to represent leaf and non-leaf power
domain nodes in the tree.

/
↪→***
* The following two data structures implement the power domain tree. The tree
* is used to track the state of all the nodes i.e. power domain instances
* described by the platform. The tree consists of nodes that describe CPU␣
↪→power
* domains i.e. leaf nodes and all other power domains which are parents of a
* CPU power domain i.e. non-leaf nodes.

␣
↪→**/
↪→

typedef struct non_cpu_pwr_domain_node {
/*
* Index of the first CPU power domain node level 0 which has this node
* as its parent.
*/

unsigned int cpu_start_idx;

(continues on next page)

420 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

(continued from previous page)

/*
* Number of CPU power domains which are siblings of the domain indexed
* by 'cpu_start_idx' i.e. all the domains in the range 'cpu_start_idx
* -> cpu_start_idx + ncpus' have this node as their parent.
*/

unsigned int ncpus;

/* Index of the parent power domain node */
unsigned int parent_node;

} non_cpu_pd_node_t;

typedef struct cpu_pwr_domain_node {
u_register_t mpidr;

/* Index of the parent power domain node */
unsigned int parent_node;

} cpu_pd_node_t;

The power domain tree is implemented as a combination of the following data structures.

non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS];
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];

Populating the power domain tree

The populate_power_domain_tree() function in psci_setup.c implements the algorithm to
parse the power domain descriptor exported by the platform to populate the two arrays. It is essentially
a breadth-first-search. The nodes for each level starting from the root are laid out one after another in the
psci_non_cpu_pd_nodes and psci_cpu_pd_nodes arrays as follows:

psci_non_cpu_pd_nodes -> [[Level 3 nodes][Level 2 nodes][Level 1 nodes]]
psci_cpu_pd_nodes -> [Level 0 nodes]

For the example power domain tree illustrated above, the psci_cpu_pd_nodes will be populated as fol-
lows. The value in each entry is the index of the parent node. Other fields have been ignored for simplicity.

+-------------+ ^
CPU0 | 3 | |

+-------------+ |
CPU1 | 3 | |

+-------------+ |
CPU2 | 3 | |

+-------------+ |
CPU3 | 4 | |

(continues on next page)

5.6. PSCI Power Domain Tree Structure 421

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
+-------------+ |

CPU4 | 4 | |
+-------------+ |

CPU5 | 4 | | PLATFORM_CORE_COUNT
+-------------+ |

CPU6 | 5 | |
+-------------+ |

CPU7 | 5 | |
+-------------+ |

CPU8 | 5 | |
+-------------+ |

CPU9 | 6 | |
+-------------+ |

CPU10 | 6 | |
+-------------+ |

CPU11 | 6 | |
+-------------+ |

CPU12 | 6 | v
+-------------+

The psci_non_cpu_pd_nodes array will be populated as follows. The value in each entry is the index
of the parent node.

+-------------+ ^
PD0 | -1 | |

+-------------+ |
PD1 | 0 | |

+-------------+ |
PD2 | 0 | |

+-------------+ |
PD3 | 1 | | PLAT_NUM_POWER_DOMAINS -

+-------------+ | PLATFORM_CORE_COUNT
PD4 | 1 | |

+-------------+ |
PD5 | 2 | |

+-------------+ |
PD6 | 2 | |

+-------------+ v

Each core can find its node in the psci_cpu_pd_nodes array using the plat_my_core_pos()
function. When a core is turned on, the normal world provides an MPIDR. The
plat_core_pos_by_mpidr() function is used to validate the MPIDR before using it to find the
corresponding core node. The non-core power domain nodes do not need to be identified.

Copyright (c) 2017-2018, Arm Limited and Contributors. All rights reserved.

422 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.7 CPU Reset

This document describes the high-level design of the framework to handle CPU resets in Trusted Firmware-A
(TF-A). It also describes how the platform integrator can tailor this code to the system configuration to some
extent, resulting in a simplified and more optimised boot flow.

This document should be used in conjunction with the Firmware Design document which provides greater
implementation details around the reset code, specifically for the cold boot path.

5.7.1 General reset code flow

The TF-A reset code is implemented in BL1 by default. The following high-level diagram illustrates this:

5.7. CPU Reset 423

Trusted Firmware-A, Release 2.10.4

This diagram shows the default, unoptimised reset flow. Depending on the system configuration, some of these
steps might be unnecessary. The following sections guide the platform integrator by indicating which build
options exclude which steps, depending on the capability of the platform.

Note: If BL31 is used as the TF-A entry point instead of BL1, the diagram above is still relevant, as all
these operations will occur in BL31 in this case. Please refer to section 6 “Using BL31 entrypoint as the reset
address” for more information.

424 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.7.2 Programmable CPU reset address

By default, TF-A assumes that the CPU reset address is not programmable. Therefore, all CPUs start at the
same address (typically address 0) whenever they reset. Further logic is then required to identify whether it is
a cold or warm boot to direct CPUs to the right execution path.

If the reset vector address (reflected in the reset vector base address register RVBAR_EL3) is programmable
then it is possible to make each CPU start directly at the right address, both on a cold and warm reset. Therefore,
the boot type detection can be skipped, resulting in the following boot flow:

To enable this boot flow, compile TF-A with PROGRAMMABLE_RESET_ADDRESS=1. This option only

5.7. CPU Reset 425

Trusted Firmware-A, Release 2.10.4

affects the TF-A reset image, which is BL1 by default or BL31 if RESET_TO_BL31=1.

On both the FVP and Juno platforms, the reset vector address is not programmable so both ports use PRO-
GRAMMABLE_RESET_ADDRESS=0.

5.7.3 Cold boot on a single CPU

By default, TF-A assumes that several CPUs may be released out of reset. Therefore, the cold boot code has to
arbitrate access to hardware resources shared amongst CPUs. This is done by nominating one of the CPUs as
the primary, which is responsible for initialising shared hardware and coordinating the boot flow with the other
CPUs.

If the platform guarantees that only a single CPU will ever be brought up then no arbitration is required. The
notion of primary/secondary CPU itself no longer applies. This results in the following boot flow:

426 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

To enable this boot flow, compile TF-A with COLD_BOOT_SINGLE_CPU=1. This option only affects the
TF-A reset image, which is BL1 by default or BL31 if RESET_TO_BL31=1.

On both the FVP and Juno platforms, although only one core is powered up by default, there are
platform-specific ways to release any number of cores out of reset. Therefore, both platform ports use
COLD_BOOT_SINGLE_CPU=0.

5.7. CPU Reset 427

Trusted Firmware-A, Release 2.10.4

5.7.4 Programmable CPU reset address, Cold boot on a single CPU

It is obviously possible to combine both optimisations on platforms that have a programmable CPU reset address
and which release a single CPU out of reset. This results in the following boot flow:

To enable this boot flow, compile TF-A with both COLD_BOOT_SINGLE_CPU=1 and PRO-
GRAMMABLE_RESET_ADDRESS=1. These options only affect the TF-A reset image, which is BL1 by
default or BL31 if RESET_TO_BL31=1.

428 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

5.7.5 Using BL31 entrypoint as the reset address

On some platforms the runtime firmware (BL3x images) for the application processors are loaded by some
firmware running on a secure system processor on the SoC, rather than by BL1 and BL2 running on the primary
application processor. For this type of SoC it is desirable for the application processor to always reset to BL31
which eliminates the need for BL1 and BL2.

TF-A provides a build-time option RESET_TO_BL31 that includes some additional logic in the BL31 entry
point to support this use case.

In this configuration, the platform’s Trusted Boot Firmware must ensure that BL31 is loaded to its runtime
address, which must match the CPU’s RVBAR_EL3 reset vector base address, before the application processor
is powered on. Additionally, platform software is responsible for loading the other BL3x images required and
providing entry point information for them to BL31. Loading these images might be done by the Trusted Boot
Firmware or by platform code in BL31.

Although the Arm FVP platform does not support programming the reset base address dynamically at run-time,
it is possible to set the initial value of the RVBAR_EL3 register at start-up. This feature is provided on the
Base FVP only.

It allows the Arm FVP port to support the RESET_TO_BL31 configuration, in which case the bl31.bin
image must be loaded to its run address in Trusted SRAM and all CPU reset vectors be changed from the
default 0x0 to this run address. See the Arm Fixed Virtual Platforms (FVP) for details of running the FVP
models in this way.

Although technically it would be possible to program the reset base address with the right support in the SCP
firmware, this is currently not implemented so the Juno port doesn’t support the RESET_TO_BL31 configu-
ration.

The RESET_TO_BL31 configuration requires some additions and changes in the BL31 functionality:

Determination of boot path

In this configuration, BL31 uses the same reset framework and code as the one described for BL1 above. There-
fore, it is affected by the PROGRAMMABLE_RESET_ADDRESS and COLD_BOOT_SINGLE_CPU build op-
tions in the same way.

In the default, unoptimised BL31 reset flow, on a warm boot a CPU is directed to the PSCI implementation
via a platform defined mechanism. On a cold boot, the platform must place any secondary CPUs into a safe
state while the primary CPU executes a modified BL31 initialization, as described below.

5.7. CPU Reset 429

Trusted Firmware-A, Release 2.10.4

Platform initialization

In this configuration, since the CPU resets to BL31, no parameters are expected to be passed to BL31 (see
notes below for clarification). Instead, the platform code in BL31 needs to know, or be able to determine,
the location of the BL32 (if required) and BL33 images and provide this information in response to the
bl31_plat_get_next_image_ep_info() function.

Additionally, platform software is responsible for carrying out any security initialisation, for example program-
ming a TrustZone address space controller. This might be done by the Trusted Boot Firmware or by platform
code in BL31.

Note: Even though RESET_TO_BL31 is designed such that BL31 is the reset BL image, some platforms
may wish to pass some arguments to BL31 as per the defined contract between BL31 and previous bootload-
ers. Previous bootloaders can pass arguments through registers x0 through x3. BL31 will preserve them and
propagate them to platform code, which will handle these arguments in an IMPDEF manner.

Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.

5.8 Trusted Board Boot

The Trusted Board Boot (TBB) feature prevents malicious firmware from running on the platform by authen-
ticating all firmware images up to and including the normal world bootloader. It does this by establishing a
Chain of Trust using Public-Key-Cryptography Standards (PKCS).

This document describes the design of Trusted Firmware-A (TF-A) TBB, which is an implementation of the
Trusted Board Boot Requirements (TBBR) specification, Arm DEN0006D. It should be used in conjunction
with the Firmware Update (FWU) design document, which implements a specific aspect of the TBBR.

5.8.1 Chain of Trust

A Chain of Trust (CoT) starts with a set of implicitly trusted components. On the Arm development platforms,
these components are:

• A SHA-256 hash of the Root of Trust Public Key (ROTPK). It is stored in the trusted root-key storage
registers. Alternatively, a development ROTPK might be used and its hash embedded into the BL1 and
BL2 images (only for development purposes).

• The BL1 image, on the assumption that it resides in ROM so cannot be tampered with.

The remaining components in the CoT are either certificates or boot loader images. The certificates follow the
X.509 v3 standard. This standard enables adding custom extensions to the certificates, which are used to store
essential information to establish the CoT.

In the TBB CoT all certificates are self-signed. There is no need for a Certificate Authority (CA) because
the CoT is not established by verifying the validity of a certificate’s issuer but by the content of the certificate

430 Chapter 5. System Design

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://tools.ietf.org/rfc/rfc5280.txt

Trusted Firmware-A, Release 2.10.4

extensions. To sign the certificates, different signature schemes are available, please refer to the Build Options
for more details.

The certificates are categorised as “Key” and “Content” certificates. Key certificates are used to verify public
keys which have been used to sign content certificates. Content certificates are used to store the hash of a boot
loader image. An image can be authenticated by calculating its hash and matching it with the hash extracted
from the content certificate. Various hash algorithms are supported to calculate all hashes, please refer to the
Build Options for more details.. The public keys and hashes are included as non-standard extension fields in the
X.509 v3 certificates.

The keys used to establish the CoT are:

• Root of trust key

The private part of this key is used to sign the BL2 content certificate and the trusted key certificate. The
public part is the ROTPK.

• Trusted world key

The private part is used to sign the key certificates corresponding to the secure world images (SCP_BL2,
BL31 and BL32). The public part is stored in one of the extension fields in the trusted world certificate.

• Non-trusted world key

The private part is used to sign the key certificate corresponding to the non secure world image (BL33).
The public part is stored in one of the extension fields in the trusted world certificate.

• BL3X keys

For each of SCP_BL2, BL31, BL32 and BL33, the private part is used to sign the content certificate
for the BL3X image. The public part is stored in one of the extension fields in the corresponding key
certificate.

The following images are included in the CoT:

• BL1

• BL2

• SCP_BL2 (optional)

• BL31

• BL33

• BL32 (optional)

The following certificates are used to authenticate the images.

• BL2 content certificate

It is self-signed with the private part of the ROT key. It contains a hash of the BL2 image.

• Trusted key certificate

It is self-signed with the private part of the ROT key. It contains the public part of the trusted world key
and the public part of the non-trusted world key.

5.8. Trusted Board Boot 431

https://tools.ietf.org/rfc/rfc5280.txt

Trusted Firmware-A, Release 2.10.4

• SCP_BL2 key certificate

It is self-signed with the trusted world key. It contains the public part of the SCP_BL2 key.

• SCP_BL2 content certificate

It is self-signed with the SCP_BL2 key. It contains a hash of the SCP_BL2 image.

• BL31 key certificate

It is self-signed with the trusted world key. It contains the public part of the BL31 key.

• BL31 content certificate

It is self-signed with the BL31 key. It contains a hash of the BL31 image.

• BL32 key certificate

It is self-signed with the trusted world key. It contains the public part of the BL32 key.

• BL32 content certificate

It is self-signed with the BL32 key. It contains a hash of the BL32 image.

• BL33 key certificate

It is self-signed with the non-trusted world key. It contains the public part of the BL33 key.

• BL33 content certificate

It is self-signed with the BL33 key. It contains a hash of the BL33 image.

The SCP_BL2 and BL32 certificates are optional, but they must be present if the corresponding SCP_BL2 or
BL32 images are present.

5.8.2 Trusted Board Boot Sequence

The CoT is verified through the following sequence of steps. The system panics if any of the steps fail.

• BL1 loads and verifies the BL2 content certificate. The issuer public key is read from the verified certifi-
cate. A hash of that key is calculated and compared with the hash of the ROTPK read from the trusted
root-key storage registers. If they match, the BL2 hash is read from the certificate.

Note: The matching operation is platform specific and is currently unimplemented on the Arm devel-
opment platforms.

• BL1 loads the BL2 image. Its hash is calculated and compared with the hash read from the certificate.
Control is transferred to the BL2 image if all the comparisons succeed.

• BL2 loads and verifies the trusted key certificate. The issuer public key is read from the verified certifi-
cate. A hash of that key is calculated and compared with the hash of the ROTPK read from the trusted
root-key storage registers. If the comparison succeeds, BL2 reads and saves the trusted and non-trusted
world public keys from the verified certificate.

432 Chapter 5. System Design

Trusted Firmware-A, Release 2.10.4

The next two steps are executed for each of the SCP_BL2, BL31 & BL32 images. The steps for the optional
SCP_BL2 and BL32 images are skipped if these images are not present.

• BL2 loads and verifies the BL3x key certificate. The certificate signature is verified using the trusted
world public key. If the signature verification succeeds, BL2 reads and saves the BL3x public key from
the certificate.

• BL2 loads and verifies the BL3x content certificate. The signature is verified using the BL3x public key.
If the signature verification succeeds, BL2 reads and saves the BL3x image hash from the certificate.

The next two steps are executed only for the BL33 image.

• BL2 loads and verifies the BL33 key certificate. If the signature verification succeeds, BL2 reads and
saves the BL33 public key from the certificate.

• BL2 loads and verifies the BL33 content certificate. If the signature verification succeeds, BL2 reads and
saves the BL33 image hash from the certificate.

The next step is executed for all the boot loader images.

• BL2 calculates the hash of each image. It compares it with the hash obtained from the corresponding
content certificate. The image authentication succeeds if the hashes match.

The Trusted Board Boot implementation spans both generic and platform-specific BL1 and BL2 code, and in
tool code on the host build machine. The feature is enabled through use of specific build flags as described in
Build Options.

On the host machine, a tool generates the certificates, which are included in the FIP along with the boot loader
images. These certificates are loaded in Trusted SRAM using the IO storage framework. They are then verified
by an Authentication module included in TF-A.

The mechanism used for generating the FIP and the Authentication module are described in the following
sections.

5.8.3 Authentication Framework

The authentication framework included in TF-A provides support to implement the desired trusted boot se-
quence. Arm platforms use this framework to implement the boot requirements specified in the Trusted Board
Boot Requirements (TBBR) document.

More information about the authentication framework can be found in the Authentication Framework & Chain
of Trust document.

5.8.4 Certificate Generation Tool

The cert_create tool is built and runs on the host machine as part of the TF-A build process when GEN-
ERATE_COT=1. It takes the boot loader images and keys as inputs and generates the certificates (in DER
format) required to establish the CoT. The input keys must either be a file in PEM format or a PKCS11 URI
in case a HSM is used. New keys can be generated by the tool in case they are not provided. The certificates
are then passed as inputs to the fiptool utility for creating the FIP.

The certificates are also stored individually in the output build directory.

5.8. Trusted Board Boot 433

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

Trusted Firmware-A, Release 2.10.4

The tool resides in thetools/cert_create directory. It uses theOpenSSL SSL library version to generate
the X.509 certificates. The specific version of the library that is required is given in the Prerequisites document.

Instructions for building and using the tool can be found at Building the Certificate Generation Tool.

5.8.5 Authenticated Encryption Framework

The authenticated encryption framework included in TF-A provides support to implement the optional firmware
encryption feature. This feature can be optionally enabled on platforms to implement the optional requirement:
R060_TBBR_FUNCTION as specified in the Trusted Board Boot Requirements (TBBR) document.

5.8.6 Firmware Encryption Tool

The encrypt_fw tool is built and runs on the host machine as part of the TF-A build process when DE-
CRYPTION_SUPPORT != none. It takes the plain firmware image as input and generates the encrypted
firmware image which can then be passed as input to the fiptool utility for creating the FIP.

The encrypted firmwares are also stored individually in the output build directory.

The tool resides in the tools/encrypt_fw directory. It uses OpenSSL SSL library version 1.0.1 or later to
do authenticated encryption operation. Instructions for building and using the tool can be found in the Building
the Firmware Encryption Tool.

Copyright (c) 2015-2020, Arm Limited and Contributors. All rights reserved.

5.9 Building FIP images with support for Trusted Board Boot

Trusted Board Boot primarily consists of the following two features:

• Image Authentication, described in Trusted Board Boot, and

• Firmware Update, described in Firmware Update (FWU)

The following steps should be followed to build FIP and (optionally) FWU_FIP images with support for these
features:

1. Fulfill the dependencies of the mbedtls cryptographic and image parser modules by checking out a
recent version of the mbed TLS Repository. It is important to use a version that is compatible with TF-A
and fixes any known security vulnerabilities. See mbed TLS Security Center for more information. See
the Prerequisites document for the appropriate version of mbed TLS to use.

The drivers/auth/mbedtls/mbedtls_*.mk files contain the list of mbed TLS source files
the modules depend upon. include/drivers/auth/mbedtls/mbedtls_config.h con-
tains the configuration options required to build the mbed TLS sources.

Note that the mbed TLS library is licensed under the Apache version 2.0 license. Using mbed TLS
source code will affect the licensing of TF-A binaries that are built using this library.

434 Chapter 5. System Design

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://github.com/ARMmbed/mbedtls.git
https://tls.mbed.org/security

Trusted Firmware-A, Release 2.10.4

2. To build the FIP image, ensure the following command line variables are set while invoking make to
build TF-A:

• MBEDTLS_DIR=<path of the directory containing mbed TLS sources>

• TRUSTED_BOARD_BOOT=1

• GENERATE_COT=1

By default, this will use the Chain of Trust described in the TBBR-client document. To select a different
one, use the COT build option.

If using a custom build of OpenSSL, set the OPENSSL_DIR variable accordingly so it points at the
OpenSSL installation path, as explained in Build Options. In addition, set the LD_LIBRARY_PATH
variable when running to point at the custom OpenSSL path, so the OpenSSL libraries are loaded from
that path instead of the default OS path. Export this variable if necessary.

In the case of Arm platforms, the location of the ROTPK must also be specified at build time. The
following locations are currently supported (see ARM_ROTPK_LOCATION build option):

• ARM_ROTPK_LOCATION=regs: the ROTPK hash is obtained from the Trusted root-key stor-
age registers present in the platform. On Juno, these registers are read-only. On FVP Base and
Cortex models, the registers are also read-only, but the value can be specified using the command
line option bp.trusted_key_storage.public_keywhen launching the model. On Juno
board, the default value corresponds to an ECDSA-SECP256R1 public key hash, whose private
part is not currently available.

• ARM_ROTPK_LOCATION=devel_rsa: use the default hash located in plat/arm/board/
common/rotpk/arm_rotpk_rsa_sha256.bin. Enforce generation of the new hash if
ROT_KEY is specified.

• ARM_ROTPK_LOCATION=devel_ecdsa: use the default hash located in plat/arm/
board/common/rotpk/arm_rotpk_ecdsa_sha256.bin. Enforce generation of the
new hash if ROT_KEY is specified.

• ARM_ROTPK_LOCATION=devel_full_dev_rsa_key: use the key located in plat/
arm/board/common/rotpk/arm_full_dev_rsa_rotpk.S.

Example of command line using RSA development keys:

MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> OPENSSL_DIR=<path-to>/<openssl> \
all fip

The result of this build will be the bl1.bin and the fip.bin binaries. This FIP will include the certificates
corresponding to the selected Chain of Trust. These certificates can also be found in the output build
directory.

3. The optional FWU_FIP contains any additional images to be loaded from Non-Volatile storage during
the Firmware Update (FWU) process. To build the FWU_FIP, any FWU images required by the platform
must be specified on the command line. On Arm development platforms like Juno, these are:

5.9. Building FIP images with support for Trusted Board Boot 435

Trusted Firmware-A, Release 2.10.4

• NS_BL2U. The AP non-secure Firmware Updater image.

• SCP_BL2U. The SCP Firmware Update Configuration image.

Example of Juno command line for generating both fwu and fwu_fip targets using RSA development:

MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> OPENSSL_DIR=<path-to>/<openssl> \
SCP_BL2=<path-to>/<scp_bl2_image> \
SCP_BL2U=<path-to>/<scp_bl2u_image> \
NS_BL2U=<path-to>/<ns_bl2u_image> \
all fip fwu_fip

Note: The BL2U image will be built by default and added to the FWU_FIP. The user may override
this by adding BL2U=<path-to>/<bl2u_image> to the command line above.

Note: Building and installing the non-secure and SCP FWU images (NS_BL1U, NS_BL2U and
SCP_BL2U) is outside the scope of this document.

The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries. Both the FIP and FWU_FIP
will include the certificates corresponding to the selected Chain of Trust. These certificates can also be
found in the output build directory.

Copyright (c) 2019-2022, Arm Limited. All rights reserved.

Copyright (c) 2019, Arm Limited. All rights reserved.

436 Chapter 5. System Design

CHAPTER

SIX

PORTING GUIDE

6.1 Introduction

Porting Trusted Firmware-A (TF-A) to a new platform involves making some mandatory and optional modi-
fications for both the cold and warm boot paths. Modifications consist of:

• Implementing a platform-specific function or variable,

• Setting up the execution context in a certain way, or

• Defining certain constants (for example #defines).

The platform-specific functions and variables are declared in include/plat/common/platform.h.
The firmware provides a default implementation of variables and functions to fulfill the optional requirements
in order to ease the porting effort. Each platform port can use them as is or provide their own implementation
if the default implementation is inadequate.

Note: TF-A historically provided default implementations of platform interfaces as weak func-
tions. This practice is now discouraged and new platform interfaces as they get introduced in the
code base should be strongly defined. We intend to convert existing weak functions over time.
Until then, you will find references to weak functions in this document.

Please review the Threat Model documents as part of the porting effort. Some platform interfaces play a key
role in mitigating against some of the threats. Failing to fulfill these expectations could undermine the security
guarantees offered by TF-A. These platform responsibilities are highlighted in the threat assessment section,
under the “Mitigations implemented?” box for each threat.

Some modifications are common to all Boot Loader (BL) stages. Section 2 discusses these in detail. The
subsequent sections discuss the remaining modifications for each BL stage in detail.

Please refer to the Platform Ports Policy for the policy regarding compatibility and deprecation of these porting
interfaces.

Only Arm development platforms (such as FVP and Juno) may use the functions/definitions in include/
plat/arm/common/ and the corresponding source files in plat/arm/common/. This is done so that
there are no dependencies between platforms maintained by different people/companies. If you want to use any
of the functionality present in plat/arm files, please propose a patch that moves the code to plat/common
so that it can be discussed.

437

Trusted Firmware-A, Release 2.10.4

6.2 Common modifications

This section covers the modifications that should be made by the platform for each BL stage to correctly port
the firmware stack. They are categorized as either mandatory or optional.

6.3 Common mandatory modifications

A platform port must enable the Memory Management Unit (MMU) as well as the instruction and data caches
for each BL stage. Setting up the translation tables is the responsibility of the platform port because memory
maps differ across platforms. A memory translation library (see lib/xlat_tables_v2/) is provided to
help in this setup.

Note that although this library supports non-identity mappings, this is intended only for re-mapping peripheral
physical addresses and allows platforms with high I/O addresses to reduce their virtual address space. All other
addresses corresponding to code and data must currently use an identity mapping.

Also, the only translation granule size supported in TF-A is 4KB, as various parts of the code assume that is
the case. It is not possible to switch to 16 KB or 64 KB granule sizes at the moment.

In Arm standard platforms, each BL stage configures the MMU in the platform-specific architecture setup
function, blX_plat_arch_setup(), and uses an identity mapping for all addresses.

If the build option USE_COHERENT_MEM is enabled, each platform can allocate a block of identity mapped
secure memory with Device-nGnRE attributes aligned to page boundary (4K) for each BL stage. All sections
which allocate coherent memory are grouped under .coherent_ram. For ex: Bakery locks are placed in
a section identified by name .bakery_lock inside .coherent_ram so that its possible for the firmware
to place variables in it using the following C code directive:

__section(".bakery_lock")

Or alternatively the following assembler code directive:

.section .bakery_lock

The .coherent_ram section is a sum of all sections like .bakery_lock which are used to allocate any
data structures that are accessed both when a CPU is executing with its MMU and caches enabled, and when
it’s running with its MMU and caches disabled. Examples are given below.

The following variables, functions and constants must be defined by the platform for the firmware to work
correctly.

438 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.3.1 File : platform_def.h [mandatory]

Each platform must ensure that a header file of this name is in the system include path with the following
constants defined. This will require updating the list of PLAT_INCLUDES in the platform.mk file.

Platform ports may optionally use the file include/plat/common/common_def.h, which provides
typical values for some of the constants below. These values are likely to be suitable for all platform ports.

• #define : PLATFORM_LINKER_FORMAT

Defines the linker format used by the platform, for example elf64-littleaarch64.

• #define : PLATFORM_LINKER_ARCH

Defines the processor architecture for the linker by the platform, for example aarch64.

• #define : PLATFORM_STACK_SIZE

Defines the normal stack memory available to each CPU. This constant is used by
plat/common/aarch64/platform_mp_stack.S and plat/common/aarch64/
platform_up_stack.S.

• #define : CACHE_WRITEBACK_GRANULE

Defines the size in bytes of the largest cache line across all the cache levels in the platform.

• #define : FIRMWARE_WELCOME_STR

Defines the character string printed by BL1 upon entry into the bl1_main() function.

• #define : PLATFORM_CORE_COUNT

Defines the total number of CPUs implemented by the platform across all clusters in the system.

• #define : PLAT_NUM_PWR_DOMAINS

Defines the total number of nodes in the power domain topology tree at all the power domain levels used
by the platform. This macro is used by the PSCI implementation to allocate data structures to represent
power domain topology.

• #define : PLAT_MAX_PWR_LVL

Defines the maximum power domain level that the power management operations should apply to. More
often, but not always, the power domain level corresponds to affinity level. This macro allows the PSCI
implementation to know the highest power domain level that it should consider for power management
operations in the system that the platform implements. For example, the Base AEM FVP implements
two clusters with a configurable number of CPUs and it reports the maximum power domain level as 1.

• #define : PLAT_MAX_OFF_STATE

Defines the local power state corresponding to the deepest power down possible at every power domain
level in the platform. The local power states for each level may be sparsely allocated between 0 and
this value with 0 being reserved for the RUN state. The PSCI implementation uses this value to ini-
tialize the local power states of the power domain nodes and to specify the requested power state for a
PSCI_CPU_OFF call.

• #define : PLAT_MAX_RET_STATE

6.3. Common mandatory modifications 439

Trusted Firmware-A, Release 2.10.4

Defines the local power state corresponding to the deepest retention state possible at every power domain
level in the platform. This macro should be a value less than PLAT_MAX_OFF_STATE and greater
than 0. It is used by the PSCI implementation to distinguish between retention and power down local
power states within PSCI_CPU_SUSPEND call.

• #define : PLAT_MAX_PWR_LVL_STATES

Defines the maximum number of local power states per power domain level that the platform supports.
The default value of this macro is 2 since most platforms just support a maximum of two local power
states at each power domain level (power-down and retention). If the platform needs to account for more
local power states, then it must redefine this macro.

Currently, this macro is used by the Generic PSCI implementation to size the array used for
PSCI_STAT_COUNT/RESIDENCY accounting.

• #define : BL1_RO_BASE

Defines the base address in secure ROM where BL1 originally lives. Must be aligned on a page-size
boundary.

• #define : BL1_RO_LIMIT

Defines the maximum address in secure ROM that BL1’s actual content (i.e. excluding any data section
allocated at runtime) can occupy.

• #define : BL1_RW_BASE

Defines the base address in secure RAM where BL1’s read-write data will live at runtime. Must be
aligned on a page-size boundary.

• #define : BL1_RW_LIMIT

Defines the maximum address in secure RAM that BL1’s read-write data can occupy at runtime.

• #define : BL2_BASE

Defines the base address in secure RAM where BL1 loads the BL2 binary image. Must be aligned on a
page-size boundary. This constant is not applicable when BL2_IN_XIP_MEM is set to ‘1’.

• #define : BL2_LIMIT

Defines the maximum address in secure RAM that the BL2 image can occupy. This constant is not
applicable when BL2_IN_XIP_MEM is set to ‘1’.

• #define : BL2_RO_BASE

Defines the base address in secure XIP memory where BL2 RO section originally lives. Must be aligned
on a page-size boundary. This constant is only needed when BL2_IN_XIP_MEM is set to ‘1’.

• #define : BL2_RO_LIMIT

Defines the maximum address in secure XIP memory that BL2’s actual content (i.e. excluding any data
section allocated at runtime) can occupy. This constant is only needed when BL2_IN_XIP_MEM is set
to ‘1’.

• #define : BL2_RW_BASE

440 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

Defines the base address in secure RAM where BL2’s read-write data will live at runtime. Must be
aligned on a page-size boundary. This constant is only needed when BL2_IN_XIP_MEM is set to ‘1’.

• #define : BL2_RW_LIMIT

Defines the maximum address in secure RAM that BL2’s read-write data can occupy at runtime. This
constant is only needed when BL2_IN_XIP_MEM is set to ‘1’.

• #define : BL31_BASE

Defines the base address in secure RAM where BL2 loads the BL31 binary image. Must be aligned on
a page-size boundary.

• #define : BL31_LIMIT

Defines the maximum address in secure RAM that the BL31 image can occupy.

• #define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE

Defines the maximum message size between AP and RSS. Need to define if platform supports RSS.

For every image, the platform must define individual identifiers that will be used by BL1 or BL2 to load the
corresponding image into memory from non-volatile storage. For the sake of performance, integer numbers
will be used as identifiers. The platform will use those identifiers to return the relevant information about the
image to be loaded (file handler, load address, authentication information, etc.). The following image identifiers
are mandatory:

• #define : BL2_IMAGE_ID

BL2 image identifier, used by BL1 to load BL2.

• #define : BL31_IMAGE_ID

BL31 image identifier, used by BL2 to load BL31.

• #define : BL33_IMAGE_ID

BL33 image identifier, used by BL2 to load BL33.

If Trusted Board Boot is enabled, the following certificate identifiers must also be defined:

• #define : TRUSTED_BOOT_FW_CERT_ID

BL2 content certificate identifier, used by BL1 to load the BL2 content certificate.

• #define : TRUSTED_KEY_CERT_ID

Trusted key certificate identifier, used by BL2 to load the trusted key certificate.

• #define : SOC_FW_KEY_CERT_ID

BL31 key certificate identifier, used by BL2 to load the BL31 key certificate.

• #define : SOC_FW_CONTENT_CERT_ID

BL31 content certificate identifier, used by BL2 to load the BL31 content certificate.

• #define : NON_TRUSTED_FW_KEY_CERT_ID

BL33 key certificate identifier, used by BL2 to load the BL33 key certificate.

6.3. Common mandatory modifications 441

Trusted Firmware-A, Release 2.10.4

• #define : NON_TRUSTED_FW_CONTENT_CERT_ID

BL33 content certificate identifier, used by BL2 to load the BL33 content certificate.

• #define : FWU_CERT_ID

Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the FWU content certificate.

If the AP Firmware Updater Configuration image, BL2U is used, the following must also be defined:

• #define : BL2U_BASE

Defines the base address in secure memory where BL1 copies the BL2U binary image. Must be aligned
on a page-size boundary.

• #define : BL2U_LIMIT

Defines the maximum address in secure memory that the BL2U image can occupy.

• #define : BL2U_IMAGE_ID

BL2U image identifier, used by BL1 to fetch an image descriptor corresponding to BL2U.

If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following must also be defined:

• #define : SCP_BL2U_IMAGE_ID

SCP_BL2U image identifier, used by BL1 to fetch an image descriptor corresponding to SCP_BL2U.

Note: TF-A does not provide source code for this image.

If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must also be defined:

• #define : NS_BL1U_BASE

Defines the base address in non-secure ROMwhere NS_BL1U executes. Must be aligned on a page-size
boundary.

Note: TF-A does not provide source code for this image.

• #define : NS_BL1U_IMAGE_ID

NS_BL1U image identifier, used by BL1 to fetch an image descriptor corresponding to NS_BL1U.

If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also be defined:

• #define : NS_BL2U_BASE

Defines the base address in non-secure memory where NS_BL2U executes. Must be aligned on a page-
size boundary.

Note: TF-A does not provide source code for this image.

442 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

• #define : NS_BL2U_IMAGE_ID

NS_BL2U image identifier, used by BL1 to fetch an image descriptor corresponding to NS_BL2U.

For the the Firmware update capability of TRUSTED BOARD BOOT, the following macros may also be
defined:

• #define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES

Total number of images that can be loaded simultaneously. If the platform doesn’t specify any value, it
defaults to 10.

If a SCP_BL2 image is supported by the platform, the following constants must also be defined:

• #define : SCP_BL2_IMAGE_ID

SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory from platform storage
before being transferred to the SCP.

• #define : SCP_FW_KEY_CERT_ID

SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key certificate (mandatory when
Trusted Board Boot is enabled).

• #define : SCP_FW_CONTENT_CERT_ID

SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2 content certificate (mandatory
when Trusted Board Boot is enabled).

If a BL32 image is supported by the platform, the following constants must also be defined:

• #define : BL32_IMAGE_ID

BL32 image identifier, used by BL2 to load BL32.

• #define : TRUSTED_OS_FW_KEY_CERT_ID

BL32 key certificate identifier, used by BL2 to load the BL32 key certificate (mandatory when Trusted
Board Boot is enabled).

• #define : TRUSTED_OS_FW_CONTENT_CERT_ID

BL32 content certificate identifier, used by BL2 to load the BL32 content certificate (mandatory when
Trusted Board Boot is enabled).

• #define : BL32_BASE

Defines the base address in secure memory where BL2 loads the BL32 binary image. Must be aligned
on a page-size boundary.

• #define : BL32_LIMIT

Defines the maximum address that the BL32 image can occupy.

If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the platform, the following con-
stants must also be defined:

• #define : TSP_SEC_MEM_BASE

6.3. Common mandatory modifications 443

Trusted Firmware-A, Release 2.10.4

Defines the base address of the secure memory used by the TSP image on the platform. This must be at
the same address or below BL32_BASE.

• #define : TSP_SEC_MEM_SIZE

Defines the size of the secure memory used by the BL32 image on the platform. TSP_SEC_MEM_BASE
and TSP_SEC_MEM_SIZEmust fully accommodate the memory required by the BL32 image, defined
by BL32_BASE and BL32_LIMIT.

• #define : TSP_IRQ_SEC_PHY_TIMER

Defines the ID of the secure physical generic timer interrupt used by the TSP’s interrupt handling code.

If the platform port uses the translation table library code, the following constants must also be defined:

• #define : PLAT_XLAT_TABLES_DYNAMIC

Optional flag that can be set per-image to enable the dynamic allocation of regions even when the MMU
is enabled. If not defined, only static functionality will be available, if defined and set to 1 it will also
include the dynamic functionality.

• #define : MAX_XLAT_TABLES

Defines the maximum number of translation tables that are allocated by the translation table library
code. To minimize the amount of runtime memory used, choose the smallest value needed to map the
required virtual addresses for each BL stage. If PLAT_XLAT_TABLES_DYNAMIC flag is enabled for
a BL image, MAX_XLAT_TABLES must be defined to accommodate the dynamic regions as well.

• #define : MAX_MMAP_REGIONS

Defines the maximum number of regions that are allocated by the translation table library code. A region
consists of physical base address, virtual base address, size and attributes (Device/Memory, RO/RW,
Secure/Non-Secure), as defined in the mmap_region_t structure. The platform defines the regions
that should be mapped. Then, the translation table library will create the corresponding tables and de-
scriptors at runtime. Tominimize the amount of runtimememory used, choose the smallest value needed
to register the required regions for each BL stage. If PLAT_XLAT_TABLES_DYNAMIC flag is enabled
for a BL image, MAX_MMAP_REGIONS must be defined to accommodate the dynamic regions as well.

• #define : PLAT_VIRT_ADDR_SPACE_SIZE

Defines the total size of the virtual address space in bytes. For example, for a 32 bit virtual address space,
this value should be (1ULL << 32).

• #define : PLAT_PHY_ADDR_SPACE_SIZE

Defines the total size of the physical address space in bytes. For example, for a 32 bit physical address
space, this value should be (1ULL << 32).

If the platform port uses the IO storage framework, the following constants must also be defined:

• #define : MAX_IO_DEVICES

Defines the maximum number of registered IO devices. Attempting to register more devices than this
value using io_register_device() will fail with -ENOMEM.

• #define : MAX_IO_HANDLES

444 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

Defines the maximum number of open IO handles. Attempting to open more IO entities than this value
using io_open() will fail with -ENOMEM.

• #define : MAX_IO_BLOCK_DEVICES

Defines the maximum number of registered IO block devices. Attempting to register more devices this
value using io_dev_open() will fail with -ENOMEM. MAX_IO_BLOCK_DEVICES should be
less than MAX_IO_DEVICES. With this macro, multiple block devices could be supported at the same
time.

If the platform needs to allocate data within the per-cpu data framework in BL31, it should define the following
macro. Currently this is only required if the platform decides not to use the coherent memory section by
undefining the USE_COHERENT_MEM build flag. In this case, the framework allocates the required memory
within the the per-cpu data to minimize wastage.

• #define : PLAT_PCPU_DATA_SIZE

Defines the memory (in bytes) to be reserved within the per-cpu data structure for use by the platform
layer.

The following constants are optional. They should be defined when the platform memory layout implies some
image overlaying like in Arm standard platforms.

• #define : BL31_PROGBITS_LIMIT

Defines the maximum address in secure RAM that the BL31’s progbits sections can occupy.

• #define : TSP_PROGBITS_LIMIT

Defines the maximum address that the TSP’s progbits sections can occupy.

If the platform supports OS-initiated mode, i.e. the build option PSCI_OS_INIT_MODE is enabled, and if
the platform’s maximum power domain level for PSCI_CPU_SUSPENDdiffers fromPLAT_MAX_PWR_LVL,
the following constant must be defined.

• #define : PLAT_MAX_CPU_SUSPEND_PWR_LVL

Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.

If the platform port uses the PL061 GPIO driver, the following constant may optionally be defined:

• PLAT_PL061_MAX_GPIOS Maximum number of GPIOs required by the platform. This allows
control how much memory is allocated for PL061 GPIO controllers. The default value is

1. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))

If the platform port uses the partition driver, the following constant may optionally be defined:

• PLAT_PARTITION_MAX_ENTRIES Maximum number of partition entries required by the plat-
form. This allows control how much memory is allocated for partition entries. The default value is 128.
For example, define the build flag in platform.mk: PLAT_PARTITION_MAX_ENTRIES := 12
$(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))

• PLAT_PARTITION_BLOCK_SIZE The size of partition block. It could be ei-
ther 512 bytes or 4096 bytes. The default value is 512. For example, define the
build flag in platform.mk: PLAT_PARTITION_BLOCK_SIZE := 4096 $(eval $(call
add_define,PLAT_PARTITION_BLOCK_SIZE))

6.3. Common mandatory modifications 445

Trusted Firmware-A, Release 2.10.4

If the platform port uses the Arm® Ethos™-N NPU driver, the following configuration must be performed:

• The NPU SiP service handler must be hooked up. This consists of both the initial setup
(ethosn_smc_setup) and the handler itself (ethosn_smc_handler)

If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support enabled, the following con-
stants and configuration must also be defined:

• ETHOSN_NPU_PROT_FW_NSAID

Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to access the protected memory
that contains the NPU’s firmware.

• ETHOSN_NPU_PROT_DATA_RW_NSAID

Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for read/write access to the
protected memory that contains inference data.

• ETHOSN_NPU_PROT_DATA_RO_NSAID

Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for read-only access to the
protected memory that contains inference data.

• ETHOSN_NPU_NS_RW_DATA_NSAID

Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for read/write access to the
non-protected memory.

• ETHOSN_NPU_NS_RO_DATA_NSAID

Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for read-only access to the
non-protected memory.

• ETHOSN_NPU_FW_IMAGE_BASE and ETHOSN_NPU_FW_IMAGE_LIMIT

Defines the physical address range that the NPU’s firmware will be loaded into and executed from.

• Configure the platforms TrustZone Controller (TZC) with appropriate regions of protected memory. At
minimum this must include a region for the NPU’s firmware code and a region for protected inference
data, and these must be accessible using the NSAIDs defined above.

• Include the NPU firmware and certificates in the FIP.

• Provide FCONF entries to configure the image source for the NPU firmware and certificates.

• Add MMU mappings such that:

• BL2 can write the NPU firmware into the region defined by ETHOSN_NPU_FW_IMAGE_BASE and
ETHOSN_NPU_FW_IMAGE_LIMIT

• BL31 (SiP service) can read the NPU firmware from the same region

• Add the firmware image ID ETHOSN_NPU_FW_IMAGE_ID to the list of images loaded by BL2.

Please see the reference implementation code for the Juno platform as an example.

The following constant is optional. It should be defined to override the default behaviour of the assert()
function (for example, to save memory).

446 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

• PLAT_LOG_LEVEL_ASSERT If PLAT_LOG_LEVEL_ASSERT is higher or equal than
LOG_LEVEL_VERBOSE, assert() prints the name of the file, the line number and the as-
serted expression. Else if it is higher than LOG_LEVEL_INFO, it prints the file name and the line
number. Else if it is lower than LOG_LEVEL_INFO, it doesn’t print anything to the console. If
PLAT_LOG_LEVEL_ASSERT isn’t defined, it defaults to LOG_LEVEL.

If the platform port uses the DRTM feature, the following constants must be defined:

• #define : PLAT_DRTM_EVENT_LOG_MAX_SIZE

Maximum Event Log size used by the platform. Platform can decide the maximum size of the Event
Log buffer, depending upon the highest hash algorithm chosen and the number of components selected
to measure during the DRTM execution flow.

• #define : PLAT_DRTM_MMAP_ENTRIES

Number of the MMAP entries used by the DRTM implementation to calculate the size of address map
region of the platform.

6.3.2 File : plat_macros.S [mandatory]

Each platform must ensure a file of this name is in the system include path with the following macro defined.
In the Arm development platforms, this file is found in plat/arm/board/<plat_name>/include/
plat_macros.S.

• Macro : plat_crash_print_regs

This macro allows the crash reporting routine to print relevant platform registers in case of an unhandled
exception in BL31. This aids in debugging and this macro can be defined to be empty in case register
reporting is not desired.

For instance, GIC or interconnect registers may be helpful for troubleshooting.

6.4 Handling Reset

BL1 by default implements the reset vector where execution starts from a cold or warm boot. BL31 can be
optionally set as a reset vector using the RESET_TO_BL31 make variable.

For each CPU, the reset vector code is responsible for the following tasks:

1. Distinguishing between a cold boot and a warm boot.

2. In the case of a cold boot and the CPU being a secondary CPU, ensuring that the CPU is placed in a
platform-specific state until the primary CPU performs the necessary steps to remove it from this state.

3. In the case of a warm boot, ensuring that the CPU jumps to a platform- specific address in the BL31
image in the same processor mode as it was when released from reset.

The following functions need to be implemented by the platform port to enable reset vector code to perform
the above tasks.

6.4. Handling Reset 447

Trusted Firmware-A, Release 2.10.4

6.4.1 Function : plat_get_my_entrypoint() [mandatory when PRO-
GRAMMABLE_RESET_ADDRESS == 0]

Argument : void
Return : uintptr_t

This function is called with the MMU and caches disabled (SCTLR_EL3.M = 0 and SCTLR_EL3.C =
0). The function is responsible for distinguishing between a warm and cold reset for the current CPU us-
ing platform-specific means. If it’s a warm reset, then it returns the warm reset entrypoint point provided to
plat_setup_psci_ops() during BL31 initialization. If it’s a cold reset then this function must return
zero.

This function does not follow the Procedure Call Standard used by the Application Binary Interface for the
Arm 64-bit architecture. The caller should not assume that callee saved registers are preserved across a call to
this function.

This function fulfills requirement 1 and 3 listed above.

Note that for platforms that support programming the reset address, it is expected that a CPUwill start executing
code directly at the right address, both on a cold and warm reset. In this case, there is no need to identify the
type of reset nor to query the warm reset entrypoint. Therefore, implementing this function is not required on
such platforms.

6.4.2 Function : plat_secondary_cold_boot_setup() [mandatory when
COLD_BOOT_SINGLE_CPU == 0]

Argument : void

This function is called with the MMU and data caches disabled. It is responsible for placing the executing
secondary CPU in a platform-specific state until the primary CPU performs the necessary actions to bring it
out of that state and allow entry into the OS. This function must not return.

In the Arm FVP port, when using the normal boot flow, each secondary CPU powers itself off. The primary
CPU is responsible for powering up the secondary CPUs when normal world software requires them. When
booting an EL3 payload instead, they stay powered on and are put in a holding pen until their mailbox gets
populated.

This function fulfills requirement 2 above.

Note that for platforms that can’t release secondary CPUs out of reset, only the primary CPU will execute the
cold boot code. Therefore, implementing this function is not required on such platforms.

448 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.4.3 Function : plat_is_my_cpu_primary() [mandatory when
COLD_BOOT_SINGLE_CPU == 0]

Argument : void
Return : unsigned int

This function identifies whether the current CPU is the primary CPU or a secondary CPU. A return value of
zero indicates that the CPU is not the primary CPU, while a non-zero return value indicates that the CPU is
the primary CPU.

Note that for platforms that can’t release secondary CPUs out of reset, only the primary CPU will execute
the cold boot code. Therefore, there is no need to distinguish between primary and secondary CPUs and
implementing this function is not required.

6.4.4 Function : platform_mem_init() [mandatory]

Argument : void
Return : void

This function is called before any access to data is made by the firmware, in order to carry out any essential
memory initialization.

6.4.5 Function: plat_get_rotpk_info()

Argument : void *, void **, unsigned int *, unsigned int *
Return : int

This function is mandatory when Trusted Board Boot is enabled. It returns a pointer to the ROTPK stored in
the platform (or a hash of it) and its length. The ROTPK must be encoded in DER format according to the
following ASN.1 structure:

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL

}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING

}

In case the function returns a hash of the key:

DigestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier,
digest OCTET STRING

}

6.4. Handling Reset 449

Trusted Firmware-A, Release 2.10.4

The function returns 0 on success. Any other value is treated as error by the Trusted Board Boot. The function
also reports extra information related to the ROTPK in the flags parameter:

ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
hash.

ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
verification while the platform ROTPK is not deployed.
When this flag is set, the function does not need to
return a platform ROTPK, and the authentication
framework uses the ROTPK in the certificate without
verifying it against the platform value. This flag
must not be used in a deployed production environment.

6.4.6 Function: plat_get_nv_ctr()

Argument : void *, unsigned int *
Return : int

This function is mandatory when Trusted Board Boot is enabled. It returns the non-volatile counter value
stored in the platform in the second argument. The cookie in the first argument may be used to select
the counter in case the platform provides more than one (for example, on platforms that use the default
TBBR CoT, the cookie will correspond to the OID values defined in TRUSTED_FW_NVCOUNTER_OID
or NON_TRUSTED_FW_NVCOUNTER_OID).

The function returns 0 on success. Any other value means the counter value could not be retrieved from the
platform.

6.4.7 Function: plat_set_nv_ctr()

Argument : void *, unsigned int
Return : int

This function is mandatory when Trusted Board Boot is enabled. It sets a new counter value in the platform.
The cookie in the first argument may be used to select the counter (as explained in plat_get_nv_ctr()). The
second argument is the updated counter value to be written to the NV counter.

The function returns 0 on success. Any other value means the counter value could not be updated.

6.4.8 Function: plat_set_nv_ctr2()

Argument : void *, const auth_img_desc_t *, unsigned int
Return : int

This function is optional when Trusted Board Boot is enabled. If this interface is defined, then
plat_set_nv_ctr() need not be defined. The first argument passed is a cookie and is typically used
to differentiate between a Non Trusted NV Counter and a Trusted NV Counter. The second argument is a

450 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

pointer to an authentication image descriptor and may be used to decide if the counter is allowed to be updated
or not. The third argument is the updated counter value to be written to the NV counter.

The function returns 0 on success. Any other value means the counter value either could not be updated or the
authentication image descriptor indicates that it is not allowed to be updated.

6.5 Dynamic Root of Trust for Measurement support (in BL31)

The functions mentioned in this section are mandatory, when platform enables DRTM_SUPPORT build flag.

6.5.1 Function : plat_get_addr_mmap()

Argument : void
Return : const mmap_region_t *

This function is used to return the address of the platform address-map table, which describes the regions of
normal memory, memory mapped I/O and non-volatile memory.

6.5.2 Function : plat_has_non_host_platforms()

Argument : void
Return : bool

This function returns true if the platform has any trusted devices capable of DMA, otherwise returns false.

6.5.3 Function : plat_has_unmanaged_dma_peripherals()

Argument : void
Return : bool

This function returns true if platform uses peripherals whose DMA is not managed by an SMMU, otherwise
returns false.

Note - If the platform has peripherals that are not managed by the SMMU, then the platform should investigate
such peripherals to determine whether they can be trusted, and such peripherals should be moved under “Non-
host platforms” if they can be trusted.

6.5. Dynamic Root of Trust for Measurement support (in BL31) 451

Trusted Firmware-A, Release 2.10.4

6.5.4 Function : plat_get_total_num_smmus()

Argument : void
Return : unsigned int

This function returns the total number of SMMUs in the platform.

6.5.5 Function : plat_enumerate_smmus()

Argument : void
Return : const uintptr_t *, size_t

This function returns an array of SMMU addresses and the actual number of SMMUs reported by the platform.

6.5.6 Function : plat_drtm_get_dma_prot_features()

Argument : void
Return : const plat_drtm_dma_prot_features_t*

This function returns the address of plat_drtm_dma_prot_features_t structure containing themaximum number
of protected regions and bitmap with the types of DMA protection supported by the platform. For more details
see section 3.3 Table 6 of DRTM specification.

6.5.7 Function : plat_drtm_dma_prot_get_max_table_bytes()

Argument : void
Return : uint64_t

This function returns the maximum size of DMA protected regions table in bytes.

6.5.8 Function : plat_drtm_get_tpm_features()

Argument : void
Return : const plat_drtm_tpm_features_t*

This function returns the address of plat_drtm_tpm_features_t structure containing PCR usage schema, TPM-
based hash, and firmware hash algorithm supported by the platform.

452 Chapter 6. Porting Guide

https://developer.arm.com/documentation/den0113/a

Trusted Firmware-A, Release 2.10.4

6.5.9 Function : plat_drtm_get_min_size_normal_world_dce()

Argument : void
Return : uint64_t

This function returns the size normal-world DCE of the platform.

6.5.10 Function : plat_drtm_get_imp_def_dlme_region_size()

Argument : void
Return : uint64_t

This function returns the size of implementation defined DLME region of the platform.

6.5.11 Function : plat_drtm_get_tcb_hash_table_size()

Argument : void
Return : uint64_t

This function returns the size of TCB hash table of the platform.

6.5.12 Function : plat_drtm_get_tcb_hash_features()

Argument : void
Return : uint64_t

This function returns the Maximum number of TCB hashes recorded by the platform. For more details see
section 3.3 Table 6 of DRTM specification.

6.5.13 Function : plat_drtm_validate_ns_region()

Argument : uintptr_t, uintptr_t
Return : int

This function validates that given region is within the Non-Secure region of DRAM. This function takes a
region start address and size an input arguments, and returns 0 on success and -1 on failure.

6.5. Dynamic Root of Trust for Measurement support (in BL31) 453

https://developer.arm.com/documentation/den0113/a

Trusted Firmware-A, Release 2.10.4

6.5.14 Function : plat_set_drtm_error()

Argument : uint64_t
Return : int

This function writes a 64 bit error code received as input into non-volatile storage and returns 0 on success and
-1 on failure.

6.5.15 Function : plat_get_drtm_error()

Argument : uint64_t*
Return : int

This function reads a 64 bit error code from the non-volatile storage into the received address, and returns 0 on
success and -1 on failure.

6.6 Common mandatory function modifications

The following functions are mandatory functions which need to be implemented by the platform port.

6.6.1 Function : plat_my_core_pos()

Argument : void
Return : unsigned int

This function returns the index of the calling CPU which is used as a CPU-specific linear index into blocks
of memory (for example while allocating per-CPU stacks). This function will be invoked very early in the
initialization sequence which mandates that this function should be implemented in assembly and should not
rely on the availability of a C runtime environment. This function can clobber x0 - x8 and must preserve x9 -
x29.

This function plays a crucial role in the power domain topology framework in PSCI and details of this can be
found in PSCI Power Domain Tree Structure.

6.6.2 Function : plat_core_pos_by_mpidr()

Argument : u_register_t
Return : int

This function validates the MPIDR of a CPU and converts it to an index, which can be used as a CPU-specific
linear index into blocks of memory. In case the MPIDR is invalid, this function returns -1. This function
will only be invoked by BL31 after the power domain topology is initialized and can utilize the C runtime
environment. For further details about how TF-A represents the power domain topology and how this relates
to the linear CPU index, please refer PSCI Power Domain Tree Structure.

454 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.6.3 Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]

Arguments : void **heap_addr, size_t *heap_size
Return : int

This function is invoked during Mbed TLS library initialisation to get a heap, by means of a starting address
and a size. This heap will then be used internally by the Mbed TLS library. Hence, each BL stage that utilises
Mbed TLS must be able to provide a heap to it.

A helper function can be found in drivers/auth/mbedtls/mbedtls_common.c in which a heap is statically reserved
during compile time inside every image (i.e. every BL stage) that utilises Mbed TLS. In this default imple-
mentation, the function simply returns the address and size of this “pre-allocated” heap. For a platform to use
this default implementation, only a call to the helper from inside plat_get_mbedtls_heap() body is enough and
nothing else is needed.

However, by writting their own implementation, platforms have the potential to optimise memory usage. For
example, on some Arm platforms, the Mbed TLS heap is shared between BL1 and BL2 stages and, thus, the
necessary space is not reserved twice.

On success the function should return 0 and a negative error code otherwise.

6.6.4 Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]

Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
size_t *key_len, unsigned int *flags, const uint8_t *img_id,
size_t img_id_len

Return : int

This function provides a symmetric key (either SSK or BSSK depending on fw_enc_status) which is invoked
during runtime decryption of encrypted firmware images. plat/common/plat_bl_common.c provides a dummy
weak implementation for testing purposes which must be overridden by the platform trying to implement a real
world firmware encryption use-case.

It also allows the platform to pass symmetric key identifier rather than actual symmetric key which is use-
ful in cases where the crypto backend provides secure storage for the symmetric key. So in this case
ENC_KEY_IS_IDENTIFIER flag must be set in flags.

In addition to above a platform may also choose to provide an image specific symmetric key/identifier using
img_id.

On success the function should return 0 and a negative error code otherwise.

Note that this API depends on DECRYPTION_SUPPORT build flag.

6.6. Common mandatory function modifications 455

Trusted Firmware-A, Release 2.10.4

6.6.5 Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]

Argument : const struct fwu_metadata *metadata
Return : void

This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides a means to retrieve image
specification (offset in non-volatile storage and length) of active/updated images using the passed FWU meta-
data, and update I/O policies of active/updated images using retrieved image specification information. Further
I/O layer operations such as I/O open, I/O read, etc. on these images rely on this function call.

In Arm platforms, this function is used to set an I/O policy of the FIP image, container of all active/updated
secure and non-secure images.

6.6.6 Function : plat_fwu_set_metadata_image_source() [when
PSA_FWU_SUPPORT == 1]

Argument : unsigned int image_id, uintptr_t *dev_handle,
uintptr_t *image_spec

Return : int

This function is mandatory when PSA_FWU_SUPPORT is enabled. It is responsible for setting up
the platform I/O policy of the requested metadata image (either FWU_METADATA_IMAGE_ID or
BKUP_FWU_METADATA_IMAGE_ID) that will be used to load this image from the platform’s non-volatile
storage.

FWU metadata can not be always stored as a raw image in non-volatile storage to define its image specification
(offset in non-volatile storage and length) statically in I/O policy. For example, the FWU metadata image is
stored as a partition inside the GUID partition table image. Its specification is defined in the partition table that
needs to be parsed dynamically. This function provides a means to retrieve such dynamic information to set
the I/O policy of the FWU metadata image. Further I/O layer operations such as I/O open, I/O read, etc. on
FWU metadata image relies on this function call.

It returns ‘0’ on success, otherwise a negative error value on error. Alongside, returns device handle and image
specification from the I/O policy of the requested FWU metadata image.

6.6.7 Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]

Argument : void
Return : uint32_t

This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the means to retrieve the boot
index value from the platform. The boot index is the bank from which the platform has booted the firmware
images.

By default, the platform will read the metadata structure and try to boot from the active bank. If the platform
fails to boot from the active bank due to reasons like an Authentication failure, or on crossing a set number
of watchdog resets while booting from the active bank, the platform can then switch to boot from a different
bank. This function then returns the bank that the platform should boot its images from.

456 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.7 Common optional modifications

The following are helper functions implemented by the firmware that perform common platform-specific tasks.
A platform may choose to override these definitions.

6.7.1 Function : plat_set_my_stack()

Argument : void
Return : void

This function sets the current stack pointer to the normal memory stack that has been allocated for the cur-
rent CPU. For BL images that only require a stack for the primary CPU, the UP version of the function
is used. The size of the stack allocated to each CPU is specified by the platform defined constant PLAT-
FORM_STACK_SIZE.

Common implementations of this function for the UP and MP BL images are provided in plat/common/
aarch64/platform_up_stack.S and plat/common/aarch64/platform_mp_stack.S

6.7.2 Function : plat_get_my_stack()

Argument : void
Return : uintptr_t

This function returns the base address of the normal memory stack that has been allocated for the current CPU.
For BL images that only require a stack for the primary CPU, the UP version of the function is used. The size
of the stack allocated to each CPU is specified by the platform defined constant PLATFORM_STACK_SIZE.

Common implementations of this function for the UP and MP BL images are provided in plat/common/
aarch64/platform_up_stack.S and plat/common/aarch64/platform_mp_stack.S

6.7.3 Function : plat_report_exception()

Argument : unsigned int
Return : void

A platform may need to report various information about its status when an exception is taken, for example
the current exception level, the CPU security state (secure/non-secure), the exception type, and so on. This
function is called in the following circumstances:

• In BL1, whenever an exception is taken.

• In BL2, whenever an exception is taken.

The default implementation doesn’t do anything, to avoid making assumptions about the way the platform
displays its status information.

6.7. Common optional modifications 457

Trusted Firmware-A, Release 2.10.4

For AArch64, this function receives the exception type as its argument. Possible values for exceptions types
are listed in the include/common/bl_common.h header file. Note that these constants are not related
to any architectural exception code; they are just a TF-A convention.

For AArch32, this function receives the exception mode as its argument. Possible values for exception modes
are listed in the include/lib/aarch32/arch.h header file.

6.7.4 Function : plat_reset_handler()

Argument : void
Return : void

A platform may need to do additional initialization after reset. This function allows the platform to do the
platform specific initializations. Platform specific errata workarounds could also be implemented here. The
API should preserve the values of callee saved registers x19 to x29.

The default implementation doesn’t do anything. If a platform needs to override the default implementation,
refer to the Firmware Design for general guidelines.

6.7.5 Function : plat_disable_acp()

Argument : void
Return : void

This API allows a platform to disable the Accelerator Coherency Port (if present) during a cluster power down
sequence. The default weak implementation doesn’t do anything. Since this API is called during the power
down sequence, it has restrictions for stack usage and it can use the registers x0 - x17 as scratch registers. It
should preserve the value in x18 register as it is used by the caller to store the return address.

6.7.6 Function : plat_error_handler()

Argument : int
Return : void

This API is called when the generic code encounters an error situation from which it cannot continue. It allows
the platform to perform error reporting or recovery actions (for example, reset the system). This function must
not return.

The parameter indicates the type of error using standard codes from errno.h. Possible errors reported by
the generic code are:

• -EAUTH: a certificate or image could not be authenticated (when Trusted Board Boot is enabled)

• -ENOENT: the requested image or certificate could not be found or an IO error was detected

• -ENOMEM: resources exhausted. TF-A does not use dynamic memory, so this error is usually an indi-
cation of an incorrect array size

The default implementation simply spins.

458 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.7.7 Function : plat_panic_handler()

Argument : void
Return : void

This API is called when the generic code encounters an unexpected error situation fromwhich it cannot recover.
This function must not return, and must be implemented in assembly because it may be called before the C
environment is initialized.

Note: The address from where it was called is stored in x30 (Link Register). The default implementation
simply spins.

6.7.8 Function : plat_system_reset()

Argument : void
Return : void

This function is used by the platform to resets the system. It can be used in any specific use-case where system
needs to be resetted. For example, in case of DRTM implementation this function reset the system after writing
the DRTM error code in the non-volatile storage. This function never returns. Failure in reset results in panic.

6.7.9 Function : plat_get_bl_image_load_info()

Argument : void
Return : bl_load_info_t *

This function returns pointer to the list of images that the platform has populated to load. This function is
invoked in BL2 to load the BL3xx images.

6.7.10 Function : plat_get_next_bl_params()

Argument : void
Return : bl_params_t *

This function returns a pointer to the shared memory that the platform has kept aside to pass TF-A related
information that next BL image needs. This function is invoked in BL2 to pass this information to the next BL
image.

6.7. Common optional modifications 459

Trusted Firmware-A, Release 2.10.4

6.7.11 Function : plat_get_stack_protector_canary()

Argument : void
Return : u_register_t

This function returns a random value that is used to initialize the canary used when the stack protector is enabled
with ENABLE_STACK_PROTECTOR. A predictable value will weaken the protection as the attacker could
easily write the right value as part of the attack most of the time. Therefore, it should return a true random
number.

Warning: For the protection to be effective, the global data need to be placed at a lower address than the
stack bases. Failure to do so would allow an attacker to overwrite the canary as part of the stack buffer
overflow attack.

6.7.12 Function : plat_flush_next_bl_params()

Argument : void
Return : void

This function flushes to main memory all the image params that are passed to next image. This function is
invoked in BL2 to flush this information to the next BL image.

6.7.13 Function : plat_log_get_prefix()

Argument : unsigned int
Return : const char *

This function defines the prefix string corresponding to the log_level to be prepended to all the log output from
TF-A. The log_level (argument) will correspond to one of the standard log levels defined in debug.h. The
platform can override the common implementation to define a different prefix string for the log output. The
implementation should be robust to future changes that increase the number of log levels.

6.7.14 Function : plat_get_soc_version()

Argument : void
Return : int32_t

This function returns soc version which mainly consist of below fields

soc_version[30:24] = JEP-106 continuation code for the SiP
soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
soc_version[15:0] = Implementation defined SoC ID

460 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.7.15 Function : plat_get_soc_revision()

Argument : void
Return : int32_t

This function returns soc revision in below format

soc_revision[0:30] = SOC revision of specific SOC

6.7.16 Function : plat_is_smccc_feature_available()

Argument : u_register_t
Return : int32_t

This function returns SMC_ARCH_CALL_SUCCESS if the platform supports the SMCCC function specified
in the argument; otherwise returns SMC_ARCH_CALL_NOT_SUPPORTED.

6.7.17 Function : plat_can_cmo()

Argument : void
Return : uint64_t

When CONDITIONAL_CMO flag is enabled:

• This function indicates whether cachemanagement operations should be performed. It returns 0 if CMOs
should be skipped and non-zero otherwise.

• The function must not clobber x1, x2 and x3. It’s also not safe to rely on stack. Otherwise obey AAPCS.

6.8 Modifications specific to a Boot Loader stage

6.9 Boot Loader Stage 1 (BL1)

BL1 implements the reset vector where execution starts from after a cold or warm boot. For each CPU, BL1
is responsible for the following tasks:

1. Handling the reset as described in section 2.2

2. In the case of a cold boot and the CPU being the primary CPU, ensuring that only this CPU executes
the remaining BL1 code, including loading and passing control to the BL2 stage.

3. Identifying and starting the Firmware Update process (if required).

4. Loading the BL2 image from non-volatile storage into secure memory at the address specified by the
platform defined constant BL2_BASE.

6.8. Modifications specific to a Boot Loader stage 461

Trusted Firmware-A, Release 2.10.4

5. Populating a meminfo structure with the following information in memory, accessible by BL2 imme-
diately upon entry.

meminfo.total_base = Base address of secure RAM visible to BL2
meminfo.total_size = Size of secure RAM visible to BL2

By default, BL1 places this meminfo structure at the end of secure memory visible to BL2.

It is possible for the platform to decide where it wants to place the meminfo structure for BL2
or restrict the amount of memory visible to BL2 by overriding the weak default implementation of
bl1_plat_handle_post_image_load API.

The following functions need to be implemented by the platform port to enable BL1 to perform the above tasks.

6.9.1 Function : bl1_early_platform_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.

On Arm standard platforms, this function:

• Enables a secure instance of SP805 to act as the Trusted Watchdog.

• Initializes a UART (PL011 console), which enables access to the printf family of functions in BL1.

• Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to the CCI slave interface
corresponding to the cluster that includes the primary CPU.

6.9.2 Function : bl1_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function performs any platform-specific and architectural setup that the platform requires. Platform-
specific setup might include configuration of memory controllers and the interconnect.

In Arm standard platforms, this function enables the MMU.

This function helps fulfill requirement 2 above.

462 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.9.3 Function : bl1_platform_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches enabled. It is responsible for performing any remaining
platform-specific setup that can occur after the MMU and data cache have been enabled.

if support for multiple boot sources is required, it initializes the boot sequence used by
plat_try_next_boot_source().

In Arm standard platforms, this function initializes the storage abstraction layer used to load the next bootloader
image.

This function helps fulfill requirement 4 above.

6.9.4 Function : bl1_plat_sec_mem_layout() [mandatory]

Argument : void
Return : meminfo *

This function should only be called on the cold boot path. It executes with the MMU and data caches enabled.
The pointer returned by this function must point to a meminfo structure containing the extents and availability
of secure RAM for the BL1 stage.

meminfo.total_base = Base address of secure RAM visible to BL1
meminfo.total_size = Size of secure RAM visible to BL1

This information is used by BL1 to load the BL2 image in secure RAM. BL1 also populates a similar structure
to tell BL2 the extents of memory available for its own use.

This function helps fulfill requirements 4 and 5 above.

6.9.5 Function : bl1_plat_prepare_exit() [optional]

Argument : entry_point_info_t *
Return : void

This function is called prior to exiting BL1 in response to the BL1_SMC_RUN_IMAGE SMC request raised
by BL2. It should be used to perform platform specific clean up or bookkeeping operations before transferring
control to the next image. It receives the address of the entry_point_info_t structure passed from BL2.
This function runs with MMU disabled.

6.9. Boot Loader Stage 1 (BL1) 463

Trusted Firmware-A, Release 2.10.4

6.9.6 Function : bl1_plat_set_ep_info() [optional]

Argument : unsigned int image_id, entry_point_info_t *ep_info
Return : void

This function allows platforms to override ep_info for the given image_id.

The default implementation just returns.

6.9.7 Function : bl1_plat_get_next_image_id() [optional]

Argument : void
Return : unsigned int

This and the following function must be overridden to enable the FWU feature.

BL1 calls this function after platform setup to identify the next image to be loaded and executed. If the platform
returns BL2_IMAGE_ID then BL1 proceeds with the normal boot sequence, which loads and executes BL2.
If the platform returns a different image id, BL1 assumes that Firmware Update is required.

The default implementation always returns BL2_IMAGE_ID. The Arm development platforms override this
function to detect if firmware update is required, and if so, return the first image in the firmware update process.

6.9.8 Function : bl1_plat_get_image_desc() [optional]

Argument : unsigned int image_id
Return : image_desc_t *

BL1 calls this function to get the image descriptor information image_desc_t for the provided image_id
from the platform.

The default implementation always returns a common BL2 image descriptor. Arm standard platforms return
an image descriptor corresponding to BL2 or one of the firmware update images defined in the Trusted Board
Boot Requirements specification.

6.9.9 Function : bl1_plat_handle_pre_image_load() [optional]

Argument : unsigned int image_id
Return : int

This function can be used by the platforms to update/use image information corresponding to image_id.
This function is invoked in BL1, both in cold boot and FWU code path, before loading the image.

464 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.9.10 Function : bl1_plat_handle_post_image_load() [optional]

Argument : unsigned int image_id
Return : int

This function can be used by the platforms to update/use image information corresponding to image_id.
This function is invoked in BL1, both in cold boot and FWU code path, after loading and authenticating the
image.

The default weak implementation of this function calculates the amount of Trusted SRAM that can be used by
BL2 and allocates a meminfo_t structure at the beginning of this free memory and populates it. The address
of meminfo_t structure is updated in arg1 of the entrypoint information to BL2.

6.9.11 Function : bl1_plat_fwu_done() [optional]

Argument : unsigned int image_id, uintptr_t image_src,
unsigned int image_size

Return : void

BL1 calls this function when the FWU process is complete. It must not return. The platform may override this
function to take platform specific action, for example to initiate the normal boot flow.

The default implementation spins forever.

6.9.12 Function : bl1_plat_mem_check() [mandatory]

Argument : uintptr_t mem_base, unsigned int mem_size,
unsigned int flags

Return : int

BL1 calls this function while handling FWU related SMCs, more specifically when copying or authenticating
an image. Its responsibility is to ensure that the region of memory identified by mem_base and mem_size is
mapped in BL1, and that this memory corresponds to either a secure or non-secure memory region as indicated
by the security state of the flags argument.

This function can safely assume that the value resulting from the addition of mem_base and mem_size fits
into a uintptr_t type variable and does not overflow.

This function must return 0 on success, a non-null error code otherwise.

The default implementation of this function asserts therefore platforms must override it when using the FWU
feature.

6.9. Boot Loader Stage 1 (BL1) 465

Trusted Firmware-A, Release 2.10.4

6.10 Boot Loader Stage 2 (BL2)

The BL2 stage is executed only by the primary CPU, which is determined in BL1 using the plat-
form_is_primary_cpu() function. BL1 passed control to BL2 at BL2_BASE. BL2 executes in Se-
cure EL1 and and invokes plat_get_bl_image_load_info() to retrieve the list of images to load
from non-volatile storage to secure/non-secure RAM. After all the images are loaded then BL2 invokes
plat_get_next_bl_params() to get the list of executable images to be passed to the next BL image.

The following functions must be implemented by the platform port to enable BL2 to perform the above tasks.

6.10.1 Function : bl2_early_platform_setup2() [mandatory]

Argument : u_register_t, u_register_t, u_register_t, u_register_t
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. The 4
arguments are passed by BL1 to BL2 and these arguments are platform specific.

On Arm standard platforms, the arguments received are :

arg0 - Points to load address of FW_CONFIG

arg1 - meminfo structure populated by BL1. The platform copies the contents of meminfo as
it may be subsequently overwritten by BL2.

On Arm standard platforms, this function also:

• Initializes a UART (PL011 console), which enables access to the printf family of functions in BL2.

• Initializes the storage abstraction layer used to load further bootloader images. It is necessary to do this
early on platforms with a SCP_BL2 image, since the later bl2_platform_setupmust be done after
SCP_BL2 is loaded.

6.10.2 Function : bl2_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.

The purpose of this function is to perform any architectural initialization that varies across platforms.

On Arm standard platforms, this function enables the MMU.

466 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.10.3 Function : bl2_platform_setup() [mandatory]

Argument : void
Return : void

This function may execute with the MMU and data caches enabled if the platform port does the necessary
initialization in bl2_plat_arch_setup(). It is only called by the primary CPU.

The purpose of this function is to perform any platform initialization specific to BL2.

In Arm standard platforms, this function performs security setup, including configuration of the TrustZone
controller to allow non-secure masters access to most of DRAM. Part of DRAM is reserved for secure world
use.

6.10.4 Function : bl2_plat_handle_pre_image_load() [optional]

Argument : unsigned int
Return : int

This function can be used by the platforms to update/use image information for given image_id. This
function is currently invoked in BL2 before loading each image.

6.10.5 Function : bl2_plat_handle_post_image_load() [optional]

Argument : unsigned int
Return : int

This function can be used by the platforms to update/use image information for given image_id. This
function is currently invoked in BL2 after loading each image.

6.10.6 Function : bl2_plat_preload_setup [optional]

Argument : void
Return : void

This optional function performs any BL2 platform initialization required before image loading, that is not done
later in bl2_platform_setup(). Specifically, if support for multiple boot sources is required, it initializes the
boot sequence used by plat_try_next_boot_source().

6.10. Boot Loader Stage 2 (BL2) 467

Trusted Firmware-A, Release 2.10.4

6.10.7 Function : plat_try_next_boot_source() [optional]

Argument : void
Return : int

This optional function passes to the next boot source in the redundancy sequence.

This function moves the current boot redundancy source to the next element in the boot sequence. If there
are no more boot sources then it must return 0, otherwise it must return 1. The default implementation of this
always returns 0.

6.11 Boot Loader Stage 2 (BL2) at EL3

When the platform has a non-TF-A Boot ROM it is desirable to jump directly to BL2 instead of TF-A BL1.
In this case BL2 is expected to execute at EL3 instead of executing at EL1. Refer to the Firmware Design
document for more information.

All mandatory functions of BL2 must be implemented, except the functions bl2_early_platform_setup
and bl2_el3_plat_arch_setup, because their work is done now by bl2_el3_early_platform_setup and
bl2_el3_plat_arch_setup. These functions should generally implement the bl1_plat_xxx() and bl2_plat_xxx()
functionality combined.

6.11.1 Function : bl2_el3_early_platform_setup() [mandatory]

Argument : u_register_t, u_register_t, u_register_t, u_register_t
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. This
function receives four parameters which can be used by the platform to pass any needed information from the
Boot ROM to BL2.

On Arm standard platforms, this function does the following:

• Initializes a UART (PL011 console), which enables access to the printf family of functions in BL2.

• Initializes the storage abstraction layer used to load further bootloader images. It is necessary to do this
early on platforms with a SCP_BL2 image, since the later bl2_platform_setupmust be done after
SCP_BL2 is loaded.

• Initializes the private variables that define the memory layout used.

468 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.11.2 Function : bl2_el3_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.

The purpose of this function is to perform any architectural initialization that varies across platforms.

On Arm standard platforms, this function enables the MMU.

6.11.3 Function : bl2_el3_plat_prepare_exit() [optional]

Argument : void
Return : void

This function is called prior to exiting BL2 and run the next image. It should be used to perform platform
specific clean up or bookkeeping operations before transferring control to the next image. This function runs
with MMU disabled.

6.12 FWU Boot Loader Stage 2 (BL2U)

The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU process and is executed only
by the primary CPU. BL1 passes control to BL2U at BL2U_BASE. BL2U executes in Secure-EL1 and is
responsible for:

1. (Optional) Transferring the optional SCP_BL2U binary image from AP secure memory to SCP RAM.
BL2U uses the SCP_BL2U image_info passed by BL1. SCP_BL2U_BASE defines the address in
AP secure memory where SCP_BL2U should be copied from. Subsequent handling of the SCP_BL2U
image is implemented by the platform specific bl2u_plat_handle_scp_bl2u() function. If
SCP_BL2U_BASE is not defined then this step is not performed.

2. Any platform specific setup required to perform the FWUprocess. For example, Arm standard platforms
initialize the TZC controller so that the normal world can access DDR memory.

The following functions must be implemented by the platform port to enable BL2U to perform the tasks men-
tioned above.

6.12.1 Function : bl2u_early_platform_setup() [mandatory]

Argument : meminfo *mem_info, void *plat_info
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. The
arguments to this function is the address of the meminfo structure and platform specific info provided by
BL1.

6.12. FWU Boot Loader Stage 2 (BL2U) 469

Trusted Firmware-A, Release 2.10.4

The platform may copy the contents of the mem_info and plat_info into private storage as the original
memory may be subsequently overwritten by BL2U.

On Arm CSS platforms plat_info is interpreted as an image_info_t structure, to extract SCP_BL2U
image information, which is then copied into a private variable.

6.12.2 Function : bl2u_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.

The purpose of this function is to perform any architectural initialization that varies across platforms, for ex-
ample enabling the MMU (since the memory map differs across platforms).

6.12.3 Function : bl2u_platform_setup() [mandatory]

Argument : void
Return : void

This function may execute with the MMU and data caches enabled if the platform port does the necessary
initialization in bl2u_plat_arch_setup(). It is only called by the primary CPU.

The purpose of this function is to perform any platform initialization specific to BL2U.

In Arm standard platforms, this function performs security setup, including configuration of the TrustZone
controller to allow non-secure masters access to most of DRAM. Part of DRAM is reserved for secure world
use.

6.12.4 Function : bl2u_plat_handle_scp_bl2u() [optional]

Argument : void
Return : int

This function is used to perform any platform-specific actions required to handle the SCP firmware. Typically
it transfers the image into SCP memory using a platform-specific protocol and waits until SCP executes it and
signals to the Application Processor (AP) for BL2U execution to continue.

This function returns 0 on success, a negative error code otherwise. This function is included if
SCP_BL2U_BASE is defined.

470 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.13 Boot Loader Stage 3-1 (BL31)

During cold boot, the BL31 stage is executed only by the primary CPU. This is determined in BL1 using the
platform_is_primary_cpu() function. BL1 passes control to BL31 at BL31_BASE. During warm
boot, BL31 is executed by all CPUs. BL31 executes at EL3 and is responsible for:

1. Re-initializing all architectural and platform state. Although BL1 performs some of this initialization,
BL31 remains resident in EL3 and must ensure that EL3 architectural and platform state is completely
initialized. It should make no assumptions about the system state when it receives control.

2. Passing control to a normal world BL image, pre-loaded at a platform- specific address by BL2. On
ARM platforms, BL31 uses the bl_params list populated by BL2 in memory to do this.

3. Providing runtime firmware services. Currently, BL31 only implements a subset of the Power State
Coordination Interface (PSCI) API as a runtime service. See Power State Coordination Interface (in
BL31) below for details of porting the PSCI implementation.

4. Optionally passing control to the BL32 image, pre-loaded at a platform- specific address by BL2. BL31
exports a set of APIs that allow runtime services to specify the security state in which the next image
should be executed and run the corresponding image. On ARM platforms, BL31 uses the bl_params
list populated by BL2 in memory to do this.

If BL31 is a reset vector, It also needs to handle the reset as specified in section 2.2 before the tasks described
above.

The following functions must be implemented by the platform port to enable BL31 to perform the above tasks.

6.13.1 Function : bl31_early_platform_setup2() [mandatory]

Argument : u_register_t, u_register_t, u_register_t, u_register_t
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU. BL2 can
pass 4 arguments to BL31 and these arguments are platform specific.

In Arm standard platforms, the arguments received are :

arg0 - The pointer to the head of bl_params_t list which is list of executable images following
BL31,

arg1 - Points to load address of SOC_FW_CONFIG if present
except in case of Arm FVP and Juno platform.

In case of Arm FVP and Juno platform, points to load address of FW_CONFIG.

arg2 - Points to load address of HW_CONFIG if present

arg3 - A special value to verify platform parameters from BL2 to BL31. Not used in release builds.

The function runs through the bl_param_t list and extracts the entry point information for BL32 and BL33. It
also performs the following:

• Initialize a UART (PL011 console), which enables access to the printf family of functions in BL31.

6.13. Boot Loader Stage 3-1 (BL31) 471

Trusted Firmware-A, Release 2.10.4

• Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the CCI slave interface
corresponding to the cluster that includes the primary CPU.

6.13.2 Function : bl31_plat_arch_setup() [mandatory]

Argument : void
Return : void

This function executes with the MMU and data caches disabled. It is only called by the primary CPU.

The purpose of this function is to perform any architectural initialization that varies across platforms.

On Arm standard platforms, this function enables the MMU.

6.13.3 Function : bl31_platform_setup() [mandatory]

Argument : void
Return : void

This function may execute with the MMU and data caches enabled if the platform port does the necessary
initialization in bl31_plat_arch_setup(). It is only called by the primary CPU.

The purpose of this function is to complete platform initialization so that both BL31 runtime services and
normal world software can function correctly.

On Arm standard platforms, this function does the following:

• Initialize the generic interrupt controller.

Depending on the GIC driver selected by the platform, the appropriate GICv2 or GICv3 initialization
will be done, which mainly consists of:

– Enable secure interrupts in the GIC CPU interface.

– Disable the legacy interrupt bypass mechanism.

– Configure the priority mask register to allow interrupts of all priorities to be signaled to the CPU
interface.

– Mark SGIs 8-15 and the other secure interrupts on the platform as secure.

– Target all secure SPIs to CPU0.

– Enable these secure interrupts in the GIC distributor.

– Configure all other interrupts as non-secure.

– Enable signaling of secure interrupts in the GIC distributor.

• Enable system-level implementation of the generic timer counter through the memory mapped interface.

• Grant access to the system counter timer module

472 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

• Initialize the power controller device.

In particular, initialise the locks that prevent concurrent accesses to the power controller device.

6.13.4 Function : bl31_plat_runtime_setup() [optional]

Argument : void
Return : void

The purpose of this function is allow the platform to perform any BL31 runtime setup just prior to
BL31 exit during cold boot. The default weak implementation of this function will invoke con-
sole_switch_state() to switch console output to consoles marked for use in the runtime state.

6.13.5 Function : bl31_plat_get_next_image_ep_info() [mandatory]

Argument : uint32_t
Return : entry_point_info *

This function may execute with the MMU and data caches enabled if the platform port does the necessary
initializations in bl31_plat_arch_setup().

This function is called by bl31_main() to retrieve information provided by BL2 for the next image in the
security state specified by the argument. BL31 uses this information to pass control to that image in the specified
security state. This function must return a pointer to the entry_point_info structure (that was copied
during bl31_early_platform_setup()) if the image exists. It should return NULL otherwise.

6.13.6 Function : plat_rmmd_get_cca_attest_token() [mandatory when EN-
ABLE_RME == 1]

Argument : uintptr_t, size_t *, uintptr_t, size_t
Return : int

This function returns the Platform attestation token.

The parameters of the function are:

arg0 - A pointer to the buffer where the Platform token should be copied by
this function. The buffer must be big enough to hold the Platform token.

arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
function returns the platform token length in this parameter.

arg2 - A pointer to the buffer where the challenge object is stored.

arg3 - The length of the challenge object in bytes. Possible values are 32,
48 and 64.

The function returns 0 on success, -EINVAL on failure.

6.13. Boot Loader Stage 3-1 (BL31) 473

Trusted Firmware-A, Release 2.10.4

6.13.7 Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when EN-
ABLE_RME == 1]

Argument : uintptr_t, size_t *, unsigned int
Return : int

This function returns the delegated realm attestation key which will be used to sign Realm attestation token.
The API currently only supports P-384 ECC curve key.

The parameters of the function are:

arg0 - A pointer to the buffer where the attestation key should be copied
by this function. The buffer must be big enough to hold the attestation key.

arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
function returns the attestation key length in this parameter.

arg2 - The type of the elliptic curve to which the requested attestation key
belongs.

The function returns 0 on success, -EINVAL on failure.

6.13.8 Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME
== 1]

Argument : uintptr_t *
Return : size_t

This function returns the size of the shared area between EL3 and RMM (or 0 on failure). A pointer to the
shared area (or a NULL pointer on failure) is stored in the pointer passed as argument.

6.13.9 Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]

Arguments : rmm_manifest_t *manifest
Return : int

When ENABLE_RME is enabled, this function populates a boot manifest for the RMM image and stores it in
the area specified by manifest.

When ENABLE_RME is disabled, this function is not used.

474 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.13.10 Function : bl31_plat_enable_mmu [optional]

Argument : uint32_t
Return : void

This function enables the MMU. The boot code calls this function with MMU and caches disabled. This
function should program necessary registers to enable translation, and upon return, the MMU on the calling PE
must be enabled.

The function must honor flags passed in the first argument. These flags are defined by the translation library,
and can be found in the file include/lib/xlat_tables/xlat_mmu_helpers.h.

On DynamIQ systems, this function must not use stack while enabling MMU, which is how the function in xlat
table library version 2 is implemented.

6.13.11 Function : plat_init_apkey [optional]

Argument : void
Return : uint128_t

This function returns the 128-bit value which can be used to program ARMv8.3 pointer authentication keys.

The value should be obtained from a reliable source of randomness.

This function is only needed if ARMv8.3 pointer authentication is used in the Trusted Firmware by building
with BRANCH_PROTECTION option set to non-zero.

6.13.12 Function : plat_get_syscnt_freq2() [mandatory]

Argument : void
Return : unsigned int

This function is used by the architecture setup code to retrieve the counter frequency for the CPU’s generic
timer. This value will be programmed into the CNTFRQ_EL0 register. In Arm standard platforms, it returns
the base frequency of the system counter, which is retrieved from the first entry in the frequency modes table.

6.13.13 #define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]

When USE_COHERENT_MEM = 0, this constant defines the total memory (in bytes) aligned to the cache
line boundary that should be allocated per-cpu to accommodate all the bakery locks.

If this constant is not defined when USE_COHERENT_MEM = 0, the linker calculates the size of the .
bakery_lock input section, aligns it to the nearest CACHE_WRITEBACK_GRANULE, multiplies it with
PLATFORM_CORE_COUNT and stores the result in a linker symbol. This constant prevents a platform from
relying on the linker and provide a more efficient mechanism for accessing per-cpu bakery lock information.

If this constant is defined and its value is not equal to the value calculated by the linker then a link time assertion
is raised. A compile time assertion is raised if the value of the constant is not aligned to the cache line boundary.

6.13. Boot Loader Stage 3-1 (BL31) 475

Trusted Firmware-A, Release 2.10.4

6.13.14 SDEI porting requirements

The SDEI dispatcher requires the platform to provide the following macros and functions, of which some are
optional, and some others mandatory.

Macros

Macro: PLAT_SDEI_NORMAL_PRI [mandatory]

This macro must be defined to the EL3 exception priority level associated with Normal SDEI events on the
platform. This must have a higher value (therefore of lower priority) than PLAT_SDEI_CRITICAL_PRI.

Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]

This macro must be defined to the EL3 exception priority level associated with Critical SDEI events on the
platform. This must have a lower value (therefore of higher priority) than PLAT_SDEI_NORMAL_PRI.

Note: SDEI exception priorities must be the lowest among Secure priorities. Among the SDEI exceptions,
Critical SDEI priority must be higher than Normal SDEI priority.

Functions

Function: int plat_sdei_validate_entry_point() [optional]

Argument: uintptr_t ep, unsigned int client_mode
Return: int

This function validates the entry point address of the event handler provided by the client for both event reg-
istration and Complete and Resume SDEI calls. The function ensures that the address is valid in the client
translation regime.

The second argument is the exception level that the client is executing in. It can be Non-Secure EL1 or Non-
Secure EL2.

The function must return 0 for successful validation, or -1 upon failure.

The default implementation always returns 0. On Arm platforms, this function translates the entry point address
within the client translation regime and further ensures that the resulting physical address is located in Non-
secure DRAM.

476 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [op-
tional]

Argument: uint64_t
Argument: unsigned int
Return: void

SDEI specification requires that a PE comes out of reset with the events masked. The client therefore is expected
to call PE_UNMASK to unmask SDEI events on the PE. No SDEI events can be dispatched until such time.

Should a PE receive an interrupt that was bound to an SDEI event while the events are masked on the PE, the
dispatcher implementation invokes the function plat_sdei_handle_masked_trigger. The MPIDR
of the PE that received the interrupt and the interrupt ID are passed as parameters.

The default implementation only prints out a warning message.

6.13.15 TRNG porting requirements

The TRNG backend requires the platform to provide the following values and mandatory functions.

Values

value: uuid_t plat_trng_uuid [mandatory]

This value must be defined to the UUID of the TRNG backend that is specific to the hardware after
plat_entropy_setup function is called. This value must conform to the SMCCC calling convention;
The most significant 32 bits of the UUID must not equal 0xffffffff or the signed integer -1 as this value
in w0 indicates failure to get a TRNG source.

Functions

Function: void plat_entropy_setup(void) [mandatory]

Argument: none
Return: none

This function is expected to do platform-specific initialization of any TRNG hardware. This may include
generating a UUID from a hardware-specific seed.

6.13. Boot Loader Stage 3-1 (BL31) 477

Trusted Firmware-A, Release 2.10.4

Function: bool plat_get_entropy(uint64_t *out) [mandatory]

Argument: uint64_t *
Return: bool
Out : when the return value is true, the entropy has been written into the
storage pointed to

This function writes entropy into storage provided by the caller. If no entropy is available, it must return false
and the storage must not be written.

6.14 Power State Coordination Interface (in BL31)

The TF-A implementation of the PSCI API is based around the concept of a power domain. A power domain
is a CPU or a logical group of CPUs which share some state on which power management operations can be
performed as specified by PSCI. Each CPU in the system is assigned a cpu index which is a unique number
between 0 and PLATFORM_CORE_COUNT - 1. The power domains are arranged in a hierarchical tree
structure and each power domain can be identified in a system by the cpu index of any CPU that is part of
that domain and a power domain level. A processing element (for example, a CPU) is at level 0. If the power
domain node above a CPU is a logical grouping of CPUs that share some state, then level 1 is that group of
CPUs (for example, a cluster), and level 2 is a group of clusters (for example, the system). More details on the
power domain topology and its organization can be found in PSCI Power Domain Tree Structure.

BL31’s platform initialization code exports a pointer to the platform-specific power management opera-
tions required for the PSCI implementation to function correctly. This information is populated in the
plat_psci_ops structure. The PSCI implementation calls members of the plat_psci_ops structure
for performing power management operations on the power domains. For example, the target CPU is specified
by its MPIDR in a PSCI CPU_ON call. The pwr_domain_on() handler (if present) is called for the CPU
power domain.

The power-state parameter of a PSCI CPU_SUSPEND call can be used to describe composite power
states specific to a platform. The PSCI implementation defines a generic representation of the power-state
parameter, which is an array of local power states where each index corresponds to a power domain level.
Each entry contains the local power state the power domain at that power level could enter. It depends on the
validate_power_state() handler to convert the power-state parameter (possibly encoding a composite
power state) passed in a PSCI CPU_SUSPEND call to this representation.

The following functions form part of platform port of PSCI functionality.

6.14.1 Function : plat_psci_stat_accounting_start() [optional]

Argument : const psci_power_state_t *
Return : void

This is an optional hook that platforms can implement for residency statistics accounting before entering a
low power state. The pwr_domain_state field of state_info (first argument) can be inspected if stat
accounting is done differently at CPU level versus higher levels. As an example, if the element at index 0 (CPU
power level) in the pwr_domain_state array indicates a power down state, special hardware logic may be

478 Chapter 6. Porting Guide

https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

programmed in order to keep track of the residency statistics. For higher levels (array indices > 0), the residency
statistics could be tracked in software using PMF. If ENABLE_PMF is set, the default implementation will use
PMF to capture timestamps.

6.14.2 Function : plat_psci_stat_accounting_stop() [optional]

Argument : const psci_power_state_t *
Return : void

This is an optional hook that platforms can implement for residency statistics accounting after exiting from a
low power state. The pwr_domain_state field of state_info (first argument) can be inspected if stat
accounting is done differently at CPU level versus higher levels. As an example, if the element at index 0 (CPU
power level) in the pwr_domain_state array indicates a power down state, special hardware logic may be
programmed in order to keep track of the residency statistics. For higher levels (array indices > 0), the residency
statistics could be tracked in software using PMF. If ENABLE_PMF is set, the default implementation will use
PMF to capture timestamps.

6.14.3 Function : plat_psci_stat_get_residency() [optional]

Argument : unsigned int, const psci_power_state_t *, unsigned int
Return : u_register_t

This is an optional interface that is is invoked after resuming from a low power state and provides the time spent
resident in that low power state by the power domain at a particular power domain level. When a CPU wakes
up from suspend, all its parent power domain levels are also woken up. The generic PSCI code invokes this
function for each parent power domain that is resumed and it identified by the lvl (first argument) parameter.
The state_info (second argument) describes the low power state that the power domain has resumed
from. The current CPU is the first CPU in the power domain to resume from the low power state and the
last_cpu_idx (third parameter) is the index of the last CPU in the power domain to suspend and may be
needed to calculate the residency for that power domain.

6.14.4 Function : plat_get_target_pwr_state() [optional]

Argument : unsigned int, const plat_local_state_t *, unsigned int
Return : plat_local_state_t

The PSCI generic code uses this function to let the platform participate in state coordination during a power
management operation. The function is passed a pointer to an array of platform specific local power state
states (second argument) which contains the requested power state for each CPU at a particular power
domain level lvl (first argument) within the power domain. The function is expected to traverse this array of
upto ncpus (third argument) and return a coordinated target power state by the comparing all the requested
power states. The target power state should not be deeper than any of the requested power states.

A weak definition of this API is provided by default wherein it assumes that the platform assigns a local state
value in order of increasing depth of the power state i.e. for two power states X &Y, if X < Y then X represents

6.14. Power State Coordination Interface (in BL31) 479

Trusted Firmware-A, Release 2.10.4

a shallower power state than Y. As a result, the coordinated target local power state for a power domain will be
the minimum of the requested local power state values.

6.14.5 Function : plat_get_power_domain_tree_desc() [mandatory]

Argument : void
Return : const unsigned char *

This function returns a pointer to the byte array containing the power domain topology tree description. The
format and method to construct this array are described in PSCI Power Domain Tree Structure. The BL31 PSCI
initialization code requires this array to be described by the platform, either statically or dynamically, to initialize
the power domain topology tree. In case the array is populated dynamically, then plat_core_pos_by_mpidr()
and plat_my_core_pos() should also be implemented suitably so that the topology tree description matches the
CPU indices returned by these APIs. These APIs together form the platform interface for the PSCI topology
framework.

6.14.6 Function : plat_setup_psci_ops() [mandatory]

Argument : uintptr_t, const plat_psci_ops **
Return : int

This function may execute with the MMU and data caches enabled if the platform port does the necessary
initializations in bl31_plat_arch_setup(). It is only called by the primary CPU.

This function is called by PSCI initialization code. Its purpose is to let the platform layer know about the
warm boot entrypoint through the sec_entrypoint (first argument) and to export handler routines for
platform-specific psci power management actions by populating the passed pointer with a pointer to BL31’s
private plat_psci_ops structure.

A description of each member of this structure is given below. Please refer to the Arm FVP specific implemen-
tation of these handlers in plat/arm/board/fvp/fvp_pm.c as an example. For each PSCI function
that the platform wants to support, the associated operation or operations in this structure must be provided and
implemented (Refer section 4 of Firmware Design for the PSCI API supported in TF-A). To disable a PSCI
function in a platform port, the operation should be removed from this structure instead of providing an empty
implementation.

plat_psci_ops.cpu_standby()

Perform the platform-specific actions to enter the standby state for a cpu indicated by the passed argument.
This provides a fast path for CPU standby wherein overheads of PSCI state management and lock acquisition
is avoided. For this handler to be invoked by the PSCI CPU_SUSPEND API implementation, the suspend
state type specified in the power-state parameter should be STANDBY and the target power domain level
specified should be the CPU. The handler should put the CPU into a low power retention state (usually by
issuing a wfi instruction) and ensure that it can be woken up from that state by a normal interrupt. The generic
code expects the handler to succeed.

480 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

plat_psci_ops.pwr_domain_on()

Perform the platform specific actions to power on a CPU, specified by the MPIDR (first argument). The generic
code expects the platform to return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.

plat_psci_ops.pwr_domain_off_early() [optional]

This optional function performs the platform specific actions to check if powering off the calling CPU and its
higher parent power domain levels as indicated by the target_state (first argument) is possible or allowed.

The target_state encodes the platform coordinated target local power states for the CPU power domain
and its parent power domain levels.

For this handler, the local power state for the CPU power domain will be a power down state where as it could
be either power down, retention or run state for the higher power domain levels depending on the result of state
coordination. The generic code expects PSCI_E_DENIED return code if the platform thinks that CPU_OFF
should not proceed on the calling CPU.

plat_psci_ops.pwr_domain_off()

Perform the platform specific actions to prepare to power off the calling CPU and its higher parent power
domain levels as indicated by the target_state (first argument). It is called by the PSCI CPU_OFF API
implementation.

The target_state encodes the platform coordinated target local power states for the CPU power domain
and its parent power domain levels. The handler needs to perform power management operation corresponding
to the local state at each power level.

For this handler, the local power state for the CPU power domain will be a power down state where as it could
be either power down, retention or run state for the higher power domain levels depending on the result of state
coordination. The generic code expects the handler to succeed.

plat_psci_ops.pwr_domain_validate_suspend() [optional]

This is an optional function that is only compiled into the build if the build option PSCI_OS_INIT_MODE is
enabled.

If implemented, this function allows the platform to perform platform specific validations based on hard-
ware states. The generic code expects this function to return PSCI_E_SUCCESS on success, or either
PSCI_E_DENIED or PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.

6.14. Power State Coordination Interface (in BL31) 481

Trusted Firmware-A, Release 2.10.4

plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]

This optional function may be used as a performance optimization to replace or complement
pwr_domain_suspend() on some platforms. Its calling semantics are identical to pwr_domain_suspend(), ex-
cept the PSCI implementation only calls this function when suspending to a power down state, and it guarantees
that data caches are enabled.

When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches before calling
pwr_domain_suspend(). If the target_state corresponds to a power down state and it is safe to perform some
or all of the platform specific actions in that function with data caches enabled, it may be more efficient to
move those actions to this function. When HW_ASSISTED_COHERENCY = 1, data caches remain enabled
throughout, and so there is no advantage to moving platform specific actions to this function.

plat_psci_ops.pwr_domain_suspend()

Perform the platform specific actions to prepare to suspend the calling CPU and its higher parent power domain
levels as indicated by the target_state (first argument). It is called by the PSCI CPU_SUSPEND API
implementation.

The target_state has a similar meaning as described in the pwr_domain_off() operation. It encodes
the platform coordinated target local power states for the CPU power domain and its parent power domain
levels. The handler needs to perform power management operation corresponding to the local state at each
power level. The generic code expects the handler to succeed.

The difference between turning a power domain off versus suspending it is that in the former case, the power
domain is expected to re-initialize its state when it is next powered on (see pwr_domain_on_finish()).
In the latter case, the power domain is expected to save enough state so that it can resume execution by restoring
this state when its powered on (see pwr_domain_suspend_finish()).

When suspending a core, the platform can also choose to power off the GICv3 Redistributor and ITS through an
implementation-defined sequence. To achieve this safely, the ITS context must be saved first. The architectural
part is implemented by the gicv3_its_save_disable() helper, but most of the needed sequence is
implementation defined and it is therefore the responsibility of the platform code to implement the necessary
sequence. Then the GIC Redistributor context can be saved using the gicv3_rdistif_save() helper.
Powering off the Redistributor requires the implementation to support it and it is the responsibility of the
platform code to execute the right implementation defined sequence.

When a system suspend is requested, the platform can also make use of the gicv3_distif_save() helper
to save the context of the GIC Distributor after it has saved the context of the Redistributors and ITS of all the
cores in the system. The context of the Distributor can be large and may require it to be allocated in a special
area if it cannot fit in the platform’s global static data, for example in DRAM. The Distributor can then be
powered down using an implementation-defined sequence.

482 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

plat_psci_ops.pwr_domain_pwr_down_wfi()

This is an optional function and, if implemented, is expected to perform platform specific actions including the
wfi invocation which allows the CPU to powerdown. Since this function is invoked outside the PSCI locks,
the actions performed in this hook must be local to the CPU or the platform must ensure that races between
multiple CPUs cannot occur.

The target_state has a similar meaning as described in the pwr_domain_off() operation and it
encodes the platform coordinated target local power states for the CPU power domain and its parent power
domain levels. This function must not return back to the caller (by calling wfi in an infinite loop to ensure some
CPUs power down mitigations work properly).

If this function is not implemented by the platform, PSCI generic implementation invokes
psci_power_down_wfi() for power down.

plat_psci_ops.pwr_domain_on_finish()

This function is called by the PSCI implementation after the calling CPU is powered on and released from
reset in response to an earlier PSCI CPU_ON call. It performs the platform-specific setup required to initialize
enough state for this CPU to enter the normal world and also provide secure runtime firmware services.

The target_state (first argument) is the prior state of the power domains immediately before the CPU
was turned on. It indicates which power domains above the CPU might require initialization due to having
previously been in low power states. The generic code expects the handler to succeed.

plat_psci_ops.pwr_domain_on_finish_late() [optional]

This optional function is called by the PSCI implementation after the calling CPU is fully powered on with
respective data caches enabled. The calling CPU and the associated cluster are guaranteed to be participat-
ing in coherency. This function gives the flexibility to perform any platform-specific actions safely, such as
initialization or modification of shared data structures, without the overhead of explicit cache maintainace
operations.

The target_state has a similar meaning as described in the pwr_domain_on_finish() operation.
The generic code expects the handler to succeed.

plat_psci_ops.pwr_domain_suspend_finish()

This function is called by the PSCI implementation after the calling CPU is powered on and released from reset
in response to an asynchronous wakeup event, for example a timer interrupt that was programmed by the CPU
during the CPU_SUSPEND call or SYSTEM_SUSPEND call. It performs the platform-specific setup required
to restore the saved state for this CPU to resume execution in the normal world and also provide secure runtime
firmware services.

The target_state (first argument) has a similar meaning as described in the
pwr_domain_on_finish() operation. The generic code expects the platform to succeed.

If the Distributor, Redistributors or ITS have been powered off as part of a suspend, their context must be
restored in this function in the reverse order to how they were saved during suspend sequence.

6.14. Power State Coordination Interface (in BL31) 483

Trusted Firmware-A, Release 2.10.4

plat_psci_ops.system_off()

This function is called by PSCI implementation in response to a SYSTEM_OFF call. It performs the platform-
specific system poweroff sequence after notifying the Secure Payload Dispatcher.

plat_psci_ops.system_reset()

This function is called by PSCI implementation in response to a SYSTEM_RESET call. It performs the
platform-specific system reset sequence after notifying the Secure Payload Dispatcher.

plat_psci_ops.validate_power_state()

This function is called by the PSCI implementation during the CPU_SUSPEND call to validate the
power_state parameter of the PSCI API and if valid, populate it in req_state (second argument)
array as power domain level specific local states. If the power_state is invalid, the platform must return
PSCI_E_INVALID_PARAMS as error, which is propagated back to the normal world PSCI client.

plat_psci_ops.validate_ns_entrypoint()

This function is called by the PSCI implementation during the CPU_SUSPEND, SYSTEM_SUSPEND and
CPU_ON calls to validate the non-secure entry_point parameter passed by the normal world. If the en-
try_point is invalid, the platform must return PSCI_E_INVALID_ADDRESS as error, which is propa-
gated back to the normal world PSCI client.

plat_psci_ops.get_sys_suspend_power_state()

This function is called by the PSCI implementation during the SYSTEM_SUSPEND call to get the
req_state parameter from platform which encodes the power domain level specific local states to sus-
pend to system affinity level. The req_state will be utilized to do the PSCI state coordination and
pwr_domain_suspend() will be invoked with the coordinated target state to enter system suspend.

plat_psci_ops.get_pwr_lvl_state_idx()

This is an optional function and, if implemented, is invoked by the PSCI implementation to convert the
local_state (first argument) at a specified pwr_lvl (second argument) to an index between 0 and
PLAT_MAX_PWR_LVL_STATES - 1. This function is only needed if the platform supports more than two
local power states at each power domain level, that is PLAT_MAX_PWR_LVL_STATES is greater than 2, and
needs to account for these local power states.

484 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

plat_psci_ops.translate_power_state_by_mpidr()

This is an optional function and, if implemented, verifies the power_state (second argument) parame-
ter of the PSCI API corresponding to a target power domain. The target power domain is identified by
using both MPIDR (first argument) and the power domain level encoded in power_state. The power
domain level specific local states are to be extracted from power_state and be populated in the out-
put_state (third argument) array. The functionality is similar to the validate_power_state func-
tion described above and is envisaged to be used in case the validity of power_state depend on the tar-
geted power domain. If the power_state is invalid for the targeted power domain, the platform must return
PSCI_E_INVALID_PARAMS as error. If this function is not implemented, then the generic implementation
relies on validate_power_state function to translate the power_state.

This function can also be used in case the platform wants to support local power state encoding for
power_state parameter of PSCI_STAT_COUNT/RESIDENCY APIs as described in Section 5.18 of
PSCI.

plat_psci_ops.get_node_hw_state()

This is an optional function. If implemented this function is intended to return the power state of a node
(identified by the first parameter, the MPIDR) in the power domain topology (identified by the second
parameter, power_level), as retrieved from a power controller or equivalent component on the plat-
form. Upon successful completion, the implementation must map and return the final status among HW_ON,
HW_OFF or HW_STANDBY. Upon encountering failures, it must return either PSCI_E_INVALID_PARAMS
or PSCI_E_NOT_SUPPORTED as appropriate.

Implementations are not expected to handle power_levels greater than PLAT_MAX_PWR_LVL.

plat_psci_ops.system_reset2()

This is an optional function. If implemented this function is called during the SYSTEM_RESET2
call to perform a reset based on the first parameter reset_type as specified in PSCI. The parame-
ter cookie can be used to pass additional reset information. If the reset_type is not supported,
the function must return PSCI_E_NOT_SUPPORTED. For architectural resets, all failures must return
PSCI_E_INVALID_PARAMETERS and vendor reset can return other PSCI error codes as defined in PSCI.
On success this function will not return.

plat_psci_ops.write_mem_protect()

This is an optional function. If implemented it enables or disables the MEM_PROTECT functionality based on
the value of val. A non-zero value enables MEM_PROTECT and a value of zero disables it. Upon encountering
failures it must return a negative value and on success it must return 0.

6.14. Power State Coordination Interface (in BL31) 485

https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

plat_psci_ops.read_mem_protect()

This is an optional function. If implemented it returns the current state of MEM_PROTECT via the val pa-
rameter. Upon encountering failures it must return a negative value and on success it must return 0.

plat_psci_ops.mem_protect_chk()

This is an optional function. If implemented it checks if a memory region defined by a base address base and
with a size of length bytes is protected by MEM_PROTECT. If the region is protected then it must return 0,
otherwise it must return a negative number.

6.15 Interrupt Management framework (in BL31)

BL31 implements an InterruptManagement Framework (IMF) tomanage interrupts generated in either security
state and targeted to EL1 or EL2 in the non-secure state or EL3/S-EL1 in the secure state. The design of this
framework is described in the Interrupt Management Framework

A platform should export the following APIs to support the IMF. The following text briefly describes each
API and its implementation in Arm standard platforms. The API implementation depends upon the type of
interrupt controller present in the platform. Arm standard platform layer supports both Arm Generic Interrupt
Controller version 2.0 (GICv2) and 3.0 (GICv3). Juno builds the Arm platform layer to use GICv2 and the
FVP can be configured to use either GICv2 or GICv3 depending on the build flag FVP_USE_GIC_DRIVER
(See Arm FVP Platform Specific Build Options for more details).

See also: Interrupt Controller Abstraction APIs.

6.15.1 Function : plat_interrupt_type_to_line() [mandatory]

Argument : uint32_t, uint32_t
Return : uint32_t

The Arm processor signals an interrupt exception either through the IRQ or FIQ interrupt line. The specific line
that is signaled depends on how the interrupt controller (IC) reports different interrupt types from an execution
context in either security state. The IMF uses this API to determine which interrupt line the platform IC uses
to signal each type of interrupt supported by the framework from a given security state. This API must be
invoked at EL3.

The first parameter will be one of theINTR_TYPE_* values (see InterruptManagement Framework) indicating
the target type of the interrupt, the second parameter is the security state of the originating execution context.
The return result is the bit position in the SCR_EL3 register of the respective interrupt trap: IRQ=1, FIQ=2.

In the case of Arm standard platforms using GICv2, S-EL1 interrupts are configured as FIQs and Non-secure
interrupts as IRQs from either security state.

In the case of Arm standard platforms using GICv3, the interrupt line to be configured depends on the security
state of the execution context when the interrupt is signalled and are as follows:

• The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in NS-EL0/1/2 context.

486 Chapter 6. Porting Guide

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html

Trusted Firmware-A, Release 2.10.4

• The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ in the NS-EL0/1/2 context.

• The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2 context.

6.15.2 Function : plat_ic_get_pending_interrupt_type() [mandatory]

Argument : void
Return : uint32_t

This API returns the type of the highest priority pending interrupt at the platform IC. The IMF uses the interrupt
type to retrieve the corresponding handler function. INTR_TYPE_INVAL is returned when there is no inter-
rupt pending. The valid interrupt types that can be returned are INTR_TYPE_EL3, INTR_TYPE_S_EL1
and INTR_TYPE_NS. This API must be invoked at EL3.

In the case of Arm standard platforms using GICv2, the Highest Priority Pending Interrupt Register
(GICC_HPPIR) is read to determine the id of the pending interrupt. The type of interrupt depends upon
the id value as follows.

1. id < 1022 is reported as a S-EL1 interrupt

2. id = 1022 is reported as a Non-secure interrupt.

3. id = 1023 is reported as an invalid interrupt type.

In the case of Arm standard platforms using GICv3, the system register ICC_HPPIR0_EL1, Highest Priority
Pending group 0 Interrupt Register, is read to determine the id of the pending interrupt. The type of interrupt
depends upon the id value as follows.

1. id = PENDING_G1S_INTID (1020) is reported as a S-EL1 interrupt

2. id = PENDING_G1NS_INTID (1021) is reported as a Non-secure interrupt.

3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt type.

4. All other interrupt id’s are reported as EL3 interrupt.

6.15.3 Function : plat_ic_get_pending_interrupt_id() [mandatory]

Argument : void
Return : uint32_t

This API returns the id of the highest priority pending interrupt at the platform IC.INTR_ID_UNAVAILABLE
is returned when there is no interrupt pending.

In the case of Arm standard platforms using GICv2, the Highest Priority Pending Interrupt Register
(GICC_HPPIR) is read to determine the id of the pending interrupt. The id that is returned by API depends
upon the value of the id read from the interrupt controller as follows.

1. id < 1022. id is returned as is.

2. id = 1022. TheAliased Highest Priority Pending Interrupt Register (GICC_AHPPIR) is read to determine
the id of the non-secure interrupt. This id is returned by the API.

6.15. Interrupt Management framework (in BL31) 487

Trusted Firmware-A, Release 2.10.4

3. id = 1023. INTR_ID_UNAVAILABLE is returned.

In the case of Arm standard platforms using GICv3, if the API is invoked from EL3, the system register
ICC_HPPIR0_EL1, Highest Priority Pending Interrupt group 0 Register, is read to determine the id of the
pending interrupt. The id that is returned by API depends upon the value of the id read from the interrupt
controller as follows.

1. id < PENDING_G1S_INTID (1020). id is returned as is.

2. id = PENDING_G1S_INTID (1020) or PENDING_G1NS_INTID (1021). The system register
ICC_HPPIR1_EL1, Highest Priority Pending Interrupt group 1 Register is read to determine the id
of the group 1 interrupt. This id is returned by the API as long as it is a valid interrupt id

3. If the id is any of the special interrupt identifiers, INTR_ID_UNAVAILABLE is returned.

When the API invoked from S-EL1 for GICv3 systems, the id read from system register
ICC_HPPIR1_EL1, Highest Priority Pending group 1 Interrupt Register, is returned if is not equal to
GIC_SPURIOUS_INTERRUPT (1023) else INTR_ID_UNAVAILABLE is returned.

6.15.4 Function : plat_ic_acknowledge_interrupt() [mandatory]

Argument : void
Return : uint32_t

This API is used by the CPU to indicate to the platform IC that processing of the highest pending inter-
rupt has begun. It should return the raw, unmodified value obtained from the interrupt controller when ac-
knowledging an interrupt. The actual interrupt number shall be extracted from this raw value using the API
plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>.

This function in Arm standard platforms using GICv2, reads the Interrupt Acknowledge Register (GICC_IAR).
This changes the state of the highest priority pending interrupt from pending to active in the interrupt controller.
It returns the value read from the GICC_IAR, unmodified.

In the case of Arm standard platforms using GICv3, if the API is invoked from EL3, the function reads the
system register ICC_IAR0_EL1, Interrupt Acknowledge Register group 0. If the API is invoked from S-EL1,
the function reads the system register ICC_IAR1_EL1, Interrupt Acknowledge Register group 1. The read
changes the state of the highest pending interrupt from pending to active in the interrupt controller. The value
read is returned unmodified.

The TSP uses this API to start processing of the secure physical timer interrupt.

6.15.5 Function : plat_ic_end_of_interrupt() [mandatory]

Argument : uint32_t
Return : void

This API is used by the CPU to indicate to the platform IC that processing of the interrupt correspond-
ing to the id (passed as the parameter) has finished. The id should be the same as the id returned by the
plat_ic_acknowledge_interrupt() API.

488 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

Arm standard platforms write the id to the End of Interrupt Register (GICC_EOIR) in case of GICv2, and to
ICC_EOIR0_EL1 or ICC_EOIR1_EL1 system register in case of GICv3 depending on where the API is
invoked from, EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt controller.

The TSP uses this API to finish processing of the secure physical timer interrupt.

6.15.6 Function : plat_ic_get_interrupt_type() [mandatory]

Argument : uint32_t
Return : uint32_t

This API returns the type of the interrupt id passed as the parameter. INTR_TYPE_INVAL is returned if the
id is invalid. If the id is valid, a valid interrupt type (one of INTR_TYPE_EL3, INTR_TYPE_S_EL1 and
INTR_TYPE_NS) is returned depending upon how the interrupt has been configured by the platform IC. This
API must be invoked at EL3.

Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts and Non-secure inter-
rupts as Group1 interrupts. It reads the group value corresponding to the interrupt id from the relevant Interrupt
Group Register (GICD_IGROUPRn). It uses the group value to determine the type of interrupt.

In the case of Arm standard platforms using GICv3, both the Interrupt Group Register (GICD_IGROUPRn) and
Interrupt GroupModifier Register (GICD_IGRPMODRn) is read to figure out whether the interrupt is configured
as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.

6.16 Common helper functions

6.16.1 Function : elx_panic()

Argument : void
Return : void

This API is called from assembly files when reporting a critical failure that has occured in lower EL and is been
trapped in EL3. This callmust not return.

6.16.2 Function : el3_panic()

Argument : void
Return : void

This API is called from assembly files when encountering a critical failure that cannot be recovered from. This
function assumes that it is invoked from a C runtime environment i.e. valid stack exists. This call must not
return.

6.16. Common helper functions 489

Trusted Firmware-A, Release 2.10.4

6.16.3 Function : panic()

Argument : void
Return : void

This API called from C files when encountering a critical failure that cannot be recovered from. This function
in turn prints backtrace (if enabled) and calls el3_panic(). This callmust not return.

6.17 Crash Reporting mechanism (in BL31)

BL31 implements a crash reporting mechanism which prints the various registers of the
CPU to enable quick crash analysis and debugging. This mechanism relies on the plat-
form implementing plat_crash_console_init, plat_crash_console_putc and
plat_crash_console_flush.

The file plat/common/aarch64/crash_console_helpers.S contains sample implementation of
all of them. Platforms may include this file to their makefiles in order to benefit from them. By default, they
will cause the crash output to be routed over the normal console infrastructure and get printed on consoles
configured to output in crash state. console_set_scope() can be used to control whether a console is
used for crash output.

Note: Platforms are responsible for making sure that they only mark consoles for use in the crash scope that
are able to support this, i.e. that are written in assembly and conform with the register clobber rules for putc()
(x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.

In some cases (such as debugging very early crashes that happen before the normal boot console can be set
up), platforms may want to control crash output more explicitly. These platforms may instead provide custom
implementations for these. They are executed outside of a C environment and without a stack. Many console
drivers provide functions named console_xxx_core_init/putc/flush that are designed to be used
by these functions. See Arm platforms (like juno) for an example of this.

6.17.1 Function : plat_crash_console_init [mandatory]

Argument : void
Return : int

This API is used by the crash reporting mechanism to initialize the crash console. It must only use the general
purpose registers x0 through x7 to do the initialization and returns 1 on success.

490 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.17.2 Function : plat_crash_console_putc [mandatory]

Argument : int
Return : int

This API is used by the crash reporting mechanism to print a character on the designated crash console. It must
only use general purpose registers x1 and x2 to do its work. The parameter and the return value are in general
purpose register x0.

6.17.3 Function : plat_crash_console_flush [mandatory]

Argument : void
Return : void

This API is used by the crash reporting mechanism to force write of all buffered data on the designated crash
console. It should only use general purpose registers x0 through x5 to do its work.

6.18 External Abort handling and RAS Support

6.18.1 Function : plat_ea_handler

Argument : int
Argument : uint64_t
Argument : void *
Argument : void *
Argument : uint64_t
Return : void

This function is invoked by the runtime exception handling framework for the platform to handle an External
Abort received at EL3. The intention of the function is to attempt to resolve the cause of External Abort and
return; if that’s not possible then an orderly shutdown of the system is initiated.

The first parameter (int ea_reason) indicates the reason for External Abort. Its value is one of ER-
ROR_EA_* constants defined in ea_handle.h.

The second parameter (uint64_t syndrome) is the respective syndrome presented to EL3 after having
received the External Abort. Depending on the nature of the abort (as can be inferred from the ea_reason
parameter), this can be the content of either ESR_EL3 or DISR_EL1.

The third parameter (void *cookie) is unused for now. The fourth parameter (void *handle) is a
pointer to the preempted context. The fifth parameter (uint64_t flags) indicates the preempted security
state. These parameters are received from the top-level exception handler.

This function must be implemented if a platform expects Firmware First handling of External Aborts.

6.18. External Abort handling and RAS Support 491

Trusted Firmware-A, Release 2.10.4

6.18.2 Function : plat_handle_uncontainable_ea

Argument : int
Argument : uint64_t
Return : void

This function is invoked by the RAS framework when an External Abort of Uncontainable type is received
at EL3. Due to the critical nature of Uncontainable errors, the intention of this function is to initiate orderly
shutdown of the system, and is not expected to return.

This function must be implemented in assembly.

The first and second parameters are the same as that of plat_ea_handler.

The default implementation of this function calls report_unhandled_exception.

6.18.3 Function : plat_handle_double_fault

Argument : int
Argument : uint64_t
Return : void

This function is invoked by the RAS framework when another External Abort is received at EL3 while one
is already being handled. I.e., a call to plat_ea_handler is outstanding. Due to its critical nature, the
intention of this function is to initiate orderly shutdown of the system, and is not expected recover or return.

This function must be implemented in assembly.

The first and second parameters are the same as that of plat_ea_handler.

The default implementation of this function calls report_unhandled_exception.

6.18.4 Function : plat_handle_el3_ea

Return : void

This function is invoked when an External Abort is received while executing in EL3. Due to its critical nature,
the intention of this function is to initiate orderly shutdown of the system, and is not expected recover or return.

This function must be implemented in assembly.

The default implementation of this function calls report_unhandled_exception.

492 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

6.18.5 Function : plat_handle_rng_trap

Argument : uint64_t
Argument : cpu_context_t *
Return : int

This function is invoked by BL31’s exception handler when there is a synchronous system register trap caused
by access to the RNDR or RNDRRS registers. It allows platforms implementing FEAT_RNG_TRAP and
enabling ENABLE_FEAT_RNG_TRAP to emulate those system registers by returing back some entropy to the
lower EL.

The first parameter (uint64_t esr_el3) contains the content of the ESR_EL3 syndrome register,
which encodes the instruction that was trapped. The interesting information in there is the target register
(get_sysreg_iss_rt()).

The second parameter (cpu_context_t *ctx) represents the CPU state in the lower exception level, at
the time when the execution of the mrs instruction was trapped. Its content can be changed, to put the entropy
into the target register.

The return value indicates how to proceed:

• When returning TRAP_RET_UNHANDLED (-1), the machine will panic.

• When returning TRAP_RET_REPEAT (0), the exception handler will return to the same instruction, so
its execution will be repeated.

• When returning TRAP_RET_CONTINUE (1), the exception handler will return to the next instruction.

This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.

6.18.6 Function : plat_handle_impdef_trap

Argument : uint64_t
Argument : cpu_context_t *
Return : int

This function is invoked by BL31’s exception handler when there is a synchronous system register trap caused
by access to the implementation defined registers. It allows platforms enabling IMPDEF_SYSREG_TRAP to
emulate those system registers choosing to program bits of their choice.

The first parameter (uint64_t esr_el3) contains the content of the ESR_EL3 syndrome register, which
encodes the instruction that was trapped.

The second parameter (cpu_context_t *ctx) represents the CPU state in the lower exception level, at
the time when the execution of the mrs instruction was trapped.

The return value indicates how to proceed:

• When returning TRAP_RET_UNHANDLED (-1), the machine will panic.

• When returning TRAP_RET_REPEAT (0), the exception handler will return to the same instruction, so
its execution will be repeated.

6.18. External Abort handling and RAS Support 493

Trusted Firmware-A, Release 2.10.4

• When returning TRAP_RET_CONTINUE (1), the exception handler will return to the next instruction.

This function needs to be implemented by a platform if it enables IMPDEF_SYSREG_TRAP.

6.19 Build flags

There are some build flags which can be defined by the platform to control inclusion or exclusion of certain BL
stages from the FIP image. These flags need to be defined in the platform makefile which will get included by
the build system.

• NEED_BL33 By default, this flag is defined yes by the build system and BL33 build option should be
supplied as a build option. The platform has the option of excluding the BL33 image in the fip image by
defining this flag to no. If any of the options EL3_PAYLOAD_BASE or PRELOADED_BL33_BASE
are used, this flag will be set to no automatically.

• ARM_ARCH_MAJOR and ARM_ARCH_MINOR By default,
ARM_ARCH_MAJOR.ARM_ARCH_MINOR is set to 8.0 in defaults.mk, if the platform
makefile/build defines or uses the correct ARM_ARCH_MAJOR and ARM_ARCH_MINOR then
mandatory Architectural features available for that Arch version will be enabled by default and any
optional Arch feature supported by the Architecture and available in TF-A can be enabled from platform
specific makefile. Look up to arch_features.mk for details pertaining to mandatory and optional
Arch specific features.

6.20 Platform include paths

Platforms are allowed to add more include paths to be passed to the compiler. The PLAT_INCLUDES variable
is used for this purpose. This is needed in particular for the file platform_def.h.

Example:

PLAT_INCLUDES += -Iinclude/plat/myplat/include

6.21 C Library

To avoid subtle toolchain behavioral dependencies, the header files provided by the compiler are not used. The
software is built with the -nostdinc flag to ensure no headers are included from the toolchain inadvertently.
Instead the required headers are included in the TF-A source tree. The library only contains those C library
definitions required by the local implementation. If more functionality is required, the needed library functions
will need to be added to the local implementation.

Some C headers have been obtained from FreeBSD and SCC, while others have been written specifically for
TF-A. Some implementation files have been obtained from FreeBSD, others have been written specifically for
TF-A as well. The files can be found in include/lib/libc and lib/libc.

SCC can be found in http://www.simple-cc.org/. A copy of the FreeBSD sources can be obtained from http:
//github.com/freebsd/freebsd.

494 Chapter 6. Porting Guide

https://www.freebsd.org
http://www.simple-cc.org/
https://www.freebsd.org
http://www.simple-cc.org/
https://www.freebsd.org
http://github.com/freebsd/freebsd
http://github.com/freebsd/freebsd

Trusted Firmware-A, Release 2.10.4

6.22 Storage abstraction layer

In order to improve platform independence and portability a storage abstraction layer is used to load data from
non-volatile platform storage. Currently storage access is only required by BL1 and BL2 phases and performed
inside the load_image() function in bl_common.c.

It is mandatory to implement at least one storage driver. For the Arm development platforms the Firmware
Image Package (FIP) driver is provided as the default means to load data from storage (see Firmware Image
Package (FIP)). The storage layer is described in the header file include/drivers/io/io_storage.
h. The implementation of the common library is in drivers/io/io_storage.c and the driver files are
located in drivers/io/.

6.22. Storage abstraction layer 495

Trusted Firmware-A, Release 2.10.4

Each IO driver must provide io_dev_* structures, as described in drivers/io/io_driver.h. These
are returned via a mandatory registration function that is called on platform initialization. The semi-hosting
driver implementation in io_semihosting.c can be used as an example.

Each platform should register devices and their drivers via the storage abstraction layer. These drivers then need
to be initialized by bootloader phases as required in their respective blx_platform_setup() functions.

496 Chapter 6. Porting Guide

Trusted Firmware-A, Release 2.10.4

The storage abstraction layer provides mechanisms (io_dev_init()) to initialize storage devices before IO
operations are called.

The basic operations supported by the layer include open(), close(), read(), write(), size() and
seek(). Drivers do not have to implement all operations, but each platform must provide at least one driver
for a device capable of supporting generic operations such as loading a bootloader image.

The current implementation only allows for known images to be loaded by the firmware. These images are
specified by using their identifiers, as defined in include/plat/common/common_def.h (or a sepa-
rate header file included from there). The platform layer (plat_get_image_source()) then returns a
reference to a device and a driver-specific spec which will be understood by the driver to allow access to the
image data.

The layer is designed in such a way that is it possible to chain drivers with other drivers. For example, file-

6.22. Storage abstraction layer 497

Trusted Firmware-A, Release 2.10.4

system drivers may be implemented on top of physical block devices, both represented by IO devices with
corresponding drivers. In such a case, the file-system “binding” with the block device may be deferred until the
file-system device is initialised.

The abstraction currently depends on structures being statically allocated by the drivers and callers, as the system
does not yet provide a means of dynamically allocating memory. This may also have the affect of limiting the
amount of open resources per driver.

6.23 Measured Boot Platform Interface

Enabling theMEASURED_BOOTflag adds extra platform requirements. Please refer toMeasured Boot Design
for more details.

Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.

498 Chapter 6. Porting Guide

CHAPTER

SEVEN

PLATFORM PORTS

7.1 Allwinner ARMv8 SoCs

Trusted Firmware-A (TF-A) implements the EL3 firmware layer for Allwinner SoCs with ARMv8 cores. Only
BL31 is used to provide proper EL3 setup and PSCI runtime services.

7.1.1 Building TF-A

There is one build target per supported SoC:

SoC TF-A build target
A64 sun50i_a64
H5 sun50i_a64
H6 sun50i_h6
H616 sun50i_h616
H313 sun50i_h616
T507 sun50i_h616
R329 sun50i_r329

To build with the default settings for a particular SoC:

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=<build target> DEBUG=1

So for instance to build for a board with the Allwinner A64 SoC:

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sun50i_a64 DEBUG=1

499

Trusted Firmware-A, Release 2.10.4

Platform-specific build options

The default build options should generate a working firmware image. There are some build options that allow
to fine-tune the firmware, or to disable support for optional features.

• SUNXI_PSCI_USE_NATIVE : Support direct control of the CPU cores powerdown and powerup
sequence by BL31. This requires either support for a code snippet to be loaded into the ARISC SCP
(A64, H5), or the power sequence control registers to be programmed directly (H6, H616). This supports
only basic control, like core on/off and system off/reset. This option defaults to 1. If an active SCP
supporting the SCPI protocol is detected at runtime, this control scheme will be ignored, and SCPI will
be used instead, unless support has been explicitly disabled.

• SUNXI_PSCI_USE_SCPI : Support control of the CPU cores powerdown and powerup sequence by
talking to the SCP processor via the SCPI protocol. This allows more advanced power saving techniques,
like suspend to RAM. This option defaults to 1 on SoCs that feature an SCP. If no SCP firmware using
the SCPI protocol is detected, the native sequence will be used instead. If both native and SCPI methods
are included, SCPI will be favoured if SCP support is detected.

• SUNXI_SETUP_REGULATORS : On SoCs that typically ship with a PMIC power management con-
troller, BL31 tries to set up all needed power rails, programming them to their respective voltages. That
allows bootloader software like U-Boot to ignore power control via the PMIC. This setting defaults to
1. In some situations that enables too many regulators, or some regulators need to be enabled in a very
specific sequence. To avoid problems with those boards, SUNXI_SETUP_REGULATORS can bet set
to 0 on the build command line, to skip the PMIC setup entirely. Any bootloader or OS would need to
setup the PMIC on its own then.

7.1.2 Installation

U-Boot’s SPL acts as a loader, loading both BL31 and BL33 (typically U-Boot). Loading is done from SD
card, eMMC or SPI flash, also via an USB debug interface (FEL).

After building bl31.bin, the binary must be fed to the U-Boot build system to include it in the FIT image that
the SPL loader will process. bl31.bin can be either copied (or sym-linked) into U-Boot’s root directory, or the
environment variable BL31 must contain the binary’s path. See the respective U-Boot documentation for more
details.

7.1.3 Memory layout

A64, H5 and H6 SoCs

BL31 lives in SRAM A2, which is documented to be accessible from secure world only. Since this SRAM
region is very limited (48 KB), we take several measures to reduce memory consumption. One of them is to
confine BL31 to only 28 bits of virtual address space, which reduces the number of required page tables (each
occupying 4KB of memory). The mapping we use on those SoCs is as follows:

0 64K 16M 1GB 1G+160M physical address
+-+------+-+---+------+--...---+-------+----+------+----------
|B| |S|///| |//...///| |////| |

(continues on next page)

500 Chapter 7. Platform Ports

https://gitlab.denx.de/u-boot/u-boot/-/blob/master/board/sunxi/README.sunxi64

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
|R| SRAM |C|///| dev |//...///| (sec) |////| BL33 | DRAM ...
|O| |P|///| MMIO |//...///| DRAM |////| |
|M| | |///| |//...///| (32M) |////| |
+-+------+-+---+------+--...---+-------+----+------+----------
| | | | | | / / / /
| | | | | | / / / /
| | | | | | / / / /
| | | | | | / // /
| | | | | | / / /
+-+------+-+---+------+--+-------+------+
B		S	///		//		
R	SRAM	C	///	dev	//	sec	BL33
O		P	///	MMIO	//	DRAM	
M			///		//		
+-+------+-+---+------+--+-------+------+
0 64K 16M 160M 192M 256M virtual address

H616 SoC

The H616 lacks the secure SRAM region present on the other SoCs, also lacks the “ARISC” management
processor (SCP) we use. BL31 thus needs to run from DRAM, which prevents our compressed virtual memory
map described above. Since running in DRAM also lifts the restriction of the limited SRAM size, we use the
normal 1:1 mapping with 32 bits worth of virtual address space. So the virtual addresses used in BL31 match
the physical addresses as presented above.

7.1.4 Trusted OS dispatcher

One can boot Trusted OS(OP-TEE OS, bl32 image) along side bl31 image on Allwinner A64.

In order to include the ‘opteed’ dispatcher in the image, pass ‘SPD=opteed’ on the command line while com-
piling the bl31 image and make sure the loader (SPL) loads the Trusted OS binary to the beginning of DRAM
(0x40000000).

7.2 Arm Development Platforms

7.2.1 Arm Juno Development Platform

Platform-specific build options

• JUNO_TZMP1 : Boolean option to configure Juno to be used for TrustZone Media Protection (TZ-
MP1). Default value of this flag is 0.

7.2. Arm Development Platforms 501

Trusted Firmware-A, Release 2.10.4

Running software on Juno

This version of TF-A has been tested on variants r0, r1 and r2 of Juno.

To run TF-A on Juno, you need to first prepare an SD card with Juno software stack that includes TF-A. This
version of TF-A is tested with pre-built Linaro release software stack version 20.01. You can alternatively build
the software stack yourself by following the Juno platform software user guide. Once you prepare the software
stack on an SD card, you can replace the bl1.bin and fip.bin binaries in the SOFTWARE/ directory
with custom built TF-A binaries.

Preparing TF-A images

This section provides Juno and FVP specific instructions to build Trusted Firmware, obtain the additional
required firmware, and pack it all together in a single FIP binary. It assumes that a Linaro release software
stack has been installed.

Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12 onwards. Before that release,
pre-built binaries are only available for AArch64.

Warning: Follow the full instructions for one platform before switching to a different one. Mixing in-
structions for different platforms may result in corrupted binaries.

Warning: The uboot image downloaded by the Linaro workspace script does not always match the uboot
image packaged as BL33 in the corresponding fip file. It is recommended to use the version that is packaged
in the fip file using the instructions below.

Note: For the FVP, the kernel FDT is packaged in FIP during build and loaded by the firmware at runtime.

1. Clean the working directory

make realclean

2. Obtain SCP binaries (Juno)

This version of TF-A is tested with SCP version 2.12.0 on Juno. You can download pre-built SCP
binaries (scp_bl1.bin and scp_bl2.bin) from TF-A downloads page. Alternatively, you can
build the binaries from source.

3. Obtain BL33 (all platforms)

Use the fiptool to extract the BL33 image from the FIP package included in the Linaro release:

502 Chapter 7. Platform Ports

http://releases.linaro.org/members/arm/platforms/
https://git.linaro.org/landing-teams/working/arm/arm-reference-platforms.git/about/docs/juno/user-guide.rst
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/juno/
https://github.com/ARM-software/SCP-firmware/blob/master/user_guide.md#scp-firmware-user-guide

Trusted Firmware-A, Release 2.10.4

Build the fiptool
make [DEBUG=1] [V=1] fiptool

Unpack firmware images from Linaro FIP
./tools/fiptool/fiptool unpack <path-to-linaro-release>/[SOFTWARE]/fip.
↪→bin

The unpack operation will result in a set of binary images extracted to the current working directory.
BL33 corresponds to nt-fw.bin.

Note: The fiptool will complain if the images to be unpacked already exist in the current directory. If
that is the case, either delete those files or use the --force option to overwrite.

Note: For AArch32, the instructions below assume that nt-fw.bin is a normal world boot loader that
supports AArch32.

4. Build TF-A images and create a new FIP for FVP

AArch64
make PLAT=fvp BL33=nt-fw.bin all fip

AArch32
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip

5. Build TF-A images and create a new FIP for Juno

For AArch64:

Building for AArch64 on Juno simply requires the addition of SCP_BL2 as a build parameter.

make PLAT=juno BL33=nt-fw.bin SCP_BL2=scp_bl2.bin all fip

For AArch32:

Hardware restrictions on Juno prevent cold reset into AArch32 execution mode, therefore BL1 and BL2
must be compiled for AArch64, and BL32 is compiled separately for AArch32.

• Before building BL32, the environment variable CROSS_COMPILE must point to the AArch32
Linaro cross compiler.

export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-

• Build BL32 in AArch32.

make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32

• Save bl32.bin to a temporary location and clean the build products.

7.2. Arm Development Platforms 503

Trusted Firmware-A, Release 2.10.4

cp <path-to-build>/bl32.bin <path-to-temporary>
make realclean

• Before building BL1 and BL2, the environment variable CROSS_COMPILE must point to the
AArch64 Linaro cross compiler.

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-

• The following parameters should be used to build BL1 and BL2 in AArch64 and point to the BL32
file.

make ARCH=aarch64 PLAT=juno JUNO_AARCH32_EL3_RUNTIME=1 \
BL33=nt-fw.bin SCP_BL2=scp_bl2.bin \
BL32=<path-to-temporary>/bl32.bin all fip

The resulting BL1 and FIP images may be found in:

Juno
./build/juno/release/bl1.bin
./build/juno/release/fip.bin

FVP
./build/fvp/release/bl1.bin
./build/fvp/release/fip.bin

After building TF-A, the files bl1.bin, fip.bin and scp_bl1.bin need to be copied to the
SOFTWARE/ directory on the Juno SD card.

Booting Firmware Update images

The new images must be programmed in flash memory by adding an entry in the SITE1/HBI0262x/
images.txt configuration file on the Juno SD card (where x depends on the revision of the Juno board).
Refer to the Juno Getting Started Guide, section 2.3 “Flash memory programming” for more information. User
should ensure these do not overlap with any other entries in the file.

NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_
↪→address]
NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
NOR10LOAD: 00000000 ;Image Load Address
NOR10ENTRY: 00000000 ;Image Entry Point

NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_
↪→address]
NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
NOR11LOAD: 00000000 ;Image Load Address

The address ns_bl1u_base_address is the value ofNS_BL1U_BASE - 0x8000000. In the sameway, the address
ns_bl2u_base_address is the value of NS_BL2U_BASE - 0x8000000.

504 Chapter 7. Platform Ports

https://developer.arm.com/documentation/den0928/f/?lang=en

Trusted Firmware-A, Release 2.10.4

Booting an EL3 payload

If the EL3 payload is able to execute in place, it may be programmed in flash memory by adding an entry in the
SITE1/HBI0262x/images.txt configuration file on the Juno SD card (where x depends on the revision
of the Juno board). Refer to the Juno Getting Started Guide, section 2.3 “Flash memory programming” for
more information.

Alternatively, the same DS-5 command mentioned in the FVP section above can be used to load the EL3
payload’s ELF file over JTAG on Juno.

For more information on EL3 payloads in general, see Booting an EL3 payload.

Booting a preloaded kernel image

The Trusted Firmware must be compiled in a similar way as for FVP explained above. The process to load
binaries to memory is the one explained in plat_juno_booting_el3_payload.

Testing System Suspend

The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend to RAM. For more
details refer to section 5.16 of PSCI. To test system suspend on Juno, at the linux shell prompt, issue the
following command:

echo +10 > /sys/class/rtc/rtc0/wakealarm
echo -n mem > /sys/power/state

The Juno board should suspend to RAM and then wakeup after 10 seconds due to wakeup interrupt from RTC.

Additional Resources

Please visit the Arm Platforms Portal to get support and obtain any other Juno software information. Please
also refer to the Juno Getting Started Guide to get more detailed information about the Juno Arm development
platform and how to configure it.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

7.2.2 Arm Fixed Virtual Platforms (FVP)

Fixed Virtual Platform (FVP) Support

This section lists the supported Arm FVP platforms. Please refer to the FVP documentation for a detailed
description of the model parameter options.

The latest version of the AArch64 build of TF-A has been tested on the following Arm FVPs without shifted
affinities, and that do not support threaded CPU cores (64-bit host machine only).

7.2. Arm Development Platforms 505

https://developer.arm.com/documentation/den0928/f/?lang=en
https://developer.arm.com/documentation/den0022/latest/
https://community.arm.com/dev-platforms/
https://developer.arm.com/documentation/den0928/f/?lang=en

Trusted Firmware-A, Release 2.10.4

Note: The FVP models used are Version 11.22 Build 14, unless otherwise stated.

• Foundation_Platform

• FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502 (Version 11.17/21)

• FVP_Base_AEMv8A-GIC600AE (Version 11.17/21)

• FVP_Base_AEMvA

• FVP_Base_AEMvA-AEMvA

• FVP_Base_Cortex-A32x4 (Version 11.12/38)

• FVP_Base_Cortex-A35x4

• FVP_Base_Cortex-A53x4

• FVP_Base_Cortex-A55

• FVP_Base_Cortex-A55x4+Cortex-A75x4

• FVP_Base_Cortex-A55x4+Cortex-A76x2

• FVP_Base_Cortex-A57x1-A53x1

• FVP_Base_Cortex-A57x2-A53x4

• FVP_Base_Cortex-A57x4

• FVP_Base_Cortex-A57x4-A53x4

• FVP_Base_Cortex-A65

• FVP_Base_Cortex-A65AE

• FVP_Base_Cortex-A710x4 (Version 11.17/21)

• FVP_Base_Cortex-A72x4

• FVP_Base_Cortex-A72x4-A53x4

• FVP_Base_Cortex-A73x4

• FVP_Base_Cortex-A73x4-A53x4

• FVP_Base_Cortex-A75

• FVP_Base_Cortex-A76

• FVP_Base_Cortex-A76AE

• FVP_Base_Cortex-A77

• FVP_Base_Cortex-A78

• FVP_Base_Cortex-A78AE

• FVP_Base_Cortex-A78C

• FVP_Base_Cortex-X2x4 (Version 11.17/21)

506 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

• FVP_Base_Neoverse-E1

• FVP_Base_Neoverse-N1

• FVP_Base_Neoverse-V1

• FVP_Base_RevC-2xAEMvA

• FVP_BaseR_AEMv8R

• FVP_Morello (Version 0.11/33)

• FVP_RD_V1

• FVP_TC1

• FVP_TC2 (Version 11.20/24)

The latest version of the AArch32 build of TF-A has been tested on the following Arm FVPs without shifted
affinities, and that do not support threaded CPU cores (64-bit host machine only).

• FVP_Base_AEMvA

• FVP_Base_AEMvA-AEMvA

• FVP_Base_Cortex-A32x4

Note: The FVP_Base_RevC-2xAEMvA FVP only supports shifted affinities, which is not compatible with
legacy GIC configurations. Therefore this FVP does not support these legacy GIC configurations.

The Foundation and Base FVPs can be downloaded free of charge. See the Arm FVP website. The Cortex-A
models listed above are also available to download from Arm’s website.

Note: The build numbers quoted above are those reported by launching the FVP with the --version
parameter.

Note: Linaro provides a ramdisk image in prebuilt FVP configurations and full file systems that can be down-
loaded separately. To run an FVP with a virtio file system image an additional FVP configuration option -C
bp.virtioblockdevice.image_path="<path-to>/<file-system-image> can be used.

Note: The software will not work on Version 1.0 of the Foundation FVP. The commands below would report
an unhandled argument error in this case.

Note: FVPs can be launched with --cadi-server option such that a CADI-compliant debugger (for
example, Arm DS-5) can connect to and control its execution.

7.2. Arm Development Platforms 507

https://developer.arm.com/products/system-design/fixed-virtual-platforms
https://developer.arm.com/products/system-design/fixed-virtual-platforms

Trusted Firmware-A, Release 2.10.4

Warning: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202 the internal
synchronisation timings changed compared to older versions of the models. The models can be launched
with -Q 100 option if they are required to match the run time characteristics of the older versions.

All the above platforms have been tested with Linaro Release 20.01.

Arm FVP Platform Specific Build Options

• FVP_CLUSTER_COUNT : Configures the cluster count to be used to build the topology tree within TF-
A. By default TF-A is configured for dual cluster topology and this option can be used to override the
default value.

• FVP_INTERCONNECT_DRIVER: Selects the interconnect driver to be built. The default interconnect
driver depends on the value of FVP_CLUSTER_COUNT as explained in the options below:

– FVP_CCI : The CCI driver is selected. This is the default if 0 < FVP_CLUSTER_COUNT <= 2.

– FVP_CCN : The CCN driver is selected. This is the default if FVP_CLUSTER_COUNT > 2.

• FVP_MAX_CPUS_PER_CLUSTER: Sets the maximum number of CPUs implemented in a single clus-
ter. This option defaults to 4.

• FVP_MAX_PE_PER_CPU: Sets the maximum number of PEs implemented on any CPU in the system.
This option defaults to 1. Note that the build option ARM_PLAT_MT doesn’t have any effect on FVP
platforms.

• FVP_USE_GIC_DRIVER : Selects the GIC driver to be built. Options:

– FVP_GICV2 : The GICv2 only driver is selected

– FVP_GICV3 : The GICv3 only driver is selected (default option)

• FVP_HW_CONFIG_DTS : Specify the path to the DTS file to be compiled to DTB and packaged in FIP
as the HW_CONFIG. See Firmware Design for details on HW_CONFIG. By default, this is initialized
to a sensible DTS file in fdts/ folder depending on other build options. But some cases, like shifted
affinity format for MPIDR, cannot be detected at build time and this option is needed to specify the
appropriate DTS file.

• FVP_HW_CONFIG : Specify the path to the HW_CONFIG blob to be packaged in FIP. See Firmware
Design for details on HW_CONFIG. This option is similar to the FVP_HW_CONFIG_DTS option, but
it directly specifies the HW_CONFIG blob instead of the DTS file. This option is useful to override the
default HW_CONFIG selected by the build system.

• FVP_GICR_REGION_PROTECTION: Mark the redistributor pages of inactive/fused CPU cores as
read-only. The default value of this option is 0, which means the redistributor pages of all CPU cores
are marked as read and write.

508 Chapter 7. Platform Ports

http://releases.linaro.org/members/arm/platforms/20.01

Trusted Firmware-A, Release 2.10.4

Booting Firmware Update images

When Firmware Update (FWU) is enabled there are at least 2 new images that have to be loaded, the Non-
Secure FWU ROM (NS-BL1U), and the FWU FIP.

The additional fip images must be loaded with:

--data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_
↪→address]
--data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_
↪→address]

The address ns_bl1u_base_address is the value of NS_BL1U_BASE. In the same way, the address
ns_bl2u_base_address is the value of NS_BL2U_BASE.

Booting an EL3 payload

The EL3 payloads boot flow requires the CPU’s mailbox to be cleared at reset for the secondary CPUs holding
pen to work properly. Unfortunately, its reset value is undefined on the FVP platform and the FVP platform
code doesn’t clear it. Therefore, one must modify the way the model is normally invoked in order to clear the
mailbox at start-up.

One way to do that is to create an 8-byte file containing all zero bytes using the following command:

dd if=/dev/zero of=mailbox.dat bs=1 count=8

and pre-load it into the FVP memory at the mailbox address (i.e. 0x04000000) using the following model
parameters:

--data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
--data=mailbox.dat@0x04000000 [Foundation FVP]

To provide the model with the EL3 payload image, the following methods may be used:

1. If the EL3 payload is able to execute in place, it may be programmed into flash memory. On Base Cortex
and AEM FVPs, the following model parameter loads it at the base address of the NOR FLASH1 (the
NOR FLASH0 is already used for the FIP):

-C bp.flashloader1.fname="<path-to>/<el3-payload>"

On Foundation FVP, there is no flash loader component and the EL3 payload may be programmed
anywhere in flash using method 3 below.

2. When using the SPIN_ON_BL1_EXIT=1 loading method, the following DS-5 command may be used
to load the EL3 payload ELF image over JTAG:

load <path-to>/el3-payload.elf

3. The EL3 payload may be pre-loaded in volatile memory using the following model parameters:

7.2. Arm Development Platforms 509

Trusted Firmware-A, Release 2.10.4

--data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
--data="<path-to>/<el3-payload>"@address [Foundation FVP]

The address provided to the FVP must match the EL3_PAYLOAD_BASE address used when building
TF-A.

Booting a preloaded kernel image (Base FVP)

The following example uses a simplified boot flow by directly jumping from the TF-A to the Linux kernel,
which will use a ramdisk as filesystem. This can be useful if both the kernel and the device tree blob (DTB)
are already present in memory (like in FVP).

For example, if the kernel is loaded at 0x80080000 and the DTB is loaded at address 0x82000000, the
firmware can be built like this:

CROSS_COMPILE=aarch64-none-elf- \
make PLAT=fvp DEBUG=1 \
RESET_TO_BL31=1 \
ARM_LINUX_KERNEL_AS_BL33=1 \
PRELOADED_BL33_BASE=0x80080000 \
ARM_PRELOADED_DTB_BASE=0x82000000 \
all fip

Now, it is needed to modify the DTB so that the kernel knows the address of the ramdisk. The following script
generates a patched DTB from the provided one, assuming that the ramdisk is loaded at address 0x84000000.
Note that this script assumes that the user is using a ramdisk image prepared for U-Boot, like the ones provided
by Linaro. If using a ramdisk without this header,the 0x40 offset in INITRD_START has to be removed.

#!/bin/bash

Path to the input DTB
KERNEL_DTB=<path-to>/<fdt>
Path to the output DTB
PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
Base address of the ramdisk
INITRD_BASE=0x84000000
Path to the ramdisk
INITRD=<path-to>/<ramdisk.img>

Skip uboot header (64 bytes)
INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)))
INITRD_SIZE=$(stat -Lc %s ${INITRD})
INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})))

CHOSEN_NODE=$(echo \
"/ { \

chosen { \
linux,initrd-start = <${INITRD_START}>; \
linux,initrd-end = <${INITRD_END}>; \

}; \

(continues on next page)

510 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
};")

echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
dtc -O dtb -o ${PATCHED_KERNEL_DTB} -

And the FVP binary can be run with the following command:

<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04001000 \
-C cluster0.cpu1.RVBAR=0x04001000 \
-C cluster0.cpu2.RVBAR=0x04001000 \
-C cluster0.cpu3.RVBAR=0x04001000 \
-C cluster1.cpu0.RVBAR=0x04001000 \
-C cluster1.cpu1.RVBAR=0x04001000 \
-C cluster1.cpu2.RVBAR=0x04001000 \
-C cluster1.cpu3.RVBAR=0x04001000 \
--data cluster0.cpu0="<path-to>/bl31.bin"@0x04001000 \
--data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000

Obtaining the Flattened Device Trees

Depending on the FVP configuration and Linux configuration used, different FDT files are required. FDT
source files for the Foundation and Base FVPs can be found in the TF-A source directory under fdts/. The
Foundation FVP has a subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
and MMC support, and has only one CPU cluster.

Note: It is not recommended to use the FDTs built along the kernel because not all FDTs are available from
there.

The dynamic configuration capability is enabled in the firmware for FVPs. This means that the firmware can
authenticate and load the FDT if present in FIP. A default FDT is packaged into FIP during the build based on
the build configuration. This can be overridden by using the FVP_HW_CONFIG or FVP_HW_CONFIG_DTS
build options (refer to Arm FVP Platform Specific Build Options for details on the options).

• fvp-base-gicv2-psci.dts

For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs without shifted affinities
and with Base memory map configuration.

• fvp-base-gicv3-psci.dts

7.2. Arm Development Platforms 511

Trusted Firmware-A, Release 2.10.4

For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs without shifted affinities
and with Base memory map configuration and Linux GICv3 support.

• fvp-base-gicv3-psci-1t.dts

For use with models such as the AEMv8-RevC Base FVP with shifted affinities, single threaded CPUs,
Base memory map configuration and Linux GICv3 support.

• fvp-base-gicv3-psci-dynamiq.dts

For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities, single cluster, single
threaded CPUs, Base memory map configuration and Linux GICv3 support.

• fvp-foundation-gicv2-psci.dts

For use with Foundation FVP with Base memory map configuration.

• fvp-foundation-gicv3-psci.dts

(Default) For use with Foundation FVP with Base memory map configuration and Linux GICv3 support.

Running on the Foundation FVP with reset to BL1 entrypoint

The following Foundation_Platform parameters should be used to boot Linux with 4 CPUs using the
AArch64 build of TF-A.

<path-to>/Foundation_Platform \
--cores=4 \
--arm-v8.0 \
--secure-memory \
--visualization \
--gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x08000000 \
--data="<path-to>/<kernel-binary>"@0x80080000 \
--data="<path-to>/<ramdisk-binary>"@0x84000000

Notes:

• BL1 is loaded at the start of the Trusted ROM.

• The Firmware Image Package is loaded at the start of NOR FLASH0.

• The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address is specified via the
load-address property in the hw-config node of FW_CONFIG for FVP.

• The default use-case for the Foundation FVP is to use the --gicv3 option and enable the GICv3 device
in the model. Note that without this option, the Foundation FVP defaults to legacy (Versatile Express)
memory map which is not supported by TF-A.

• In order for TF-A to run correctly on the Foundation FVP, the architecture versions must match. The
Foundation FVP defaults to the highest v8.x version it supports but the default build for TF-A is for v8.0.
To avoid issues either start the Foundation FVP to use v8.0 architecture using the --arm-v8.0 option,
or build TF-A with an appropriate value for ARM_ARCH_MINOR.

512 Chapter 7. Platform Ports

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_fw_config.dts

Trusted Firmware-A, Release 2.10.4

Running on the AEMv8 Base FVP with reset to BL1 entrypoint

The following FVP_Base_RevC-2xAEMv8A parameters should be used to boot Linux with 8 CPUs using
the AArch64 build of TF-A.

<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Note: The FVP_Base_RevC-2xAEMv8A has shifted affinities and requires a specific DTS for all the CPUs
to be loaded.

Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint

The following FVP_Base_AEMv8A-AEMv8A parameters should be used to boot Linux with 8 CPUs using
the AArch32 build of TF-A.

<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

7.2. Arm Development Platforms 513

Trusted Firmware-A, Release 2.10.4

Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

The following FVP_Base_Cortex-A57x4-A53x4 model parameters should be used to boot Linux with
8 CPUs using the AArch64 build of TF-A.

<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint

The following FVP_Base_Cortex-A32x4 model parameters should be used to boot Linux with 4 CPUs
using the AArch32 build of TF-A.

<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Running on the AEMv8 Base FVP with reset to BL31 entrypoint

The following FVP_Base_RevC-2xAEMv8A parameters should be used to boot Linux with 8 CPUs using
the AArch64 build of TF-A.

<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04010000 \
-C cluster0.cpu1.RVBAR=0x04010000 \
-C cluster0.cpu2.RVBAR=0x04010000 \
-C cluster0.cpu3.RVBAR=0x04010000 \
-C cluster1.cpu0.RVBAR=0x04010000 \
-C cluster1.cpu1.RVBAR=0x04010000 \

(continues on next page)

514 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
-C cluster1.cpu2.RVBAR=0x04010000 \
-C cluster1.cpu3.RVBAR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Notes:

• Position Independent Executable (PIE) support is enabled in this config allowing BL31 to be loaded at
any valid address for execution.

• Since a FIP is not loaded when using BL31 as reset entrypoint, the
--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>
parameter is needed to load the individual bootloader images in memory. BL32 image is only needed
if BL31 has been built to expect a Secure-EL1 Payload. For the same reason, the FDT needs to be
compiled from the DT source and loaded via the --data cluster0.cpu0="<path-to>/
<fdt>"@0x82000000 parameter.

• The FVP_Base_RevC-2xAEMv8A has shifted affinities and requires a specific DTS for all the CPUs
to be loaded.

• The -C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31> parameter, where X
and Y are the cluster and CPU numbers respectively, is used to set the reset vector for each core.

• Changing the default value of ARM_TSP_RAM_LOCATION will also require changing the value of
--data="<path-to><bl32-binary>"@<base-address-of-bl32> to the new value of
BL32_BASE.

Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint

The following FVP_Base_AEMv8A-AEMv8A parameters should be used to boot Linux with 8 CPUs using
the AArch32 build of TF-A.

<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \

(continues on next page)

7.2. Arm Development Platforms 515

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
-C cluster1.cpu3.CONFIG64=0 \
-C cluster0.cpu0.RVBAR=0x04002000 \
-C cluster0.cpu1.RVBAR=0x04002000 \
-C cluster0.cpu2.RVBAR=0x04002000 \
-C cluster0.cpu3.RVBAR=0x04002000 \
-C cluster1.cpu0.RVBAR=0x04002000 \
-C cluster1.cpu1.RVBAR=0x04002000 \
-C cluster1.cpu2.RVBAR=0x04002000 \
-C cluster1.cpu3.RVBAR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Note: Position Independent Executable (PIE) support is enabled in this config allowing SP_MIN to be loaded
at any valid address for execution.

Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint

The following FVP_Base_Cortex-A57x4-A53x4 model parameters should be used to boot Linux with
8 CPUs using the AArch64 build of TF-A.

<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04010000 \
-C cluster0.cpu1.RVBARADDR=0x04010000 \
-C cluster0.cpu2.RVBARADDR=0x04010000 \
-C cluster0.cpu3.RVBARADDR=0x04010000 \
-C cluster1.cpu0.RVBARADDR=0x04010000 \
-C cluster1.cpu1.RVBARADDR=0x04010000 \
-C cluster1.cpu2.RVBARADDR=0x04010000 \
-C cluster1.cpu3.RVBARADDR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

516 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint

The following FVP_Base_Cortex-A32x4 model parameters should be used to boot Linux with 4 CPUs
using the AArch32 build of TF-A.

<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04002000 \
-C cluster0.cpu1.RVBARADDR=0x04002000 \
-C cluster0.cpu2.RVBARADDR=0x04002000 \
-C cluster0.cpu3.RVBARADDR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

7.2.3 ARM V8-R64 Fixed Virtual Platform (FVP)

Some of the features of Armv8-R AArch64 FVP platform referenced in Trusted Boot R-class include:

• Secure World Support Only

• EL2 as Maximum EL support (No EL3)

• MPU Support only at EL2

• MPU or MMU Support at EL0/EL1

• AArch64 Support Only

• Trusted Board Boot

Further information on v8-R64 FVP is available at info

Boot Sequence

BL1 –> BL33

The execution begins from BL1 which loads the BL33 image, a boot-wrapped (bootloader + Operating System)
Operating System, from FIP to DRAM.

7.2. Arm Development Platforms 517

https://developer.arm.com/documentation/ddi0600/latest/

Trusted Firmware-A, Release 2.10.4

Build Procedure

• Obtain arm toolchain. Set the CROSS_COMPILE environment variable to point to the toolchain folder.

• Build TF-A:

make PLAT=fvp_r BL33=<path_to_os.bin> all fip

Enable TBBR by adding the following options to the make command:

MBEDTLS_DIR=<path_to_mbedtls_directory> \
TRUSTED_BOARD_BOOT=1 \
GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem

Copyright (c) 2021, Arm Limited. All rights reserved.

7.2.4 Arm Versatile Express

Versatile Express (VE) family development platform provides an ultra fast environment for prototyping Armv7
System-on-Chip designs. VE Fixed Virtual Platforms (FVP) are simulations of Versatile Express boards. The
platform in Trusted Firmware-A has been verified with Arm Cortex-A5 and Cortex-A7 VE FVP’s. This plat-
form is tested on and only expected to work with single core models.

Boot Sequence

BL1 –> BL2 –> BL32(sp_min) –> BL33(u-boot) –> Linux kernel

How to build

Code Locations

• U-boot

• Trusted Firmware-A

Build Procedure

• Obtain arm toolchain. The software stack has been verified with linaro 6.2 arm-linux-gnueabihf. Set the
CROSS_COMPILE environment variable to point to the toolchain folder.

• Fetch and build u-boot. Make the .config file using the command:

make ARCH=arm vexpress_aemv8a_aarch32_config

Make the u-boot binary for Cortex-A5 using the command:

518 Chapter 7. Platform Ports

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://git.linaro.org/landing-teams/working/arm/u-boot.git
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
https://releases.linaro.org/components/toolchain/binaries/6.2-2016.11/arm-linux-gnueabihf/

Trusted Firmware-A, Release 2.10.4

make ARCH=arm SUPPORT_ARCH_TIMER=no

Make the u-boot binary for Cortex-A7 using the command:

make ARCH=arm

• Build TF-A:

The make command for Cortex-A5 is:

make PLAT=fvp_ve ARCH=aarch32 ARM_ARCH_MAJOR=7 ARM_CORTEX_A5=yes \
AARCH32_SP=sp_min FVP_HW_CONFIG_DTS=fdts/fvp-ve-Cortex-A5x1.dts \
ARM_XLAT_TABLES_LIB_V1=1 BL33=<path_to_u-boot.bin> all fip

The make command for Cortex-A7 is:

make PLAT=fvp_ve ARCH=aarch32 ARM_ARCH_MAJOR=7 ARM_CORTEX_A7=yes \
AARCH32_SP=sp_min FVP_HW_CONFIG_DTS=fdts/fvp-ve-Cortex-A7x1.dts \
BL33=<path_to_u-boot.bin> all fip

Run Procedure

The following model parameters should be used to boot Linux using the build of Trusted Firmware-A made
using the above make commands:

./<path_to_model> <path_to_bl1.elf> \
-C motherboard.flashloader1.fname=<path_to_fip.bin> \
--data cluster.cpu0=<path_to_zImage>@0x80080000 \
--data cluster.cpu0=<path_to_ramdisk>@0x84000000

Copyright (c) 2019, Arm Limited. All rights reserved.

7.2.5 TC Total Compute Platform

Some of the features of TC platform referenced in TF-A include:

• A System Control Processor to abstract power and system management tasks away from application
processors. The RAM firmware for SCP is included in the TF-A FIP and is loaded by AP BL2 from FIP
in flash to SRAM for copying by SCP (SCP has access to AP SRAM).

• GICv4

• Trusted Board Boot

• SCMI

• MHUv2

Currently, the main difference between TC0 (TARGET_PLATFORM=0), TC1 (TARGET_PLATFORM=1),
TC2 (TARGET_PLATFORM=2) platforms w.r.t to TF-A is the CPUs supported as below:

7.2. Arm Development Platforms 519

https://github.com/ARM-software/SCP-firmware

Trusted Firmware-A, Release 2.10.4

• TC0 has support for Cortex A510, Cortex A710 and Cortex X2. (Note TC0 is now deprecated)

• TC1 has support for Cortex A510, Cortex A715 and Cortex X3. (Note TC1 is now deprecated)

• TC2 has support for Cortex A520, Cortex A720 and Cortex x4.

Boot Sequence

The execution begins from SCP_BL1. SCP_BL1 powers up the AP which starts executing AP_BL1 and then
executes AP_BL2 which loads the SCP_BL2 from FIP to SRAM. The SCP has access to AP SRAM. The
address and size of SCP_BL2 is communicated to SCP using SDS. SCP copies SCP_BL2 from SRAM to its
own RAM and starts executing it. The AP then continues executing the rest of TF-A stages including BL31
runtime stage and hands off executing to Non-secure world (u-boot).

Build Procedure (TF-A only)

• Obtain Arm toolchain and set the CROSS_COMPILE environment variable to point to the toolchain
folder.

• Build TF-A:

make PLAT=tc BL33=<path_to_uboot.bin> \
SCP_BL2=<path_to_scp_ramfw.bin> TARGET_PLATFORM={0,1,2} all fip

Enable TBBR by adding the following options to the make command:

MBEDTLS_DIR=<path_to_mbedtls_directory> \
TRUSTED_BOARD_BOOT=1 \
GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem

Copyright (c) 2020-2023, Arm Limited. All rights reserved.

7.2.6 Arm FPGA Platform

This platform supports FPGA images used internally in Arm Ltd., for testing and bringup of new cores. With
that focus, peripheral support is minimal: there is no mass storage or display output, for instance. Also this
port ignores any power management features of the platform. Some interconnect setup is done internally by
the platform, so the TF-A code just needs to setup UART and GIC.

The FPGA platform requires to pass on a DTB for the non-secure payload (mostly Linux), so we let TF-A use
information from the DTB for dynamic configuration: the UART and GIC base addresses are read from there.

As a result this port is a fairly generic BL31-only port, which can serve as a template for a minimal new (and
possibly DT-based) platform port.

520 Chapter 7. Platform Ports

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

Trusted Firmware-A, Release 2.10.4

The aim of this port is to support as many FPGA images as possible with a single build. Image specific data
must be described in the DTB or should be auto-detected at runtime.

As the number and topology layout of the CPU cores differs significantly across the various images, this is
detected at runtime by BL31. The /cpus node in the DT will be added and filled accordingly, as long as it does
not exist already.

Platform-specific build options

• SUPPORT_UNKNOWN_MPID : Boolean option to allow unknown MPIDR registers. Normally TF-A
panics if it encounters a MPID value not matched to its internal list, but for new or experimental cores
this creates a lot of churn. With this option, the code will fall back to some basic CPU support code
(only architectural system registers, and no errata). Default value of this flag is 1.

• PRELOADED_BL33_BASE : Physical address of the BL33 non-secure payload. It must have been
loaded into DRAM already, typically this is done by the script that also loads BL31 and the DTB. It
defaults to 0x80080000, which is the traditional load address for an arm64 Linux kernel.

• FPGA_PRELOADED_DTB_BASE : Physical address of the flattened device tree blob (DTB). This DT
will be used by TF-A for dynamic configuration, so it must describe at least the UART and a GICv3
interrupt controller. The DT gets amended by the code, to potentially add a command line and fill the
CPU topology nodes. It will also be passed on to BL33, by putting its address into the x0 register before
jumping to the entry point (following the Linux kernel boot protocol). It defaults to 0x80070000, which
is 64KB before the BL33 load address.

• FPGA_PRELOADED_CMD_LINE : Physical address of the command line to put into the devicetree
blob. Due to the lack of a proper bootloader, a command line can be put somewhere into memory, so
that BL31 will detect it and copy it into the DTB passed on to BL33. To avoid random garbage, there
needs to be a “CMD:” signature before the actual command line. Defaults to 0x1000, which is normally
in the “ROM” space of the typical FPGA image (which can be written by the FPGA payload uploader,
but is read-only to the CPU). The FPGA payload tool should be given a text file containing the desired
command line, prefixed by the “CMD:” signature.

Building the TF-A image

make PLAT=arm_fgpa DEBUG=1

This will use the default load addresses as described above. When those addresses need to differ
for a certain setup, they can be passed on the make command line:

make PLAT=arm_fgpa DEBUG=1 PRELOADED_BL33_BASE=0x80200000 FPGA_
↪→PRELOADED_DTB_BASE=0x80180000 bl31

7.2. Arm Development Platforms 521

Trusted Firmware-A, Release 2.10.4

Running the TF-A image

After building TF-A, the actual TF-A code will be located in bl31.bin in the build directory. Additionally
there is a bl31.axf ELF file, which contains BL31, as well as some simple ROM trampoline code (required
by the Arm FPGA boot flow) and a generic DTB to support most of the FPGA images. This can be simply
handed over to the FPGA payload uploader, which will take care of loading the components at their respective
load addresses. In addition to this file you need at least a BL33 payload (typically a Linux kernel image),
optionally a Linux initrd image file and possibly a command line:

fpga-run ... -m bl31.axf -l auto -m Image -l 0x80080000 -m initrd.gz␣
↪→-l 0x84000000 -m cmdline.txt -l 0x1000

Copyright (c) 2020, Arm Limited. All rights reserved.

7.2.7 Arm Development Platform Build Options

Arm Platform Build Options

• ARM_BL31_IN_DRAM: Boolean option to select loading of BL31 in TZC secured DRAM. By de-
fault, BL31 is in the secure SRAM. Set this flag to 1 to load BL31 in TZC secured DRAM.
If TSP is present, then setting this option also sets the TSP location to DRAM and ignores the
ARM_TSP_RAM_LOCATION build flag.

• ARM_CONFIG_CNTACR: boolean option to unlock access to the CNTBase<N> frame registers
by setting the CNTCTLBase.CNTACR<N> register bits. The frame number <N> is defined by
PLAT_ARM_NSTIMER_FRAME_ID, which should match the frame used by the Non-Secure image
(normally the Linux kernel). Default is true (access to the frame is allowed).

• ARM_DISABLE_TRUSTED_WDOG: boolean option to disable the Trusted Watchdog. By default, Arm
platforms use a watchdog to trigger a system reset in case an error is encountered during the boot process
(for example, when an image could not be loaded or authenticated). The watchdog is enabled in the early
platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The Trusted Watchdog may be
disabled at build time for testing or development purposes.

• ARM_LINUX_KERNEL_AS_BL33: The Linux kernel expects registers x0-x3 to have specific values
at boot. This boolean option allows the Trusted Firmware to have a Linux kernel image as BL33 by
preparing the registers to these values before jumping to BL33. This option defaults to 0 (disabled).
For AArch64 RESET_TO_BL31 and for AArch32 RESET_TO_SP_MIN must be 1 when using it.
If this option is set to 1, ARM_PRELOADED_DTB_BASE must be set to the location of a device
tree blob (DTB) already loaded in memory. The Linux Image address must be specified using the
PRELOADED_BL33_BASE option.

• ARM_PLAT_MT: This flag determines whether the Arm platform layer has to cater for the multi-
threading MT bit when accessing MPIDR. When this flag is set, the functions which deal with MPIDR
assume that the MT bit in MPIDR is set and access the bit-fields in MPIDR accordingly. Default value
of this flag is 0. Note that this option is not used on FVP platforms.

522 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

• ARM_RECOM_STATE_ID_ENC: The PSCI1.0 specification recommends an encoding for the construc-
tion of composite state-ID in the power-state parameter. The existing PSCI clients currently do not sup-
port this encoding of State-ID yet. Hence this flag is used to configure whether to use the recommended
State-ID encoding or not. The default value of this flag is 0, in which case the platform is configured to
expect NULL in the State-ID field of power-state parameter.

• ARM_ROTPK_LOCATION: used when TRUSTED_BOARD_BOOT=1. It specifies the location of the
ROTPK returned by the function plat_get_rotpk_info() for Arm platforms. Depending on the
selected option, the proper private key must be specified using the ROT_KEY option when building the
Trusted Firmware. This private key will be used by the certificate generation tool to sign the BL2 and
Trusted Key certificates. Available options for ARM_ROTPK_LOCATION are:

– regs : return the ROTPK hash stored in the Trusted root-key storage registers.

– devel_rsa : return a development public key hash embedded in the BL1 and BL2 binaries. This
hash has been obtained from the RSA public key arm_rotpk_rsa.der, located in plat/
arm/board/common/rotpk. To use this option, arm_rotprivk_rsa.pem must be
specified as ROT_KEY when creating the certificates.

– devel_ecdsa : return a development public key hash embedded in the BL1 and BL2 binaries.
This hash has been obtained from the ECDSA public key arm_rotpk_ecdsa.der, located in
plat/arm/board/common/rotpk. To use this option, arm_rotprivk_ecdsa.pem
must be specified as ROT_KEY when creating the certificates.

– devel_full_dev_rsa_key : returns a development public key embedded in the BL1 and
BL2 binaries. This key has been obtained from the RSA public key arm_rotpk_rsa.der,
located in plat/arm/board/common/rotpk.

• ARM_ROTPK_HASH: used when ARM_ROTPK_LOCATION=devel_*, excluding de-
vel_full_dev_rsa_key. Specifies the location of the ROTPK hash. Not expected to be a
build option. This defaults to plat/arm/board/common/rotpk/*_sha256.bin depending
on the specified algorithm. Providing ROT_KEY enforces generation of the hash from the ROT_KEY
and overwrites the default hash file.

• ARM_TSP_RAM_LOCATION: location of the TSP binary. Options:

– tsram : Trusted SRAM (default option when TBB is not enabled)

– tdram : Trusted DRAM (if available)

– dram : Secure region in DRAM (default option when TBB is enabled, configured by the TrustZone
controller)

• ARM_XLAT_TABLES_LIB_V1: boolean option to compile TF-A with version 1 of the translation
tables library instead of version 2. It is set to 0 by default, which selects version 2.

• ARM_GPT_SUPPORT: Enable GPT parser to get the entry address and length of the various partitions
present in the GPT image. This support is available only for the BL2 component, and it is disabled by
default. The following diagram shows the view of the FIP partition inside the GPT image:

7.2. Arm Development Platforms 523

Trusted Firmware-A, Release 2.10.4

For a better understanding of these options, the Arm development platform memory map is explained in the
Firmware Design.

Arm CSS Platform-Specific Build Options

• CSS_DETECT_PRE_1_7_0_SCP: Boolean flag to detect SCP version incompatibility. Version 1.7.0
of the SCP firmware made a non-backwards compatible change to the MTL protocol, used for AP/SCP
communication. TF-A no longer supports earlier SCP versions. If this option is set to 1 then TF-A will
detect if an earlier version is in use. Default is 1.

• CSS_LOAD_SCP_IMAGES: Boolean flag, which when set, adds SCP_BL2 and SCP_BL2U to the FIP
and FWU_FIP respectively, and enables them to be loaded during boot. Default is 1.

• CSS_USE_SCMI_SDS_DRIVER: Boolean flag which selects SCMI/SDS drivers instead of
SCPI/BOM driver for communicating with the SCP during power management operations and for SCP
RAM Firmware transfer. If this option is set to 1, then SCMI/SDS drivers will be used. Default is 0.

• CSS_SGI_CHIP_COUNT: Configures the number of chips on a SGI/RD platform which supports
multi-chip operation. If CSS_SGI_CHIP_COUNT is set to any valid value greater than 1, the plat-
form code performs required configuration to support multi-chip operation.

524 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

• CSS_SGI_PLATFORM_VARIANT: Selects the variant of a SGI/RD platform. A
particular SGI/RD platform may have multiple variants which may differ in core count, cluster
count or other peripherals. This build option is used to select the appropriate platform variant for
the build. The range of valid values is platform specific.

• CSS_SYSTEM_GRACEFUL_RESET: Build option to enable graceful powerdown of
CPU core on reset. This build option can be used on CSS platforms that require all the CPUs to
execute the CPU specific power down sequence to complete a warm reboot sequence in which only
the CPUs are power cycled.

Arm FVP Build Options

• FVP_TRUSTED_SRAM_SIZE: Size (in kilobytes) of the Trusted SRAM region to utilize when building
for the FVP platform. This option defaults to 256.

Arm Juno Build Options

• JUNO_AARCH32_EL3_RUNTIME: This build flag enables you to execute EL3 runtime software in
AArch32 mode, which is required to run AArch32 on Juno. By default this flag is set to ‘0’. Enabling
this flag builds BL1 and BL2 in AArch64 and facilitates the loading of SP_MIN and BL33 as AArch32
executable images.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

7.2.8 Morello Platform

Morello is an ARMv8-A platform that implements the capability architecture extension. The platform port
present at site provides ARMv8-A architecture enablement.

Capability architecture specific changes will be added here

Further information on Morello Platform is available at info

Boot Sequence

The SCP initializes the RVBAR registers to point to the AP_BL1. Once RVBAR is initialized, the primary
core is powered on. The primary core boots the AP_BL1. It performs minimum initialization necessary to
load and authenticate the AP firmware image (the FIP image) from the AP QSPI NOR Flash Memory into the
Trusted SRAM.

AP_BL1 authenticates and loads the AP_BL2 image. AP_BL2 performs additional initializations, and then
authenticates and loads the AP_BL31 and AP_BL33. AP_BL2 then transfers execution control to AP_BL31,
which is the EL3 runtime firmware. Execution is finally handed off to AP_BL33, which is the non-secure world
(UEFI).

SCP -> AP_BL1 -> AP_BL2 -> AP_BL31 -> AP_BL33

7.2. Arm Development Platforms 525

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
https://git.morello-project.org/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello

Trusted Firmware-A, Release 2.10.4

Build Procedure (TF-A only)

• Obtain arm toolchain. Set the CROSS_COMPILE environment variable to point to the toolchain folder.

• Build TF-A:

export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-

make PLAT=morello all

Copyright (c) 2020-2023, Arm Limited. All rights reserved.

7.2.9 Corstone1000 Platform

Some of the features of the Corstone1000 platform referenced in TF-A include:

• Cortex-A35 application processor (64-bit mode)

• Secure Enclave

• GIC-400

• Trusted Board Boot

Boot Sequence

The board boot relies on CoT (chain of trust). The trusted-firmware-a BL2 is extracted from the FIP and
verified by the Secure Enclave processor. BL2 verification relies on the signature area at the beginning of the
BL2 image. This area is needed by the SecureEnclave bootloader.

Then, the application processor is released from reset and starts by executing BL2.

BL2 performs the actions described in the trusted-firmware-a TBB design document.

Build Procedure (TF-A only)

• Obtain AArch64 ELF bare-metal target toolchain. Set the CROSS_COMPILE environment variable to
point to the toolchain folder.

• Build TF-A:

make LD=aarch64-none-elf-ld \
CC=aarch64-none-elf-gcc \
V=1 \
BUILD_BASE=<path to the build folder> \
PLAT=corstone1000 \
SPD=spmd \
SPMD_SPM_AT_SEL2=0 \
DEBUG=1 \
MBEDTLS_DIR=mbedtls \

(continues on next page)

526 Chapter 7. Platform Ports

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
OPENSSL_DIR=<path to openssl usr folder> \
RUNTIME_SYSROOT=<path to the sysroot> \
ARCH=aarch64 \
TARGET_PLATFORM=<fpga or fvp> \
ENABLE_PIE=1 \
RESET_TO_BL2=1 \
CREATE_KEYS=1 \
GENERATE_COT=1 \
TRUSTED_BOARD_BOOT=1 \
COT=tbbr \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL32=<path to optee binary> \
BL33=<path to u-boot binary> \
bl2

Copyright (c) 2021-2023, Arm Limited. All rights reserved.

This chapter holds documentation related to Arm’s development platforms, including both software models
(FVPs) and hardware development boards such as Juno.

Copyright (c) 2019-2021, Arm Limited. All rights reserved.

7.3 Aspeed AST2700

Aspeed AST2700 is a 64-bit ARM SoC with 4-cores Cortex-A35 integrated. Each core operates at 1.6GHz.

7.3.1 Boot Flow

BootRom –> TF-A BL31 –> BL32 –> BL33 –> Linux Kernel

7.3.2 How to build

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=ast2700 SPD=opteed

7.4 Amlogic Meson A113D (AXG)

The Amlogic Meson A113D is a SoC with a quad core Arm Cortex-A53 running at ~1.2GHz. It also contains
a Cortex-M3 used as SCP.

This port is a minimal implementation of BL31 capable of booting mainline U-Boot and Linux:

• SCPI support.

7.3. Aspeed AST2700 527

Trusted Firmware-A, Release 2.10.4

• Basic PSCI support (CPU_ON, CPU_OFF, SYSTEM_RESET, SYSTEM_OFF). Note that CPU0 can’t
be turned off, so there is a workaround to hide this from the caller.

• GICv2 driver set up.

• Basic SIP services (read efuse data, enable/disable JTAG).

In order to build it:

CROSS_COMPILE=aarch64-none-elf- make DEBUG=1 PLAT=axg [SPD=opteed]
[AML_USE_ATOS=1 when using ATOS as BL32]

This port has been tested on a A113D board. After building it, follow the instructions in the U-Boot repository,
replacing the mentioned bl31.img by the one built from this port.

7.5 Amlogic Meson S905 (GXBB)

The Amlogic Meson S905 is a SoC with a quad core Arm Cortex-A53 running at 1.5Ghz. It also contains a
Cortex-M3 used as SCP.

This port is a minimal implementation of BL31 capable of booting mainline U-Boot and Linux:

• SCPI support.

• Basic PSCI support (CPU_ON, CPU_OFF, SYSTEM_RESET, SYSTEM_OFF). Note that CPU0 can’t
be turned off, so there is a workaround to hide this from the caller.

• GICv2 driver set up.

• Basic SIP services (read efuse data, enable/disable JTAG).

In order to build it:

CROSS_COMPILE=aarch64-linux-gnu- make DEBUG=1 PLAT=gxbb bl31

This port has been tested in a ODROID-C2. After building it, follow the instructions in the U-Boot repository,
replacing the mentioned bl31.bin by the one built from this port.

7.6 Amlogic Meson S905x (GXL)

The Amlogic Meson S905x is a SoC with a quad core Arm Cortex-A53 running at 1.5Ghz. It also contains a
Cortex-M3 used as SCP.

This port is a minimal implementation of BL31 capable of booting mainline U-Boot and Linux:

• SCPI support.

• Basic PSCI support (CPU_ON, CPU_OFF, SYSTEM_RESET, SYSTEM_OFF). Note that CPU0 can’t
be turned off, so there is a workaround to hide this from the caller.

• GICv2 driver set up.

• Basic SIP services (read efuse data, enable/disable JTAG).

528 Chapter 7. Platform Ports

https://github.com/u-boot/u-boot/blob/master/doc/board/amlogic/s400.rst
https://gitlab.denx.de/u-boot/u-boot/-/blob/master/board/amlogic/p200/README.odroid-c2

Trusted Firmware-A, Release 2.10.4

In order to build it:

CROSS_COMPILE=aarch64-linux-gnu- make DEBUG=1 PLAT=gxl

This port has been tested on a Lepotato. After building it, follow the instructions in the gxlimg repository or
U-Boot repository, replacing the mentioned bl31.img by the one built from this port.

7.7 Amlogic Meson S905X2 (G12A)

The Amlogic Meson S905X2 is a SoC with a quad core Arm Cortex-A53 running at ~1.8GHz. It also contains
a Cortex-M3 used as SCP.

This port is a minimal implementation of BL31 capable of booting mainline U-Boot and Linux:

• SCPI support.

• Basic PSCI support (CPU_ON, CPU_OFF, SYSTEM_RESET, SYSTEM_OFF). Note that CPU0 can’t
be turned off, so there is a workaround to hide this from the caller.

• GICv2 driver set up.

• Basic SIP services (read efuse data, enable/disable JTAG).

In order to build it:

CROSS_COMPILE=aarch64-linux-gnu- make DEBUG=1 PLAT=g12a

This port has been tested on a SEI510 board. After building it, follow the instructions in the gxlimg repository
or U-Boot repository, replacing the mentioned bl31.img by the one built from this port.

7.8 HiKey

HiKey is one of 96boards. Hisilicon Kirin6220 processor is installed on HiKey.

More information are listed in link.

7.8.1 How to build

Code Locations

• Trusted Firmware-A: link

• OP-TEE link

• edk2: link

• OpenPlatformPkg: link

• l-loader: link

• atf-fastboot: link

7.7. Amlogic Meson S905X2 (G12A) 529

https://github.com/repk/gxlimg/blob/master/README
https://github.com/u-boot/u-boot/blob/master/doc/board/amlogic/p212.rst
https://github.com/repk/gxlimg/blob/master/README.g12a
https://github.com/u-boot/u-boot/blob/master/doc/board/amlogic/sei510.rst
https://www.96boards.org/documentation/consumer/hikey/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/optee_os
https://github.com/96boards-hikey/edk2/tree/testing/hikey960_v2.5
https://github.com/96boards-hikey/OpenPlatformPkg/tree/testing/hikey960_v1.3.4
https://github.com/96boards-hikey/l-loader/tree/testing/hikey960_v1.2
https://github.com/96boards-hikey/atf-fastboot/tree/master

Trusted Firmware-A, Release 2.10.4

Build Procedure

• Fetch all the above repositories into local host. Make all the repositories in the same ${BUILD_PATH}.

git clone https://github.com/ARM-software/arm-trusted-firmware -b␣
↪→integration
git clone https://github.com/OP-TEE/optee_os
git clone https://github.com/96boards-hikey/edk2 -b testing/hikey960_
↪→v2.5
git clone https://github.com/96boards-hikey/OpenPlatformPkg -b␣
↪→testing/hikey960_v1.3.4
git clone https://github.com/96boards-hikey/l-loader -b testing/
↪→hikey960_v1.2
git clone https://github.com/96boards-hikey/atf-fastboot

• Create the symbol link to OpenPlatformPkg in edk2.

$cd ${BUILD_PATH}/edk2
$ln -sf ../OpenPlatformPkg

• Prepare AARCH64 && AARCH32 toolchain. Prepare python.

• If your hikey hardware is built by CircuitCo, update OpenPlat-
formPkg/Platforms/Hisilicon/HiKey/HiKey.dsc first. (optional) console on hikey.**

DEFINE SERIAL_BASE=0xF8015000

If your hikey hardware is built by LeMaker, nothing to do.

• Build it as debug mode. Create your own build script file or you could refer to build_uefi.sh in l-loader
git repository.

cd {BUILD_PATH}/arm-trusted-firmware
sh ../l-loader/build_uefi.sh hikey

• Generate l-loader.bin and partition table for aosp. The eMMC capacity is either 8GB or 4GB. Just change
“aosp-8g” to “linux-8g” for debian.

cd ${BUILD_PATH}/l-loader
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl1.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl2.bin
ln -sf ${BUILD_PATH}/atf-fastboot/build/hikey/${FASTBOOT_BUILD_OPTION}/
↪→bl1.bin fastboot.bin
make hikey PTABLE_LST=aosp-8g

530 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.8.2 Setup Console

• Install ser2net. Use telnet as the console since UEFI fails to display Boot Manager GUI in minicom. If
you don’t need Boot Manager GUI, just ignore this section.

$sudo apt-get install ser2net

• Configure ser2net.

$sudo vi /etc/ser2net.conf

Append one line for serial-over-USB in below. #ser2net.conf

2004:telnet:0:/dev/ttyUSB0:115200 8DATABITS NONE 1STOPBIT banner

• Start ser2net

$sudo killall ser2net
$sudo ser2net -u

• Open the console.

$telnet localhost 2004

And you could open the console remotely, too.

7.8.3 Flash images in recovery mode

• Make sure Pin3-Pin4 on J15 are connected for recovery mode. Then power on HiKey.

• Remove the modemmanager package. This package may cause the idt tool failure.

$sudo apt-get purge modemmanager

• Run the command to download recovery.bin into HiKey.

$sudo python hisi-idt.py -d /dev/ttyUSB1 --img1 recovery.bin

• Update images. All aosp or debian images could be fetched from link.

$sudo fastboot flash ptable prm_ptable.img
$sudo fastboot flash loader l-loader.bin
$sudo fastboot flash fastboot fip.bin
$sudo fastboot flash boot boot.img
$sudo fastboot flash cache cache.img
$sudo fastboot flash system system.img
$sudo fastboot flash userdata userdata.img

7.8. HiKey 531

http://releases.linaro.org/96boards/

Trusted Firmware-A, Release 2.10.4

7.8.4 Boot UEFI in normal mode

• Make sure Pin3-Pin4 on J15 are open for normal boot mode. Then power on HiKey.

• Reference link

7.9 HiKey960

HiKey960 is one of 96boards. Hisilicon Hi3660 processor is installed on HiKey960.

More information are listed in link.

7.9.1 How to build

Code Locations

• Trusted Firmware-A: link

• OP-TEE: link

• edk2: link

• OpenPlatformPkg: link

• l-loader: link

Build Procedure

• Fetch all the above 5 repositories into local host. Make all the repositories in the same ${BUILD_PATH}.

git clone https://github.com/ARM-software/arm-trusted-firmware -b␣
↪→integration
git clone https://github.com/OP-TEE/optee_os
git clone https://github.com/96boards-hikey/edk2 -b testing/hikey960_
↪→v2.5
git clone https://github.com/96boards-hikey/OpenPlatformPkg -b␣
↪→testing/hikey960_v1.3.4
git clone https://github.com/96boards-hikey/l-loader -b testing/
↪→hikey960_v1.2

• Create the symbol link to OpenPlatformPkg in edk2.

$cd ${BUILD_PATH}/edk2
$ln -sf ../OpenPlatformPkg

• Prepare AARCH64 toolchain.

• If your hikey960 hardware is v1, update OpenPlatformPkg/Platforms/Hisilicon/HiKey960/HiKey960.dsc
first. (optional)

532 Chapter 7. Platform Ports

https://github.com/96boards-hikey/tools-images-hikey960/blob/master/build-from-source/README-ATF-UEFI-build-from-source.md
https://www.96boards.org/documentation/consumer/hikey/hikey960
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/optee_os
https://github.com/96boards-hikey/edk2/tree/testing/hikey960_v2.5
https://github.com/96boards-hikey/OpenPlatformPkg/tree/testing/hikey960_v1.3.4
https://github.com/96boards-hikey/l-loader/tree/testing/hikey960_v1.2

Trusted Firmware-A, Release 2.10.4

DEFINE SERIAL_BASE=0xFDF05000

If your hikey960 hardware is v2 or newer, nothing to do.

• Build it as debug mode. Create script file for build.

cd {BUILD_PATH}/arm-trusted-firmware
sh ../l-loader/build_uefi.sh hikey960

• Generate l-loader.bin and partition table. Make sure that you’re using the sgdisk in the l-loader directory.

cd ${BUILD_PATH}/l-loader
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl1.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl2.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/fip.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/BL33_AP_UEFI.fd
make hikey960

7.9.2 Setup Console

• Install ser2net. Use telnet as the console since UEFI will output window that fails to display in minicom.

$sudo apt-get install ser2net

• Configure ser2net.

$sudo vi /etc/ser2net.conf

Append one line for serial-over-USB in #ser2net.conf

2004:telnet:0:/dev/ttyUSB0:115200 8DATABITS NONE 1STOPBIT banner

• Start ser2net

$sudo killall ser2net
$sudo ser2net -u

• Open the console.

$telnet localhost 2004

And you could open the console remotely, too.

7.9. HiKey960 533

Trusted Firmware-A, Release 2.10.4

7.9.3 Boot UEFI in recovery mode

• Fetch that are used in recovery mode. The code location is in below. link

• Prepare recovery binary.

$cd tools-images-hikey960
$ln -sf ${BUILD_PATH}/l-loader/l-loader.bin
$ln -sf ${BUILD_PATH}/l-loader/fip.bin
$ln -sf ${BUILD_PATH}/l-loader/recovery.bin

• Prepare config file.

$vi config
The content of config file
./sec_usb_xloader.img 0x00020000
./sec_uce_boot.img 0x6A908000
./recovery.bin 0x1AC00000

• Remove the modemmanager package. This package may causes hikey_idt tool failure.

$sudo apt-get purge modemmanager

• Run the command to download recovery.bin into HiKey960.

$sudo ./hikey_idt -c config -p /dev/ttyUSB1

• UEFI running in recovery mode. When prompt ‘.’ is displayed on console, press hotkey ‘f’ in keyboard.
Then Android fastboot app is running. The timeout of prompt ‘.’ is 10 seconds.

• Update images.

$sudo fastboot flash ptable prm_ptable.img
$sudo fastboot flash xloader sec_xloader.img
$sudo fastboot flash fastboot l-loader.bin
$sudo fastboot flash fip fip.bin
$sudo fastboot flash boot boot.img
$sudo fastboot flash cache cache.img
$sudo fastboot flash system system.img
$sudo fastboot flash userdata userdata.img

• Notice: UEFI could also boot kernel in recovery mode, but BL31 isn’t loaded in recovery mode.

534 Chapter 7. Platform Ports

https://github.com/96boards-hikey/tools-images-hikey960

Trusted Firmware-A, Release 2.10.4

7.9.4 Boot UEFI in normal mode

• Make sure “Boot Mode” switch is OFF for normal boot mode. Then power on HiKey960.

• Reference link

7.10 Intel Agilex SoCFPGA

Agilex SoCFPGA is a FPGA with integrated quad-core 64-bit Arm Cortex A53 processor.

Upon boot, Boot ROM loads bl2 into OCRAM. Bl2 subsequently initializes the hardware, then loads bl31 and
bl33 (UEFI) into DDR and boots to bl33.

Boot ROM --> Trusted Firmware-A --> UEFI

7.10.1 How to build

Code Locations

• Trusted Firmware-A: link

• UEFI (to be updated with new upstreamed UEFI): link

Build Procedure

• Fetch all the above 2 repositories into local host. Make all the repositories in the same ${BUILD_PATH}.

• Prepare the AARCH64 toolchain.

• Build UEFI using Agilex platform as configuration This will be updated to use an updated UEFI using
the latest EDK2 source

make CROSS_COMPILE=aarch64-linux-gnu- device=agx

• Build atf providing the previously generated UEFI as the BL33 image

make CROSS_COMPILE=aarch64-linux-gnu- bl2 fip PLAT=agilex
BL33=PEI.ROM

7.10. Intel Agilex SoCFPGA 535

https://github.com/96boards-hikey/tools-images-hikey960/blob/master/build-from-source/README-ATF-UEFI-build-from-source.md
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/altera-opensource/uefi-socfpga

Trusted Firmware-A, Release 2.10.4

Install Procedure

• dd fip.bin to a A2 partition on the MMC drive to be booted in Agilex board.

• Generate a SOF containing bl2

aarch64-linux-gnu-objcopy -I binary -O ihex --change-addresses 0xffe00000 bl2.
↪→bin bl2.hex
quartus_cpf --bootloader bl2.hex <quartus_generated_sof> <output_sof_with_bl2>

• Configure SOF to board

nios2-configure-sof <output_sof_with_bl2>

7.10.2 Boot trace

INFO: DDR: DRAM calibration success.
INFO: ECC is disabled.
NOTICE: BL2: v2.1(debug)
NOTICE: BL2: Built
INFO: BL2: Doing platform setup
NOTICE: BL2: Booting BL31
INFO: Entry point address = 0xffe1c000
INFO: SPSR = 0x3cd
NOTICE: BL31: v2.1(debug)
NOTICE: BL31: Built
INFO: ARM GICv2 driver initialized
INFO: BL31: Initializing runtime services
WARNING: BL31: cortex_a53
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x50000
INFO: SPSR = 0x3c9

7.11 Intel Stratix 10 SoCFPGA

Stratix 10 SoCFPGA is a FPGA with integrated quad-core 64-bit Arm Cortex A53 processor.

Upon boot, Boot ROM loads bl2 into OCRAM. Bl2 subsequently initializes the hardware, then loads bl31 and
bl33 (UEFI) into DDR and boots to bl33.

Boot ROM --> Trusted Firmware-A --> UEFI

536 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.11.1 How to build

Code Locations

• Trusted Firmware-A: link

• UEFI (to be updated with new upstreamed UEFI): link

Build Procedure

• Fetch all the above 2 repositories into local host. Make all the repositories in the same ${BUILD_PATH}.

• Prepare the AARCH64 toolchain.

• Build UEFI using Stratix 10 platform as configuration This will be updated to use an updated UEFI using
the latest EDK2 source

make CROSS_COMPILE=aarch64-linux-gnu- device=s10

• Build atf providing the previously generated UEFI as the BL33 image

make CROSS_COMPILE=aarch64-linux-gnu- bl2 fip PLAT=stratix10
BL33=PEI.ROM

Install Procedure

• dd fip.bin to a A2 partition on the MMC drive to be booted in Stratix 10 board.

• Generate a SOF containing bl2

aarch64-linux-gnu-objcopy -I binary -O ihex --change-addresses 0xffe00000 bl2.
↪→bin bl2.hex
quartus_cpf --bootloader bl2.hex <quartus_generated_sof> <output_sof_with_bl2>

• Configure SOF to board

nios2-configure-sof <output_sof_with_bl2>

7.11.2 Boot trace

INFO: DDR: DRAM calibration success.
INFO: ECC is disabled.
INFO: Init HPS NOC's DDR Scheduler.
NOTICE: BL2: v2.0(debug):v2.0-809-g7f8474a-dirty
NOTICE: BL2: Built : 17:38:19, Feb 18 2019
INFO: BL2: Doing platform setup
INFO: BL2: Loading image id 3
INFO: Loading image id=3 at address 0xffe1c000

(continues on next page)

7.11. Intel Stratix 10 SoCFPGA 537

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/altera-opensource/uefi-socfpga

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: Image id=3 loaded: 0xffe1c000 - 0xffe24034
INFO: BL2: Loading image id 5
INFO: Loading image id=5 at address 0x50000
INFO: Image id=5 loaded: 0x50000 - 0x550000
NOTICE: BL2: Booting BL31
INFO: Entry point address = 0xffe1c000
INFO: SPSR = 0x3cd
NOTICE: BL31: v2.0(debug):v2.0-810-g788c436-dirty
NOTICE: BL31: Built : 15:17:16, Feb 20 2019
INFO: ARM GICv2 driver initialized
INFO: BL31: Initializing runtime services
WARNING: BL31: cortex_a53: CPU workaround for 855873 was missing!
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x50000
INFO: SPSR = 0x3c9
UEFI firmware (version 1.0 built at 11:26:18 on Nov 7 2018)

7.12 Marvell

7.12.1 TF-A Build Instructions for Marvell Platforms

This section describes how to compile the Trusted Firmware-A (TF-A) project for Marvell’s platforms.

Build Instructions

(1) Set the cross compiler

> export CROSS_COMPILE=/path/to/toolchain/aarch64-linux-gnu-

(2) Set path for FIP images:

Set U-Boot image path (relatively to TF-A root or absolute path)

> export BL33=path/to/u-boot.bin

For example: if U-Boot project (and its images) is located at ~/project/u-boot, BL33 should be ~/
project/u-boot/u-boot.bin

Note: u-boot.bin should be used and not u-boot-spl.bin

Set MSS/SCP image path (mandatory only for A7K/A8K/CN913x when MSS_SUPPORT=1)

> export SCP_BL2=path/to/mrvl_scp_bl2*.img

(3) Armada-37x0 build requires WTP tools installation.

538 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

See below in the section “Tools and external components installation”. Install ARM 32-bit cross compiler,
which is required for building WTMI image for CM3

> sudo apt-get install gcc-arm-linux-gnueabi

(4) Clean previous build residuals (if any)

> make distclean

(5) Build TF-A

There are several build options:

• PLAT

Supported Marvell platforms are:

– a3700 - A3720 DB, EspressoBin and Turris MOX

– a70x0

– a70x0_amc - AMC board

– a70x0_mochabin - Globalscale MOCHAbin

– a80x0

– a80x0_mcbin - MacchiatoBin

– a80x0_puzzle - IEI Puzzle-M801

– t9130 - CN913x

– t9130_cex7_eval - CN913x CEx7 Evaluation Board

• DEBUG

Default is without debug information (=0). in order to enable it use DEBUG=1. Can be
enabled also when building UART recovery images, there is no issue with it.

Production TF-A images should be built without this debug option!

• LOG_LEVEL

Defines the level of logging which will be purged to the default output port.

– 0 - LOG_LEVEL_NONE

– 10 - LOG_LEVEL_ERROR

– 20 - LOG_LEVEL_NOTICE (default for DEBUG=0)

– 30 - LOG_LEVEL_WARNING

– 40 - LOG_LEVEL_INFO (default for DEBUG=1)

– 50 - LOG_LEVEL_VERBOSE

• USE_COHERENT_MEM

7.12. Marvell 539

Trusted Firmware-A, Release 2.10.4

This flag determines whether to include the coherent memory region in the BL memory map
or not. Enabled by default.

• LLC_ENABLE

Flag defining the LLC (L3) cache state. The cache is enabled by default (LLC_ENABLE=1).

• LLC_SRAM

Flag enabling the LLC (L3) cache SRAM support. The LLC SRAM is activated and used by
Trusted OS (OP-TEEOS, BL32). The TF-A only prepares CCU address translation windows
for SRAM address range at BL31 execution stage with window target set to DRAM-0. When
Trusted OS activates LLC SRAM, the CCU window target is changed to SRAM. There is
no reason to enable this feature if OP-TEE OS built with CFG_WITH_PAGER=n. Only set
LLC_SRAM=1 if OP-TEE OS is built with CFG_WITH_PAGER=y.

• MARVELL_SECURE_BOOT

Build trusted(=1)/non trusted(=0) image, default is non trusted. This parameter is used only
for mrvl_flash and mrvl_uart targets.

• MV_DDR_PATH

This parameter is required for mrvl_flash and mrvl_uart targets. For
A7K/A8K/CN913x it is used for BLE build and for Armada37x0 it used for ddr_tool build.

Specify path to the full checkout of Marvell mv-ddr-marvell git repository. Checkout must
contain also .git subdirectory because mv-ddr build process calls git commands.

Do not remove any parts of git checkout becuase build process and other applications need
them for correct building and version determination.

CN913x specific build options:

• CP_NUM

Total amount of CPs (South Bridge) connected to AP. When the parameter is omitted, the
build uses the default number of CPs, which is a number of embedded CPs inside the package:
1 or 2 depending on the SoC used. The parameter is valid for OcteonTX2 CN913x SoC
family (PLAT=t9130), which can have external CPs connected to theMCI ports. Valid values
with CP_NUM are in a range of 1 to 3.

A7K/A8K/CN913x specific build options:

• BLE_PATH

Points to BLE (Binary ROM extension) sources folder. The parameter is optional, its default
value is plat/marvell/armada/a8k/common/ble which uses TF-A in-tree BLE
implementation.

• MSS_SUPPORT

When MSS_SUPPORT=1, then TF-A includes support for Management SubSystem (MSS).
When enabled it is required to specify path to the MSS firmware image via SCP_BL2 option.

This option is by default enabled.

• SCP_BL2

540 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Specify path to the MSS fimware image binary which will run on Cortex-M3 coprocessor. It
is available in Marvell binaries-marvell git repository. Required when MSS_SUPPORT=1.

Globalscale MOCHAbin specific build options:

• DDR_TOPOLOGY

The DDR topology map index/name, default is 0.

Supported Options:

– 0 - DDR4 1CS 2GB

– 1 - DDR4 1CS 4GB

– 2 - DDR4 2CS 8GB

Armada37x0 specific build options:

• HANDLE_EA_EL3_FIRST_NS

When HANDLE_EA_EL3_FIRST_NS=1, External Aborts and SError Interrupts, resulting
from errors in NS world, will be always trapped in TF-A. TF-A in this case enables dirty
hack / workaround for a bug found in U-Boot and Linux kernel PCIe controller driver pci-
aardvark.c, traps and then masks SError interrupt caused by AXI SLVERR on external access
(syndrome 0xbf000002).

Otherwise when HANDLE_EA_EL3_FIRST_NS=0, these exceptions will be trapped in the
current exception level (or in EL1 if the current exception level is EL0). So exceptions caused
byU-Boot will be trapped in U-Boot, exceptions caused by Linux kernel (or user applications)
will be trapped in Linux kernel.

Mentioned bug in pci-aardvark.c driver is fixed in U-Boot version v2021.07 and Linux kernel
version v5.13 (workarounded since Linux kernel version 5.9) and also backported in Linux
kernel stable releases since versions v5.12.13, v5.10.46, v5.4.128, v4.19.198, v4.14.240.

If target system has already patched version of U-Boot and Linux kernel then it is strongly
recommended to not enable this workaround as it disallows propagating of all External Aborts
to running Linux kernel and makes correctable errors as fatal aborts.

This option is now disabled by default. In past this option has different name “HAN-
DLE_EA_EL3_FIRST” and was enabled by default in TF-A versions v2.2, v2.3, v2.4 and
v2.5.

• CM3_SYSTEM_RESET

WhenCM3_SYSTEM_RESET=1, the Cortex-M3 secure coprocessor will be used for system
reset.

TF-A will send command 0x0009 with a magic value via the rWTM mailbox interface to
the Cortex-M3 secure coprocessor. The firmware running in the coprocessor must either
implement this functionality or ignore the 0x0009 command (which is true for the firmware
from A3700-utils-marvell repository). If this option is enabled but the firmware does not
support this command, an error message will be printed prior trying to reboot via the usual
way.

7.12. Marvell 541

Trusted Firmware-A, Release 2.10.4

This option is needed on Turris MOX as a workaround to a HW bug which causes reset to
sometime hang the board.

• A3720_DB_PM_WAKEUP_SRC

For Armada 3720 Development Board only, when A3720_DB_PM_WAKEUP_SRC=1, TF-
A will setup PM wake up src configuration. This option is disabled by default.

Armada37x0 specific build options for mrvl_flash and mrvl_uart targets:

• DDR_TOPOLOGY

The DDR topology map index/name, default is 0.

Supported Options:

– 0 - DDR3 1CS 512MB (DB-88F3720-DDR3-Modular, EspressoBin V3-V5)

– 1 - DDR4 1CS 512MB (DB-88F3720-DDR4-Modular)

– 2 - DDR3 2CS 1GB (EspressoBin V3-V5)

– 3 - DDR4 2CS 4GB (DB-88F3720-DDR4-Modular)

– 4 - DDR3 1CS 1GB (DB-88F3720-DDR3-Modular, EspressoBin V3-V5)

– 5 - DDR4 1CS 1GB (EspressoBin V7, EspressoBin-Ultra)

– 6 - DDR4 2CS 2GB (EspressoBin V7)

– 7 - DDR3 2CS 2GB (EspressoBin V3-V5)

– CUST - CUSTOMER BOARD (Customer board settings)

• CLOCKSPRESET

The clock tree configuration preset including CPU and DDR frequency, default is
CPU_800_DDR_800.

– CPU_600_DDR_600 - CPU at 600 MHz, DDR at 600 MHz

– CPU_800_DDR_800 - CPU at 800 MHz, DDR at 800 MHz

– CPU_1000_DDR_800 - CPU at 1000 MHz, DDR at 800 MHz

– CPU_1200_DDR_750 - CPU at 1200 MHz, DDR at 750 MHz

Look at Armada37x0 chip package marking on board to identify correct CPU frequency.
The last line on package marking (next line after the 88F37x0 line) should contain:

– C080 or I080 - chip with 800 MHz CPU - use CLOCKSPRE-
SET=CPU_800_DDR_800

– C100 or I100 - chip with 1000 MHz CPU - use CLOCKSPRE-
SET=CPU_1000_DDR_800

– C120 - chip with 1200 MHz CPU - use CLOCKSPRESET=CPU_1200_DDR_750

• BOOTDEV

542 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

The flash boot device, default is SPINOR.

Currently, Armada37x0 only supports SPINOR, SPINAND, EMMCNORM and SATA:

– SPINOR - SPI NOR flash boot

– SPINAND - SPI NAND flash boot

– EMMCNORM - eMMC Download Mode

Download boot loader or program code from eMMC flash into CM3 or CA53
Requires full initialization and command sequence

– SATA - SATA device boot

Image needs to be stored at disk LBA 0 or at disk partition withMBR type 0x4d
(ASCII ‘M’ as in Marvell) or at disk partition with GPT partition type GUID
6828311A-BA55-42A4-BCDE-A89BB5EDECAE.

• PARTNUM

The boot partition number, default is 0.

To boot from eMMC, the value should be aligned with the parameter in U-Boot with name
of CONFIG_SYS_MMC_ENV_PART, whose value by default is 1. For details about CON-
FIG_SYS_MMC_ENV_PART, please refer to the U-Boot build instructions.

• WTMI_IMG

The path of the binary can point to an image which does nothing, an image which supports
EFUSE or a customized CM3 firmware binary. The default image is fuse.bin that built
from sources in WTP folder, which is the next option. If the default image is OK, then this
option should be skipped.

Please note that this is not a full WTMI image, just a main loop without hardware initializa-
tion code. Final WTMI image is built from this WTMI_IMG binary and sys-init code from
the WTP directory which sets DDR and CPU clocks according to DDR_TOPOLOGY and
CLOCKSPRESET options.

CZ.NIC as part of Turris project released free and open source WTMI application firmware
wtmi_app.bin for all Armada 3720 devices. This firmware includes additional features
like access to Hardware Random Number Generator of Armada 3720 SoC which original
Marvell’s fuse.bin image does not have.

CZ.NIC’s Armada 3720 Secure Firmware is available at website:

https://gitlab.nic.cz/turris/mox-boot-builder/

• WTP

Specify path to the full checkout of Marvell A3700-utils-marvell git repository. Checkout
must contain also .git subdirectory because WTP build process calls git commands.

WTP build process uses also Marvell mv-ddr-marvell git repository specified in
MV_DDR_PATH option.

Do not remove any parts of git checkout becuase build process and other applications need
them for correct building and version determination.

7.12. Marvell 543

https://gitlab.nic.cz/turris/mox-boot-builder/

Trusted Firmware-A, Release 2.10.4

• CRYPTOPP_PATH

Use this parameter to point to Crypto++ source code directory. If this option is specified
then Crypto++ source code in CRYPTOPP_PATH directory will be automatically compiled.
Crypto++ library is required for building WTP image tool. Either CRYPTOPP_PATH or
CRYPTOPP_LIBDIR with CRYPTOPP_INCDIR needs to be specified for Armada37x0.

• CRYPTOPP_LIBDIR

Use this parameter to point to the directory with compiled Crypto++ library. By default it
points to the CRYPTOPP_PATH.

On Debian systems it is possible to install system-wide Crypto++ library via command apt
install libcrypto++-dev and specify CRYPTOPP_LIBDIR to /usr/lib/.

• CRYPTOPP_INCDIR

Use this parameter to point to the directory with header files of Crypto++ library. By default
it points to the CRYPTOPP_PATH.

On Debian systems it is possible to install system-wide Crypto++ library via command
apt install libcrypto++-dev and specify CRYPTOPP_INCDIR to /usr/
include/crypto++/.

For example, in order to build the image in debug mode with log level up to ‘notice’ level run

> make DEBUG=1 USE_COHERENT_MEM=0 LOG_LEVEL=20 PLAT=<MARVELL_PLATFORM> mrvl_
↪→flash

And if we want to build a Armada37x0 image in debug mode with log level up to ‘notice’ level, the image has
the preset CPU at 1000 MHz, preset DDR3 at 800 MHz, the DDR topology of DDR4 2CS, the image boot
from SPI NOR flash partition 0, and the image is non trusted in WTP, the command line is as following

> make DEBUG=1 USE_COHERENT_MEM=0 LOG_LEVEL=20 CLOCKSPRESET=CPU_1000_DDR_800 \
MARVELL_SECURE_BOOT=0 DDR_TOPOLOGY=3 BOOTDEV=SPINOR PARTNUM=0 PLAT=a3700 \
MV_DDR_PATH=/path/to/mv-ddr-marvell/ WTP=/path/to/A3700-utils-marvell/ \
CRYPTOPP_PATH=/path/to/cryptopp/ BL33=/path/to/u-boot.bin \
all fip mrvl_bootimage mrvl_flash mrvl_uart

To build just TF-A without WTMI image (useful for A3720 Turris MOX board), run following command:

> make USE_COHERENT_MEM=0 PLAT=a3700 CM3_SYSTEM_RESET=1 BL33=/path/to/u-boot.
↪→bin \

CROSS_COMPILE=aarch64-linux-gnu- mrvl_bootimage

Here is full example how to build production release of Marvell firmware image (concatenated binary of
Marvell’s A3720 sys-init, CZ.NIC’s Armada 3720 Secure Firmware, TF-A and U-Boot) for EspressoBin
board (PLAT=a3700) with 1GHz CPU (CLOCKSPRESET=CPU_1000_DDR_800) and 1GB DDR4 RAM
(DDR_TOPOLOGY=5):

> git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
> git clone https://source.denx.de/u-boot/u-boot.git
> git clone https://github.com/weidai11/cryptopp.git

(continues on next page)

544 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
> git clone https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git
> git clone https://github.com/MarvellEmbeddedProcessors/A3700-utils-marvell.
↪→git
> git clone https://gitlab.nic.cz/turris/mox-boot-builder.git
> make -C u-boot CROSS_COMPILE=aarch64-linux-gnu- mvebu_espressobin-88f3720_
↪→defconfig u-boot.bin
> make -C mox-boot-builder CROSS_CM3=arm-linux-gnueabi- wtmi_app.bin
> make -C trusted-firmware-a CROSS_COMPILE=aarch64-linux-gnu- CROSS_CM3=arm-
↪→linux-gnueabi- \

USE_COHERENT_MEM=0 PLAT=a3700 CLOCKSPRESET=CPU_1000_DDR_800 DDR_
↪→TOPOLOGY=5 \

MV_DDR_PATH=$PWD/mv-ddr-marvell/ WTP=$PWD/A3700-utils-marvell/ \
CRYPTOPP_PATH=$PWD/cryptopp/ BL33=$PWD/u-boot/u-boot.bin \
WTMI_IMG=$PWD/mox-boot-builder/wtmi_app.bin FIP_ALIGN=0x100 mrvl_flash

Produced Marvell firmware flash image: trusted-firmware-a/build/a3700/release/
flash-image.bin

Special Build Flags

• PLAT_RECOVERY_IMAGE_ENABLE
When set this option to enable secondary recovery function when build atf. In order to build UART
recovery image this operation should be disabled for A7K/A8K/CN913x because of hardware
limitation (boot from secondary image can interrupt UART recovery process). This MACRO
definition is set in plat/marvell/armada/a8k/common/include/platform_def.
h file.

• DDR32
In order to work in 32bit DDR, instead of the default 64bit ECC DDR, this flag should be set to 1.

For more information about build options, please refer to the Build Options document.

Build output

Marvell’s TF-A compilation generates 8 files:

• ble.bin - BLe image (not available for Armada37x0)

• bl1.bin - BL1 image

• bl2.bin - BL2 image

• bl31.bin - BL31 image

• fip.bin - FIP image (contains BL2, BL31 & BL33 (U-Boot) images)

• boot-image.bin - TF-A image (contains BL1 and FIP images)

• flash-image.bin - FlashableMarvell firmware image. For Armada37x0 it contains TIM,WTMI and boot-
image.bin images. For other platforms it contains BLe and boot-image.bin images. Should be placed on
the boot flash/device.

7.12. Marvell 545

Trusted Firmware-A, Release 2.10.4

• uart-images.tgz.bin - GZIPed TAR archive which contains Armada37x0 images for booting via UART.
Could be loaded via Marvell’s WtpDownload tool from A3700-utils-marvell repository.

Additional make target mrvl_bootimage produce boot-image.bin file. Target mrvl_flash pro-
duce final flash-image.bin file and target mrvl_uart produce uart-images.tgz.bin file.

Tools and external components installation

Armada37x0 Builds require installation of additional components

(1) ARM cross compiler capable of building images for the service CPU (CM3). This component is usually
included in the Linux host packages. On Debian/Ubuntu hosts the default GNU ARM tool chain can be
installed using the following command

> sudo apt-get install gcc-arm-linux-gnueabi

Only if required, the default tool chain prefix arm-linux-gnueabi- can be overwritten using the
environment variable CROSS_CM3. Example for BASH shell

> export CROSS_CM3=/opt/arm-cross/bin/arm-linux-gnueabi

(2) DDR initialization library sources (mv_ddr) available at the following repository (use the “master”
branch):

https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git

(3) Armada3700 tools available at the following repository (use the “master” branch):

https://github.com/MarvellEmbeddedProcessors/A3700-utils-marvell.git

(4) Crypto++ library available at the following repository:

https://github.com/weidai11/cryptopp.git

(5) Optional CZ.NIC’s Armada 3720 Secure Firmware:

https://gitlab.nic.cz/turris/mox-boot-builder.git

Armada70x0, Armada80x0 andCN913xBuilds require installation of additional components

(1) DDR initialization library sources (mv_ddr) available at the following repository (use the “master”
branch):

https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git

(2) MSSManagement SubSystem Firmware available at the following repository (use the “binaries-marvell-
armada-SDK10.0.1.0” branch):

https://github.com/MarvellEmbeddedProcessors/binaries-marvell.git

546 Chapter 7. Platform Ports

https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git
https://github.com/MarvellEmbeddedProcessors/A3700-utils-marvell.git
https://github.com/weidai11/cryptopp.git
https://gitlab.nic.cz/turris/mox-boot-builder.git
https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git
https://github.com/MarvellEmbeddedProcessors/binaries-marvell.git

Trusted Firmware-A, Release 2.10.4

7.12.2 TF-A UART Booting Instructions for Marvell Platforms

This section describes how to temporary boot the Trusted Firmware-A (TF-A) project over UART without
flashing it to non-volatile storage for Marvell’s platforms.

See TF-A Build Instructions for Marvell Platforms how to build mrvl_uart and mrvl_flash targets used
in this section.

Armada37x0 UART image downloading

There are two options how to download UART image into any Armada37x0 board.

Marvell Wtpdownloader

Marvell Wtpdownloader works only with UART images stored in separate files and supports only upload speed
with 115200 bauds. Target mrvl_uart produces GZIPed TAR archive uart-images.tgz.binwith ei-
ther three files TIM_ATF.bin, wtmi_h.bin and boot-image_h.bin for non-secure boot or with four
files TIM_ATF_TRUSTED.bin, TIMN_ATF_TRUSTED.bin, wtmi_h.bin and boot-image_h.
bin when secure boot is enabled.

Compilation:

> git clone https://github.com/MarvellEmbeddedProcessors/A3700-utils-marvell.
↪→git
> make -C A3700-utils-marvell/wtptp/src/Wtpdownloader_Linux -f makefile.mk

It produces executable binary A3700-utils-marvell/wtptp/src/Wtpdownloader_Linux/
WtpDownload_linux

To download images from uart-images.tgz.bin archive unpack it and for non-secure boot variant run:

> stty -F /dev/ttyUSB<port#> clocal
> WtpDownload_linux -P UART -C <port#> -E -B TIM_ATF.bin -I wtmi_h.bin -I␣
↪→boot-image_h.bin

After that immediately start terminal on /dev/ttyUSB<port#> to see boot output.

CZ.NIC mox-imager

CZ.NIC mox-imager supports all Armada37x0 boards (not only Turris MOX as name suggests). It works with
either with separate files from uart-images.tgz.bin archive (like Marvell Wtpdownloader) produced
by mrvl_uart target or also with flash-image.bin file produced by mrvl_flash target, which is
the exactly same file as used for flashing. So when using CZ.NIC mox-imager there is no need to build separate
files for UART flashing like in case with Marvell Wtpdownloader.

CZ.NIC mox-imager moreover supports higher upload speeds up to the 6000000 bauds (which seems to be
limit of Armada37x0 SoC) which is much higher and faster than Marvell Wtpdownloader.

Compilation:

7.12. Marvell 547

Trusted Firmware-A, Release 2.10.4

> git clone https://gitlab.nic.cz/turris/mox-imager.git
> make -C mox-imager

It produces executable binary mox-imager/mox-imager

To download single file image built by mrvl_flash target at the highest speed, run:

> mox-imager -D /dev/ttyUSB<port#> -E -b 6000000 -t flash-image.bin

To download images from uart-images.tgz.bin archive built by mrvl_uart target for non-secure
boot variant (like Wtpdownloader) but at the highest speed, first unpack uart-images.tgz.bin archive
and then run:

> mox-imager -D /dev/ttyUSB<port#> -E -b 6000000 -t TIM_ATF.bin wtmi_h.bin␣
↪→boot-image_h.bin

CZ.NIC mox-imager after successful download will start its own mini terminal (option -t) to not loose any
boot output. It also prints boot output which is sent either by image files or by bootrom during transferring of
image files. This mini terminal can be quit by CTRL-\ + C keypress.

A7K/A8K/CN913x UART image downloading

A7K/A8K/CN913x uses same image flash-image.bin for both flashing and booting over UART. For
downloading image over UART it is possible to use mvebu64boot tool.

Compilation:

> git clone https://github.com/pali/mvebu64boot.git
> make -C mvebu64boot

It produces executable binary mvebu64boot/mvebu64boot

To download flash-image.bin image run:

> mvebu64boot -t -b flash-image.bin /dev/ttyUSB0

After successful download it will start own mini terminal (option -t) like CZ.NIC mox-imager.

7.12.3 TF-A Porting Guide for Marvell Platforms

This section describes how to port TF-A to a customer board, assuming that the SoC being used is already
supported in TF-A.

548 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Source Code Structure

• The customer platform specific code shall reside under plat/marvell/armada/<soc fam-
ily>/<soc>_cust (e.g. ‘plat/marvell/armada/a8k/a7040_cust’).

• The platform name for build purposes is called <soc>_cust (e.g. a7040_cust).

• The build system will reuse all files from within the soc directory, and take only the porting files from
the customer platform directory.

Files that require porting are located at plat/marvell/armada/<soc family>/<soc>_cust di-
rectory.

Armada-70x0/Armada-80x0 Porting

SoC Physical Address Map (marvell_plat_config.c)

This file describes the SoC physical memory mapping to be used for the CCU, IOWIN, AXI-MBUS and IOB
address decode units (Refer to the functional spec for more details).

In most cases, using the default address decode windows should work OK.

In cases where a special physical address map is needed (e.g. Special size for PCIe MEM windows, large
memory mapped SPI flash…), then porting of the SoC memory map is required.

Note: For a detailed information on how CCU, IOWIN, AXI-MBUS & IOB work, please refer to the
SoC functional spec, and under docs/plat/marvell/armada/misc/mvebu-[ccu/iob/amb/
io-win].rst files.

boot loader recovery (marvell_plat_config.c)

• Background:

Boot rom can skip the current image and choose to boot from next position if a specific value
(0xDEADB002) is returned by the ble main function. This feature is used for boot loader recovery
by booting from a valid flash-image saved in next position on flash (e.g. address 2M in SPI flash).

Supported options to implement the skip request are:

– GPIO

– I2C

– User defined

• Porting:

Under marvell_plat_config.c, implement struct skip_image that includes specific board parameters.

7.12. Marvell 549

Trusted Firmware-A, Release 2.10.4

Warning: To disable this feature make sure the struct skip_image is not implemented.

• Example:

In A7040-DB specific implementation (plat/marvell/armada/a8k/a70x0/board/
marvell_plat_config.c), the image skip is implemented using GPIO: mpp 33 (SW5).

Before resetting the board make sure there is a valid image on the next flash address:

-tftp [valid address] flash-image.bin -sf update [valid address] 0x2000000 [size]

Press reset and keep pressing the button connected to the chosen GPIO pin. A skip image request message is
printed on the screen and boot rom boots from the saved image at the next position.

DDR Porting (dram_port.c)

This file defines the dram topology and parameters of the target board.

The DDR code is part of the BLE component, which is an extension of ARM Trusted Firmware (TF-A).

The DDR driver called mv_ddr is released separately apart from TF-A sources.

The BLE and consequently, the DDR init code is executed at the early stage of the boot process.

Each supported platform of the TF-A has its own DDR porting file called dram_port.c located at atf/plat/
marvell/armada/a8k/<platform>/board directory.

Please refer to ‘<path_to_mv_ddr_sources>/doc/porting_guide.txt’ for detailed porting description.

The build target directory is “build/<platform>/release/ble”.

Comphy Porting (phy-porting-layer.h or phy-default-porting-layer.h)

• Background:
Some of the comphy’s parameters value depend on the HW connection between the SoC and the
PHY. Every board type has specific HW characteristics like wire length. Due to those differences
some comphy parameters vary between board types. Therefore each board type can have its own
list of values for all relevant comphy parameters. The PHY porting layer specifies which parameters
need to be suited and the board designer should provide relevant values.

The PHY porting layer simplifies updating static values per board type, which are now grouped in
one place.

Note: The parameters for the same type of comphy may vary even for the same board type, it is
because the lanes from comphy-x to some PHY may have different HW characteristic than lanes
from comphy-y to the same (multiplexed) or other PHY.

550 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

• Porting:
The porting layer for PHY was introduced in TF-A. There is one file drivers/marvell/
comphy/phy-default-porting-layer.hwhich contains the defaults. Those default pa-
rameters are used only if there is no appropriate phy-porting-layer.h file under: plat/marvell/
armada/<soc family>/<platform>/board/phy-porting-layer.h. If the phy-
porting-layer.h exists, the phy-default-porting-layer.h is not going to be included.

Warning: Not all comphy types are already reworked to support the PHY porting layer,
currently the porting layer is supported for XFI/SFI and SATA comphy types.

The easiest way to prepare the PHY porting layer for custom board is to copy existing example to
a new platform:

– cp plat/marvell/armada/a8k/a80x0/board/phy-porting-layer.h
“plat/marvell/armada/<soc family>/<platform>/board/phy-porting-layer.h”

– adjust relevant parameters or

– if different comphy index is used for specific feature, move it to proper table entry and then
adjust.

Note: The final table size with comphy parameters can be different, depending on the CP module
count for given SoC type.

• Example:
Example porting layer for armada-8040-db is under: plat/marvell/armada/a8k/
a80x0/board/phy-porting-layer.h

Note: If there is no PHY porting layer for new platform (missing phy-porting-layer.h), the default
values are used (drivers/marvell/comphy/phy-default-porting-layer.h) and the user is warned:

Warning: “Using default comphy parameters - it may be required to suit them for your board”.

7.12.4 Address decoding flow and address translation units of Marvell Armada 8K
SoC family

+---
↪→---------------------+
| +-------------
↪→+ +--------------+ |
| | Memory ␣
↪→+----- DRAM CS | |
|+------------+ +-----------+ +-----------+ | Controller ␣

(continues on next page)

7.12. Marvell 551

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
↪→| +--------------+ |
|| AP DMA | | | | | +-------------
↪→+ |
|| SD/eMMC | | CA72 CPUs | | AP MSS | +-------------
↪→+ |
|| MCI-0/1 | | | | | | Memory ␣
↪→| |
|+------+-----+ +--+--------+ +--------+--+ +------------+ | Controller ␣
↪→| +-------------+ |
| | | | | +----- Translaton ␣
↪→| |AP | |
| | | | | | +-------------
↪→+ |Configuration| |
| | | +-----+ +-------------------
↪→------Space | |
| | | +-------------+ | CCU | ␣
↪→ +-------------+ |
| | | | MMU +---------+ Windows | +-----------+ ␣
↪→ +-------------+ |
| | +-| translation | | Lookup +---- +---
↪→------ AP SPI | |
| | +-------------+ | | | | ␣
↪→ +-------------+ |
| | +-------------+ | | | IO | ␣
↪→ +-------------+ |
| +------------| SMMU +---------+ | | Windows +---
↪→------ AP MCI0/1 | |
| | translation | +------------+ | Lookup | ␣
↪→ +-------------+ |
| +---------+---+ | | ␣
↪→ +-------------+ |
| - | | +---
↪→------ AP STM | |
| +----------------- | | ␣
↪→ +-------------+ |
| AP | | +-+---------+ ␣
↪→ |
+---|-------------
↪→---------------------+
+-------------|---|-------------
↪→---------------------+
| CP | +-------------+ +------+-----+ ␣
↪→+-------------------+ |
| | | | | +-------
↪→ SB CFG Space | |
| | | DIOB | | | ␣
↪→+-------------------+ |
| | | Windows ----------------- IOB | ␣
↪→+-------------------+ |
| | | Control | | Windows +------
↪→| SB PCIe-0 - PCIe2 | |
| | | | | Lookup | ␣

(continues on next page)

552 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
↪→+-------------------+ |
| | +------+------+ | | ␣
↪→+-------------------+ |
| | | | +------
↪→+ SB NAND | |
| | | +------+-----+ ␣
↪→+-------------------+ |
| | | | ␣
↪→ |
| | | | ␣
↪→ |
| +------------------+ +------------+ +------+-----+ ␣
↪→+-------------------+ |
| | Network Engine | | | | +-------
↪→ SB SPI-0/SPI-1 | |
| | Security Engine | | PCIe, MSS | | RUNIT | ␣
↪→+-------------------+ |
| | SATA, USB | | DMA | | Windows | ␣
↪→+-------------------+ |
| | SD/eMMC | | | | Lookup +-------
↪→ SB Device Bus | |
| | TDM, I2C | | | | | ␣
↪→+-------------------+ |
| +------------------+ +------------+ +------------+ ␣
↪→ |
| ␣
↪→ |
+---
↪→---------------------+

7.12.5 AMB - AXI MBUS address decoding

AXI to M-bridge decoding unit driver for Marvell Armada 8K and 8K+ SoCs.

The Runit offers a second level of address windows lookup. It is used to map transaction towards the CD
BootROM, SPI0, SPI1 and Device bus (NOR).

The Runit contains eight configurable windows. Each window defines a contiguous, address space and the
properties associated with that address space.

Unit Bank ATTR
Device-Bus DEV_BOOT_CS 0x2F

DEV_CS0 0x3E
DEV_CS1 0x3D
DEV_CS2 0x3B
DEV_CS3 0x37

SPI-0 SPI_A_CS0 0x1E
SPI_A_CS1 0x5E
SPI_A_CS2 0x9E
SPI_A_CS3 0xDE

(continues on next page)

7.12. Marvell 553

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
SPI_A_CS4 0x1F
SPI_A_CS5 0x5F
SPI_A_CS6 0x9F
SPI_A_CS7 0xDF

SPI SPI_B_CS0 0x1A
SPI_B_CS1 0x5A
SPI_B_CS2 0x9A
SPI_B_CS3 0xDA

BOOT_ROM BOOT_ROM 0x1D
UART UART 0x01

Mandatory functions

• marvell_get_amb_memory_map
Returns the AMB windows configuration and the number of windows

Mandatory structures

• amb_memory_map
Array that include the configuration of the windows. Every window/entry is a struct which has 2
parameters:

– Base address of the window

– Attribute of the window

Examples

struct addr_map_win amb_memory_map[] = {
{0xf900, AMB_DEV_CS0_ID},

};

7.12.6 Marvell CCU address decoding bindings

CCU configuration driver (1st stage address translation) for Marvell Armada 8K and 8K+ SoCs.

The CCU node includes a description of the address decoding configuration.

554 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Mandatory functions

• marvell_get_ccu_memory_map
Return the CCU windows configuration and the number of windows of the specific AP.

Mandatory structures

• ccu_memory_map
Array that includes the configuration of the windows. Every window/entry is a struct which has 3
parameters:

– Base address of the window

– Size of the window

– Target-ID of the window

Example

struct addr_map_win ccu_memory_map[] = {
{0x00000000f2000000, 0x00000000e000000, IO_0_TID}, /* IO␣

↪→window */
};

7.12.7 Marvell IO WIN address decoding bindings

IO Window configuration driver (2nd stage address translation) for Marvell Armada 8K and 8K+ SoCs.

The IO WIN includes a description of the address decoding configuration.

Transactions that are decoded by CCU windows as IO peripheral, have an additional layer of decoding. This
additional address decoding layer defines one of the following targets:

• 0x0 = BootRom

• 0x1 = STM (Serial Trace Macro-cell, a programmer’s port into trace stream)

• 0x2 = SPI direct access

• 0x3 = PCIe registers

• 0x4 = MCI Port

• 0x5 = PCIe port

7.12. Marvell 555

Trusted Firmware-A, Release 2.10.4

Mandatory functions

• marvell_get_io_win_memory_map
Returns the IO windows configuration and the number of windows of the specific AP.

Mandatory structures

• io_win_memory_map
Array that include the configuration of the windows. Every window/entry is a struct which has 3
parameters:

– Base address of the window

– Size of the window

– Target-ID of the window

Example

struct addr_map_win io_win_memory_map[] = {
{0x00000000fe000000, 0x000000001f00000, PCIE_PORT_TID}, /*␣

↪→PCIe window 31Mb for PCIe port*/
{0x00000000ffe00000, 0x000000000100000, PCIE_REGS_TID}, /*␣

↪→PCI-REG window 64Kb for PCIe-reg*/
{0x00000000f6000000, 0x000000000100000, MCIPHY_TID}, /*␣

↪→MCI window 1Mb for PHY-reg*/
};

7.12.8 Marvell IOB address decoding bindings

IO bridge configuration driver (3rd stage address translation) for Marvell Armada 8K and 8K+ SoCs.

The IOB includes a description of the address decoding configuration.

IOB supports up to n (in CP110 n=24) windows for external memory transaction. When a transaction passes
through the IOB, its address is compared to each of the enabled windows. If there is a hit and it passes the
security checks, it is advanced to the target port.

Mandatory functions

• marvell_get_iob_memory_map
Returns the IOB windows configuration and the number of windows

556 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Mandatory structures

• iob_memory_map
Array that includes the configuration of the windows. Every window/entry is a struct which has 3
parameters:

– Base address of the window

– Size of the window

– Target-ID of the window

Target ID options

• 0x0 = Internal configuration space

• 0x1 = MCI0

• 0x2 = PEX1_X1

• 0x3 = PEX2_X1

• 0x4 = PEX0_X4

• 0x5 = NAND flash

• 0x6 = RUNIT (NOR/SPI/BootRoom)

• 0x7 = MCI1

Example

struct addr_map_win iob_memory_map[] = {
{0x00000000f7000000, 0x0000000001000000, PEX1_TID}, /* PEX1_X1␣

↪→window */
{0x00000000f8000000, 0x0000000001000000, PEX2_TID}, /* PEX2_X1␣

↪→window */
{0x00000000f6000000, 0x0000000001000000, PEX0_TID}, /* PEX0_X4␣

↪→window */
{0x00000000f9000000, 0x0000000001000000, NAND_TID} /* NAND␣

↪→window */
};

7.12. Marvell 557

Trusted Firmware-A, Release 2.10.4

7.13 MediaTek 8183

MediaTek 8183 (MT8183) is a 64-bit ARMSoC introduced byMediaTek in early 2018. The chip incorporates
eight cores - four Cortex-A53 little cores and Cortex-A73. Both clusters can operate at up to 2 GHz.

7.13.1 Boot Sequence

Boot Rom --> Coreboot --> TF-A BL31 --> Depthcharge --> Linux Kernel

7.13.2 How to Build

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=mt8183 DEBUG=1

7.14 MediaTek 8186

MediaTek 8186 (MT8186) is a 64-bit ARM SoC introduced by MediaTek in 2021. The chip incorporates
eight cores - six Cortex-A55 little cores and two Cortex-A76. Cortex-A76 can operate at up to 2.05 GHz.
Cortex-A55 can operate at up to 2.0 GHz.

7.14.1 Boot Sequence

Boot Rom --> Coreboot --> TF-A BL31 --> Depthcharge --> Linux Kernel

7.14.2 How to Build

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=mt8186 DEBUG=1 COREBOOT=1

7.15 MediaTek 8188

MediaTek 8188 (MT8188) is a 64-bit ARMSoC introduced byMediaTek in 2022. The chip incorporates eight
cores - six Cortex-A55 little cores and two Cortex-A78. Cortex-A78 can operate at up to 2.6 GHz. Cortex-A55
can operate at up to 2.0 GHz.

558 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.15.1 Boot Sequence

Boot Rom --> Coreboot --> TF-A BL31 --> Depthcharge --> Linux Kernel

How to Build

.. code:: shell

make CROSS_COMPILE=aarch64-linux-gnu- LD=aarch64-linux-gnu-gcc␣
↪→PLAT=mt8188 DEBUG=1 COREBOOT=1

7.16 MediaTek 8192

MediaTek 8192 (MT8192) is a 64-bit ARMSoC introduced byMediaTek in 2020. The chip incorporates eight
cores - four Cortex-A55 little cores and Cortex-A76. Cortex-A76 can operate at up to 2.2 GHz. Cortex-A55
can operate at up to 2 GHz.

7.16.1 Boot Sequence

Boot Rom --> Coreboot --> TF-A BL31 --> Depthcharge --> Linux Kernel

7.16.2 How to Build

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=mt8192 DEBUG=1 COREBOOT=1

7.17 MediaTek 8195

MediaTek 8195 (MT8195) is a 64-bit ARMSoC introduced byMediaTek in 2021. The chip incorporates eight
cores - four Cortex-A55 little cores and Cortex-A76. Cortex-A76 can operate at up to 2.2 GHz. Cortex-A55
can operate at up to 2.0 GHz.

7.17.1 Boot Sequence

Boot Rom --> Coreboot --> TF-A BL31 --> Depthcharge --> Linux Kernel

7.16. MediaTek 8192 559

Trusted Firmware-A, Release 2.10.4

7.17.2 How to Build

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=mt8195 DEBUG=1 COREBOOT=1

7.18 NVIDIA Tegra

• T194

T194 has eight NVIDIA Carmel CPU cores in a coherent multi-processor configuration. The Carmel cores
support the ARM Architecture version 8.2, executing both 64-bit AArch64 code, and 32-bit AArch32 code.
The Carmel processors are organized as four dual-core clusters, where each cluster has a dedicated 2MiBLevel-
2 unified cache. A high speed coherency fabric connects these processor complexes and allows heterogeneous
multi-processing with all eight cores if required.

• T186

The NVIDIA® Parker (T186) series system-on-chip (SoC) delivers a heterogeneous multi-processing (HMP)
solution designed to optimize performance and efficiency.

T186 has Dual NVIDIA Denver2 ARM® CPU cores, plus Quad ARM Cortex®-A57 cores, in a coherent
multiprocessor configuration. The Denver 2 and Cortex-A57 cores support ARMv8, executing both 64-bit
Aarch64 code, and 32-bit Aarch32 code including legacy ARMv7 applications. The Denver 2 processors each
have 128 KB Instruction and 64 KB Data Level 1 caches; and have a 2MB shared Level 2 unified cache. The
Cortex-A57 processors each have 48 KB Instruction and 32 KB Data Level 1 caches; and also have a 2 MB
shared Level 2 unified cache. A high speed coherency fabric connects these two processor complexes and allows
heterogeneous multi-processing with all six cores if required.

Denver is NVIDIA’s own custom-designed, 64-bit, dual-core CPU which is fully Armv8-A architecture com-
patible. Each of the two Denver cores implements a 7-way superscalar microarchitecture (up to 7 concurrent
micro-ops can be executed per clock), and includes a 128KB 4-way L1 instruction cache, a 64KB 4-way L1
data cache, and a 2MB 16-way L2 cache, which services both cores.

Denver implements an innovative process called Dynamic Code Optimization, which optimizes frequently
used software routines at runtime into dense, highly tuned microcode-equivalent routines. These are stored in
a dedicated, 128MB main-memory-based optimization cache. After being read into the instruction cache, the
optimized micro-ops are executed, re-fetched and executed from the instruction cache as long as needed and
capacity allows.

Effectively, this reduces the need to re-optimize the software routines. Instead of using hardware to extract the
instruction-level parallelism (ILP) inherent in the code, Denver extracts the ILP once via software techniques,
and then executes those routines repeatedly, thus amortizing the cost of ILP extraction over the many execution
instances.

Denver also features new low latency power-state transitions, in addition to extensive power-gating and dynamic
voltage and clock scaling based on workloads.

• T210

T210 has Quad Arm® Cortex®-A57 cores in a switched configuration with a companion set of quad Arm

560 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Cortex-A53 cores. The Cortex-A57 and A53 cores support Armv8-A, executing both 64-bit Aarch64 code,
and 32-bit Aarch32 code including legacy Armv7-A applications. The Cortex-A57 processors each have 48
KB Instruction and 32 KBData Level 1 caches; and have a 2MB shared Level 2 unified cache. The Cortex-A53
processors each have 32 KB Instruction and 32 KB Data Level 1 caches; and have a 512 KB shared Level 2
unified cache.

7.18.1 Directory structure

• plat/nvidia/tegra/common - Common code for all Tegra SoCs

• plat/nvidia/tegra/soc/txxx - Chip specific code

7.18.2 Trusted OS dispatcher

Tegra supports multiple Trusted OS’.

• Trusted Little Kernel (TLK): In order to include the ‘tlkd’ dispatcher in the image, pass ‘SPD=tlkd’ on
the command line while preparing a bl31 image.

• Trusty: In order to include the ‘trusty’ dispatcher in the image, pass ‘SPD=trusty’ on the command line
while preparing a bl31 image.

This allows other Trusted OS vendors to use the upstream code and include their dispatchers in the image
without changing any makefiles.

These are the supported Trusted OS’ by Tegra platforms.

• Tegra210: TLK and Trusty

• Tegra186: Trusty

• Tegra194: Trusty

7.18.3 Scatter files

Tegra platforms currently support scatter files and ld.S scripts. The scatter files help support ARMLINK linker
to generate BL31 binaries. For now, there exists a common scatter file, plat/nvidia/tegra/scat/bl31.scat, for
all Tegra SoCs. The LINKER build variable needs to point to the ARMLINK binary for the scatter file to be
used. Tegra platforms have verified BL31 image generation with ARMCLANG (compilation) and ARMLINK
(linking) for the Tegra186 platforms.

7.18.4 Preparing the BL31 image to run on Tegra SoCs

CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- make PLAT=tegra \
TARGET_SOC=<target-soc e.g. t194|t186|t210> SPD=<dispatcher e.g. trusty|tlkd>
bl31

Platforms wanting to use different TZDRAM_BASE, can add TZDRAM_BASE=<value> to the build com-
mand line.

7.18. NVIDIA Tegra 561

Trusted Firmware-A, Release 2.10.4

The Tegra platform code expects a pointer to the following platform specific structure via ‘x1’ register from the
BL2 layer which is used by the bl31_early_platform_setup() handler to extract the TZDRAM carveout base
and size for loading the Trusted OS and the UART port ID to be used. The Tegra memory controller driver
programs this base/size in order to restrict NS accesses.

typedef struct plat_params_from_bl2 { /* TZ memory size / uint64_t tzdram_size; / TZ memory
base / uint64_t tzdram_base; / UART port ID */ int uart_id; /* L2 ECC parity protection dis-
able flag */ int l2_ecc_parity_prot_dis; /* SHMEM base address for storing the boot logs */ uint64_t
boot_profiler_shmem_base; } plat_params_from_bl2_t;

7.18.5 Power Management

The PSCI implementation expects each platform to expose the ‘power state’ parameter to be used during the
‘SYSTEMSUSPEND’ call. The state-id field is implementation defined on Tegra SoCs and is preferably defined
by tegra_def.h.

7.18.6 Tegra configs

• ‘tegra_enable_l2_ecc_parity_prot’: This flag enables the L2 ECC and Parity Protection bit, for Arm
Cortex-A57 CPUs, during CPU boot. This flag will be enabled by Tegrs SoCs during ‘Cluster power up’
or ‘System Suspend’ exit.

7.19 NXP i.MX7 WaRP7

The Trusted Firmware-A port for the i.MX7Solo WaRP7 implements BL2 at EL3. The i.MX7S contains a
BootROM with a High Assurance Boot (HAB) functionality. This functionality provides a mechanism for
establishing a root-of-trust from the reset vector to the command-line in user-space.

7.19.1 Boot Flow

BootROM –> TF-A BL2 –> BL32(OP-TEE) –> BL33(U-Boot) –> Linux

In the WaRP7 port we encapsulate OP-TEE, DTB and U-Boot into a FIP. This FIP is expected and required

7.19.2 Build Instructions

We need to use a file generated by u-boot in order to generate a .imx image the BootROM will boot. It is
therefore _required_ to build u-boot before TF-A and furthermore it is _recommended_ to use the mkimage
in the u-boot/tools directory to generate the TF-A .imx image.

562 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

U-Boot

https://git.linaro.org/landing-teams/working/mbl/u-boot.git

git checkout -b rms-atf-optee-uboot linaro-mbl/rms-atf-optee-uboot
make warp7_bl33_defconfig;
make u-boot.imx arch=ARM CROSS_COMPILE=arm-linux-gnueabihf-

OP-TEE

https://github.com/OP-TEE/optee_os.git

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- PLATFORM=imx PLATFORM_
↪→FLAVOR=mx7swarp7 ARCH=arm CFG_PAGEABLE_ADDR=0 CFG_DT_ADDR=0x83000000 CFG_NS_
↪→ENTRY_ADDR=0x87800000

TF-A

https://github.com/ARM-software/arm-trusted-firmware.git

The following commands assume that a directory exits in the top-level TFA build directory “fiptool_images”.
“fiptool_images” contains

• u-boot.bin The binary output from the u-boot instructions above

• tee-header_v2.bin

• tee-pager_v2.bin

• tee-pageable_v2.bin Binary outputs from the previous OPTEE build steps

It is also assumed copy of mbedtls is available on the path path ../mbedtls
https://github.com/ARMmbed/mbedtls.git At the time of writing HEAD points to
0592ea772aee48ca1e6d9eb84eca8e143033d973

mkdir fiptool_images
cp /path/to/optee/out/arm-plat-imx/core/tee-header_v2.bin fiptool_images
cp /path/to/optee/out/arm-plat-imx/core/tee-pager_v2.bin fiptool_images
cp /path/to/optee/out/arm-plat-imx/core/tee-pageable_v2.bin fiptool_images

make CROSS_COMPILE=${CROSS_COMPILE} PLAT=warp7 ARCH=aarch32 ARM_ARCH_MAJOR=7 \
ARM_CORTEX_A7=yes AARCH32_SP=optee PLAT_WARP7_UART=1 GENERATE_COT=1 \
TRUSTED_BOARD_BOOT=1 USE_TBBR_DEFS=1 MBEDTLS_DIR=../mbedtls \
NEED_BL32=yes BL32=fiptool_images/tee-header_v2.bin \
BL32_EXTRA1=fiptool_images/tee-pager_v2.bin \
BL32_EXTRA2=fiptool_images/tee-pageable_v2.bin \
BL33=fiptool_images/u-boot.bin certificates all

/path/to/u-boot/tools/mkimage -n /path/to/u-boot/u-boot.cfgout -T imximage -e␣
↪→0x9df00000 -d ./build/warp7/debug/bl2.bin ./build/warp7/debug/bl2.bin.imx

7.19. NXP i.MX7 WaRP7 563

https://git.linaro.org/landing-teams/working/mbl/u-boot.git
https://github.com/OP-TEE/optee_os.git
https://github.com/ARM-software/arm-trusted-firmware.git
https://github.com/ARMmbed/mbedtls.git

Trusted Firmware-A, Release 2.10.4

FIP

cp /path/to/uboot/u-boot.bin fiptool_images
cp /path/to/linux/arch/boot/dts/imx7s-warp.dtb fiptool_images

tools/cert_create/cert_create -n --rot-key "build/warp7/debug/rot_key.pem" \
--tfw-nvctr 0 \
--ntfw-nvctr 0 \
--trusted-key-cert fiptool_images/trusted-key-cert.key-crt \
--tb-fw=build/warp7/debug/bl2.bin \
--tb-fw-cert fiptool_images/trusted-boot-fw.key-crt\
--tos-fw fiptool_images/tee-header_v2.bin \
--tos-fw-cert fiptool_images/tee-header_v2.bin.crt \
--tos-fw-key-cert fiptool_images/tee-header_v2.bin.key-crt \
--tos-fw-extra1 fiptool_images/tee-pager_v2.bin \
--tos-fw-extra2 fiptool_images/tee-pageable_v2.bin \
--nt-fw fiptool_images/u-boot.bin \
--nt-fw-cert fiptool_images/u-boot.bin.crt \
--nt-fw-key-cert fiptool_images/u-boot.bin.key-crt \
--hw-config fiptool_images/imx7s-warp.dtb

tools/fiptool/fiptool create --tos-fw fiptool_images/tee-header_v2.bin \
--tos-fw-extra1 fiptool_images/tee-pager_v2.bin \
--tos-fw-extra2 fiptool_images/tee-pageable_v2.bin \
--nt-fw fiptool_images/u-boot.bin \
--hw-config fiptool_images/imx7s-warp.dtb \
--tos-fw-cert fiptool_images/tee-header_v2.bin.crt \
--tos-fw-key-cert fiptool_images/tee-header_v2.bin.key-crt \
--nt-fw-cert fiptool_images/u-boot.bin.crt \
--nt-fw-key-cert fiptool_images/u-boot.bin.key-crt \
--trusted-key-cert fiptool_images/trusted-key-cert.key-crt \
--tb-fw-cert fiptool_images/trusted-boot-fw.key-crt warp7.fip

7.19.3 Deploy Images

First place the WaRP7 into UMS mode in u-boot this should produce an entry in /dev like /dev/disk/by-id/usb-
Linux_UMS_disk_0_WaRP7-0xf42400d3000001d4-0:0

=> ums 0 mmc 0

Next flash bl2.imx and warp7.fip

bl2.imx is flashed @ 1024 bytes warp7.fip is flash @ 1048576 bytes

sudo dd if=bl2.bin.imx of=/dev/disk/by-id/usb-Linux_UMS_disk_0_WaRP7-
↪→0xf42400d3000001d4-0\:0 bs=512 seek=2 conv=notrunc
Offset is 1MB 1048576 => 1048576 / 512 = 2048
sudo dd if=./warp7.fip of=/dev/disk/by-id/usb-Linux_UMS_disk_0_WaRP7-
↪→0xf42400d3000001d4-0\:0 bs=512 seek=2048 conv=notrunc

Remember to umount the USB device pefore proceeding

564 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

sudo umount /dev/disk/by-id/usb-Linux_UMS_disk_0_WaRP7-0xf42400d3000001d4-0\
↪→:0*

7.19.4 Signing BL2

A further step is to sign BL2.

The image_sign.sh and bl2_sign.csf files alluded to blow are available here.

https://github.com/bryanodonoghue/atf-code-signing

It is suggested you use this script plus the example CSF file in order to avoid hard-coding data into your CSF
files.

Download both “image_sign.sh” and “bl2_sign.csf” to your arm-trusted-firmware top-level directory.

#!/bin/bash
SIGN=image_sign.sh
TEMP=`pwd`/temp
BL2_CSF=bl2_sign.csf
BL2_IMX=bl2.bin.imx
CST_PATH=/path/to/cst-2.3.2
CST_BIN=${CST_PATH}/linux64/cst

#Remove temp
rm -rf ${TEMP}
mkdir ${TEMP}

Generate IMX header
/path/to/u-boot/tools/mkimage -n u-boot.cfgout.warp7 -T imximage -e␣
↪→0x9df00000 -d ./build/warp7/debug/bl2.bin ./build/warp7/debug/bl2.bin.imx >
↪→${TEMP}/${BL2_IMX}.log

Copy required items to $TEMP
cp build/warp7/debug/bl2.bin.imx ${TEMP}
cp ${CST_PATH}/keys/* ${TEMP}
cp ${CST_PATH}/crts/* ${TEMP}
cp ${BL2_CSF} ${TEMP}

Generate signed BL2 image
./${SIGN} image_sign_mbl_binary ${TEMP} ${BL2_CSF} ${BL2_IMX} ${CST_BIN}

Copy signed BL2 to top-level directory
cp ${TEMP}/${BL2_IMX}-signed .
cp ${BL2_RECOVER_CSF} ${TEMP}

The resulting bl2.bin.imx-signed can replace bl2.bin.imx in the Deploy Images section above, once done.

Suggested flow for verifying.

1. Followed all previous steps above and verify a non-secure ATF boot

2. Down the NXP Code Singing Tool

7.19. NXP i.MX7 WaRP7 565

https://github.com/bryanodonoghue/atf-code-signing

Trusted Firmware-A, Release 2.10.4

3. Generate keys

4. Program the fuses on your board

5. Replace bl2.bin.imx with bl2.bin.imx-signed

6. Verify inside u-boot that “hab_status” shows no events

7. Subsequently close your board.

If you have HAB events @ step 6 - do not lock your board.

To get a good over-view of generating keys and programming the fuses on the board read “High Assurance
Boot for Dummies” by Boundary Devices.

https://boundarydevices.com/high-assurance-boot-hab-dummies/

7.20 NXP i.MX 8 Series

The i.MX 8 series of applications processors is a feature- and performance-scalable multi-core platform that
includes single-, dual-, and quad-core families based on the Arm®Cortex® architecture—including combined
Cortex-A72 + Cortex-A53, Cortex-A35, and Cortex-M4 based solutions for advanced graphics, imaging, ma-
chine vision, audio, voice, video, and safety-critical applications.

The i.MX8QM is with 2 Cortex-A72 ARM core, 4 Cortex-A53 ARM core and 1 Cortex-M4 system controller.

The i.MX8QX is with 4 Cortex-A35 ARM core and 1 Cortex-M4 system controller.

The SystemController (SC) represents the evolution of centralized control for system-level resources on i.MX8.
The heart of the system controller is a Cortex-M4 that executes system controller firmware.

7.20.1 Boot Sequence

Bootrom –> BL31 –> BL33(u-boot) –> Linux kernel

7.20.2 How to build

Build Procedure

• Prepare AARCH64 toolchain.

• Build System Controller Firmware and u-boot firstly, and get binary images: scfw_tcm.bin and u-
boot.bin

• Build TF-A

Build bl31:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=<Target_SoC> bl31

Target_SoC should be “imx8qm” for i.MX8QM SoC. Target_SoC should be “imx8qx” for i.MX8QX
SoC.

566 Chapter 7. Platform Ports

https://boundarydevices.com/high-assurance-boot-hab-dummies/

Trusted Firmware-A, Release 2.10.4

Deploy TF-A Images

TF-A binary(bl31.bin), scfw_tcm.bin and u-boot.bin are combined together to generate a binary file called
flash.bin, the imx-mkimage tool is used to generate flash.bin, and flash.bin needs to be flashed into SD card with
certain offset for BOOT ROM. The system controller firmware, u-boot and imx-mkimage will be upstreamed
soon, this doc will be updated once they are ready, and the link will be posted.

7.21 NXP i.MX 8M Series

The i.MX 8M family of applications processors based on Arm Corte-A53 and Cortex-M4 cores provide high-
performance computing, power efficiency, enhanced system reliability and embedded security needed to drive
the growth of fast-growing edge node computing, streaming multimedia, and machine learning applications.

imx8mq is dropped in TF-A CI build due to the small OCRAM size, but still actively maintained in NXP
official release.

7.21.1 Boot Sequence

Bootrom –> SPL –> BL31 –> BL33(u-boot) –> Linux kernel

7.21.2 How to build

Build Procedure

• Prepare AARCH64 toolchain.

• Build spl and u-boot firstly, and get binary images: u-boot-spl.bin, u-boot-nodtb.bin and dtb for the target
board.

• Build TF-A

Build bl31:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=<Target_SoC> bl31

Target_SoC should be “imx8mq” for i.MX8MQ SoC. Target_SoC should be “imx8mm” for i.MX8MM
SoC. Target_SoC should be “imx8mn” for i.MX8MN SoC. Target_SoC should be “imx8mp” for
i.MX8MP SoC.

7.21. NXP i.MX 8M Series 567

Trusted Firmware-A, Release 2.10.4

Deploy TF-A Images

TF-A binary(bl31.bin), u-boot-spl.bin u-boot-nodtb.bin and dtb are combined together to generate a binary file
called flash.bin, the imx-mkimage tool is used to generate flash.bin, and flash.bin needs to be flashed into SD
card with certain offset for BOOT ROM. the u-boot and imx-mkimage will be upstreamed soon, this doc will
be updated once they are ready, and the link will be posted.

7.21.3 TBBR Boot Sequence

When setting NEED_BL2=1 on imx8mm. We support an alternative way of boot sequence to support TBBR.

Bootrom –> SPL –> BL2 –> BL31 –> BL33(u-boot with UEFI) –> grub

This helps us to fulfill the SystemReady EBBR standard. BL2 will be in the FIT image and SPL will verify it.
All of the BL3x will be put in the FIP image. BL2 will verify them. In U-boot we turn on the UEFI secure
boot features so it can verify grub. And we use grub to verify linux kernel.

7.21.4 Measured Boot

When setting MEASURED_BOOT=1 on imx8mm we can let TF-A generate event logs with
a DTB overlay. The overlay will be put at PLAT_IMX8M_DTO_BASE with maximum size
PLAT_IMX8M_DTO_MAX_SIZE. Then in U-boot we can apply the DTB overlay and let U-boot to parse
the event log and update the PCRs.

7.21.5 High Assurance Boot (HABv4)

All actively maintained platforms have a support for High Assurance Boot (HABv4), which is implemented via
ROM Vector Table (RVT) API to extend the Root-of-Trust beyond the SPL. Those calls are done via SMC
and are executed in EL3, with results returned back to original caller.

Note on DRAM Memory Mapping

There is a special case of mapping the DRAM: entire DRAM available on the platform is mapped into the EL3
with MT_RW attributes.

Mapping the entire DRAM allows the usage of 2MB block mapping in Level-2 Translation Table entries, which
use less Page Table Entries (PTEs). If Level-3 PTE mapping is used instead then additional PTEs would be
required, which leads to the increase of translation table size.

Due to the fact that the size of SRAM is limited on some platforms in the family it should rather be avoided
creating additional Level-3mapping and introducemore PTEs, hence the implementation uses Level-2mapping
which maps entire DRAM space.

The reason for the MT_RW attribute mapping scheme is the fact that the SMC API to get the status and events
is called from NS world passing destination pointers which are located in DRAM. Mapping DRAM without
MT_RW permissions causes those locations not to be filled, which in turn causing EL1&0 software not to
receive replies.

568 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Therefore, DRAM mapping is done with MT_RW attributes, as it is required for data exchange between EL3
and EL1&0 software.

Reference Documentation

Details on HABv4 usage and implementation could be found in following documents:

• AN4581: “i.MX Secure Boot on HABv4 Supported Devices”, Rev. 4 - June 2020

• AN12263: “HABv4 RVT Guidelines and Recommendations”, Rev. 1 - 06/2020

• “HABv4 API Reference Manual”. This document in the part of NXP Code Signing Tool (CST) distri-
bution.

7.22 NXP i.MX 9 Series

Building on the market-proven i.MX 6 and i.MX 8 series, i.MX 9 series applications processors bring together
higher performance applications cores, an independent MCU-like real-time domain, Energy Flex architecture,
state-of-the-art security with EdgeLock® secure enclave and dedicated multi-sensory data processing engines
(graphics, image, display, audio and voice). The i.MX 9 series, part of the EdgeVerse™ edge computing
platform, integrates hardware neural processing units across many members of the series for acceleration of
machine learning applications at the edge i.MX9 Applications Processors.

7.22.1 Boot Sequence

BootROM –> SPL –> BL31 –> BL33(u-boot) –> Linux kernel

7.22.2 How to build

Build Procedure

• Prepare AARCH64 toolchain.

• Get the ELE FW image from NXP linux SDK package

• Build SPL and u-boot firstly, and get binary images: u-boot-spl.bin, u-boot.bin and dtb

• Build TF-A

Build bl31:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=<Target_SoC> bl31

Target_SoC should be “imx93” for i.MX93 SoC.

7.22. NXP i.MX 9 Series 569

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors:IMX9-PROCESSORS

Trusted Firmware-A, Release 2.10.4

Deploy TF-A Images

TF-A binary(bl31.bin), u-boot-spl.bin u-boot.bin, ELE FW image are combined together to generate a binary
file called flash.bin, the imx-mkimage tool is used to generate flash.bin, and flash.bin needs to be flashed into
SD card with certain offset for BOOT ROM.

Reference Documentation

Details on how to prepare, generate & deploy the boot image be found in following documents:

• i.MX Linux User’s Guide link

• i.MX Linux Reference Manual link

7.23 Nuvoton NPCM845X

Nuvoton NPCM845X is the Nuvoton Arbel NPCM8XX Board Management controller (BMC) SoC.

The Nuvoton Arbel NPCM845X SoC is a fourth-generation BMC. The NPCM845X computing subsystem
comprises a quadcore Arm Cortex-A35 CPU.

This SoC includes secured components, i.e., bootblock stored in ROM, u-boot, OPTEE-OS, trusted-firmware-
a and Linux. Every stage is measured and validated by the bootblock. This SoC was tested on the Arbel
NPCM845X evaluation board.

7.23.1 How to Build

make CROSS_COMPILE=aarch64-none-elf- PLAT=npcm845x all SPD=opteed

7.24 NXP Reference Development Platforms

7.24.1 1. NXP SoCs - Overview

The QorIQ family of ARM based SoCs that are supported on TF-A are:

1. LX2160A

• SoC Overview:

The LX2160A multicore processor, the highest-performance member of the Layerscape family, combines
FinFET process technology’s low power and sixteen Arm® Cortex®-A72 cores with datapath acceleration
optimized for L2/3 packet processing, together with security offload, robust traffic management and quality of
service.

Details about LX2160A can be found at lx2160a.

• LX2160ARDB Board:

570 Chapter 7. Platform Ports

https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-lx2160a-lx2120a-lx2080a-processors:LX2160A

Trusted Firmware-A, Release 2.10.4

The LX2160A reference design board provides a comprehensive platform that enables design and evaluation
of the LX2160A or LX2162A processors. It comes preloaded with a board support package (BSP) based on a
standard Linux kernel.

Board details can be fetched from the link: lx2160ardb.

2. LS1028A

• SoC Overview:

The Layerscape LS1028A applications processor for industrial and automotive includes a time-sensitive net-
working (TSN) -enabled Ethernet switch and Ethernet controllers to support converged IT and OT networks.
Two powerful 64-bit Arm®v8 cores support real-time processing for industrial control and virtual machines
for edge computing in the IoT. The integrated GPU and LCD controller enable Human-Machine Interface
(HMI) systems with next-generation interfaces.

Details about LS1028A can be found at ls1028a.

• LS1028ARDB Board:

The LS1028A reference design board (RDB) is a computing, evaluation, and development platform that sup-
ports industrial IoT applications, human machine interface solutions, and industrial networking.

Details about LS1028A RDB board can be found at ls1028ardb.

3. LS1043A

• SoC Overview:

The Layerscape LS1043A processor is NXP’s first quad-core, 64-bit Arm®-based processor for embedded
networking. The LS1023A (two core version) and the LS1043A (four core version) deliver greater than 10
Gbps of performance in a flexible I/O package supporting fanless designs. This SoC is a purpose-built solution
for small-form-factor networking and industrial applications with BOM optimizations for economic low layer
PCB, lower cost power supply and single clock design. The new 0.9V versions of the LS1043A and LS1023A
deliver addition power savings for applications such as Wireless LAN and to Power over Ethernet systems.

Details about LS1043A can be found at ls1043a.

• LS1043ARDB Board:

The LS1043A reference design board (RDB) is a computing, evaluation, and development platform that sup-
ports the Layerscape LS1043A architecture processor. The LS1043A-RDB can help shorten your time to
market by providing the following features:

Memory subsystem:

• 2GByte DDR4 SDRAM (32bit bus)

• 128 Mbyte NOR flash single-chip memory

• 512 Mbyte NAND flash

• 16 Mbyte high-speed SPI flash

• SD connector to interface with the SD memory card

Ethernet:

• XFI 10G port

7.24. NXP Reference Development Platforms 571

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-communication-process/layerscape-lx2160a-multicore-communications-processor:LX2160A
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1028a-applications-processor:LS1028A
https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1028a-reference-design-board:LS1028ARDB
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1043a-and-1023a-processors:LS1043A

Trusted Firmware-A, Release 2.10.4

• QSGMII with 4x 1G ports

• Two RGMII ports

PCIe:

• PCIe2 (Lanes C) to mini-PCIe slot

• PCIe3 (Lanes D) to PCIe slot

USB 3.0: two super speed USB 3.0 type A ports

UART: supports two UARTs up to 115200 bps for console

Details about LS1043A RDB board can be found at ls1043ardb.

4. LS1046A

• SoC Overview:

The LS1046A is a cost-effective, power-efficient, and highly integrated system-on-chip (SoC) design that ex-
tends the reach of the NXP value-performance line of QorIQ communications processors. Featuring power-
efficient 64-bit Arm Cortex-A72 cores with ECC-protected L1 and L2 cache memories for high reliability,
running up to 1.8 GHz.

Details about LS1046A can be found at ls1046a.

• LS1046ARDB Board:

The LS1046A reference design board (RDB) is a high-performance computing, evaluation, and development
platform that supports the Layerscape LS1046A architecture processor. The LS1046ARDB board supports
the Layerscape LS1046A processor and is optimized to support the DDR4 memory and a full complement of
high-speed SerDes ports.

Details about LS1046A RDB board can be found at ls1046ardb.

• LS1046AFRWY Board:

The LS1046A Freeway board (FRWY) is a high-performance computing, evaluation, and development plat-
form that supports the LS1046A architecture processor capable of support more than 32,000 CoreMark per-
formance. The FRWY-LS1046A board supports the LS1046A processor, onboard DDR4 memory, multiple
Gigabit Ethernet, USB3.0 and M2_Type_E interfaces for Wi-Fi, FRWY-LS1046A-AC includes the Wi-Fi
card.

Details about LS1046A FRWY board can be found at ls1046afrwy.

5. LS1088A

• SoC Overview:

The LS1088A family of multicore communications processors combines up to and eight Arm Cortex-A53
cores with the advanced, high-performance data path and network peripheral interfaces required for wireless
access points, networking infrastructure, intelligent edge access, including virtual customer premise equipment
(vCPE) and high-performance industrial applications.

Details about LS1088A can be found at ls1088a.

• LS1088ARDB Board:

572 Chapter 7. Platform Ports

https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1043a-reference-design-board:LS1043A-RDB
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1046a-and-1026a-processors:LS1046A
https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1046a-reference-design-board:LS1046A-RDB
https://www.nxp.com/design/qoriq-developer-resources/ls1046a-freeway-board:FRWY-LS1046A
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-processors/layerscape-1088a-and-1048a-processor:LS1088A

Trusted Firmware-A, Release 2.10.4

The LS1088A reference design board provides a comprehensive platform that enables design and evaluation of
the product (LS1088A processor). This RDB comes pre-loaded with a board support package (BSP) based on
a standard Linux kernel.

Details about LS1088A RDB board can be found at ls1088ardb.

1.1. Table of supported boot-modes by each platform & platform that needs FIP-DDR:

PLAT BOOT_MODE fip_ddr_needed
sd qspi nor nand emmc flexspi_nor flexspi_nand

lx2160ardb yes yes yes yes
ls1028ardb yes yes yes no
ls1043ardb yes yes yes no
ls1046ardb yes yes yes no
ls1046afrwy yes yes no
ls1088ardb yes yes no

1.2. Boot Sequence

+ Secure World | Normal World
+ EL0 |
+ |
+ EL1 BL32(Tee OS) | kernel
+ ^ | | ^
+ | | | |
+ EL2 | | | BL33(u-boot)
+ | | | ^
+ | v | /
+ EL3 BootROM --> BL2 --> BL31 ---------------/
+

1.3. Boot Sequence with FIP-DDR

+ Secure World | Normal World
+ EL0 |
+ |
+ EL1 fip-ddr BL32(Tee OS) | kernel
+ ^ | ^ | | ^
+ | | | | | |
+ EL2 | | | | | BL33(u-boot)
+ | | | | | ^
+ | v | v | /
+ EL3 BootROM --> BL2 -----> BL31 ---------------/
+

7.24. NXP Reference Development Platforms 573

https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1088a-reference-design-board:LS1088A-RDB

Trusted Firmware-A, Release 2.10.4

1.4. DDR Memory Layout

NXP Platforms divide DRAM into banks:

• DRAM0 Bank: Maximum size of this bank is fixed to 2GB, DRAM0 size is defined in platform_def.h
if it is less than 2GB.

• DRAM1 ~ DRAMn Bank: Greater than 2GB belongs to DRAM1 and following banks, and size of
DRAMn Bank varies for one platform to others.

The following diagram is default DRAM0 memory layout in which secure memory is at top of DRAM0.

high +---+
| |
| Secure EL1 Payload Shared Memory (2 MB) |
| |
+---+
| |
| Secure Memory (64 MB) |
| |
+---+
| |
| Non Secure Memory |
| |

low +---+

7.24.2 2. How to build

2.1. Code Locations

• OP-TEE: link

• U-Boot: link

• RCW: link

• ddr-phy-binary: Required by platforms that need fip-ddr. link

• cst: Required for TBBR. link

2.2. Build Procedure

• Fetch all the above repositories into local host.

• Prepare AARCH64 toolchain and set the environment variable “CROSS_COMPILE”.

export CROSS_COMPILE=.../bin/aarch64-linux-gnu-

• Build RCW. Refer README from the respective cloned folder for more details.

• Build u-boot and OPTee firstly, and get binary images: u-boot.bin and tee.bin. For u-boot you can use
the <platform>_tfa_defconfig for build.

574 Chapter 7. Platform Ports

https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os
https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot
https://source.codeaurora.org/external/qoriq/qoriq-components/rcw
https:://github.com/NXP/ddr-phy-binary
https:://source.codeaurora.org/external/qoriq/qoriq-components/cst

Trusted Firmware-A, Release 2.10.4

• Copy/clone the repo “ddr-phy-binary” to the tfa directory for platform needing ddr-fip.

• Below are the steps to build TF-A images for the supported platforms.

2.2.1. Compilation steps without BL32

BUILD BL2:

-To compile

make PLAT=$PLAT \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
pbl

BUILD FIP:

make PLAT=$PLAT \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL33=$UBOOT_SECURE_BIN \
pbl \
fip

2.2.2. Compilation steps with BL32

BUILD BL2:

-To compile

make PLAT=$PLAT \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL32=$TEE_BIN SPD=opteed\
pbl

BUILD FIP:

make PLAT=$PLAT \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL32=$TEE_BIN SPD=opteed\
BL33=$UBOOT_SECURE_BIN \
pbl \
fip

7.24. NXP Reference Development Platforms 575

Trusted Firmware-A, Release 2.10.4

2.2.3. BUILD fip-ddr (Mandatory for certain platforms, refer table above):

-To compile additional fip-ddr for selected platforms(Refer above table if the platform needs fip-ddr).

make PLAT=<platform_name> fip-ddr

7.24.3 3. Deploy ATF Images

Note: The size in the standard uboot commands for copy to nor, qspi, nand or sd should be modified based on
the binary size of the image to be copied.

• Deploy ATF images on flexspi-Nor or QSPI flash Alt Bank from U-Boot prompt.

– Commands to flash images for bl2_xxx.pbl and fip.bin

Notes: ls1028ardb has no flexspi-Nor Alt Bank, so use “sf probe 0:0” for current bank.

tftp 82000000 $path/bl2_xxx.pbl;

i2c mw 66 50 20;sf probe 0:1; sf erase 0 +$filesize; sf write 0x82000000␣
↪→0x0 $filesize;

tftp 82000000 $path/fip.bin;
i2c mw 66 50 20;sf probe 0:1; sf erase 0x100000 +$filesize; sf write␣
↪→0x82000000 0x100000 $filesize;

– Next step is valid for platform where FIP-DDR is needed.

tftp 82000000 $path/ddr_fip.bin;
i2c mw 66 50 20;sf probe 0:1; sf erase 0x800000 +$filesize; sf write␣
↪→0x82000000 0x800000 $filesize;

– Then reset to alternate bank to boot up ATF.

Command for lx2160a, ls1088a and ls1028a platforms:

qixisreset altbank;

Command for ls1046a platforms:

cpld reset altbank;

• Deploy ATF images on SD/eMMC from U-Boot prompt. – file_size_in_block_sizeof_512 =
(Size_of_bytes_tftp / 512)

mmc dev <idx>; (idx = 1 for eMMC; idx = 0 for SD)

tftp 82000000 $path/bl2_<sd>_or_<emmc>.pbl;
mmc write 82000000 8 <file_size_in_block_sizeof_512>;

tftp 82000000 $path/fip.bin;

(continues on next page)

576 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
mmc write 82000000 0x800 <file_size_in_block_sizeof_512>;

-- Next step is valid for platform that needs FIP-DDR.

tftp 82000000 $path/ddr_fip.bin;
mmc write 82000000 0x4000 <file_size_in_block_sizeof_512>;

– Then reset to sd/emmc to boot up ATF from sd/emmc as boot-source.

Command for lx2160A, ls1088a and ls1028a platforms:

qixisreset <sd or emmc>;

Command for ls1043a and ls1046a platform:

cpld reset <sd or emmc>;

• Deploy ATF images on IFC nor flash from U-Boot prompt.

tftp 82000000 $path/bl2_nor.pbl;
protect off 64000000 +$filesize; erase 64000000 +$filesize; cp.b␣
↪→82000000 64000000 $filesize;

tftp 82000000 $path/fip.bin;
protect off 64100000 +$filesize; erase 64100000 +$filesize; cp.b␣
↪→82000000 64100000 $filesize;

– Then reset to alternate bank to boot up ATF.

Command for ls1043a platform:

cpld reset altbank;

• Deploy ATF images on IFC nand flash from U-Boot prompt.

tftp 82000000 $path/bl2_nand.pbl;
nand erase 0x0 $filesize; nand write 82000000 0x0 $filesize;

tftp 82000000 $path/fip.bin;
nand erase 0x100000 $filesize;nand write 82000000 0x100000 $filesize;

– Then reset to nand flash to boot up ATF.

Command for ls1043a platform:

cpld reset nand;

7.24. NXP Reference Development Platforms 577

Trusted Firmware-A, Release 2.10.4

7.24.4 4. Trusted Board Boot:

For TBBR, the binary name changes:

Boot Type BL2 FIP FIP-DDR
Normal Boot bl2_<boot_mode>.pbl fip.bin ddr_fip.bin
TBBR Boot bl2_<boot_mode>_sec.pbl fip.bin ddr_fip_sec.bin

Refer nxp-ls-tbbr.rst for detailed user steps.

7.24.5 Steps to blow fuses on NXP LS SoC:

• Enable POVDD – Refer board GSG(Getting Started Guide) for the steps to enable POVDD. – Once the
POVDD is enabled, make sure to set variable POVDD_ENABLE := yes, in the platform.mk.

Platform Jumper Switch LED to Verify Through
GPIO Pin
(=number)

1. lx2160ardb J9 no

2. lx2160aqds J35 no

3. lx2162aqds J35 SW9[4] = 1 D15 no

• SFP registers to be written to:

Platform OTPMKR0..OTPMKR7 SRKHR0..SRKHR7
1. lx2160ardb/lx2160aqds/lx2162aqds0x1e80234..0x1e80250 0x1e80254..0x1e80270

• At U-Boot prompt, verify that SNVS register - HPSR, whether OTPMK was written, already:

Platform OTPMK_ZERO_BIT(=value)SNVS_HPSR_REG
1. lx2160ardb/lx2160aqds/lx2162aqds27 (= 1 means not

blown, =0 means blown)
0x01E90014

From u-boot prompt:

– Check for the OTPMK.

md $SNVS_HPSR_REG

(continues on next page)

578 Chapter 7. Platform Ports

./nxp-ls-tbbr.rst

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
Command Output:

01e90014: 88000900

In case it is read as 00000000, then read this register␣
↪→using jtag (in development mode only through CW tap).

+0 +4 +8 +C
[0x01E90014] 88000900

Note: OTPMK_ZERO_BIT is 1, indicating that the OTPMK is not␣
↪→blown.

---Check for the SRK Hash. .. code:: shell

md $SRKHR0 0x10

Command Output:
01e80254: 00000000 00000000 00000000 00000000 ……………. 01e80264:
00000000 00000000 00000000 00000000 …………….

Note: Zero means that SRK hash is not blown.

• If not blown, then from the U-Boot prompt, using following commands: – Provision the OTPMK.

mw.l $OTPMKR0 <OTMPKR_0_32Bit_val>
mw.l $OTPMKR1 <OTMPKR_1_32Bit_val>
mw.l $OTPMKR2 <OTMPKR_2_32Bit_val>
mw.l $OTPMKR3 <OTMPKR_3_32Bit_val>
mw.l $OTPMKR4 <OTMPKR_4_32Bit_val>
mw.l $OTPMKR5 <OTMPKR_5_32Bit_val>
mw.l $OTPMKR6 <OTMPKR_6_32Bit_val>
mw.l $OTPMKR7 <OTMPKR_7_32Bit_val>

– Provision the SRK Hash.

mw.l $SRKHR0 <SRKHR_0_32Bit_val>
mw.l $SRKHR1 <SRKHR_1_32Bit_val>
mw.l $SRKHR2 <SRKHR_2_32Bit_val>
mw.l $SRKHR3 <SRKHR_3_32Bit_val>
mw.l $SRKHR4 <SRKHR_4_32Bit_val>
mw.l $SRKHR5 <SRKHR_5_32Bit_val>
mw.l $SRKHR6 <SRKHR_6_32Bit_val>
mw.l $SRKHR7 <SRKHR_7_32Bit_val>

Note: SRK Hash should be carefully written keeping in mind the␣
↪→SFP Block Endianness.

• At U-Boot prompt, verify that SNVS registers for OTPMK are correctly written:

– Check for the OTPMK.

md $SNVS_HPSR_REG

(continues on next page)

7.24. NXP Reference Development Platforms 579

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
Command Output:

01e90014: 80000900

OTPMK_ZERO_BIT is zero, indicating that the OTPMK is blown.

Note: In case it is read as 00000000, then read this register␣
↪→using jtag (in development mode only through CW tap).

md $OTPMKR0 0x10

Command Output:
01e80234: ffffffff ffffffff ffffffff ffffffff
01e80244: ffffffff ffffffff ffffffff ffffffff

Note: OTPMK will never be visible in plain.

– Check for the SRK Hash. For example, if following SRK hash is written:

SFP SRKHR0 = fdc2fed4 SFP SRKHR1 = 317f569e SFP SRKHR2 = 1828425c
SFP SRKHR3 = e87b5cfd SFP SRKHR4 = 34beab8f SFP SRKHR5 = df792a70
SFP SRKHR6 = 2dff85e1 SFP SRKHR7 = 32a29687,

then following would be the value on dumping SRK hash.

md $SRKHR0 0x10

Command Output:
01e80254: d4fec2fd 9e567f31 5c422818 fd5c7be81.V..(B\

↪→.{\.
01e80264: 8fabbe34 702a79df e185ff2d 8796a232 4....y*p-...

↪→2...

Note: SRK Hash is visible in plain based on the SFP Block␣
↪→Endianness.

• Caution: Donot proceed to the next step, until you are sure that OTPMK and SRKH are correctly blown
from above steps. – After the next step, there is no turning back. – Fuses will be burnt, which cannot be
undo.

• Write SFP_INGR[INST] with the PROGFB(0x2) instruction to blow the fuses. – User need to save the
SRK key pair and OTPMK Key forever, to continue using this board.

Platform SFP_INGR_REG |SFP_WRITE_DATE_FRM_MIRROR_REG_TO_FUSE
1. lx2160ardb/lx2160aqds/lx2162aqds0x01E80020 | 0x2

md $SFP_INGR_REG $SFP_WRITE_DATE_FRM_MIRROR_REG_TO_FUSE

• On reset, if the SFP register were read from u-boot, it will show the following: – Check for the OTPMK.

580 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

md $SNVS_HPSR_REG

Command Output:
01e90014: 80000900

In case it is read as 00000000, then read this register␣
↪→using jtag (in development mode only through CW tap).

+0 +4 +8 +C
[0x01E90014] 80000900

Note: OTPMK_ZERO_BIT is zero, indicating that the OTPMK is␣
↪→blown.

md $OTPMKR0 0x10

Command Output:
01e80234: ffffffff ffffffff ffffffff ffffffff

↪→....
01e80244: ffffffff ffffffff ffffffff ffffffff

↪→....

Note: OTPMK will never be visible in plain.

– SRK Hash

md $SRKHR0 0x10

Command Output:
01e80254: d4fec2fd 9e567f31 5c422818 fd5c7be81.V..(B\

↪→.{\.
01e80264: 8fabbe34 702a79df e185ff2d 8796a232 4....y*p-...

↪→2...

Note: SRK Hash is visible in plain based on the SFP Block␣
↪→Endianness.

7.24.6 Second method to do the fuse provsioning:

This method is used for quick way to provision fuses. Typically used by those who needs to provision number
of boards.

• Enable POVDD: – Refer the table above to enable POVDD.

Note: If GPIO Pin supports enabling POVDD, it can be done through the below in-
put_fuse_file.

– Once the POVDD is enabled, make sure to set variable POVDD_ENABLE := yes, in the platform.mk.

• User need to populate the “input_fuse_file”, corresponding to the platform for:

– OTPMK – SRKH

Table of fuse provisioning input file for every supported platform:

7.24. NXP Reference Development Platforms 581

Trusted Firmware-A, Release 2.10.4

Platform FUSE_PROV_FILE
1. lx2160ardb/lx2160aqds/lx2162aqds${CST_DIR}/input_files/gen_fusescr/ls2088_1088/input_fuse_file

• Create the TF-A binary with FUSE_PROG=1.

make PLAT=$PLAT FUSE_PROG=1\
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL32=$TEE_BIN SPD=opteed\
BL33=$UBOOT_SECURE_BIN \
pbl \
fip \
fip_fuse \
FUSE_PROV_FILE=../../apps/security/cst/input_files/gen_fusescr/

↪→ls2088_1088/input_fuse_file

• Deployment: – Refer the nxp-layerscape.rst for deploying TF-A images. – Deploying fip_fuse.bin:

For Flexspi-Nor:

tftp 82000000 $path/fuse_fip.bin;
i2c mw 66 50 20;sf probe 0:0; sf erase 0x880000 +$filesize; sf␣

↪→write 0x82000000 0x880000 $filesize;

For SD or eMMC [file_size_in_block_sizeof_512 = (Size_of_bytes_
↪→tftp / 512)]:

tftp 82000000 $path/fuse_fip.bin;
mmc write 82000000 0x4408 <file_size_in_block_sizeof_512>;

• Valiation:

Platform Error_Register | Er-
ror_Register_Address

1. lx2160ardb/lx2160aqds/lx2162aqds DCFG scratch 4 register |
0x01EE020C

At the U-Boot prompt, check DCFG scratch 4 register for any error.

md $Error_Register_Address 1

Command Ouput:
01ee020c: 00000000

Note:
- 0x00000000 shows no error, then fuse provisioning is successful.
- For non-zero value, refer the code header file ".../drivers/nxp/
↪→sfp/sfp_error_codes.h"

582 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.24.7 NXP Platforms:

TRUSTED_BOARD_BOOT option can be enabled by specifying TRUSTED_BOARD_BOOT=1 on com-
mand line during make.

Bare-Minimum Preparation to run TBBR on NXP Platforms:

• OTPMK(One Time Programable Key) needs to be burnt in fuses. – It is the 256 bit key that stores a
secret value used by the NXP SEC 4.0 IP in Trusted or Secure mode.

Note: It is primarily for the purpose of decrypting additional secrets stored in system non-
volatile memory.

– NXP CST tool gives an option to generate it.

Use the below command from directory ‘cst’, with correct options.

./gen_otpmk_drbg

• SRKH (Super Root Key Hash) needs to be burnt in fuses. – It is the 256 bit hash of the list of the public
keys of the SRK key pair. – NXP CST tool gives an option to generate the RSA key pair and its hash.

Use the below command from directory ‘cst’, with correct options.

./gen_keys

Refer fuse frovisioning readme ‘nxp-ls-fuse-prov.rst’ for steps to blow these keys.

Two options are provided for TRUSTED_BOARD_BOOT:

7.24.8 Option 1: CoT using X 509 certificates

• This CoT is as provided by ARM.

• To use this option user needs to specify mbedtld dir path in MBEDTLS_DIR.

• To generate CSF header, path of CST repository needs to be specified as CST_DIR

• CSF header is embedded to each of the BL2 image.

• GENERATE_COT=1 adds the tool ‘cert_create’ to the build environment to generate: – X509 Certifi-
cates as (.crt) files. – X509 Pem key file as (.pem) files.

• SAVE_KEYS=1 saves the keys and certificates, if GENERATE_COT=1. – For this to work, file name
for cert and keys are provided as part of compilation or build command.

— default file names will be used, incase not provided as part compilation or build command.
— default folder ‘BUILD_PLAT’ will be used to store them.

• ROTPK for x.509 certificates is generated and embedded in bl2.bin and verified as part of CoT by Boot
ROM during secure boot.

• Compilation steps:

7.24. NXP Reference Development Platforms 583

Trusted Firmware-A, Release 2.10.4

All Images

make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=$MBEDTLS_
↪→PATH CST_DIR=$CST_DIR_PATH \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL32=$TEE_BIN SPD=opteed\
BL33=$UBOOT_SECURE_BIN \
pbl \
fip

Additional FIP_DDR Image (For NXP platforms like lx2160a)

make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=
↪→$MBEDTLS_PATH fip_ddr

Note: make target 'fip_ddr' should never be combine with other make␣
↪→target 'fip', 'pbl' & 'bl2'.

7.24.9 Option 2: CoT using NXP CSF headers.

• This option is automatically selected when TRUSTED_BOARD_BOOT is set butMBEDTLS_DIR path
is not specified.

• CSF header is embedded to each of the BL31, BL32 and BL33 image.

• To generate CSF header, path of CST repository needs to be specified as CST_DIR

• Default input files for CSF header generation is added in this repo.

• Default input file requires user to generate RSA key pair named – srk.pri, and – srk.pub, and add them
in ATF repo. – These keys can be generated using gen_keys tool of CST.

• To change the input file , user can use the options BL33_INPUT_FILE, BL32_INPUT_FILE,
BL31_INPUT_FILE

• There are 2 paths in secure boot flow : – Development Mode (sb_en in RCW = 1, SFP->OSPR, ITS =
0)

— In this flow , even on ROTPK comparison failure, flowwould continue. —However SNVS
is transitioned to non-secure state

– Production mode (SFP->OSPR, ITS = 1)

— Any failure is fatal failure

• Compilation steps:

All Images

make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL32=$TEE_BIN SPD=opteed\

(continues on next page)

584 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
BL33=$UBOOT_SECURE_BIN \
pbl \
fip

Additional FIP_DDR Image (For NXP platforms like lx2160a)

make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH fip_ddr

• Compilation Steps with build option for generic image processing filters to prepend CSF header: –
Generic image processing filters to prepend CSF header

BL32_INPUT_FILE = < file name> BL33_INPUT_FILE = <file name>

make PLAT=$PLAT TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH \
BOOT_MODE=<platform_supported_boot_mode> \
RCW=$RCW_BIN \
BL32=$TEE_BIN SPD=opteed\
BL33=$UBOOT_SECURE_BIN \
BL33_INPUT_FILE = <ip file> \
BL32_INPUT_FILE = <ip_file> \
BL31_INPUT_FILE = <ip file> \
pbl \
fip

Deploy ATF Images

Same steps as mentioned in the readme “nxp-layerscape.rst”.

Verification to check if Secure state is achieved:

Platform SNVS_HPSR_REGSYS_SECURE_BIT(=value)SYS-
TEM_SECURE_CONFIG_BIT(=value)

SSM_STATE

1. lx2160ardb or
lx2160aqds or
lx2162aqds

0x01E90014 15 (= 1,
BootROM
Booted)

14-12 (= 010
means Intent to
Secure, (= 000
Unsecure)

11-8 (=1111
means secure
boot) (=1011
means Non-
secure Boot)

• Production mode (SFP->OSPR, ITS = 1) – Linux prompt will successfully come. if the TBBR is suc-
cessful.

— Else, Linux boot will be successful.

– For secure-boot status, read SNVS Register $SNVS_HPSR_REG from u-boot prompt:

md $SNVS_HPSR_REG

(continues on next page)

7.24. NXP Reference Development Platforms 585

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
Command Output:

1e90014: 8000AF00

In case it is read as 00000000, then read this register␣
↪→using jtag (in development mode only through CW tap).

+0 +4 +8 +C
[0x01E90014] 8000AF00

• Development Mode (sb_en in RCW = 1, SFP->OSPR, ITS = 0) – Refer the SoC specific table to read
the register to interpret whether the secure boot is achieved or not. – Using JTAG (in development
environment only, using CW tap):

— For secure-boot status, read SNVS Register $SNVS_HPSR_REG

ccs::display_regs 86 0x01E90014 4 0 1

Command Output:
Using the SAP chain position number 86, following is the␣

↪→output.

+0 +4 +8 +C
[0x01E90014] 8000AF00

Note: Chain position number will vary from one SoC to other␣
↪→SoC.

• Interpretation of the value:

– 0xA indicates BootROM booted, with intent to secure. – 0xF = secure boot, as SSM_STATE.

This chapter holds documentation related to NXP reference development platforms. It includes details on image
flashing, fuse provisioning and trusted board boot-up.

Copyright (c) 2021, NXP Limited. All rights reserved.

7.25 Poplar

Poplar is the first development board compliant with the 96Boards Enterprise Edition TVPlatform specification.

The board features the Hi3798C V200 with an integrated quad-core 64-bit Arm Cortex A53 processor and
high performance Mali T720 GPU, making it capable of running any commercial set-top solution based on
Linux or Android.

It supports a premium user experience with up to H.265 HEVC decoding of 4K video at 60 frames per second.

SOC Hisilicon Hi3798CV200
CPU Quad-core Arm Cortex-A53 64 bit
DRAM DDR3/3L/4 SDRAM interface, maximum 32-bit data width 2 GB
USB Two USB 2.0 ports One USB 3.0 ports

(continues on next page)

586 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
CONSOLE USB-micro port for console support
ETHERNET 1 GBe Ethernet
PCIE One PCIe 2.0 interfaces
JTAG 8-Pin JTAG
EXPANSION INTERFACE Linaro 96Boards Low Speed Expansion slot
DIMENSION Standard 160×120 mm 96Boards Enterprice Edition form factor
WIFI 802.11AC 2*2 with Bluetooth
CONNECTORS One connector for Smart Card One connector for TSI

At the start of the boot sequence, the bootROM executes the so called l-loader binary whose main role is to
change the processor state to 64bit mode. This must happen prior to invoking Trusted Firmware-A:

l-loader --> Trusted Firmware-A --> u-boot

7.25.1 How to build

Code Locations

• Trusted Firmware-A: link

• l-loader: link

• u-boot: link

Build Procedure

• Fetch all the above 3 repositories into local host. Make all the repositories in the same ${BUILD_PATH}.

• Prepare the AARCH64 toolchain.

• Build u-boot using poplar_defconfig

make CROSS_COMPILE=aarch64-linux-gnu- poplar_defconfig
make CROSS_COMPILE=aarch64-linux-gnu-

• Build atf providing the previously generated u-boot.bin as the BL33 image

make CROSS_COMPILE=aarch64-linux-gnu- all fip SPD=none PLAT=poplar
BL33=u-boot.bin

• Build l-loader (generated the final fastboot.bin)

1. copy the atf generated files fip.bin and bl1.bin to l-loader/atf/

2. export ARM_TRUSTED_FIRMWARE=${ATF_SOURCE_PATH)

3. make

7.25. Poplar 587

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/Linaro/poplar-l-loader.git
http://git.denx.de/u-boot.git

Trusted Firmware-A, Release 2.10.4

7.25.2 Install Procedure

• Copy l-loader/fastboot.bin to a FAT partition on a USB pen drive.

• Plug the USB pen drive to any of the USB2 ports

• Power the board while keeping S3 pressed (usb_boot)

The system will boot into a u-boot shell which you can then use to write the working firmware to eMMC.

7.25.3 Boot trace

Bootrom start
Boot Media: eMMC
Decrypt auxiliary code ...OK

lsadc voltage min: 000000FE, max: 000000FF, aver: 000000FE, index: 00000000

Entry boot auxiliary code

Auxiliary code - v1.00
DDR code - V1.1.2 20160205
Build: Mar 24 2016 - 17:09:44
Reg Version: v134
Reg Time: 2016/03/18 09:44:55
Reg Name: hi3798cv2dmb_hi3798cv200_ddr3_2gbyte_8bitx4_4layers.reg

Boot auxiliary code success
Bootrom success

LOADER: Switched to aarch64 mode
LOADER: Entering ARM TRUSTED FIRMWARE
LOADER: CPU0 executes at 0x000ce000

INFO: BL1: 0xe1000 - 0xe7000 [size = 24576]
NOTICE: Booting Trusted Firmware
NOTICE: BL1: v1.3(debug):v1.3-372-g1ba9c60
NOTICE: BL1: Built : 17:51:33, Apr 30 2017
INFO: BL1: RAM 0xe1000 - 0xe7000
INFO: BL1: Loading BL2
INFO: Loading image id=1 at address 0xe9000
INFO: Image id=1 loaded at address 0xe9000, size = 0x5008
NOTICE: BL1: Booting BL2
INFO: Entry point address = 0xe9000
INFO: SPSR = 0x3c5
NOTICE: BL2: v1.3(debug):v1.3-372-g1ba9c60
NOTICE: BL2: Built : 17:51:33, Apr 30 2017
INFO: BL2: Loading BL31
INFO: Loading image id=3 at address 0x129000
INFO: Image id=3 loaded at address 0x129000, size = 0x8038
INFO: BL2: Loading BL33
INFO: Loading image id=5 at address 0x37000000

(continues on next page)

588 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: Image id=5 loaded at address 0x37000000, size = 0x58f17
NOTICE: BL1: Booting BL31
INFO: Entry point address = 0x129000
INFO: SPSR = 0x3cd
INFO: Boot bl33 from 0x37000000 for 364311 Bytes
NOTICE: BL31: v1.3(debug):v1.3-372-g1ba9c60
NOTICE: BL31: Built : 17:51:33, Apr 30 2017
INFO: BL31: Initializing runtime services
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x37000000
INFO: SPSR = 0x3c9

U-Boot 2017.05-rc2-00130-gd2255b0 (Apr 30 2017 - 17:51:28 +0200)poplar

Model: HiSilicon Poplar Development Board
BOARD: Hisilicon HI3798cv200 Poplar
DRAM: 1 GiB
MMC: Hisilicon DWMMC: 0
In: serial@f8b00000
Out: serial@f8b00000
Err: serial@f8b00000
Net: Net Initialization Skipped
No ethernet found.

Hit any key to stop autoboot: 0
starting USB...
USB0: USB EHCI 1.00
scanning bus 0 for devices... 1 USB Device(s) found
USB1: USB EHCI 1.00
scanning bus 1 for devices... 4 USB Device(s) found

scanning usb for storage devices... 1 Storage Device(s) found
scanning usb for ethernet devices... 1 Ethernet Device(s) found

USB device 0:
Device 0: Vendor: SanDisk Rev: 1.00 Prod: Cruzer Blade

Type: Removable Hard Disk
Capacity: 7632.0 MB = 7.4 GB (15630336 x 512)

... is now current device
Scanning usb 0:1...
=>

7.25. Poplar 589

Trusted Firmware-A, Release 2.10.4

7.26 QEMU virt Armv8-A

Trusted Firmware-A (TF-A) implements the EL3 firmware layer for QEMU virt Armv8-A. BL1 is used as the
BootROM, supplied with the -bios argument. When QEMU starts all CPUs are released simultaneously, BL1
selects a primary CPU to handle the boot and the secondaries are placed in a polling loop to be released by
normal world via PSCI.

BL2 edits the Flattened Device Tree, FDT, generated by QEMU at run-time to add a node describing PSCI
and also enable methods for the CPUs.

If ARM_LINUX_KERNEL_AS_BL33 is set to 1 then this FDT will be passed to BL33 via register x0, as
expected by a Linux kernel. This allows a Linux kernel image to be booted directly as BL33 rather than using
a bootloader.

An ARM64 defconfig v5.5 Linux kernel is known to boot, FDT doesn’t need to be provided as it’s generated
by QEMU.

Current limitations:

• Only cold boot is supported

7.26.1 Getting non-TF images

QEMU_EFI.fd can be downloaded from http://snapshots.linaro.org/components/kernel/
leg-virt-tianocore-edk2-upstream/latest/QEMU-KERNEL-AARCH64/RELEASE_GCC5/QEMU_EFI.fd

or, can be built as follows:

git clone https://github.com/tianocore/edk2.git
cd edk2
git submodule update --init
make -C BaseTools
source edksetup.sh
export GCC5_AARCH64_PREFIX=aarch64-linux-gnu-
build -a AARCH64 -t GCC5 -p ArmVirtPkg/ArmVirtQemuKernel.dsc

Then, you will get Build/ArmVirtQemuKernel-AARCH64/DEBUG_GCC5/FV/QEMU_EFI.fd

Please note you do not need to use GCC 5 in spite of the environment variable GCC5_AARCH64_PREFIX.

The rootfs can be built by using Buildroot as follows:

git clone git://git.buildroot.net/buildroot.git
cd buildroot
make qemu_aarch64_virt_defconfig
utils/config -e BR2_TARGET_ROOTFS_CPIO
utils/config -e BR2_TARGET_ROOTFS_CPIO_GZIP
make olddefconfig
make

Then, you will get output/images/rootfs.cpio.gz.

590 Chapter 7. Platform Ports

http://snapshots.linaro.org/components/kernel/leg-virt-tianocore-edk2-upstream/latest/QEMU-KERNEL-AARCH64/RELEASE_GCC5/QEMU_EFI.fd
http://snapshots.linaro.org/components/kernel/leg-virt-tianocore-edk2-upstream/latest/QEMU-KERNEL-AARCH64/RELEASE_GCC5/QEMU_EFI.fd

Trusted Firmware-A, Release 2.10.4

7.26.2 Booting via semi-hosting option

Boot binaries, except BL1, are primarily loaded via semi-hosting so all binaries has to reside in the same
directory as QEMU is started from. This is conveniently achieved with symlinks the local names as:

• bl2.bin -> BL2

• bl31.bin -> BL31

• bl33.bin -> BL33 (QEMU_EFI.fd)

• Image -> linux/arch/arm64/boot/Image

To build:

make CROSS_COMPILE=aarch64-none-elf- PLAT=qemu

To start (QEMU v5.0.0):

qemu-system-aarch64 -nographic -machine virt,secure=on -cpu cortex-a57 \
-kernel Image \
-append "console=ttyAMA0,38400 keep_bootcon" \
-initrd rootfs.cpio.gz -smp 2 -m 1024 -bios bl1.bin \
-d unimp -semihosting-config enable,target=native

7.26.3 Booting via flash based firmware

An alternate approach to deploy a full system stack on QEMU is to load the firmware via a secure flash de-
vice. This involves concatenating bl1.bin and fip.bin to create a boot ROM that is flashed onto secure
FLASH0 with the -bios option.

For example, to test the following firmware stack:

• BL32 - bl32.bin -> tee-header_v2.bin

• BL32 Extra1 - bl32_extra1.bin -> tee-pager_v2.bin

• BL32 Extra2 - bl32_extra2.bin -> tee-pageable_v2.bin

• BL33 - bl33.bin -> QEMU_EFI.fd (EDK II)

• Image -> linux/arch/arm64/boot/Image

1. Compile TF-A

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=qemu BL32=bl32.bin \
BL32_EXTRA1=bl32_extra1.bin BL32_EXTRA2=bl32_extra2.bin \
BL33=bl33.bin BL32_RAM_LOCATION=tdram SPD=opteed all fip

Or, alternatively, to build with TBBR enabled, as well as, BL31 and BL32 encrypted with test key:

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=qemu BL32=bl32.bin \
BL32_EXTRA1=bl32_extra1.bin BL32_EXTRA2=bl32_extra2.bin \
BL33=bl33.bin BL32_RAM_LOCATION=tdram SPD=opteed all fip \

(continues on next page)

7.26. QEMU virt Armv8-A 591

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
MBEDTLS_DIR=<path-to-mbedtls-repo> TRUSTED_BOARD_BOOT=1 \
GENERATE_COT=1 DECRYPTION_SUPPORT=aes_gcm FW_ENC_STATUS=0 \
ENCRYPT_BL31=1 ENCRYPT_BL32=1

2. Concatenate bl1.bin and fip.bin to create the boot ROM

dd if=build/qemu/release/bl1.bin of=flash.bin bs=4096 conv=notrunc
dd if=build/qemu/release/fip.bin of=flash.bin seek=64 bs=4096␣
↪→conv=notrunc

3. Launch QEMU

qemu-system-aarch64 -nographic -machine virt,secure=on
-cpu cortex-a57 -kernel Image \
-append 'console=ttyAMA0,38400 keep_bootcon' \
-initrd rootfs.cpio.gz -smp 2 -m 1024 -bios flash.bin \
-d unimp

The -bios option abstracts the loading of raw bare metal binaries into flash or ROM memory. QEMU loads
the binary into the region corresponding to the hardware’s entrypoint, from which the binary is executed upon a
platform “reset”. In addition to this, it places the information about the kernel provided with option -kernel,
and the RamDisk provided with -initrd, into the firmware configuration fw_cfg. In this setup, EDK II is
responsible for extracting and launching these from fw_cfg.

Note: QEMU may be launched with or without ACPI (-acpi/-no-acpi). In either case, ensure that the
kernel build options are aligned with the parameters passed to QEMU.

7.26.4 Running QEMU in OpenCI

Linaro’s continuous integration platform OpenCI supports running emulated tests on QEMU. The tests are
kicked off on Jenkins and deployed through the Linaro Automation and Validation Architecture LAVA.

There are a set of Linux boot tests provided in OpenCI. They rely on prebuilt binaries for UEFI, the kernel,
root file system, as well as, any other TF-A dependencies, and are run as part of the OpenCI TF-A daily job.
To run them manually, a builder job may be triggered with the test configuration qemu-boot-tests.

You may see the following warning repeated several times in the boot logs:

pflash_write: Write to buffer emulation is flawed

Please ignore this as it is an unresolved issue in QEMU, it is an internal QEMU warning that logs flawed use
of “write to buffer”.

Note: For more information on how to trigger jobs in OpenCI, please refer to Linaro’s CI documentation,
which explains how to trigger a manual job.

592 Chapter 7. Platform Ports

https://tf.validation.linaro.org/
https://downloads.trustedfirmware.org/tf-a/linux_boot/
https://ci.trustedfirmware.org/view/TF-A/job/tf-a-main/
https://ci.trustedfirmware.org/view/TF-A/job/tf-a-builder/
https://git.qemu.org/?p=qemu.git;a=blob;f=hw/block/pflash_cfi01.c;h=0cbc2fb4cbf62c9a033b8dd89012374ff74ed610;hb=refs/heads/master#l500
https://tf-ci-users-guide.readthedocs.io/en/latest/#manual-job-trigger

Trusted Firmware-A, Release 2.10.4

7.27 QEMU SBSA Target

Trusted Firmware-A (TF-A) implements the EL3 firmware layer for QEMU SBSA Armv8-A. While running
Qemu from command line, we need to supply two Flash images. First Secure BootRom is supplied by -pflash
argument. This Flash image is made by EDK2 build system by composing BL1 and FIP. Second parameter
for Qemu is responsible for Non-secure rom which also given with -pflash argument and contains of UEFI and
EFI variables (also made by EDK2 build system). Semihosting is not used

When QEMU starts all CPUs are released simultaneously, BL1 selects a primary CPU to handle the boot and
the secondaries are placed in a polling loop to be released by normal world via PSCI.

BL2 edits the FDT, generated by QEMU at run-time to add a node describing PSCI and also enable methods
for the CPUs.

Current limitations:

• Only cold boot is supported

To build TF-A:

git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git tfa
cd tfa
export CROSS_COMPILE=aarch64-none-elf-
make PLAT=qemu_sbsa all fip

To build TF-A with BL32 and SPM enabled(StandaloneMM as a Secure Payload):

git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git tfa
cd tfa
export CROSS_COMPILE=aarch64-none-elf-
make PLAT=qemu_sbsa BL32=../STANDALONE_MM.fd SPM_MM=1 EL3_EXCEPTION_
↪→HANDLING=1 all fip

Images will be placed at build/qemu_sbsa/release (bl1.bin and fip.bin). Need to copy them into top directory
for EDK2 compilation.

cp build/qemu_sbsa/release/bl1.bin ../
cp build/qemu_sbsa/release/fip.bin ../

Those images cannot be used by itself (no semihosing support). Flash images are built by EDK2 build system,
refer to edk2-platform repo for full build instructions.

git clone https://github.com/tianocore/edk2-platforms.git
Platform/Qemu/SbsaQemu/Readme.md

7.27. QEMU SBSA Target 593

Trusted Firmware-A, Release 2.10.4

7.28 Qualcomm Technologies, Inc.

Trusted Firmware-A (TF-A) implements the EL3 firmware layer for QTI SC7180, SC7280.

7.28.1 Boot Trace

Bootrom –> BL1/BL2 –> BL31 –> BL33 –> Linux kernel

BL1/2 and BL33 can currently be supplied from Coreboot + Depthcharge

7.28.2 How to build

Code Locations

• Trusted Firmware-A: link

Build Procedure

QTI SoC expects TF-A’s BL31 to get integrated with other boot software Coreboot, so only bl31.elf need to
get build from the TF-A repository.

The build command looks like

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sc7180 COREBOOT=1

update value of CROSS_COMPILE argument with your cross-compilation toolchain.

Additional QTISECLIB_PATH=<path to qtiseclib> can be added in build command. if QTISECLIB_PATH
is not added in build command stub implementation of qtiseclib is picked. qtiseclib with stub implementation
doesn’t boot device. This was added to satisfy compilation.

QTISELIB for SC7180 is available at link QTISELIB for SC7280 is available at link

7.29 Qualcomm MSM8916

The MSM8916 platform port in TF-A supports multiple similar Qualcomm SoCs:

594 Chapter 7. Platform Ports

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
https://github.com/coreboot/qc_blobs/blob/master/sc7180/qtiseclib/libqtisec.a?raw=true
https://github.com/coreboot/qc_blobs/blob/master/sc7280/qtiseclib/libqtisec.a?raw=true

Trusted Firmware-A, Release 2.10.4

System-on-Chip (SoC) TF-A Plat-
form

Application CPU Supports

Snapdragon 410 (MSM8x16,
APQ8016(E)) (DragonBoard 410c)

PLAT=msm89164x ARM Cortex-A53 AArch64/AArch32

Snapdragon 615 (MSM8x39, APQ8039) PLAT=msm89394x ARM Cortex-A53 4x
ARM Cortex-A53

AArch64/AArch32

Snapdragon 210 (MSM8x09, APQ8009) PLAT=msm89094x ARM Cortex-A7 AArch32
only

Snapdragon X5 Modem (MDM9x07) PLAT=mdm96071x ARM Cortex-A7 AArch32
only

It provides a minimal, community-maintained EL3 firmware and PSCI implementation, based on information
from the public Snapdragon 410E Technical ReferenceManual combined with a lot of trial and error to actually
make it work.

Note: Unlike the QTI SC7180/SC7280 ports, this port does notmake use of a proprietary binary components
(QTISECLIB). It is fully open-source but therefore limited to publicly documented hardware components.

7.29.1 Functionality

The TF-A port is much more minimal compared to the original firmware and therefore expects the non-secure
world (e.g. Linux) to manage more hardware, such as the SMMUs and all remote processors (RPM, WCNSS,
Venus, Modem). Everything except modem is currently functional with a slightly modified version of mainline
Linux.

Warning: This port is not secure. There is no special secure memory and the used DRAM is available
from both the non-secure and secure worlds. Unfortunately, the hardware used for memory protection is
not described in the APQ8016E documentation.

The port is primarily intended as a minimal PSCI implementation (without a separate secure world) where
this limitation is not a big problem. Booting secondary CPU cores (PSCI CPU_ON) is supported. Basic CPU
core power management (CPU_SUSPEND) is functional but still work-in-progress and will be added later once
ready.

7.29. Qualcomm MSM8916 595

https://www.qualcomm.com/products/snapdragon-processors-410
https://www.96boards.org/product/dragonboard410c/
https://www.qualcomm.com/products/snapdragon-processors-615
https://www.qualcomm.com/products/snapdragon-processors-210
https://www.qualcomm.com/products/snapdragon-modems-4g-lte-x5
https://developer.qualcomm.com/download/sd410/snapdragon-410e-technical-reference-manual.pdf

Trusted Firmware-A, Release 2.10.4

7.29.2 Boot Flow

BL31 (AArch64) or BL32/SP_MIN (AArch32) replaces the original tz firmware in the boot flow:

Boot ROM (PBL) -> SBL -> BL31 (EL3) -> U-Boot (EL2) -> Linux (EL2)

After initialization the normal world starts at a fixed entry address in EL2/HYP mode, configured using
PRELOADED_BL33_BASE. At runtime, it is expected that the normal world bootloader was already loaded
into RAM by a previous firmware component (usually SBL) and that it is capable of running in EL2/HYP
mode.

U-Boot for DragonBoard 410c is recommended if possible. The original Little Kernel-based bootloader from
Qualcomm does not support EL2/HYP, but can be booted using an additional shim loader such as tfalkstub.

7.29.3 Build

It is possible to build for either AArch64 or AArch32. Some platforms use 32-bit CPUs that only support
AArch32 (see table above). For all others AArch64 is the preferred build option.

AArch64 (BL31)

Setup the cross compiler for AArch64 and build BL31 for one of the platforms in the table above:

$ make CROSS_COMPILE=aarch64-none-elf- PLAT=...

The BL31 ELF image is generated in build/$PLAT/release/bl31/bl31.elf.

AArch32 (BL32/SP_MIN)

Setup the cross compiler for AArch32 and build BL32 with SP_MIN for one of the platforms in the table
above:

$ make CROSS_COMPILE=arm-none-eabi- PLAT=... ARCH=aarch32 AARCH32_SP=sp_min

The BL32 ELF image is generated in build/$PLAT/release/bl32/bl32.elf.

7.29.4 Build Options

Some options can be changed at build time by adding them to the make command line:

• QTI_UART_NUM: Number of UART controller to use for debug output and crash reports. This must be
the same UART as used by earlier boot firmware since the UART controller does not get fully initialized
at the moment. Defaults to the usual debug UART used for the platform (see platform.mk).

• QTI_RUNTIME_UART: By default (0) the UART is only used for the boot process and critical crashes.
If set to 1 it is also used for runtime messages. Note that this option can only be used if the UART is
reserved in the normal world and the necessary clocks remain enabled.

596 Chapter 7. Platform Ports

https://u-boot.readthedocs.io/en/latest/board/qualcomm/dragonboard410c.html
https://github.com/msm8916-mainline/tfalkstub

Trusted Firmware-A, Release 2.10.4

The memory region used for the different firmware components is not fixed and can be changed on the make
command line. The default values match the addresses used by the original firmware (see platform.mk):

• PRELOADED_BL33_BASE: The entry address for the normal world. Usually refers to the first boot-
loader (e.g. U-Boot).

• BL31_BASE: Base address for the BL31 firmware component. Must point to a 64K-aligned memory
region with at least 128 KiB space that is permanently reserved in the normal world.

• BL32_BASE: Base address for the BL32 firmware component.

– AArch32: BL32 is used in place of BL31, so the option is equivalent to BL31_BASE.

– AArch64: Secure-EL1 Payload. Defaults to using 128 KiB of space directly after BL31. For
testing only, the port is primarily intended as a minimal PSCI implementation without a separate
secure world.

7.29.5 Installation

The ELF image must be “signed” before flashing it, even if the board has secure boot disabled. In this case the
signature does not provide any security, but it provides the firmware with required metadata.

The DragonBoard 410c does not have secure boot enabled by default. In this case you can simply sign the ELF
image using a randomly generated key. You can use e.g. qtestsign:

$./qtestsign.py tz build/msm8916/release/bl31/bl31.elf

Then install the resulting build/msm8916/release/bl31/bl31-test-signed.mbn to the tz
partition on the device. BL31 should be running after a reboot.

Note: On AArch32 the ELF image is called bl32.elf. The installation procedure is identical.

Warning: Do not flash incorrectly signed firmware on devices that have secure boot enabled! Make sure
that you have a way to recover the board in case of problems (e.g. using EDL).

7.29.6 Boot Trace

AArch64 (BL31)

BL31 prints some lines on the debug console, which will usually look like this (with DEBUG=1, otherwise only
the NOTICE lines are shown):

...
S - DDR Frequency, 400 MHz
NOTICE: BL31: v2.6(debug):v2.6
NOTICE: BL31: Built : 20:00:00, Dec 01 2021

(continues on next page)

7.29. Qualcomm MSM8916 597

https://www.96boards.org/product/dragonboard410c/
https://github.com/msm8916-mainline/qtestsign

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: BL31: Platform setup start
INFO: ARM GICv2 driver initialized
INFO: BL31: Platform setup done
INFO: BL31: Initializing runtime services
INFO: BL31: cortex_a53: CPU workaround for 819472 was applied
INFO: BL31: cortex_a53: CPU workaround for 824069 was applied
INFO: BL31: cortex_a53: CPU workaround for 826319 was applied
INFO: BL31: cortex_a53: CPU workaround for 827319 was applied
INFO: BL31: cortex_a53: CPU workaround for 835769 was applied
INFO: BL31: cortex_a53: CPU workaround for disable_non_temporal_hint was␣
↪→applied
INFO: BL31: cortex_a53: CPU workaround for 843419 was applied
INFO: BL31: cortex_a53: CPU workaround for 1530924 was applied
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x8f600000
INFO: SPSR = 0x3c9

U-Boot 2021.10 (Dec 01 2021 - 20:00:00 +0000)
Qualcomm-DragonBoard 410C
...

AArch32 (BL32/SP_MIN)

BL32/SP_MIN prints some lines on the debug console, which will usually look like this (with DEBUG=1,
otherwise only the NOTICE lines are shown):

...
S - DDR Frequency, 400 MHz
NOTICE: SP_MIN: v2.8(debug):v2.8
NOTICE: SP_MIN: Built : 23:03:31, Mar 31 2023
INFO: SP_MIN: Platform setup start
INFO: ARM GICv2 driver initialized
INFO: SP_MIN: Platform setup done
INFO: SP_MIN: Initializing runtime services
INFO: BL32: cortex_a53: CPU workaround for 819472 was applied
INFO: BL32: cortex_a53: CPU workaround for 824069 was applied
INFO: BL32: cortex_a53: CPU workaround for 826319 was applied
INFO: BL32: cortex_a53: CPU workaround for 827319 was applied
INFO: BL32: cortex_a53: CPU workaround for disable_non_temporal_hint was␣
↪→applied
INFO: SP_MIN: Preparing exit to normal world
INFO: Entry point address = 0x86400000
INFO: SPSR = 0x1da
Android Bootloader - UART_DM Initialized!!!
[0] welcome to lk
...

598 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.30 Raspberry Pi 3

The Raspberry Pi 3 is an inexpensive single-board computer that contains four Arm Cortex-A53 cores.

The following instructions explain how to use this port of the TF-A with the default distribution of Raspbian
because that’s the distribution officially supported by the Raspberry Pi Foundation. At the moment of writing
this, the officially supported kernel is a AArch32 kernel. This doesn’t mean that this port of TF-A can’t boot a
AArch64 kernel. The Linux tree fork maintained by the Foundation can be compiled for AArch64 by following
the steps in AArch64 kernel build instructions.

IMPORTANTNOTE: This port isn’t secure. All of the memory used is DRAM, which is available from both
the Non-secure and Secure worlds. This port shouldn’t be considered more than a prototype to play with and
implement elements like PSCI to support the Linux kernel.

7.30.1 Design

The SoC used by the Raspberry Pi 3 is the Broadcom BCM2837. It is a SoC with a VideoCore IV that acts
as primary processor (and loads everything from the SD card) and is located between all Arm cores and the
DRAM. Check the Raspberry Pi 3 documentation for more information.

This explains why it is possible to change the execution state (AArch64/AArch32) depending on a few files on
the SD card. We only care about the cases in which the cores boot in AArch64 mode.

The rules are simple:

• If a file called kernel8.img is located on the boot partition of the SD card, it will load it and execute
in EL2 in AArch64. Basically, it executes a default AArch64 stub at address 0x0 that jumps to the kernel.

• If there is also a file called armstub8.bin, it will load it at address 0x0 (instead of the default stub)
and execute it in EL3 in AArch64. All the cores are powered on at the same time and start at address
0x0.

This means that we can use the default AArch32 kernel provided in the official Raspbian distribution by re-
naming it to kernel8.img, while TF-A and anything else we need is in armstub8.bin. This way we
can forget about the default bootstrap code. When using a AArch64 kernel, it is only needed to make sure that
the name on the SD card is kernel8.img.

Ideally, we want to load the kernel and have all cores available, whichmeans that we need to make the secondary
cores work in the way the kernel expects, as explained in Secondary cores. In practice, a small bootstrap is
needed between TF-A and the kernel.

To get the most out of a AArch32 kernel, we want to boot it in Hypervisor mode in AArch32. This means
that BL33 can’t be in EL2 in AArch64 mode. The architecture specifies that AArch32 Hypervisor mode isn’t
present when AArch64 is used for EL2. When using a AArch64 kernel, it should simply start in EL2.

7.30. Raspberry Pi 3 599

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/downloads/raspbian/
https://github.com/raspberrypi/linux
https://www.raspberrypi.org/documentation/
https://github.com/raspberrypi/tools/blob/master/armstubs/armstub8.S
https://www.raspberrypi.org/downloads/raspbian/

Trusted Firmware-A, Release 2.10.4

Placement of images

The file armstub8.bin contains BL1 and the FIP. It is needed to add padding between them so that the
addresses they are loaded to match the ones specified when compiling TF-A. This is done automatically by the
build system.

The device tree block is loaded by the VideoCore loader from an appropriate file, but we can specify the address
it is loaded to in config.txt.

The file kernel8.img contains a kernel image that is loaded to the address specified in config.txt. The
Linux kernel tree has information about how a AArch32 Linux kernel image is loaded in Documentation/
arm/Booting:

The zImage may also be placed in system RAM and called there. The
kernel should be placed in the first 128MiB of RAM. It is recommended
that it is loaded above 32MiB in order to avoid the need to relocate
prior to decompression, which will make the boot process slightly
faster.

There are no similar restrictions for AArch64 kernels, as specified in the file Documentation/arm64/
booting.txt.

This means that we need to avoid the first 128 MiB of RAM when placing the TF-A images (and specially
the first 32 MiB, as they are directly used to place the uncompressed AArch32 kernel image. This way, both
AArch32 and AArch64 kernels can be placed at the same address.

In the end, the images look like the following diagram when placed in memory. All addresses are Physical
Addresses from the point of view of the Arm cores. Again, note that this is all just part of the same DRAM
that goes from 0x00000000 to 0x3F000000, it just has different names to simulate a real secure platform!

0x00000000 +-----------------+
| ROM | BL1

0x00020000 +-----------------+
| FIP |

0x00200000 +-----------------+
| |
| ... |
| |

0x01000000 +-----------------+
| DTB | (Loaded by the VideoCore)
+-----------------+
| |
| ... |
| |

0x02000000 +-----------------+
| Kernel | (Loaded by the VideoCore)
+-----------------+
| |
| ... |
| |

0x10000000 +-----------------+
| Secure SRAM | BL2, BL31

(continues on next page)

600 Chapter 7. Platform Ports

https://github.com/torvalds/linux

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
0x10100000 +-----------------+

| Secure DRAM | BL32 (Secure payload)
0x11000000 +-----------------+

| Non-secure DRAM | BL33
+-----------------+
| |
| ... |
| |

0x3F000000 +-----------------+
| I/O |

0x40000000 +-----------------+

The area between 0x10000000 and 0x11000000 has to be manually protected so that the kernel doesn’t use
it. The current port tries to modify the live DTB to add a memreserve region that reserves the previously
mentioned area.

If this is not possible, the user may manually add memmap=16M$256M to the command line passed to the
kernel in cmdline.txt. See the Setup SD card instructions to see how to do it. This system is strongly
discouraged.

The last 16 MiB of DRAM can only be accessed by the VideoCore, that has different mappings than the Arm
cores in which the I/O addresses don’t overlap the DRAM. The memory reserved to be used by the VideoCore
is always placed at the end of the DRAM, so this space isn’t wasted.

Considering the 128MiB allocated to the GPU and the 16MiB allocated for TF-A, there are 880MiB available
for Linux.

Boot sequence

The boot sequence of TF-A is the usual one except when booting an AArch32 kernel. In that case, BL33 is
booted in AArch32 Hypervisor mode so that it can jump to the kernel in the same mode and let it take over
that privilege level. If BL33 was running in EL2 in AArch64 (as in the default bootflow of TF-A) it could only
jump to the kernel in AArch32 in Supervisor mode.

The Linux kernel tree has instructions on how to jump to the Linux kernel in Documentation/arm/
Booting and Documentation/arm64/booting.txt. The bootstrap should take care of this.

This port support a direct boot of the Linux kernel from the firmware (as a BL33 image). Alternatively, U-Boot
or other bootloaders may be used.

Secondary cores

This port of the Trusted Firmware-A supports PSCI_CPU_ON, PSCI_SYSTEM_RESET and
PSCI_SYSTEM_OFF. The last one doesn’t really turn the system off, it simply reboots it and asks the
VideoCore firmware to keep it in a low power mode permanently.

The kernel used by Raspbian doesn’t have support for PSCI, so it is needed to use mailboxes to trap the sec-
ondary cores until they are ready to jump to the kernel. This mailbox is located at a different address in the
AArch32 default kernel than in the AArch64 kernel.

7.30. Raspberry Pi 3 601

https://github.com/torvalds/linux
https://www.raspberrypi.org/downloads/raspbian/

Trusted Firmware-A, Release 2.10.4

Kernels with PSCI support can use the PSCI calls instead for a cleaner boot.

Also, this port of TF-A has another TrustedMailbox in Shared BL RAM. During cold boot, all secondary cores
wait in a loop until they are given given an address to jump to in this Mailbox (bl31_warm_entrypoint).

Once BL31 has finished and the primary core has jumped to the BL33 payload, it has to call PSCI_CPU_ON
to release the secondary CPUs from the wait loop. The payload then makes them wait in another waitloop
listening from messages from the kernel. When the primary CPU jumps into the kernel, it will send an address
to the mailbox so that the secondary CPUs jump to it and are recognised by the kernel.

7.30.2 Build Instructions

To boot a AArch64 kernel, only the AArch64 toolchain is required.

To boot a AArch32 kernel, both AArch64 and AArch32 toolchains are required. The AArch32 toolchain is
needed for the AArch32 bootstrap needed to load a 32-bit kernel.

The build system concatenates BL1 and the FIP so that the addresses match the ones in the memory map. The
resulting file is armstub8.bin, located in the build folder (e.g. build/rpi3/debug/armstub8.
bin). To know how to use this file, follow the instructions in Setup SD card.

The following build options are supported:

• RPI3_BL33_IN_AARCH32: This port can load a AArch64 or AArch32 BL33 image. By default this
option is 0, which means that TF-A will jump to BL33 in EL2 in AArch64 mode. If set to 1, it will
jump to BL33 in Hypervisor in AArch32 mode.

• PRELOADED_BL33_BASE: Used to specify the address of a BL33 binary that has been preloaded by
any other system than using the firmware. BL33 isn’t needed in the build command line if this option
is used. Specially useful because the file kernel8.img can be loaded anywhere by modifying the file
config.txt. It doesn’t have to contain a kernel, it could have any arbitrary payload.

• RPI3_DIRECT_LINUX_BOOT: Disabled by default. Set to 1 to enable the direct boot of the Linux
kernel from the firmware. Option RPI3_PRELOADED_DTB_BASE is mandatory when the direct
Linux kernel boot is used. Options PRELOADED_BL33_BASE will most likely be needed as well
because it is unlikely that the kernel image will fit in the space reserved for BL33 images. This option
can be combined with RPI3_BL33_IN_AARCH32 in order to boot a 32-bit kernel. The only thing
this option does is to set the arguments in registers x0-x3 or r0-r2 as expected by the kernel.

• RPI3_PRELOADED_DTB_BASE: Auxiliary build option needed when using
RPI3_DIRECT_LINUX_BOOT=1. This option allows to specify the location of a DTB in
memory.

• RPI3_RUNTIME_UART: Indicates whether the UART should be used at runtime or disabled. -1
(default) disables the runtime UART. Any other value enables the default UART (currently UART1) for
runtime messages.

• RPI3_USE_UEFI_MAP: Set to 1 to build ATF with the altername memory mapping required for an
UEFI firmware payload. These changes are needed to be able to run Windows on ARM64. This option,
which is disabled by default, results in the following memory mappings:

602 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

0x00000000 +-----------------+
| ROM | BL1

0x00010000 +-----------------+
| DTB | (Loaded by the VideoCore)

0x00020000 +-----------------+
| FIP |

0x00030000 +-----------------+
| |
| UEFI PAYLOAD |
| |

0x00200000 +-----------------+
| Secure SRAM | BL2, BL31

0x00300000 +-----------------+
| Secure DRAM | BL32 (Secure payload)

0x00400000 +-----------------+
| |
| |
| Non-secure DRAM | BL33
| |
| |

0x01000000 +-----------------+
| |
| ... |
| |

0x3F000000 +-----------------+
| I/O |

• BL32: This port can load and run OP-TEE. The OP-TEE image is optional. Please use
the code from here. Build the Trusted Firmware with option BL32=tee-header_v2.bin
BL32_EXTRA1=tee-pager_v2.bin BL32_EXTRA2=tee-pageable_v2.bin to put the
binaries into the FIP.

Warning: If OP-TEE is used it may be needed to add the following options to the Linux com-
mand line so that the USB driver doesn’t use FIQs: dwc_otg.fiq_enable=0 dwc_otg.
fiq_fsm_enable=0 dwc_otg.nak_holdoff=0. This will unfortunately reduce the per-
formance of the USB driver. It is needed when using Raspbian, for example.

• TRUSTED_BOARD_BOOT: This port supports TBB. Set this option to 1 to enable it. In order to use
TBB, you might want to set GENERATE_COT=1 to let the contents of the FIP automatically signed by
the build process. The ROT key will be generated and output to rot_key.pem in the build directory.
It is able to set ROT_KEY to your own key in PEM format. Also in order to build, you need to clone
mbed TLS from here. MBEDTLS_DIR must point at the mbed TLS source directory.

• ENABLE_STACK_PROTECTOR: Disabled by default. It uses the hardware RNG of the board.

The following is not currently supported:

• AArch32 for TF-A itself.

• EL3_PAYLOAD_BASE: The reason is that you can already load anything to any address by changing
the file armstub8.bin, so there’s no point in using TF-A in this case.

7.30. Raspberry Pi 3 603

https://github.com/OP-TEE/optee_os
https://github.com/ARMmbed/mbedtls

Trusted Firmware-A, Release 2.10.4

Building the firmware for kernels that don’t support PSCI

This is the case for the 32-bit image of Raspbian, for example. 64-bit kernels always support PSCI, but they
may not know that the system understands PSCI due to an incorrect DTB file.

First, clone and compile the 32-bit version of the Raspberry Pi 3 TF-A bootstrap. Choose the one needed for
the architecture of your kernel.

Then compile TF-A. For a 32-bit kernel, use the following command line:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \
RPI3_BL33_IN_AARCH32=1 \
BL33=../rpi3-arm-tf-bootstrap/aarch32/el2-bootstrap.bin

For a 64-bit kernel, use this other command line:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \
BL33=../rpi3-arm-tf-bootstrap/aarch64/el2-bootstrap.bin

However, enabling PSCI support in a 64-bit kernel is really easy. In the repository Raspberry Pi 3 TF-A
bootstrap there is a patch that can be applied to the Linux kernel treemaintained by the Raspberry Pi foundation.
It modifes the DTS to tell the kernel to use PSCI. Once this patch is applied, follow the instructions in AArch64
kernel build instructions to get a working 64-bit kernel image and supporting files.

Building the firmware for kernels that support PSCI

For a 64-bit kernel:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \
PRELOADED_BL33_BASE=0x02000000 \
RPI3_PRELOADED_DTB_BASE=0x01000000 \
RPI3_DIRECT_LINUX_BOOT=1

For a 32-bit kernel:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi3 \
PRELOADED_BL33_BASE=0x02000000 \
RPI3_PRELOADED_DTB_BASE=0x01000000 \
RPI3_DIRECT_LINUX_BOOT=1 \
RPI3_BL33_IN_AARCH32=1

604 Chapter 7. Platform Ports

https://github.com/AntonioND/rpi3-arm-tf-bootstrap
https://github.com/AntonioND/rpi3-arm-tf-bootstrap
https://github.com/AntonioND/rpi3-arm-tf-bootstrap

Trusted Firmware-A, Release 2.10.4

7.30.3 AArch64 kernel build instructions

The following instructions show how to install and run a AArch64 kernel by using a SD card with the default
Raspbian install as base. Skip them if you want to use the default 32-bit kernel.

Note that this system won’t be fully 64-bit because all the tools in the filesystem are 32-bit binaries, but it’s a
quick way to get it working, and it allows the user to run 64-bit binaries in addition to 32-bit binaries.

1. Clone the Linux tree fork maintained by the Raspberry Pi Foundation. To speed things up, do a shallow
clone of the desired branch.

git clone --depth=1 -b rpi-4.18.y https://github.com/raspberrypi/linux
cd linux

2. Configure and compile the kernel. Adapt the number after -j so that it is 1.5 times the number of CPUs
in your computer. This may take some time to finish.

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcmrpi3_defconfig
make -j 6 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

3. Copy the kernel image and the device tree to the SD card. Replace the path by the corresponding path
in your computers to the boot partition of the SD card.

cp arch/arm64/boot/Image /path/to/boot/kernel8.img
cp arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b.dtb /path/to/boot/
cp arch/arm64/boot/dts/broadcom/bcm2710-rpi-3-b-plus.dtb /path/to/boot/

4. Install the kernel modules. Replace the path by the corresponding path to the filesystem partition of the
SD card on your computer.

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- \
INSTALL_MOD_PATH=/path/to/filesystem modules_install

5. Follow the instructions in Setup SD card except for the step of renaming the existing kernel7.img
(we have already copied a AArch64 kernel).

7.30.4 Setup SD card

The instructions assume that you have an SD card with a fresh install of Raspbian (or that, at least, the boot
partition is untouched, or nearly untouched). They have been tested with the image available in 2018-03-13.

1. Insert the SD card and open the boot partition.

2. Rename kernel7.img to kernel8.img. This tricks the VideoCore bootloader into booting the
Arm cores in AArch64 mode, like TF-A needs, even though the kernel is not compiled for AArch64.

3. Copy armstub8.bin here. When kernel8.img is available, The VideoCore bootloader will look
for a file called armstub8.bin and load it at address 0x0 instead of a predefined one.

4. To enable the serial port “Mini UART” in Linux, opencmdline.txt and addconsole=serial0,
115200 console=tty1.

7.30. Raspberry Pi 3 605

https://www.raspberrypi.org/downloads/raspbian/
https://github.com/raspberrypi/linux
https://www.raspberrypi.org/downloads/raspbian/

Trusted Firmware-A, Release 2.10.4

5. Open config.txt and add the following lines at the end (enable_uart=1 is only needed to enable
debugging through the Mini UART):

enable_uart=1
kernel_address=0x02000000
device_tree_address=0x01000000

If you connect a serial cable to the Mini UART and your computer, and connect to it (for example, with
screen /dev/ttyUSB0 115200) you should see some text. In the case of an AArch32 kernel, you
should see something like this:

NOTICE: Booting Trusted Firmware
NOTICE: BL1: v1.4(release):v1.4-329-g61e94684-dirty
NOTICE: BL1: Built : 00:09:25, Nov 6 2017
NOTICE: BL1: Booting BL2
NOTICE: BL2: v1.4(release):v1.4-329-g61e94684-dirty
NOTICE: BL2: Built : 00:09:25, Nov 6 2017
NOTICE: BL1: Booting BL31
NOTICE: BL31: v1.4(release):v1.4-329-g61e94684-dirty
NOTICE: BL31: Built : 00:09:25, Nov 6 2017
[0.266484] bcm2835-aux-uart 3f215040.serial: could not get clk: -517

Raspbian GNU/Linux 9 raspberrypi ttyS0
raspberrypi login:

Just enter your credentials, everything should work as expected. Note that the HDMI output won’t show any
text during boot.

7.31 Raspberry Pi 4

The Raspberry Pi 4 is an inexpensive single-board computer that contains four Arm Cortex-A72 cores. Also
in contrast to previous Raspberry Pi versions this model has a GICv2 interrupt controller.

This port is a minimal port to support loading non-secure EL2 payloads such as a 64-bit Linux kernel. Other
payloads such as U-Boot or EDK-II should work as well, but have not been tested at this point.

IMPORTANTNOTE: This port isn’t secure. All of the memory used is DRAM, which is available from both
the Non-secure and Secure worlds. The SoC does not seem to feature a secure memory controller of any kind,
so portions of DRAM can’t be protected properly from the Non-secure world.

7.31.1 Build Instructions

There are no real configuration options at this point, so there is only one universal binary (bl31.bin), which can
be built with:

CROSS_COMPILE=aarch64-linux-gnu- make PLAT=rpi4 DEBUG=1

Copy the generated build/rpi4/debug/bl31.bin to the SD card, adding an entry starting with armstub=, then
followed by the respective file name to config.txt. You should have AArch64 code in the file loaded as

606 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

the “kernel”, as BL31 will drop into AArch64/EL2 to the respective load address. arm64 Linux kernels are
known to work this way.

Other options that should be set in config.txt to properly boot 64-bit kernels are:

enable_uart=1
arm_64bit=1
enable_gic=1

The BL31 code will patch the provided device tree blob in memory to advertise PSCI support, also will add a
reserved-memory node to the DT to tell the non-secure payload to not touch the resident TF-A code.

If you connect a serial cable between the Mini UART and your computer, and connect to it (for example, with
screen /dev/ttyUSB0 115200) you should see some text from BL31, followed by the output of the
EL2 payload. The command line provided is read from the cmdline.txt file on the SD card.

7.31.2 TF-A port design

In contrast to the existing Raspberry Pi 3 port this one here is a BL31-only port, also it deviates quite a lot
from the RPi3 port in many other ways. There is not so much difference between the two models, so eventually
those two could be (more) unified in the future.

As with the previous models, the GPU and its firmware are the first entity to run after the SoC gets its power.
The on-chip Boot ROM loads the next stage (bootcode.bin) from flash (EEPROM), which is again GPU code.
This part knows how to access the MMC controller and how to parse a FAT filesystem, so it will load further
components and configuration files from the first FAT partition on the SD card.

To accommodate this existing way of configuring and setting up the board, we use as much of this workflow
as possible. If bootcode.bin finds a file called armstub8.bin on the SD card or it gets pointed to such code
by finding a armstub= key in config.txt, it will load this file to the beginning of DRAM (address 0)
and execute it in AArch64 EL3. But before doing that, it will also load a “kernel” and the device tree into
memory. The load addresses have a default, but can also be changed by setting them in config.txt. If the
GPU firmware finds a magic value in the armstub image file, it will put those two load addresses in memory
locations near the beginning of memory, where TF-A code picks them up.

To keep things simple, we will just use the kernel load address as the BL33 entry point, also put the DTB
address in the x0 register, as requested by the arm64 Linux kernel boot protocol. This does not necessarily
mean that the EL2 payload needs to be a Linux kernel, a bootloader or any other kernel would work as well,
as long as it can cope with having the DT address in register x0. If the payload has other means of finding the
device tree, it could ignore this address as well.

7.31. Raspberry Pi 4 607

Trusted Firmware-A, Release 2.10.4

7.32 Renesas R-Car

“R-Car” is the nickname for Renesas’ system-on-chip (SoC) family for car information systems designed for
the next-generation of automotive computing for the age of autonomous vehicles.

The scalable R-Car hardware platform and flexible software platform cover the full product range, from the
premium class to the entry level. Plug-ins are available for multiple open-source software tools.

7.32.1 Renesas R-Car Gen3 evaluation boards:

Standard Low Cost Boards (LCB)
R-Car H3 • Salvator-X

• Salvator-XS
• R-Car Starter Kit Premier

R-Car M3-W • Salvator-X
• Salvator-XS

• R-Car Starter Kit Pro

R-Car M3-N • Salvator-X
• Salvator-XS

R-Car V3M • Eagle • Starter Kit

R-Car V3H • Condor • Starter Kit

R-Car D3 • Draak

boards info

The current TF-A port has been tested on the R-Car H3 Salvator-X Soc_id r8a7795 revision ES1.1 (uses a
Secure Payload Dispatcher)

ARM CA57 (ARMv8) 1.5 GHz quad core, with NEON/VFPv4, L1$ I/D
48K/32K, L2$ 2MB
ARM CA53 (ARMv8) 1.2 GHz quad core, with NEON/VFPv4, L1$ I/D 32K/32K,
L2$ 512K
Memory controller for LPDDR4-3200 4GB in 2 channels, each 64-bit wide
Two- and three-dimensional graphics engines,
Video processing units,
3 channels Display Output,
6 channels Video Input,
SD card host interface,
USB3.0 and USB2.0 interfaces,
CAN interfaces

(continues on next page)

608 Chapter 7. Platform Ports

https://elinux.org/R-Car

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
Ethernet AVB
PCI Express Interfaces
Memories

INTERNAL 384KB SYSTEM RAM
DDR 4 GB LPDDR4
HYPERFLASH 64 MB HYPER FLASH (512 MBITS, 160 MHZ, 320 MBYTES/S)
QSPI FLASH 16MB QSPI (128 MBITS,80 MHZ,80 MBYTES/S)1 HEADER QSPI
MODULE
EMMC 32 GB EMMC (HS400 240 MBYTES/S)
MICROSD-CARD SLOT (SDR104 100 MBYTES/S)

7.32.2 Overview

On the rcar-gen3 the BOOTROM starts the cpu at EL3; for this port BL2 will therefore be entered at this
exception level (the Renesas’ ATF reference tree [1] resets into EL1 before entering BL2 - see its bl2.ld.S)

BL2 initializes DDR (and on some platforms i2c to interface to the PMIC) before determining the boot reason
(cold or warm).

During suspend all CPUs are switched off and the DDR is put in backup mode (some kind of self-refresh
mode). This means that BL2 is always entered in a cold boot scenario.

Once BL2 boots, it determines the boot reason, writes it to shared memory (BOOT_KIND_BASE) together
with the BL31 parameters (PARAMS_BASE) and jumps to BL31.

To all effects, BL31 is as if it is being entered in reset mode since it still needs to initialize the rest of the cores;
this is the reason behind using direct shared memory access to BOOT_KIND_BASE _and_ PARAMS_BASE
instead of using registers to get to those locations (see el3_common_macros.S and bl31_entrypoint.S for the
RESET_TO_BL31 use case).

Depending on the boot reason BL31 initializes the rest of the cores: in case of suspend, it uses a MBOX
memory region to recover the program counters.

[1] https://github.com/renesas-rcar/arm-trusted-firmware

7.32.3 How to build

The TF-A build options depend on the target board so you will have to refer to those specific instructions. What
follows is customized to the H3 SiP Salvator-X development system used in this port.

7.32. Renesas R-Car 609

https://github.com/renesas-rcar/arm-trusted-firmware

Trusted Firmware-A, Release 2.10.4

Build Tested:

RCAR_OPT=”LSI=H3 RCAR_DRAM_SPLIT=1 RCAR_LOSSY_ENABLE=1”
MBEDTLS_DIR=$mbedtls_src

$ MBEDTLS_DIR=$mbedtls_src_tree make clean bl2 bl31 rcar_layout_tool PLAT=rcar ${RCAR_OPT}
SPD=opteed

System Tested:

• mbed_tls: git@github.com:ARMmbed/mbedtls.git [devel]

commit 552754a6ee82bab25d1bdf28c8261a4518e65e4d Merge: 68dbc94 f34a4c1 Author: Simon
Butcher <simon.butcher@arm.com> Date: Thu Aug 30 00:57:28 2018 +0100

• optee_os: https://github.com/BayLibre/optee_os

Until it gets merged into OP-TEE, the port requires Renesas’ Trusted Environment with a modification
to support power management. commit 80105192cba9e704ebe8df7ab84095edc2922f84

Author: Jorge Ramirez-Ortiz <jramirez@baylibre.com> Date: Thu Aug 30 16:49:49 2018
+0200 plat-rcar: cpu-suspend: handle the power level Signed-off-by: Jorge Ramirez-Ortiz
<jramirez@baylibre.com>

• u-boot: The port has beent tested using mainline uboot.

commit 4cdeda511f8037015b568396e6dcc3d8fb41e8c0 Author: Fabio Estevam <feste-
vam@gmail.com> Date: Tue Sep 4 10:23:12 2018 -0300

• linux: The port has beent tested using mainline kernel.

commit 7876320f88802b22d4e2daf7eb027dd14175a0f8 Author: Linus Torvalds <torvalds@linux-
foundation.org> Date: Sun Sep 16 11:52:37 2018 -0700 Linux 4.19-rc4

TF-A Build Procedure

• Fetch all the above 4 repositories.

• Prepare the AARCH64 toolchain.

• Build u-boot using r8a7795_salvator-x_defconfig. Result: u-boot-elf.srec

make CROSS_COMPILE=aarch64-linux-gnu-
r8a7795_salvator-x_defconfig

make CROSS_COMPILE=aarch64-linux-gnu-

• Build atf Result: bootparam_sa0.srec, cert_header_sa6.srec, bl2.srec, bl31.srec

RCAR_OPT="LSI=H3 RCAR_DRAM_SPLIT=1 RCAR_LOSSY_ENABLE=1"

MBEDTLS_DIR=$mbedtls_src_tree make clean bl2 bl31 rcar \
PLAT=rcar ${RCAR_OPT} SPD=opteed

610 Chapter 7. Platform Ports

mailto:git@github.com
mailto:simon.butcher@arm.com
https://github.com/BayLibre/optee_os
mailto:jramirez@baylibre.com
mailto:jramirez@baylibre.com
mailto:festevam@gmail.com
mailto:festevam@gmail.com
mailto:torvalds@linux-foundation.org
mailto:torvalds@linux-foundation.org

Trusted Firmware-A, Release 2.10.4

• Build optee-os Result: tee.srec

make -j8 PLATFORM="rcar" CFG_ARM64_core=y

Install Procedure

• Boot the board in Mini-monitor mode and enable access to the Hyperflash.

• Use the XSL2 Mini-monitor utility to accept all the SREC ascii transfers over serial.

7.32.4 Boot trace

Notice that BL31 traces are not accessible via the console and that in order to verbose the BL2 output you will
have to compile TF-A with LOG_LEVEL=50 and DEBUG=1

Initial Program Loader(CA57) Rev.1.0.22
NOTICE: BL2: PRR is R-Car H3 Ver.1.1
NOTICE: BL2: Board is Salvator-X Rev.1.0
NOTICE: BL2: Boot device is HyperFlash(80MHz)
NOTICE: BL2: LCM state is CM
NOTICE: AVS setting succeeded. DVFS_SetVID=0x53
NOTICE: BL2: DDR1600(rev.0.33)NOTICE: [COLD_BOOT]NOTICE: ..0
NOTICE: BL2: DRAM Split is 4ch
NOTICE: BL2: QoS is default setting(rev.0.37)
NOTICE: BL2: Lossy Decomp areas
NOTICE: Entry 0: DCMPAREACRAx:0x80000540 DCMPAREACRBx:0x570
NOTICE: Entry 1: DCMPAREACRAx:0x40000000 DCMPAREACRBx:0x0
NOTICE: Entry 2: DCMPAREACRAx:0x20000000 DCMPAREACRBx:0x0
NOTICE: BL2: v2.0(release):v2.0-rc0-32-gbcda69a
NOTICE: BL2: Built : 16:41:23, Oct 2 2018
NOTICE: BL2: Normal boot
INFO: BL2: Doing platform setup
INFO: BL2: Loading image id 3
NOTICE: BL2: dst=0xe6322000 src=0x8180000 len=512(0x200)
NOTICE: BL2: dst=0x43f00000 src=0x8180400 len=6144(0x1800)
WARNING: r-car ignoring the BL31 size from certificate,using
RCAR_TRUSTED_SRAM_SIZE instead
INFO: Loading image id=3 at address 0x44000000
NOTICE: rcar_file_len: len: 0x0003e000
NOTICE: BL2: dst=0x44000000 src=0x81c0000 len=253952(0x3e000)
INFO: Image id=3 loaded: 0x44000000 - 0x4403e000
INFO: BL2: Loading image id 4
INFO: Loading image id=4 at address 0x44100000
NOTICE: rcar_file_len: len: 0x00100000
NOTICE: BL2: dst=0x44100000 src=0x8200000 len=1048576(0x100000)
INFO: Image id=4 loaded: 0x44100000 - 0x44200000
INFO: BL2: Loading image id 5
INFO: Loading image id=5 at address 0x50000000
NOTICE: rcar_file_len: len: 0x00100000
NOTICE: BL2: dst=0x50000000 src=0x8640000 len=1048576(0x100000)

(continues on next page)

7.32. Renesas R-Car 611

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: Image id=5 loaded: 0x50000000 - 0x50100000
NOTICE: BL2: Booting BL31
INFO: Entry point address = 0x44000000
INFO: SPSR = 0x3cd
VERBOSE: Argument #0 = 0xe6325578
VERBOSE: Argument #1 = 0x0
VERBOSE: Argument #2 = 0x0
VERBOSE: Argument #3 = 0x0
VERBOSE: Argument #4 = 0x0
VERBOSE: Argument #5 = 0x0
VERBOSE: Argument #6 = 0x0
VERBOSE: Argument #7 = 0x0

U-Boot 2018.09-rc3-00028-g3711616 (Sep 27 2018 - 18:50:24 +0200)

CPU: Renesas Electronics R8A7795 rev 1.1
Model: Renesas Salvator-X board based on r8a7795 ES2.0+
DRAM: 3.5 GiB
Flash: 64 MiB
MMC: sd@ee100000: 0, sd@ee140000: 1, sd@ee160000: 2
Loading Environment from MMC... OK
In: serial@e6e88000
Out: serial@e6e88000
Err: serial@e6e88000
Net: eth0: ethernet@e6800000
Hit any key to stop autoboot: 0
=>

7.33 Renesas RZ/G

The “RZ/G” Family of high-end 64-bit Arm®-based microprocessors (MPUs) enables the solutions required
for the smart society of the future. Through a variety of Arm Cortex®-A53 and A57-based devices, engineers
can easily implement high-resolution human machine interfaces (HMI), embedded vision, embedded artificial
intelligence (e-AI) and real-time control and industrial ethernet connectivity.

The scalable RZ/G hardware platform and flexible software platform cover the full product range, from the
premium class to the entry level. Plug-ins are available for multiple open-source software tools.

612 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.33.1 Renesas RZ/G2 reference platforms:

Board Details
hihope-rzg2h “96 boards” compatible board from Hoperun equipped with Renesas RZ/G2H SoC

http://hihope.org/product/musashi
hihope-
rzg2m

“96 boards” compatible board from Hoperun equipped with Renesas RZ/G2M SoC
http://hihope.org/product/musashi

hihope-rzg2n “96 boards” compatible board from Hoperun equipped with Renesas RZ/G2N SoC
http://hihope.org/product/musashi

ek874 “96 boards” compatible board from Silicon Linux equipped with Renesas RZ/G2E SoC
https://www.si-linux.co.jp/index.php?CAT%2FCAT874

boards info

The current TF-A port has been tested on the HiHope RZ/G2M SoC_id r8a774a1 revision ES1.3.

ARM CA57 (ARMv8) 1.5 GHz dual core, with NEON/VFPv4, L1$ I/D 48K/32K, L2$ 1MB
ARM CA53 (ARMv8) 1.2 GHz quad core, with NEON/VFPv4, L1$ I/D 32K/32K, L2$ 512K
Memory controller for LPDDR4-3200 4GB in 2 channels(32-bit bus mode)
Two- and three-dimensional graphics engines,
Video processing units,
Display Output,
Video Input,
SD card host interface,
USB3.0 and USB2.0 interfaces,
CAN interfaces,
Ethernet AVB,
Wi-Fi + BT,
PCI Express Interfaces,
Memories

INTERNAL 384KB SYSTEM RAM
DDR 4 GB LPDDR4
QSPI FLASH 64MB
EMMC 32 GB EMMC (HS400 240 MBYTES/S)
MICROSD-CARD SLOT (SDR104 100 MBYTES/S)

7.33.2 Overview

On RZ/G2 SoCs the BOOTROM starts the cpu at EL3; for this port BL2 will therefore be entered at this
exception level (the Renesas’ ATF reference tree [1] resets into EL1 before entering BL2 - see its bl2.ld.S)

BL2 initializes DDR before determining the boot reason (cold or warm).

Once BL2 boots, it determines the boot reason, writes it to shared memory (BOOT_KIND_BASE) together
with the BL31 parameters (PARAMS_BASE) and jumps to BL31.

To all effects, BL31 is as if it is being entered in reset mode since it still needs to initialize the rest of the cores;
this is the reason behind using direct shared memory access to BOOT_KIND_BASE _and_ PARAMS_BASE
instead of using registers to get to those locations (see el3_common_macros.S and bl31_entrypoint.S for the
RESET_TO_BL31 use case).

7.33. Renesas RZ/G 613

http://hihope.org/product/musashi
http://hihope.org/product/musashi
http://hihope.org/product/musashi
https://www.si-linux.co.jp/index.php?CAT%2FCAT874
https://www.renesas.com/us/en/products/rzg-linux-platform/rzg-marcketplace/board-solutions.html#rzg2

Trusted Firmware-A, Release 2.10.4

[1] https://github.com/renesas-rz/meta-rzg2/tree/BSP-1.0.5/recipes-bsp/arm-trusted-firmware/files

7.33.3 How to build

The TF-A build options depend on the target board so you will have to refer to those specific instructions. What
follows is customized to the HiHope RZ/G2M development kit used in this port.

Build Tested:

make bl2 bl31 rzg LOG_LEVEL=40 PLAT=rzg LSI=G2M RCAR_DRAM_SPLIT=2\
RCAR_LOSSY_ENABLE=1 SPD="none" MBEDTLS_DIR=$mbedtls

System Tested:

• mbed_tls: git@github.com:ARMmbed/mbedtls.git [devel]

commit 72ca39737f974db44723760623d1b29980c00a88
Merge: ef94c4fcf dd9ec1c57
Author: Janos Follath <janos.follath@arm.com>
Date: Wed Oct 7 09:21:01 2020 +0100

• u-boot: The port has beent tested using mainline uboot with HiHope RZ/G2M board specific patches.

commit 46ce9e777c1314ccb78906992b94001194eaa87b
Author: Heiko Schocher <hs@denx.de>
Date: Tue Nov 3 15:22:36 2020 +0100

• linux: The port has beent tested using mainline kernel.

commit f8394f232b1eab649ce2df5c5f15b0e528c92091
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Nov 8 16:10:16 2020 -0800
Linux 5.10-rc3

614 Chapter 7. Platform Ports

https://github.com/renesas-rz/meta-rzg2/tree/BSP-1.0.5/recipes-bsp/arm-trusted-firmware/files
mailto:git@github.com
mailto:janos.follath@arm.com
mailto:hs@denx.de
mailto:torvalds@linux-foundation.org

Trusted Firmware-A, Release 2.10.4

TF-A Build Procedure

• Fetch all the above 3 repositories.

• Prepare the AARCH64 toolchain.

• Build u-boot using hihope_rzg2_defconfig.

Result: u-boot-elf.srec

make CROSS_COMPILE=aarch64-linux-gnu-
hihope_rzg2_defconfig

make CROSS_COMPILE=aarch64-linux-gnu-

• Build TF-A

Result: bootparam_sa0.srec, cert_header_sa6.srec, bl2.srec, bl31.srec

make bl2 bl31 rzg LOG_LEVEL=40 PLAT=rzg LSI=G2M RCAR_DRAM_SPLIT=2\
RCAR_LOSSY_ENABLE=1 SPD="none" MBEDTLS_DIR=$mbedtls

Install Procedure

• Boot the board in Mini-monitor mode and enable access to the QSPI flash.

• Use the flash_writer utility[2] to flash all the SREC files.

[2] https://github.com/renesas-rz/rzg2_flash_writer

7.33.4 Boot trace

INFO: ARM GICv2 driver initialized
NOTICE: BL2: RZ/G2 Initial Program Loader(CA57) Rev.2.0.6
NOTICE: BL2: PRR is RZ/G2M Ver.1.3
NOTICE: BL2: Board is HiHope RZ/G2M Rev.4.0
NOTICE: BL2: Boot device is QSPI Flash(40MHz)
NOTICE: BL2: LCM state is unknown
NOTICE: BL2: DDR3200(rev.0.40)
NOTICE: BL2: [COLD_BOOT]
NOTICE: BL2: DRAM Split is 2ch
NOTICE: BL2: QoS is default setting(rev.0.19)
NOTICE: BL2: DRAM refresh interval 1.95 usec
NOTICE: BL2: Periodic Write DQ Training
NOTICE: BL2: CH0: 400000000 - 47fffffff, 2 GiB
NOTICE: BL2: CH2: 600000000 - 67fffffff, 2 GiB
NOTICE: BL2: Lossy Decomp areas
NOTICE: Entry 0: DCMPAREACRAx:0x80000540 DCMPAREACRBx:0x570
NOTICE: Entry 1: DCMPAREACRAx:0x40000000 DCMPAREACRBx:0x0
NOTICE: Entry 2: DCMPAREACRAx:0x20000000 DCMPAREACRBx:0x0
NOTICE: BL2: FDT at 0xe631db30

(continues on next page)

7.33. Renesas RZ/G 615

https://github.com/renesas-rz/rzg2_flash_writer

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
NOTICE: BL2: v2.3(release):v2.4-rc0-2-g1433701e5
NOTICE: BL2: Built : 13:45:26, Nov 7 2020
NOTICE: BL2: Normal boot
INFO: BL2: Doing platform setup
INFO: BL2: Loading image id 3
NOTICE: BL2: dst=0xe631d200 src=0x8180000 len=512(0x200)
NOTICE: BL2: dst=0x43f00000 src=0x8180400 len=6144(0x1800)
WARNING: r-car ignoring the BL31 size from certificate,using RCAR_TRUSTED_
↪→SRAM_SIZE instead
INFO: Loading image id=3 at address 0x44000000
NOTICE: rcar_file_len: len: 0x0003e000
NOTICE: BL2: dst=0x44000000 src=0x81c0000 len=253952(0x3e000)
INFO: Image id=3 loaded: 0x44000000 - 0x4403e000
INFO: BL2: Loading image id 5
INFO: Loading image id=5 at address 0x50000000
NOTICE: rcar_file_len: len: 0x00100000
NOTICE: BL2: dst=0x50000000 src=0x8300000 len=1048576(0x100000)
INFO: Image id=5 loaded: 0x50000000 - 0x50100000
NOTICE: BL2: Booting BL31
INFO: Entry point address = 0x44000000
INFO: SPSR = 0x3cd

U-Boot 2021.01-rc1-00244-gac37e14fbd (Nov 04 2020 - 20:03:34 +0000)

CPU: Renesas Electronics R8A774A1 rev 1.3
Model: HopeRun HiHope RZ/G2M with sub board
DRAM: 3.9 GiB
MMC: mmc@ee100000: 0, mmc@ee160000: 1
Loading Environment from MMC... OK
In: serial@e6e88000
Out: serial@e6e88000
Err: serial@e6e88000
Net: eth0: ethernet@e6800000
Hit any key to stop autoboot: 0
=>

7.34 Rockchip SoCs

Trusted Firmware-A supports a number of Rockchip ARM SoCs from both AARCH32 and AARCH64 fields.

This includes right now: - px30: Quad-Core Cortex-A53 - rk3288: Quad-Core Cortex-A17 (past A12) -
rk3328: Quad-Core Cortex-A53 - rk3368: Octa-Core Cortex-A53 - rk3399: Hexa-Core Cortex-A53/A72

616 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.34.1 Boot Sequence

For AARCH32:
Bootrom –> BL1/BL2 –> BL32 –> BL33 –> Linux kernel

For AARCH64:
Bootrom –> BL1/BL2 –> BL31 –> BL33 –> Linux kernel

BL1/2 and BL33 can currently be supplied from either: - Coreboot + Depthcharge - U-Boot - either separately
as TPL+SPL or only SPL

7.34.2 How to build

Rockchip SoCs expect TF-A’s BL31 (AARCH64) or BL32 (AARCH32) to get integrated with other boot
software like U-Boot or Coreboot, so only these images need to get build from the TF-A repository.

For AARCH64 architectures the build command looks like

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=rk3399 bl32

while AARCH32 needs a slightly different command

make ARCH=aarch32 CROSS_COMPILE=arm-linux-gnueabihf- PLAT=rk3288
AARCH32_SP=sp_min bl32

Both need replacing the PLAT argument with the platform from above you want to build for and the
CROSS_COMPILE argument with you cross- compilation toolchain.

7.34.3 How to deploy

Both upstream U-Boot and Coreboot projects contain instructions on where to put the built images during their
respective build process. So after successfully building TF-A just follow their build instructions to continue.

7.35 Socionext UniPhier

Socionext UniPhier Armv8-A SoCs use Trusted Firmware-A (TF-A) as the secure world firmware, supporting
BL2 and BL31.

UniPhier SoC family implements its internal boot ROM, which loads 64KB1 image from a non-volatile storage
to the on-chip SRAM, and jumps over to it. TF-A provides a special mode, BL2-AT-EL3, which enables BL2
to execute at EL3. It is useful for platforms with non-TF-A boot ROM, like UniPhier. Here, a problem is BL2
does not fit in the 64KB limit if Trusted Board Boot (TBB) is enabled. To solve this issue, Socionext provides
a first stage loader called UniPhier BL. This loader runs in the on-chip SRAM, initializes the DRAM, expands
BL2 there, and hands the control over to it. Therefore, all images of TF-A run in DRAM.

The UniPhier platform works with/without TBB. See below for the build process of each case. The image
authentication for the UniPhier platform fully complies with the Trusted Board Boot Requirements (TBBR)
specification.

1 Some SoCs can load 80KB, but the software implementation must be aligned to the lowest common denominator.

7.35. Socionext UniPhier 617

https://github.com/uniphier/uniphier-bl

Trusted Firmware-A, Release 2.10.4

The UniPhier BL does not implement the authentication functionality, that is, it can not verify the BL2 image
by itself. Instead, the UniPhier BL assures the BL2 validity in a different way; BL2 is GZIP-compressed and
appended to the UniPhier BL. The concatenation of the UniPhier BL and the compressed BL2 fits in the 64KB
limit. The concatenated image is loaded by the internal boot ROM (and verified if the chip fuses are blown).

7.35.1 Boot Flow

1. The Boot ROM

This is hard-wired ROM, so never corrupted. It loads the UniPhier BL (with compressed-BL2 appended)
into the on-chip SRAM. If the SoC fuses are blown, the image is verified by the SoC’s own method.

2. UniPhier BL

This runs in the on-chip SRAM.After theminimumSoC initialization andDRAMsetup, it decompresses
the appended BL2 image into the DRAM, then jumps to the BL2 entry.

3. BL2 (at EL3)

This runs in the DRAM. It extracts more images such as BL31, BL33 (optionally SCP_BL2, BL32 as
well) from Firmware Image Package (FIP). If TBB is enabled, they are all authenticated by the standard
mechanism of TF-A. After loading all the images, it jumps to the BL31 entry.

4. BL31, BL32, and BL33

They all run in the DRAM. See Firmware Design for details.

7.35.2 Basic Build

BL2 must be compressed for the reason above. The UniPhier’s platform makefile provides a build target
bl2_gzip for this.

For a non-secure boot loader (aka BL33), U-Boot is well supported for UniPhier SoCs. The U-Boot image
(u-boot.bin) must be built in advance. For the build procedure of U-Boot, refer to the document in the
U-Boot project.

To build minimum functionality for UniPhier (without TBB):

make CROSS_COMPILE=<gcc-prefix> PLAT=uniphier BL33=<path-to-BL33> bl2_gzip fip

Output images:

• bl2.bin.gz

• fip.bin

618 Chapter 7. Platform Ports

https://www.denx.de/wiki/U-Boot

Trusted Firmware-A, Release 2.10.4

7.35.3 Optional features

• Trusted Board Boot

mbed TLS is needed as the cryptographic and image parser modules. Refer to the Prerequisites document
for the appropriate version of mbed TLS.

To enable TBB, add the following options to the build command:

TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=<path-to-mbedtls>

• System Control Processor (SCP)

If desired, FIP can include an SCP BL2 image. If BL2 finds an SCP BL2 image in FIP, BL2 loads it into
DRAM and kicks the SCP. Most of UniPhier boards still work without SCP, but SCP provides better
power management support.

To include SCP BL2, add the following option to the build command:

SCP_BL2=<path-to-SCP>

• BL32 (Secure Payload)

To enable BL32, add the following options to the build command:

SPD=<spd> BL32=<path-to-BL32>

If you use TSP for BL32, BL32=<path-to-BL32> is not required. Just add the following:

SPD=tspd

7.36 Socionext Synquacer

Socionext’s Synquacer SC2A11 is a multi-core processor with 24 cores of Arm Cortex-A53. The Developer-
box, of 96boards, is a platform that contains this processor. This port of the Trusted Firmware only supports
this platform at the moment.

More information are listed in link.

7.36.1 How to build

Code Locations

• Trusted Firmware-A: link

• edk2: link

• edk2-platforms: link

• edk2-non-osi: link

7.36. Socionext Synquacer 619

https://tls.mbed.org/
https://www.96boards.org/product/developerbox/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2-platforms
https://github.com/tianocore/edk2-non-osi

Trusted Firmware-A, Release 2.10.4

Boot Flow

SCP firmware –> TF-A BL31 –> UEFI(edk2)

Build Procedure

• Firstly, in addition to the “normal” build tools you will also need a few specialist tools. On a Debian or
Ubuntu operating system try:

sudo apt install acpica-tools device-tree-compiler uuid-dev

• Secondly, create a new working directory and store the absolute path to this directory in an environment
variable, WORKSPACE. It does not matter where this directory is created but as an example:

export WORKSPACE=$HOME/build/developerbox-firmware
mkdir -p $WORKSPACE

• Run the following commands to clone the source code:

cd $WORKSPACE
git clone https://github.com/ARM-software/arm-trusted-firmware -b master
git clone https://github.com/tianocore/edk2.git -b master
git clone https://github.com/tianocore/edk2-platforms.git -b master
git clone https://github.com/tianocore/edk2-non-osi.git -b master

• Build ATF:

cd $WORKSPACE/arm-trusted-firmware
make -j`nproc` PLAT=synquacer PRELOADED_BL33_BASE=0x8200000 bl31 fiptool
tools/fiptool/fiptool create \

--tb-fw ./build/synquacer/release/bl31.bin \
--soc-fw ./build/synquacer/release/bl31.bin \
--scp-fw ./build/synquacer/release/bl31.bin \
../edk2-non-osi/Platform/Socionext/DeveloperBox/fip_all_arm_tf.bin

• Build EDK2:

cd $WORKSPACE
export PACKAGES_PATH=$WORKSPACE/edk2:$WORKSPACE/edk2-platforms:
↪→$WORKSPACE/edk2-non-osi
export ACTIVE_PLATFORM="Platform/Socionext/DeveloperBox/DeveloperBox.dsc"
export GCC5_AARCH64_PREFIX=aarch64-linux-gnu-
unset ARCH

. edk2/edksetup.sh
make -C edk2/BaseTools

build -p $ACTIVE_PLATFORM -b RELEASE -a AARCH64 -t GCC5 -n `nproc` -D DO_
↪→X86EMU=TRUE

620 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

• The firmware image, which comprises the option ROM, ARM trusted firmware and EDK2 it-
self, can be found $WORKSPACE/../Build/DeveloperBox/RELEASE_GCC5/FV/. Use SYN-
QUACERFIRMWAREUPDATECAPSULEFMPPKCS7.Cap for UEFI capsule update and
SPI_NOR_IMAGE.fd for the serial flasher.

Note #1: -t GCC5 can be loosely translated as “enable link-time-optimization”; any version of gcc >= 5
will support this feature and may be used to build EDK2.

Note #2: Replace -b RELEASE with -b DEBUG to build a debug.

Install the System Firmware

• Providing your Developerbox is fully working and has on operating system installed then you can adopt
your the newly compiled system firmware using the capsule update method:.

sudo apt install fwupdate
sudo fwupdate --apply {50b94ce5-8b63-4849-8af4-ea479356f0e3} \

SYNQUACERFIRMWAREUPDATECAPSULEFMPPKCS7.Cap
sudo reboot

• Alternatively you can install SPI_NOR_IMAGE.fd using the board recovery method.

7.37 STMicroelectronics STM32 MPUs

7.37.1 STM32 MPUs

STM32 MPUs are microprocessors designed by STMicroelectronics based on Arm Cortex-A. This page
presents the common configuration of STM32 MPUs, more details and dedicated configuration can be found
in each STM32 MPU page (STM32MP1 or STM32MP2)

Design

The STM32 MPU resets in the ROM code of the Cortex-A. The primary boot core (core 0) executes the boot
sequence while secondary boot core (core 1) is kept in a holding pen loop. The ROM code boot sequence loads
the TF-A binary image from boot device to embedded SRAM.

The TF-A image must be properly formatted with a STM32 header structure for ROM code is able to load this
image. Tool stm32image can be used to prepend this header to the generated TF-A binary.

7.37. STMicroelectronics STM32 MPUs 621

https://www.96boards.org/documentation/enterprise/developerbox/installation/board-recovery.md.html

Trusted Firmware-A, Release 2.10.4

Boot

Only BL2 (with STM32 header) is loaded by ROM code. The other binaries are inside the FIP binary: BL31
(for Aarch64 platforms), BL32 (OP-TEE), U-Boot and their respective device tree blobs.

Boot sequence

ROM code -> BL2 (compiled with RESET_TO_BL2) -> OP-TEE -> BL33 (U-Boot)

Build Instructions

Boot media(s) supported by BL2 must be specified in the build command. Available storage medias are:

• STM32MP_SDMMC

• STM32MP_EMMC

• STM32MP_RAW_NAND

• STM32MP_SPI_NAND

• STM32MP_SPI_NOR

Serial boot devices:

• STM32MP_UART_PROGRAMMER

• STM32MP_USB_PROGRAMMER

Other configuration flags:

• DTB_FILE_NAME: to precise board device-tree blob to be used.
Default: stm32mp157c-ev1.dtb

• DWL_BUFFER_BASE: the ‘serial boot’ load address of FIP,
default location (end of the first 128MB) is used when absent

• STM32MP_EARLY_CONSOLE: to enable early traces before clock driver is setup.
Default: 0 (disabled)

• STM32MP_RECONFIGURE_CONSOLE: to re-configure crash console (especially after BL2).
Default: 0 (disabled)

• STM32MP_UART_BAUDRATE: to select UART baud rate.
Default: 115200

622 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Populate SD-card

Boot with FIP

The SD-card has to be formatted with GPT. It should contain at least those partitions:

• fsbl: to copy the tf-a-stm32mp157c-ev1.stm32 binary (BL2)

• fip (GUID 19d5df83-11b0-457b-be2c-7559c13142a5): which contains the FIP binary

Usually, two copies of fsbl are used (fsbl1 and fsbl2) instead of one partition fsbl.

Copyright (c) 2023, STMicroelectronics - All Rights Reserved

7.37.2 STM32MP1

STM32MP1 is a microprocessor designed by STMicroelectronics based on Arm Cortex-A7. It is an Armv7-A
platform, using dedicated code from TF-A. More information can be found on STM32MP1 Series page.

For TF-A common configuration of STM32 MPUs, please check STM32 MPUs page.

STM32MP1 Versions

There are 2 variants for STM32MP1: STM32MP13 and STM32MP15

STM32MP13 Versions

The STM32MP13 series is available in 3 different lines which are pin-to-pin compatible:

• STM32MP131: Single Cortex-A7 core

• STM32MP133: STM32MP131 + 2*CAN, ETH2(GMAC), ADC1

• STM32MP135: STM32MP133 + DCMIPP, LTDC

Each line comes with a security option (cryptography & secure boot) and a Cortex-A frequency option:

• A Cortex-A7 @ 650 MHz

• C Secure Boot + HW Crypto + Cortex-A7 @ 650 MHz

• D Cortex-A7 @ 900 MHz

• F Secure Boot + HW Crypto + Cortex-A7 @ 900 MHz

7.37. STMicroelectronics STM32 MPUs 623

https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html

Trusted Firmware-A, Release 2.10.4

STM32MP15 Versions

The STM32MP15 series is available in 3 different lines which are pin-to-pin compatible:

• STM32MP157: Dual Cortex-A7 cores, Cortex-M4 core @ 209 MHz, 3D GPU, DSI display interface
and CAN FD

• STM32MP153: Dual Cortex-A7 cores, Cortex-M4 core @ 209 MHz and CAN FD

• STM32MP151: Single Cortex-A7 core, Cortex-M4 core @ 209 MHz

Each line comes with a security option (cryptography & secure boot) and a Cortex-A frequency option:

• A Basic + Cortex-A7 @ 650 MHz

• C Secure Boot + HW Crypto + Cortex-A7 @ 650 MHz

• D Basic + Cortex-A7 @ 800 MHz

• F Secure Boot + HW Crypto + Cortex-A7 @ 800 MHz

The STM32MP1 part number codification page gives more information about part numbers.

Memory mapping

0x00000000 +-----------------+
| | ROM

0x00020000 +-----------------+
| |
| ... |
| |

0x2FFC0000 +-----------------+ \
| BL32 DTB | |

0x2FFC5000 +-----------------+ |
| BL32 | |

0x2FFDF000 +-----------------+ |
| ... | |

0x2FFE3000 +-----------------+ |
| BL2 DTB | | Embedded SRAM

0x2FFEA000 +-----------------+ |
| BL2 | |

0x2FFFF000 +-----------------+ |
| SCMI mailbox | |

0x30000000 +-----------------+ /
| |
| ... |
| |

0x40000000 +-----------------+
| |
| | Devices
| |

0xC0000000 +-----------------+ \
| | |

(continues on next page)

624 Chapter 7. Platform Ports

https://wiki.st.com/stm32mpu/wiki/STM32MP15_microprocessor#Part_number_codification

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
0xC0100000 +-----------------+ |

| BL33 | | Non-secure RAM (DDR)
| ... | |
| | |

0xFFFFFFFF +-----------------+ /

Build Instructions

STM32MP1x specific flags

Dedicated STM32MP1 flags:

• STM32_TF_VERSION: to manage BL2 monotonic counter.
Default: 0

• STM32MP13: to select STM32MP13 variant configuration.
Default: 0

• STM32MP15: to select STM32MP15 variant configuration.
Default: 1

Boot with FIP

You need to build BL2, BL32 (SP_min or OP-TEE) and BL33 (U-Boot) before building FIP binary.

U-Boot

cd <u-boot_directory>
make stm32mp15_trusted_defconfig
make DEVICE_TREE=stm32mp157c-ev1 all

OP-TEE (optional)

cd <optee_directory>
make CROSS_COMPILE=arm-linux-gnueabihf- ARCH=arm PLATFORM=stm32mp1 \

CFG_EMBED_DTB_SOURCE_FILE=stm32mp157c-ev1.dts

7.37. STMicroelectronics STM32 MPUs 625

Trusted Firmware-A, Release 2.10.4

TF-A BL32 (SP_min)

If you choose not to use OP-TEE, you can use TF-A SP_min. To build TF-A BL32, and its device tree file:

make CROSS_COMPILE=arm-none-eabi- PLAT=stm32mp1 ARCH=aarch32 ARM_ARCH_MAJOR=7␣
↪→\

AARCH32_SP=sp_min DTB_FILE_NAME=stm32mp157c-ev1.dtb bl32 dtbs

TF-A BL2

To build TF-A BL2 with its STM32 header for SD-card boot:

make CROSS_COMPILE=arm-none-eabi- PLAT=stm32mp1 ARCH=aarch32 ARM_ARCH_MAJOR=7␣
↪→\

DTB_FILE_NAME=stm32mp157c-ev1.dtb STM32MP_SDMMC=1

For other boot devices, you have to replace STM32MP_SDMMC in the previous command with the desired
device flag.

This BL2 is independent of the BL32 used (SP_min or OP-TEE)

FIP

With BL32 SP_min:

make CROSS_COMPILE=arm-none-eabi- PLAT=stm32mp1 ARCH=aarch32 ARM_ARCH_MAJOR=7␣
↪→\

AARCH32_SP=sp_min \
DTB_FILE_NAME=stm32mp157c-ev1.dtb \
BL33=<u-boot_directory>/u-boot-nodtb.bin \
BL33_CFG=<u-boot_directory>/u-boot.dtb \
fip

With OP-TEE:

make CROSS_COMPILE=arm-none-eabi- PLAT=stm32mp1 ARCH=aarch32 ARM_ARCH_MAJOR=7␣
↪→\

AARCH32_SP=optee \
DTB_FILE_NAME=stm32mp157c-ev1.dtb \
BL33=<u-boot_directory>/u-boot-nodtb.bin \
BL33_CFG=<u-boot_directory>/u-boot.dtb \
BL32=<optee_directory>/tee-header_v2.bin \
BL32_EXTRA1=<optee_directory>/tee-pager_v2.bin
BL32_EXTRA2=<optee_directory>/tee-pageable_v2.bin
fip

626 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Trusted Boot Board

tools/cert_create/cert_create -n --rot-key build/stm32mp1/release/rot_key.pem␣
↪→\

--tfw-nvctr 0 \
--ntfw-nvctr 0 \
--key-alg ecdsa --hash-alg sha256 \
--trusted-key-cert build/stm32mp1/release/trusted_key.crt \
--tos-fw <optee_directory>/tee-header_v2.bin \
--tos-fw-extra1 <optee_directory>/tee-pager_v2.bin \
--tos-fw-extra2 <optee_directory>/tee-pageable_v2.bin \
--tos-fw-cert build/stm32mp1/release/tos_fw_content.crt \
--tos-fw-key-cert build/stm32mp1/release/tos_fw_key.crt \
--nt-fw <u-boot_directory>/u-boot-nodtb.bin \
--nt-fw-cert build/stm32mp1/release/nt_fw_content.crt \
--nt-fw-key-cert build/stm32mp1/release/nt_fw_key.crt \
--hw-config <u-boot_directory>/u-boot.dtb \
--fw-config build/stm32mp1/release/fdts/fw-config.dtb \
--stm32mp-cfg-cert build/stm32mp1/release/stm32mp_cfg_cert.crt

tools/fiptool/fiptool create --tos-fw <optee_directory>/tee-header_v2.bin \
--tos-fw-extra1 <optee_directory>/tee-pager_v2.bin \
--tos-fw-extra2 <optee_directory>/tee-pageable_v2.bin \
--nt-fw <u-boot_directory>/u-boot-nodtb.bin \
--hw-config <u-boot_directory>/u-boot.dtb \
--fw-config build/stm32mp1/release/fdts/fw-config.dtb \
--trusted-key-cert build/stm32mp1/release/trusted_key.crt \
--tos-fw-cert build/stm32mp1/release/tos_fw_content.crt \
--tos-fw-key-cert build/stm32mp1/release/tos_fw_key.crt \
--nt-fw-cert build/stm32mp1/release/nt_fw_content.crt \
--nt-fw-key-cert build/stm32mp1/release/nt_fw_key.crt \
--stm32mp-cfg-cert build/stm32mp1/release/stm32mp_cfg_cert.crt \
build/stm32mp1/release/stm32mp1.fip

Copyright (c) 2023, STMicroelectronics - All Rights Reserved

7.37.3 STM32MP2

STM32MP2 is a microprocessor designed by STMicroelectronics based on Arm Cortex-A35.

For TF-A common configuration of STM32 MPUs, please check STM32 MPUs page.

7.37. STMicroelectronics STM32 MPUs 627

Trusted Firmware-A, Release 2.10.4

STM32MP2 Versions

The STM32MP25 series is available in 4 different lines which are pin-to-pin compatible:

• STM32MP257: Dual Cortex-A35 cores, Cortex-M33 core - 3x Ethernet (2+1 switch) - 3x CAN FD –
H264 - 3D GPU – AI / NN - LVDS

• STM32MP255: Dual Cortex-A35 cores, Cortex-M33 core - 2x Ethernet – 3x CAN FD - H264 - 3D
GPU – AI / NN - LVDS

• STM32MP253: Dual Cortex-A35 cores, Cortex-M33 core - 2x Ethernet – 3x CAN FD - LVDS

• STM32MP251: Single Cortex-A35 core, Cortex-M33 core - 1x Ethernet

Each line comes with a security option (cryptography & secure boot) and a Cortex-A frequency option:

• A Basic + Cortex-A35 @ 1GHz

• C Secure Boot + HW Crypto + Cortex-A35 @ 1GHz

• D Basic + Cortex-A35 @ 1.5GHz

• F Secure Boot + HW Crypto + Cortex-A35 @ 1.5GHz

Memory mapping

0x00000000 +-----------------+
| |
| ... |
| |

0x0E000000 +-----------------+ \
| BL31 | |
+-----------------+ |
| ... | |

0x0E012000 +-----------------+ |
| BL2 DTB | | Embedded SRAM

0x0E016000 +-----------------+ |
| BL2 | |

0x0E040000 +-----------------+ /
| |
| ... |
| |

0x40000000 +-----------------+
| |
| | Devices
| |

0x80000000 +-----------------+ \
| | |
| | | Non-secure RAM (DDR)
| | |

0xFFFFFFFF +-----------------+ /

628 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

Build Instructions

STM32MP2x specific flags

Dedicated STM32MP2 build flags:

• STM32MP_DDR_FIP_IO_STORAGE: to store DDR firmware in FIP.
Default: 1

• STM32MP25: to select STM32MP25 variant configuration.
Default: 1

To compile the correct DDR driver, one flag must be set among:

• STM32MP_DDR3_TYPE: to compile DDR3 driver and DT.
Default: 0

• STM32MP_DDR4_TYPE: to compile DDR4 driver and DT.
Default: 0

• STM32MP_LPDDR4_TYPE: to compile LpDDR4 driver and DT.
Default: 0

Boot with FIP

You need to build BL2, BL31, BL32 (OP-TEE) and BL33 (U-Boot) before building FIP binary.

U-Boot

cd <u-boot_directory>
make stm32mp25_defconfig
make DEVICE_TREE=stm32mp257f-ev1 all

OP-TEE

cd <optee_directory>
make CROSS_COMPILE64=aarch64-none-elf- CROSS_COMPILE32=arm-none-eabi-

ARCH=arm PLATFORM=stm32mp2 \
CFG_EMBED_DTB_SOURCE_FILE=stm32mp257f-ev1.dts

7.37. STMicroelectronics STM32 MPUs 629

Trusted Firmware-A, Release 2.10.4

TF-A BL2 & BL31

To build TF-A BL2 with its STM32 header and BL31 for SD-card boot:

make CROSS_COMPILE=aarch64-none-elf- PLAT=stm32mp2 \
STM32MP_DDR4_TYPE=1 SPD=opteed \
DTB_FILE_NAME=stm32mp257f-ev1.dtb STM32MP_SDMMC=1

For other boot devices, you have to replace STM32MP_SDMMC in the previous command with the desired
device flag.

FIP

make CROSS_COMPILE=aarch64-none-elf- PLAT=stm32mp2 \
STM32MP_DDR4_TYPE=1 SPD=opteed \
DTB_FILE_NAME=stm32mp257f-ev1.dtb \
BL33=<u-boot_directory>/u-boot-nodtb.bin \
BL33_CFG=<u-boot_directory>/u-boot.dtb \
BL32=<optee_directory>/tee-header_v2.bin \
BL32_EXTRA1=<optee_directory>/tee-pager_v2.bin
fip

Copyright (c) 2023, STMicroelectronics - All Rights Reserved

Copyright (c) 2023, STMicroelectronics - All Rights Reserved

7.38 Texas Instruments K3

Trusted Firmware-A (TF-A) implements the EL3 firmware layer for Texas Instruments K3 SoCs.

7.38.1 Boot Flow

R5(U-Boot) --> TF-A BL31 --> BL32(OP-TEE) --> TF-A BL31 --> BL33(U-Boot) -->␣
↪→Linux

\
Optional direct to Linux boot

\
--> BL33(Linux)

Texas Instruments K3 SoCs contain an R5 processor used as the boot master, it loads the needed images for
A53 startup, because of this we do not need BL1 or BL2 TF-A stages.

630 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.38.2 Build Instructions

https://github.com/ARM-software/arm-trusted-firmware.git

TF-A:

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=k3 SPD=opteed all

OP-TEE:

make ARCH=arm CROSS_COMPILE64=aarch64-linux-gnu- PLATFORM=k3 CFG_ARM64_core=y␣
↪→all

R5 U-Boot:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- am65x_evm_r5_defconfig
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- SYSFW=<path to SYSFW>

A53 U-Boot:

make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- am65x_evm_a53_defconfig
make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- ATF=<path> TEE=<path>

7.38.3 Deploy Images

cp tiboot3.bin tispl.bin u-boot.img /sdcard/boot/

7.39 Xilinx Versal NET

Trusted Firmware-A implements the EL3 firmware layer for Xilinx Versal NET. The platform only uses the
runtime part of TF-A as Xilinx Versal NET already has a BootROM (BL1) and PMC FW (BL2).

BL31 is TF-A. BL32 is an optional Secure Payload. BL33 is the non-secure world software (U-Boot, Linux
etc).

To build: `bash make RESET_TO_BL31=1 CROSS_COMPILE=aarch64-none-elf-
PLAT=versal_net bl31 `

To build bl32 TSP you have to rebuild bl31 too`bash make CROSS_COMPILE=aarch64-none-elf-
PLAT=versal_net SPD=tspd RESET_TO_BL31=1 bl31 bl32 `

To build TF-A for JTAG DCC console: `bash make RESET_TO_BL31=1
CROSS_COMPILE=aarch64-none-elf- PLAT=versal_net VERSAL_NET_CONSOLE=dcc
bl31 `

7.39. Xilinx Versal NET 631

https://github.com/ARM-software/arm-trusted-firmware.git

Trusted Firmware-A, Release 2.10.4

7.39.1 Xilinx Versal NET platform specific build options

• VERSAL_NET_ATF_MEM_BASE: Specifies the base address of the bl31 binary.

• VERSAL_NET_ATF_MEM_SIZE: Specifies the size of the memory region of the bl31 binary.

• VERSAL_NET_BL32_MEM_BASE: Specifies the base address of the bl32 binary.

• VERSAL_NET_BL32_MEM_SIZE: Specifies the size of the memory region of the bl32 binary.

• VERSAL_NET_CONSOLE: Select the console driver. Options: - pl011, pl011_0: ARM pl011 UART 0
(default) - pl011_1 : ARM pl011 UART 1 - dcc : JTAG Debug Communication Channel(DCC)

• TFA_NO_PM : PlatformManagement support. - 0 : Enable PlatformManagement (Default) - 1 : Disable
Platform Management

7.40 Xilinx Versal

Trusted Firmware-A implements the EL3 firmware layer for Xilinx Versal. The platform only uses the runtime
part of TF-A as Xilinx Versal already has a BootROM (BL1) and PMC FW (BL2).

BL31 is TF-A. BL32 is an optional Secure Payload. BL33 is the non-secure world software (U-Boot, Linux
etc).

To build: `bash make RESET_TO_BL31=1 CROSS_COMPILE=aarch64-none-elf-
PLAT=versal bl31 `

To build ATF for different platform (supported are “silicon”(default) and “versal_virt”) `bash
make RESET_TO_BL31=1 CROSS_COMPILE=aarch64-none-elf- PLAT=versal VER-
SAL_PLATFORM=versal_virt bl31 `

To build bl32 TSP you have to rebuild bl31 too`bash make CROSS_COMPILE=aarch64-none-elf-
PLAT=versal SPD=tspd RESET_TO_BL31=1 bl31 bl32 `

To build TF-A for JTAG DCC console `bash make RESET_TO_BL31=1
CROSS_COMPILE=aarch64-none-elf- PLAT=versal bl31 VERSAL_CONSOLE=dcc
`

To build TF-A with Straight-Line Speculation(SLS) `bash make RESET_TO_BL31=1
CROSS_COMPILE=aarch64-none-elf- PLAT=versal bl31 HARDEN_SLS_ALL=1 `

7.40.1 Xilinx Versal platform specific build options

• VERSAL_ATF_MEM_BASE: Specifies the base address of the bl31 binary.

• VERSAL_ATF_MEM_SIZE: Specifies the size of the memory region of the bl31 binary.

• VERSAL_BL32_MEM_BASE: Specifies the base address of the bl32 binary.

• VERSAL_BL32_MEM_SIZE: Specifies the size of the memory region of the bl32 binary.

• VERSAL_CONSOLE: Select the console driver. Options: - pl011, pl011_0: ARM pl011 UART 0 -
pl011_1 : ARM pl011 UART 1

632 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

• VERSAL_PLATFORM: Select the platform. Options: - versal_virt : Versal Virtual platform - spp_itr6 :
SPP ITR6 - emu_itr6 : EMU ITR6

7.40.2 # PLM->TF-A Parameter Passing

The PLM populates a data structure with image information for the TF-A. The TF-A uses that data
to hand off to the loaded images. The address of the handoff data structure is passed in the
`PMC_GLOBAL_GLOB_GEN_STORAGE4` register. The register is free to be used by other software once
the TF-A is bringing up further firmware images.

7.41 Xilinx Zynq UltraScale+ MPSoC

Trusted Firmware-A (TF-A) implements the EL3 firmware layer for Xilinx Zynq UltraScale + MPSoC. The
platform only uses the runtime part of TF-A as ZynqMP already has a BootROM (BL1) and FSBL (BL2).

BL31 is TF-A. BL32 is an optional Secure Payload. BL33 is the non-secure world software (U-Boot, Linux
etc).

To build:

make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp RESET_TO_BL31=1 bl31

To build bl32 TSP you have to rebuild bl31 too:

make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp SPD=tspd RESET_TO_BL31=1␣
↪→bl31 bl32

To build TF-A for JTAG DCC console:

make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp RESET_TO_BL31=1 bl31 ZYNQMP_
↪→CONSOLE=dcc

7.41.1 ZynqMP platform specific build options

• XILINX_OF_BOARD_DTB_ADDR : Specifies the base address of Device tree.

• ZYNQMP_ATF_MEM_BASE: Specifies the base address of the bl31 binary.

• ZYNQMP_ATF_MEM_SIZE: Specifies the size of the memory region of the bl31 binary.

• ZYNQMP_BL32_MEM_BASE: Specifies the base address of the bl32 binary.

• ZYNQMP_BL32_MEM_SIZE: Specifies the size of the memory region of the bl32 binary.

• ZYNQMP_CONSOLE: Select the console driver. Options:

– cadence, cadence0: Cadence UART 0

– cadence1 : Cadence UART 1

7.41. Xilinx Zynq UltraScale+ MPSoC 633

Trusted Firmware-A, Release 2.10.4

7.41.2 ZynqMP Debug behavior

With DEBUG=1, TF-A for ZynqMP uses DDR memory range instead of OCM memory range due to size
constraints. For DEBUG=1 configuration for ZynqMP the BL31_BASE is set to the DDR location of 0x1000
and BL31_LIMIT is set to DDR location of 0x7FFFF. By default the above memory range will NOT be
reserved in device tree.

To reserve the above memory range in device tree, the device tree base address must be provided during build
as,

make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp RESET_TO_BL31=1 DEBUG=1
XILINX_OF_BOARD_DTB_ADDR=<DTB address> bl31

The default DTB base address for ZynqMP platform is 0x100000. This default value is not set in the code and
to use this default address, user still needs to provide it through the build command as above.

If the user wants to move the bl31 to a different DDR location, user can provide the DDR address location
using the build time parameters ZYNQMP_ATF_MEM_BASE and ZYNQMP_ATF_MEM_SIZE.

The DDR address must be reserved in the DTB by the user, either by manually adding the reserved memory
node, in the device tree, with the required address range OR let TF-A modify the device tree on the run.

To let TF-A access and modify the device tree, the DTB address must be provided to the build command as
follows,

make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp RESET_TO_BL31=1 DEBUG=1
ZYNQMP_ATF_MEM_BASE=<DDR address> ZYNQMP_ATF_MEM_SIZE=<size> XIL-
INX_OF_BOARD_DTB_ADDR=<DTB address> bl31

7.41.3 DDR Address Range Usage

When FSBL runs on RPU and TF-A is to be placed in DDR address range, then the user needs to make sure
that the DDR address is beyond 256KB. In the RPU view, the first 256 KB is TCM memory.

For this use case, with the minimum base address in DDR for TF-A, the build command example is;

make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp RESET_TO_BL31=1 DEBUG=1
ZYNQMP_ATF_MEM_BASE=0x40000 ZYNQMP_ATF_MEM_SIZE=<size>

7.41.4 Configurable Stack Size

The stack size in TF-A for ZynqMP platform is configurable. The custom package can define the desired stack
size as per the requirement in the make file as follows,

PLATFORM_STACK_SIZE := <value> $(eval $(call add_define,PLATFORM_STACK_SIZE))

634 Chapter 7. Platform Ports

Trusted Firmware-A, Release 2.10.4

7.41.5 FSBL->TF-A Parameter Passing

The FSBL populates a data structure with image information for TF-A. TF-A uses that data to hand
off to the loaded images. The address of the handoff data structure is passed in the PMU_GLOBAL.
GLOBAL_GEN_STORAGE6 register. The register is free to be used by other software once TF-A has brought
up further firmware images.

7.41.6 Power Domain Tree

The following power domain tree represents the power domain model used by TF-A for ZynqMP:

+-+
|0|
+-+

+-------+---+---+-------+
| | | |
| | | |
v v v v

+-+ +-+ +-+ +-+
|0| |1| |2| |3|
+-+ +-+ +-+ +-+

The 4 leaf power domains represent the individual A53 cores, while resources common to the cluster are
grouped in the power domain on the top.

7.41.7 CUSTOM SIP service support

• Dedicated SMC FID ZYNQMP_SIP_SVC_CUSTOM(0x82002000)(32-bit)/ (0xC2002000)(64-bit) to
be used by a custom package for providing CUSTOM SIP service.

• by default platform provides bare minimum definition for custom_smc_handler in this service.

• to use this service, custom package should implement their smc handler with the name cus-
tom_smc_handler. once custom package is included in TF-A build, their definition of cus-
tom_smc_handler is enabled.

7.41.8 Custom package makefile fragment inclusion in TF-A build

• custom package is not directly part of TF-A source.

• <CUSTOM_PKG_PATH> is the location at which user clones a custom package locally.

• custom package needs to implement makefile fragment named custom_pkg.mk so as to get included in
TF-A build.

• custom_pkg.mk specify all the rules to include custom package specific header files, dependent libs,
source files that are supposed to be included in TF-A build.

• when <CUSTOM_PKG_PATH> is specified in TF-A build command, custom_pkg.mk is included from
<CUSTOM_PKG_PATH> in TF-A build.

7.41. Xilinx Zynq UltraScale+ MPSoC 635

Trusted Firmware-A, Release 2.10.4

• TF-A build command: make CROSS_COMPILE=aarch64-none-elf- PLAT=zynqmp RE-
SET_TO_BL31=1 bl31 CUSTOM_PKG_PATH=<…>

7.42 Broadcom Stingray

7.42.1 Description

Broadcom’s Stingray(BCM958742t) is a multi-core processor with 8 Cortex-A72 cores. Trusted Firmware-A
(TF-A) is used to implement secure world firmware, supporting BL2 and BL31 for Broadcom Stingray SoCs.

On Poweron, Boot ROM will load bl2 image and Bl2 will initialize the hardware, then loads bl31 and bl33 into
DDR and boots to bl33.

7.42.2 Boot Sequence

Bootrom –> TF-A BL2 –> TF-A BL31 –> BL33(u-boot)

Code Locations

• Trusted Firmware-A: link

7.42.3 How to build

Build Procedure

• Prepare AARCH64 toolchain.

• Build u-boot first, and get the binary image: u-boot.bin,

• Build TF-A

Build fip:

make CROSS_COMPILE=aarch64-linux-gnu- PLAT=stingray BOARD_CFG=bcm958742t␣
↪→all fip BL33=u-boot.bin

Deploy TF-A Images

The u-boot will be upstreamed soon, this doc will be updated once they are ready, and the link will be posted.

This section provides a list of supported upstream platform ports and the documentation associated with them.

Note: In addition to the platforms ports listed within the table of contents, there are several additional platforms
that are supported upstream but which do not currently have associated documentation:

636 Chapter 7. Platform Ports

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/

Trusted Firmware-A, Release 2.10.4

• Arm Neoverse N1 System Development Platform (N1SDP)

• Arm Neoverse Reference Design N1 Edge (RD-N1-Edge) FVP

• Arm Neoverse Reference Design E1 Edge (RD-E1-Edge) FVP

• Arm SGI-575

• MediaTek MT8173 SoCs

7.43 Deprecated platforms

Platform Vendor Deprecated version Deleted version
sgm775 Arm 2.5 2.7
mt6795 MTK 2.5 2.7
sgi575 Arm 2.8 TBD
rdn1edge Arm 2.8 TBD
tc0 Arm 2.8 2.10
tc1 Arm 2.10 TBD
rde1edge Arm 2.9 3.0

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

7.43. Deprecated platforms 637

CHAPTER

EIGHT

PERFORMANCE & TESTING

8.1 PSCI Performance Measurement

TF-A provides two instrumentation tools for performing analysis of the PSCI implementation:

• PSCI STAT

• Runtime Instrumentation

This page explains how they may be enabled and used to perform all varieties of analysis.

8.1.1 Performance Measurement Framework

The Performance Measurement Framework PMF is a framework that provides mechanisms for collecting and
retrieving timestamps at runtime from the Performance Measurement Unit (PMU). The PMU is a generalized
abstraction for accessing CPU hardware registers used to measure hardware events. This means, for instance,
that the PMU might be used to place instrumentation points at logical locations in code for tracing purposes.

TF-A utilises the PMF as a backend for the two instrumentation services it provides–PSCI Statistics and Run-
time Instrumentation. The PMF is used by these services to facilitate collection and retrieval of timestamps.
For instance, the PSCI Statistics service registers the PMF service psci_svc to track its residency statistics.

This is reserved a unique ID, name, and space in memory by the PMF. The framework provides a convenient
interface for PSCI Statistics to retrieve values from psci_svc at runtime. Alternatively, the service may be
configured such that the PMF dumps those values to the console. A platform may choose to expose SMCs that
allow retrieval of these timestamps from the service.

This feature is enabled with the Boolean flag ENABLE_PMF.

638

Trusted Firmware-A, Release 2.10.4

8.1.2 PSCI Statistics

PSCI Statistics is a runtime service that provides residency statistics for power states used by the platform. The
service tracks residency time and entry count. Residency time is the total time spent in a particular power state
by a PE. The entry count is the number of times the PE has entered the power state. PSCI Statistics implements
the optional functions PSCI_STAT_RESIDENCY and PSCI_STAT_COUNT from the PSCI specification.

PSCI_STAT_RESIDENCY

Parameters

• target_cpu – Contains copy of affinity fields in the MPIDR register for identi-
fying the target core (See section 5.1.4 of PSCI specifications for more details).

• power_state – identifier for a specific local state. Generally, this parameter
takes the same form as the power_state parameter described for CPU_SUSPEND
in section 5.4.2.

Returns
Time spent in power_state, in microseconds, by target_cpu and the highest
level expressed in power_state.

PSCI_STAT_COUNT

Parameters

• target_cpu – follows the same format as PSCI_STAT_RESIDENCY.

• power_state – follows the same format as PSCI_STAT_RESIDENCY.

Returns
Number of times the state expressed in power_state has been used by tar-
get_cpu and the highest level expressed in power_state.

The implementation provides residency statistics only for low power states, and does this regardless of the entry
mechanism into those states. The statistics it collects are set to 0 during shutdown or reset.

PSCI Statistics is enabled with the Boolean build flag ENABLE_PSCI_STAT. All Arm platforms utilise the
PMF unless another collection backend is provided (ENABLE_PMF is implicitly enabled).

8.1.3 Runtime Instrumentation

The Runtime Instrumentation Service is an instrumentation tool that wraps around the PMF to provide times-
tamp data. Although the service is not restricted to PSCI, it is used primarily in TF-A to quantify the total time
spent in the PSCI implementation. The tool can be used to instrument other components in TF-A as well. It is
enabled with the Boolean flag ENABLE_RUNTIME_INSTRUMENTATION, and as with PSCI STAT, requires
PMF to be enabled.

In PSCI, this service provides instrumentation points in the following code paths:

• Entry into the PSCI SMC handler

• Exit from the PSCI SMC handler

8.1. PSCI Performance Measurement 639

https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0022/latest/

Trusted Firmware-A, Release 2.10.4

• Entry to low power state

• Exit from low power state

• Entry into cache maintenance operations in PSCI

• Exit from cache maintenance operations in PSCI

The service captures the cycle count, which allows for the time spent in the implementation to be calculated,
given the frequency counter.

PSCI SMC Handler Instrumentation

The timestamp during entry into the handler is captured as early as possible during the runtime exception, prior
to entry into the handler itself. All timestamps are stored in memory for later retrieval. The exit timestamp is
captured after normal return from the PSCI SMC handler, or, if a low power state was requested, it is captured
in the warm boot path.

Copyright (c) 2023, Arm Limited. All rights reserved.

8.2 PSCI Performance Measurements on Arm Juno Development
Platform

This document summarises the findings of performance measurements of key operations in the Trusted
Firmware-A Power State Coordination Interface (PSCI) implementation, using the in-built Performance Mea-
surement Framework (PMF) and runtime instrumentation timestamps.

8.2.1 Method

We used the Juno R1 platform for these tests, which has 4 x Cortex-A53 and 2 x Cortex-A57 clusters running
at the following frequencies:

Domain Frequency (MHz)
Cortex-A57 900 (nominal)
Cortex-A53 650 (underdrive)
AXI subsystem 533

Juno supports CPU, cluster and system power down states, corresponding to power levels 0, 1 and 2 respectively.
It does not support any retention states.

Given that runtime instrumentation using PMF is invasive, there is a small (unquantified) overhead on the
results. PMF uses the generic counter for timestamps, which runs at 50MHz on Juno.

The following source trees and binaries were used:

• TF-A [v2.9-rc0]

• TFTF [v2.9-rc0]

640 Chapter 8. Performance & Testing

https://developer.arm.com/documentation/100122/latest/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.9-rc0
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.9-rc0

Trusted Firmware-A, Release 2.10.4

Please see the Runtime Instrumentation Testing Methodology page for more details.

8.2.2 Procedure

1. Build TFTF with runtime instrumentation enabled:

make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
TESTS=runtime-instrumentation all

2. Fetch Juno’s SCP binary from TF-A’s archive:

curl --fail --connect-timeout 5 --retry 5 -sLS -o scp_bl2.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/

↪→juno/release/juno-bl2.bin

3. Build TF-A with the following build options:

make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
BL33="/path/to/tftf.bin" SCP_BL2="scp_bl2.bin" \
ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all fip

4. Load the following images onto the development board: fip.bin, scp_bl2.bin.

8.2.3 Results

CPU_SUSPEND to deepest power level

Table 1: CPU_SUSPEND latencies (µs) to deepest power level in
parallel (v2.9)

Cluster Core Powerdown Wakeup Cache Flush
0 0 104.58 241.20 5.26
0 1 384.24 22.50 138.76
1 0 244.56 22.18 5.16
1 1 670.56 18.58 4.44
1 2 809.36 269.28 4.44
1 3 984.96 219.70 79.62

Table 2: CPU_SUSPEND latencies (µs) to deepest power level in
parallel (v2.10)
Cluster Core Powerdown Wakeup Cache Flush
0 0 242.66 (+132.03%) 245.1 5.4
0 1 522.08 (+35.87%) 26.24 138.32
1 0 104.36 (-57.33%) 27.1 5.32
1 1 382.56 (-42.95%) 23.34 4.42
1 2 807.74 271.54 4.64
1 3 981.36 221.8 79.48

8.2. PSCI Performance Measurements on Arm Juno Development Platform 641

Trusted Firmware-A, Release 2.10.4

Table 3: CPU_SUSPEND latencies (µs) to deepest power level in
serial (v2.9)

Cluster Core Powerdown Wakeup Cache Flush
0 0 236.56 23.24 138.18
0 1 236.86 23.28 138.10
1 0 281.04 22.80 77.24
1 1 100.28 18.52 4.54
1 2 100.12 18.78 4.50
1 3 100.36 18.94 4.44

Table 4: CPU_SUSPEND latencies (µs) to deepest power level in
serial (v2.10)

Cluster Core Powerdown Wakeup Cache Flush
0 0 236.84 27.1 138.36
0 1 236.96 27.1 138.32
1 0 280.06 26.94 77.5
1 1 100.76 23.42 4.36
1 2 100.02 23.42 4.44
1 3 100.08 23.2 4.4

CPU_SUSPEND to power level 0

Table 5: CPU_SUSPEND latencies (µs) to power level 0 in parallel
(v2.9)

Cluster Core Powerdown Wakeup Cache Flush
0 0 662.34 15.22 8.08
0 1 802.00 15.50 8.16
1 0 385.22 15.74 7.88
1 1 106.16 16.06 7.44
1 2 524.38 15.64 7.34
1 3 246.00 15.78 7.72

Table 6: CPU_SUSPEND latencies (µs) to power level 0 in parallel
(v2.10)
Cluster Core Powerdown Wakeup Cache Flush
0 0 801.04 18.66 8.22
0 1 661.28 19.08 7.88
1 0 105.9 (-72.51%) 20.3 7.58
1 1 383.58 (+261.32%) 20.4 7.42
1 2 523.52 20.1 7.74
1 3 244.5 20.16 7.56

642 Chapter 8. Performance & Testing

Trusted Firmware-A, Release 2.10.4

Table 7: CPU_SUSPEND latencies (µs) to power level 0 in serial
(v2.9)

Cluster Core Powerdown Wakeup Cache Flush
0 0 99.80 15.94 5.42
0 1 99.76 15.80 5.24
1 0 278.26 16.16 4.58
1 1 96.88 16.00 4.52
1 2 96.80 16.12 4.54
1 3 96.88 16.12 4.54

Table 8: CPU_SUSPEND latencies (µs) to power level 0 in serial
(v2.10)

Cluster Core Powerdown Wakeup Cache Flush
0 0 99.84 18.86 5.54
0 1 100.2 18.82 5.66
1 0 278.12 20.56 4.48
1 1 96.68 20.62 4.3
1 2 96.94 20.14 4.42
1 3 96.68 20.46 4.32

CPU_OFF on all non-lead CPUs

CPU_OFF on all non-lead CPUs in sequence then, CPU_SUSPEND on the lead core to the deepest power level.

Table 9: CPU_OFF latencies (µs) on all non-lead CPUs (v2.9)
Cluster Core Powerdown Wakeup Cache Flush
0 0 235.76 26.14 137.80
0 1 235.40 25.72 137.62
1 0 174.70 22.40 77.26
1 1 100.92 24.04 4.52
1 2 100.68 22.44 4.36
1 3 101.36 22.70 4.52

Table 10: CPU_OFF latencies (µs) on all non-lead CPUs (v2.10)
test_rt_instr_cpu_off_serial (latest)
Cluster Core Powerdown Wakeup Cache Flush
0 0 236.04 30.02 137.9
0 1 235.38 29.7 137.72
1 0 175.18 26.96 77.26
1 1 100.56 28.34 4.32
1 2 100.38 26.82 4.3
1 3 100.86 26.98 4.42

8.2. PSCI Performance Measurements on Arm Juno Development Platform 643

Trusted Firmware-A, Release 2.10.4

CPU_VERSION in parallel

Table 11: CPU_VERSION latency (µs) in parallel on all cores (2.9)
Cluster Core Latency
0 0 1.48
0 1 1.04
1 0 0.56
1 1 0.92
1 2 0.96
1 3 0.96

Table 12: CPU_VERSION latency (µs) in parallel on all cores (2.10)
Cluster Core Latency
0 0 1.1 (-25.68%)
0 1 1.06
1 0 0.58
1 1 0.88
1 2 0.92
1 3 0.9

8.2.4 Annotated Historic Results

The following results are based on the upstream TF master as of 31/01/2017. TF-A was built using the same
build instructions as detailed in the procedure above.

In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and CPUs 4-5 refer to CPUs in the big
cluster (A57). In all cases CPU 4 is the lead CPU.

PSCI_ENTRY corresponds to the powerdown latency, PSCI_EXIT the wakeup latency, and
CFLUSH_OVERHEAD the latency of the cache flush operation.

CPU_SUSPEND to deepest power level on all CPUs in parallel

CPU PSCI_ENTRY (us) PSCI_EXIT (us) CFLUSH_OVERHEAD (us)
0 27 20 5
1 114 86 5
2 202 58 5
3 375 29 94
4 20 22 6
5 290 18 206

A large variance in PSCI_ENTRY and PSCI_EXIT times across CPUs is observed due to TF PSCI lock
contention. In the worst case, CPU 3 has to wait for the 3 other CPUs in the cluster (0-2) to complete
PSCI_ENTRY and release the lock before proceeding.

644 Chapter 8. Performance & Testing

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d

Trusted Firmware-A, Release 2.10.4

The CFLUSH_OVERHEAD times for CPUs 3 and 5 are higher because they are the last CPUs in their respective
clusters to power down, therefore both the L1 and L2 caches are flushed.

The CFLUSH_OVERHEAD time for CPU 5 is a lot larger than that for CPU 3 because the L2 cache size for
the big cluster is lot larger (2MB) compared to the little cluster (1MB).

CPU_SUSPEND to power level 0 on all CPUs in parallel

CPU PSCI_ENTRY (us) PSCI_EXIT (us) CFLUSH_OVERHEAD (us)
0 116 14 8
1 204 14 8
2 287 13 8
3 376 13 9
4 29 15 7
5 21 15 8

There is no lock contention in TF generic code at power level 0 but the large variance in PSCI_ENTRY times
across CPUs is due to lock contention in Juno platform code. The platform lock is used to mediate access to
a single SCP communication channel. This is compounded by the SCP firmware waiting for each AP CPU
to enter WFI before making the channel available to other CPUs, which effectively serializes the SCP power
down commands from all CPUs.

On platforms with a more efficient CPU power down mechanism, it should be possible to make the
PSCI_ENTRY times smaller and consistent.

The PSCI_EXIT times are consistent across all CPUs because TF does not require locks at power level 0.

The CFLUSH_OVERHEAD times for all CPUs are small and consistent since only the cache associated with
power level 0 is flushed (L1).

CPU_SUSPEND to deepest power level on all CPUs in sequence

CPU PSCI_ENTRY (us) PSCI_EXIT (us) CFLUSH_OVERHEAD (us)
0 114 20 94
1 114 20 94
2 114 20 94
3 114 20 94
4 195 22 180
5 21 17 6

The CFLUSH_OVERHEAD times for lead CPU 4 and all CPUs in the non-lead cluster are large because all
other CPUs in the cluster are powered down during the test. The CPU_SUSPEND call powers down to the
cluster level, requiring a flush of both L1 and L2 caches.

The CFLUSH_OVERHEAD time for CPU 4 is a lot larger than those for the little CPUs because the L2 cache
size for the big cluster is lot larger (2MB) compared to the little cluster (1MB).

8.2. PSCI Performance Measurements on Arm Juno Development Platform 645

Trusted Firmware-A, Release 2.10.4

The PSCI_ENTRY and CFLUSH_OVERHEAD times for CPU 5 are low because lead CPU 4 continues to run
while CPU 5 is suspended. Hence CPU 5 only powers down to level 0, which only requires L1 cache flush.

CPU_SUSPEND to power level 0 on all CPUs in sequence

CPU PSCI_ENTRY (us) PSCI_EXIT (us) CFLUSH_OVERHEAD (us)
0 22 14 5
1 22 14 5
2 21 14 5
3 22 14 5
4 17 14 6
5 18 15 6

Here the times are small and consistent since there is no contention and it is only necessary to flush the cache
to power level 0 (L1). This is the best case scenario.

The PSCI_ENTRY times for CPUs in the big cluster are slightly smaller than for the CPUs in little cluster due
to greater CPU performance.

ThePSCI_EXIT times are generally lower than in the last test because the cluster remains powered on through-
out the test and there is less code to execute on power on (for example, no need to enter CCI coherency)

CPU_OFF on all non-lead CPUs in sequence then CPU_SUSPEND on lead CPU to deepest
power level

The test sequence here is as follows:

1. Call CPU_ON and CPU_OFF on each non-lead CPU in sequence.

2. Program wake up timer and suspend the lead CPU to the deepest power level.

3. Call CPU_ON on non-lead CPU to get the timestamps from each CPU.

CPU PSCI_ENTRY (us) PSCI_EXIT (us) CFLUSH_OVERHEAD (us)
0 110 28 93
1 110 28 93
2 110 28 93
3 111 28 93
4 195 22 181
5 20 23 6

The CFLUSH_OVERHEAD times for all little CPUs are large because all other CPUs in that cluster are pow-
erered down during the test. The CPU_OFF call powers down to the cluster level, requiring a flush of both L1
and L2 caches.

The PSCI_ENTRY and CFLUSH_OVERHEAD times for CPU 5 are small because lead CPU 4 is running and
CPU 5 only powers down to level 0, which only requires an L1 cache flush.

646 Chapter 8. Performance & Testing

Trusted Firmware-A, Release 2.10.4

The CFLUSH_OVERHEAD time for CPU 4 is a lot larger than those for the little CPUs because the L2 cache
size for the big cluster is lot larger (2MB) compared to the little cluster (1MB).

The PSCI_EXIT times for CPUs in the big cluster are slightly smaller than for CPUs in the little clus-
ter due to greater CPU performance. These times generally are greater than the PSCI_EXIT times in the
CPU_SUSPEND tests because there is more code to execute in the “on finisher” compared to the “suspend
finisher” (for example, GIC redistributor register programming).

PSCI_VERSION on all CPUs in parallel

Since very little code is associated with PSCI_VERSION, this test approximates the round trip latency for
handling a fast SMC at EL3 in TF.

CPU TOTAL TIME (ns)
0 3020
1 2940
2 2980
3 3060
4 520
5 720

The times for the big CPUs are less than the little CPUs due to greater CPU performance.

We suspect the time for lead CPU 4 is shorter than CPU 5 due to subtle cache effects, given that these mea-
surements are at the nano-second level.

Copyright (c) 2019-2023, Arm Limited and Contributors. All rights reserved.

8.3 Runtime Instrumentation Testing - N1SDP

For this test we used the N1 System Development Platform (N1SDP), which contains an SoC consisting of two
dual-core Arm N1 clusters.

The following source trees and binaries were used:

• TF-A [v2.9-rc0-16-g666aec401]

• TFTF [v2.9-rc0]

• SCP/MCP Prebuilt Images

Please see the Runtime Instrumentation Testing Methodology page for more details.

8.3. Runtime Instrumentation Testing - N1SDP 647

https://developer.arm.com/documentation/101489/latest
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/refs/heads/v2.9-rc0-16-g666aec401
https://review.trustedfirmware.org/plugins/gitiles/TF-A/tf-a-tests/+/refs/tags/v2.9-rc0
https://downloads.trustedfirmware.org/tf-a/css_scp_2.11.0/n1sdp/release/

Trusted Firmware-A, Release 2.10.4

8.3.1 Procedure

1. Build TFTF with runtime instrumentation enabled:

make CROSS_COMPILE=aarch64-none-elf- PLAT=n1sdp \
TESTS=runtime-instrumentation all

2. Build TF-A with the following build options:

make CROSS_COMPILE=aarch64-none-elf- PLAT=n1sdp \
ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all

3. Fetch the SCP firmware images:

curl --fail --connect-timeout 5 --retry 5 \
-sLS -o build/n1sdp/release/scp_rom.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/

↪→n1sdp/release/n1sdp-bl1.bin
curl --fail --connect-timeout 5 \

--retry 5 -sLS -o build/n1sdp/release/scp_ram.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/

↪→n1sdp/release/n1sdp-bl2.bin

4. Fetch the MCP firmware images:

curl --fail --connect-timeout 5 --retry 5 \
-sLS -o build/n1sdp/release/mcp_rom.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/

↪→n1sdp/release/n1sdp-mcp-bl1.bin
curl --fail --connect-timeout 5 --retry 5 \

-sLS -o build/n1sdp/release/mcp_ram.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/

↪→n1sdp/release/n1sdp-mcp-bl2.bin

5. Using the fiptool, create a new FIP package and append the SCP ram image onto it.

./tools/fiptool/fiptool create --blob \
uuid=cfacc2c4-15e8-4668-82be-430a38fad705,file=build/

↪→n1sdp/release/bl1.bin \
--scp-fw build/n1sdp/release/scp_ram.bin build/n1sdp/

↪→release/scp_fw.bin

6. Append the MCP image to the FIP.

./tools/fiptool/fiptool create \
--blob uuid=54464222-a4cf-4bf8-b1b6-cee7dade539e,file=build/

↪→n1sdp/release/mcp_ram.bin \
build/n1sdp/release/mcp_fw.bin

7. Then, add TFTF as the Non-Secure workload in the FIP image:

648 Chapter 8. Performance & Testing

Trusted Firmware-A, Release 2.10.4

make CROSS_COMPILE=aarch64-none-elf- PLAT=n1sdp \
ENABLE_RUNTIME_INSTRUMENTATION=1 SCP_BL2=/dev/null \
BL33=<path/to/tftf.bin> fip

8. Load the following images onto the development board: fip.bin, scp_rom.bin, scp_ram.bin,
mcp_rom.bin, and mcp_ram.bin.

Note: These instructions presume you have a complete firmware stack. The N1SDP user guide provides a
detailed explanation on how to get setup from scratch.

8.3.2 Results

CPU_SUSPEND to deepest power level

Table 13: CPU_SUSPEND latencies (µs) to deepest power level in
parallel (v2.9)

Cluster Core Powerdown Wakeup Cache Flush
0 0 2.80 10.08 0.80
0 0 4.14 15.92 0.16
1 0 3.68 12.96 0.16
1 0 3.36 18.58 0.18

Table 14: CPU_SUSPEND latencies (µs) to deepest power level in
parallel (v2.10)

Cluster Core Powerdown Wakeup Cache Flush
0 0 2.12 23.94 (+137.50%) 0.42 (-47.50%)
0 0 3.52 42.08 (+164.32%) 0.26 (+62.50%)
1 0 2.76 (-25.00%) 38.3 (+195.52%) 0.26 (+62.50%)
1 0 2.64 44.56 (+139.83%) 0.36 (+100.00%)

Table 15: CPU_SUSPEND latencies (µs) to deepest power level in
serial (v2.9)

Cluster Core Powerdown Wakeup Cache Flush
0 0 1.86 9.92 0.32
0 0 2.70 10.48 0.36
1 0 1.78 9.72 0.16
1 0 1.94 10.44 0.16

8.3. Runtime Instrumentation Testing - N1SDP 649

https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/blob/master/docs/n1sdp/user-guide.rst

Trusted Firmware-A, Release 2.10.4

Table 16: CPU_SUSPEND latencies (µs) to deepest power level in
serial (v2.10)
Cluster Core Powerdown Wakeup Cache Flush
0 0 1.74 23.7 (+138.91%) 0.3
0 0 2.08 23.96 (+128.63%) 0.26 (-27.78%)
1 0 1.9 23.62 (+143.00%) 0.28 (+75.00%)
1 0 2.06 23.92 (+129.12%) 0.26 (+62.50%)

CPU_SUSPEND to power level 0

Table 17: CPU_SUSPEND latencies (µs) to power level 0 in parallel
(v2.9)

test_rt_instr_cpu_susp_parallel
Cluster Core Powerdown Wakeup Cache Flush
0 0 0.88 12.32 0.26
0 0 2.12 14.62 0.26
1 0 1.86 14.14 0.16
1 0 1.92 9.44 0.18

Table 18: CPU_SUSPEND latencies (µs) to power level 0 in parallel
(v2.10)

Cluster Core Powerdown Wakeup Cache Flush
0 0 1.5 (+70.45%) 35.02 (+184.25%) 0.24
0 0 1.92 38.12 (+160.74%) 0.28
1 0 1.88 38.1 (+169.45%) 0.26 (+62.50%)
1 0 2.04 23.1 (+144.70%) 0.24

Table 19: CPU_SUSPEND latencies (µs) to power level 0 in serial
(v2.9)

test_rt_instr_cpu_susp_serial
Cluster Core Powerdown Wakeup Cache Flush
0 0 1.52 9.40 0.30
0 0 1.92 9.80 0.18
1 0 2.20 9.60 0.14
1 0 1.82 9.78 0.18

650 Chapter 8. Performance & Testing

Trusted Firmware-A, Release 2.10.4

Table 20: CPU_SUSPEND latencies (µs) to power level 0 in serial
(v2.10)

Cluster Core Powerdown Wakeup Cache Flush
0 0 1.52 23.08 (+145.53%) 0.3
0 0 1.98 23.68 (+141.63%) 0.28 (+55.56%)
1 0 1.84 23.86 (+148.54%) 0.28 (+100.00%)
1 0 1.98 23.68 (+142.13%) 0.28 (+55.56%)

CPU_OFF on all non-lead CPUs

CPU_OFF on all non-lead CPUs in sequence then, CPU_SUSPEND on the lead core to the deepest power level.

Table 21: CPU_OFF latencies (µs) on all non-lead CPUs (v2.9)
Cluster Core Powerdown Wakeup Cache Flush
0 0 1.84 9.94 0.32
0 0 14.20 13.10 0.50
1 0 13.88 12.36 0.42
1 0 14.40 13.26 0.52

Table 22: CPU_OFF latencies (µs) on all non-lead CPUs (v2.10)
Cluster Core Powerdown Wakeup Cache Flush
0 0 1.78 23.7 (+138.43%) 0.3
0 0 13.96 31.16 (+137.86%) 0.34 (-32.00%)
1 0 13.54 30.24 (+144.66%) 0.26 (-38.10%)
1 0 14.46 31.12 (+134.69%) 0.7 (+34.62%)

CPU_VERSION in parallel

Table 23: CPU_VERSION latency (µs) in parallel on all cores (v2.9)
test_rt_instr_psci_version_parallel
Cluster Core Latency
0 0 0.08
0 0 0.26
1 0 0.20
1 0 0.26

8.3. Runtime Instrumentation Testing - N1SDP 651

Trusted Firmware-A, Release 2.10.4

Table 24: CPU_VERSION latency (µs) in parallel on all cores
(v2.10)

test_rt_instr_psci_version_parallel (latest)
Cluster Core Latency
0 0 0.14 (+75.00%)
0 0 0.22
1 0 0.2
1 0 0.26

Copyright (c) 2023, Arm Limited. All rights reserved.

8.4 Runtime Instrumentation Methodology

This document outlines steps for undertaking performance measurements of key operations in the Trusted
Firmware-A Power State Coordination Interface (PSCI) implementation, using the in-built Performance Mea-
surement Framework (PMF) and runtime instrumentation timestamps.

8.4.1 Framework

The tests are based on the runtime-instrumentation test suite provided by the Trusted Firmware
Test Framework (TFTF). The release build of this framework was used because the results in the debug build
became skewed; the console output prevented some of the tests from executing in parallel.

The tests consist of both parallel and sequential tests, which are broadly described as follows:

• Parallel Tests This type of test powers on all the non-lead CPUs and brings them and the lead CPU to
a common synchronization point. The lead CPU then initiates the test on all CPUs in parallel.

• Sequential Tests This type of test powers on each non-lead CPU in sequence. The lead CPU initiates
the test on a non-lead CPU then waits for the test to complete before proceeding to the next non-lead
CPU. The lead CPU then executes the test on itself.

Note there is very little variance observed in the values given (~1us), although the values for each CPU are
sometimes interchanged, depending on the order in which locks are acquired. Also, there is very little variance
observed between executing the tests sequentially in a single boot or rebooting between tests.

Given that runtime instrumentation using PMF is invasive, there is a small (unquantified) overhead on the
results. PMF uses the generic counter for timestamps, which runs at 50MHz on Juno.

652 Chapter 8. Performance & Testing

Trusted Firmware-A, Release 2.10.4

8.4.2 Metrics

Powerdown Latency
Time taken from entering the TF PSCI implementation to the point the hardware enters the
low power state (WFI). Referring to the TF runtime instrumentation points, this corresponds to:
(RT_INSTR_ENTER_HW_LOW_PWR - RT_INSTR_ENTER_PSCI).

Wakeup Latency
Time taken from the point the hardware exits the low power state to exiting the TF PSCI implementation.
This corresponds to: (RT_INSTR_EXIT_PSCI - RT_INSTR_EXIT_HW_LOW_PWR).

Cache Flush Latency
Time taken to flush the caches during powerdown. This corresponds to: (RT_INSTR_EXIT_CFLUSH
- RT_INSTR_ENTER_CFLUSH).

8.5 Test Secure Payload (TSP) and Dispatcher (TSPD)

8.5.1 Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL31 firmware, called the TSPD. Therefore, if
you intend to use the TSP, the BL31 image must be recompiled as well. For more information on SPs and
SPDs, see the Secure-EL1 Payloads and Dispatchers section in the Firmware Design.

First clean the TF-A build directory to get rid of any previous BL31 binary. Then to build the TSP image use:

make PLAT=<platform> SPD=tspd all

An additional boot loader binary file is created in the build directory:

build/<platform>/<build-type>/bl32.bin

Copyright (c) 2019, Arm Limited. All rights reserved.

8.6 Performance Monitoring Unit

The Performance Monitoring Unit (PMU) allows recording of architectural and microarchitectural events for
profiling purposes.

This document gives an overview of the PMU counter configuration to assist with implementation and to com-
plement the PMU security guidelines given in the Secure Development Guidelines document.

Note: This section applies to Armv8-A implementations which have version 3 of the Performance Monitors
Extension (PMUv3).

8.5. Test Secure Payload (TSP) and Dispatcher (TSPD) 653

Trusted Firmware-A, Release 2.10.4

8.6.1 PMU Counters

The PMU makes 32 counters available at all privilege levels:

• 31 programmable event counters: PMEVCNTR<n>, where n is 0 to 30.

• A dedicated cycle counter: PMCCNTR.

Architectural mappings

Counters State System Register Name
Programmable AArch64 PMEVCNTR<n>_EL0[63*:0]

AArch32 PMEVCNTR<n>[31:0]

Cycle AArch64 PMCCNTR_EL0[63:0]

AArch32 PMCCNTR[63:0]

Note: Bits [63:32] are only available if ARMv8.5-PMU is implemented. Refer to the ArmARM for a detailed
description of ARMv8.5-PMU features.

8.6.2 Configuring the PMU for counting events

Each programmable counter has an associated register, PMEVTYPER<n> which configures it. The cycle
counter has the PMCCFILTR_EL0 register, which has an identical function and bit field layout as PMEV-
TYPER<n>. In addition, the counters are enabled (permitted to increment) via the PMCNTENSET and PMCR
registers. These can be accessed at all privilege levels.

Architectural mappings

AArch64 AArch32
PMEVTYPER<n>_EL0[63*:0] PMEVTYPER<n>[31:0]

PMCCFILTR_EL0[63*:0] PMCCFILTR[31:0]

PMCNTENSET_EL0[63*:0] PMCNTENSET[31:0]

PMCR_EL0[63*:0] PMCR[31:0]

Note: Bits [63:32] are reserved.

654 Chapter 8. Performance & Testing

https://developer.arm.com/docs/ddi0487/latest

Trusted Firmware-A, Release 2.10.4

Relevant register fields

For PMEVTYPER<n>_EL0/PMEVTYPER<n> and PMCCFILTR_EL0/PMCCFILTR, the most important
fields are:

• P:

– Bit 31.

– If set to 0, will increment the associated PMEVCNTR<n> at EL1.

• NSK:

– Bit 29.

– If equal to the P bit it enables the associated PMEVCNTR<n> at Non-secure EL1.

– Reserved if EL3 not implemented.

• NSH:

– Bit 27.

– If set to 1, will increment the associated PMEVCNTR<n> at EL2.

– Reserved if EL2 not implemented.

• SH:

– Bit 24.

– If different to the NSH bit it enables the associated PMEVCNTR<n> at Secure EL2.

– Reserved if Secure EL2 not implemented.

• M:

– Bit 26.

– If equal to the P bit it enables the associated PMEVCNTR<n> at EL3.

• evtCount[15:10]:

– Extension to evtCount[9:0]. Reserved unless ARMv8.1-PMU implemented.

• evtCount[9:0]:

– The event number that the associated PMEVCNTR<n> will count.

For PMCNTENSET_EL0/PMCNTENSET, the most important fields are:

• P[30:0]:

– Setting bit P[n] to 1 enables counter PMEVCNTR<n>.

– The effects of PMEVTYPER<n> are applied on top of this. In other words, the counter will not
increment at any privilege level or security state unless it is enabled here.

• C:

– Bit 31.

8.6. Performance Monitoring Unit 655

Trusted Firmware-A, Release 2.10.4

– If set to 1 enables the cycle counter PMCCNTR.

For PMCR/PMCR_EL0, the most important fields are:

• DP:

– Bit 5.

– If set to 1 it disables the cycle counter PMCCNTR where event counting (by PMEVCNTR<n>) is
prohibited (e.g. EL2 and the Secure world).

– If set to 0, PMCCNTR will not be affected by this bit and therefore will be able to count where the
programmable counters are prohibited.

• E:

– Bit 0.

– Enables/disables counting altogether.

– The effects of PMCNTENSET and PMCR.DP are applied on top of this. In other words, if this bit
is 0 then no counters will increment regardless of how the other PMU system registers or bit fields
are configured.

References

• Arm ARM

Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.

Copyright (c) 2019-2023, Arm Limited. All rights reserved.

656 Chapter 8. Performance & Testing

https://developer.arm.com/docs/ddi0487/latest

CHAPTER

NINE

SECURITY ADVISORIES

9.1 Advisory TFV-1 (CVE-2016-10319)

Title Malformed Firmware Update SMC can result in copy of unexpectedly large
data into secure memory

CVE ID CVE-2016-10319
Date 18 Oct 2016
Versions Affected v1.2 and v1.3 (since commit 48bfb88)
Configurations
Affected

Platforms that use AArch64 BL1 plus untrusted normal world firmware update code
executing before BL31

Impact Copy of unexpectedly large data into the free securememory reported by BL1 platform
code

Fix Version Pull Request #783
Credit IOActive

Generic Trusted Firmware (TF) BL1 code contains an SMC interface that is briefly available after cold reset to
support the Firmware Update (FWU) feature (also known as recovery mode). This allows most FWU function-
ality to be implemented in the normal world, while retaining the essential image authentication functionality
in BL1. When cold boot reaches the EL3 Runtime Software (for example, BL31 on AArch64 systems), the
FWU SMC interface is replaced by the EL3 Runtime SMC interface. Platforms may choose how much of this
FWU functionality to use, if any.

The BL1 FWU SMC handling code, currently only supported on AArch64, contains several vulnerabilities that
may be exploited when all the following conditions apply:

1. Platform code uses TF BL1 with the TRUSTED_BOARD_BOOT build option enabled.

2. Platform code arranges for untrusted normal world FWU code to be executed in the cold boot path,
before BL31 starts. Untrusted in this sense means code that is not in ROM or has not been authenticated
or has otherwise been executed by an attacker.

3. Platform code copies the insecure pattern described below from the ARM platform version of
bl1_plat_mem_check().

The vulnerabilities consist of potential integer overflows in the input validation checks while handling the
FWU_SMC_IMAGE_COPY SMC. The SMC implementation is designed to copy an image into secure memory
for subsequent authentication, but the vulnerabilities may allow an attacker to copy unexpectedly large data into

657

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10319
https://github.com/ARM-software/arm-trusted-firmware/commit/48bfb88
https://github.com/ARM-software/arm-trusted-firmware/pull/783

Trusted Firmware-A, Release 2.10.4

secure memory. Note that a separate vulnerability is required to leverage these vulnerabilities; for example a
way to get the system to change its behaviour based on the unexpected secure memory contents.

Two of the vulnerabilities are in the function bl1_fwu_image_copy() in bl1/bl1_fwu.c. These are
listed below, referring to the v1.3 tagged version of the code:

• Line 155:

/*
* If last block is more than expected then
* clip the block to the required image size.
*/
if (image_desc->copied_size + block_size >

image_desc->image_info.image_size) {
block_size = image_desc->image_info.image_size -

image_desc->copied_size;
WARN("BL1-FWU: Copy argument block_size > remaining image size."

" Clipping block_size\n");
}

/* Make sure the image src/size is mapped. */
if (bl1_plat_mem_check(image_src, block_size, flags)) {

WARN("BL1-FWU: Copy arguments source/size not mapped\n");
return -ENOMEM;

}

INFO("BL1-FWU: Continuing image copy in blocks\n");

/* Copy image for given block size. */
base_addr += image_desc->copied_size;
image_desc->copied_size += block_size;
memcpy((void *)base_addr, (const void *)image_src, block_size);
...

This code fragment is executed when the image copy operation is performed in blocks over multi-
ple SMCs. block_size is an SMC argument and therefore potentially controllable by an attacker.
A very large value may result in an integer overflow in the 1st if statement, which would bypass
the check, allowing an unclipped block_size to be passed into bl1_plat_mem_check(). If
bl1_plat_mem_check() also passes, this may result in an unexpectedly large copy of data into
secure memory.

• Line 206:

/* Make sure the image src/size is mapped. */
if (bl1_plat_mem_check(image_src, block_size, flags)) {

WARN("BL1-FWU: Copy arguments source/size not mapped\n");
return -ENOMEM;

}

/* Find out how much free trusted ram remains after BL1 load */
mem_layout = bl1_plat_sec_mem_layout();
if ((image_desc->image_info.image_base < mem_layout->free_base) ||

(image_desc->image_info.image_base + image_size >

(continues on next page)

658 Chapter 9. Security Advisories

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
mem_layout->free_base + mem_layout->free_size)) {

WARN("BL1-FWU: Memory not available to copy\n");
return -ENOMEM;

}

/* Update the image size. */
image_desc->image_info.image_size = image_size;

/* Copy image for given size. */
memcpy((void *)base_addr, (const void *)image_src, block_size);
...

This code fragment is executed during the 1st invocation of the image copy operation. Both
block_size and image_size are SMC arguments. A very large value of image_size may
result in an integer overflow in the 2nd if statement, which would bypass the check, allowing execution
to proceed. If bl1_plat_mem_check() also passes, this may result in an unexpectedly large copy
of data into secure memory.

If the platform’s implementation of bl1_plat_mem_check() is correct then it may help prevent the above
2 vulnerabilities from being exploited. However, the ARM platform version of this function contains a similar
vulnerability:

• Line 88 of plat/arm/common/arm_bl1_fwu.c in function of bl1_plat_mem_check():

while (mmap[index].mem_size) {
if ((mem_base >= mmap[index].mem_base) &&

((mem_base + mem_size)
<= (mmap[index].mem_base +
mmap[index].mem_size)))
return 0;

index++;
}
...

This function checks that the passed memory region is within one of the regions mapped in by ARM
platforms. Here, mem_size may be the block_size passed from bl1_fwu_image_copy().
A very large value of mem_sizemay result in an integer overflow and the function to incorrectly return
success. Platforms that copy this insecure pattern will have the same vulnerability.

9.1. Advisory TFV-1 (CVE-2016-10319) 659

Trusted Firmware-A, Release 2.10.4

9.2 Advisory TFV-2 (CVE-2017-7564)

Title Enabled secure self-hosted invasive debug interface can allow normal world
to panic secure world

CVE ID CVE-2017-7564
Date 02 Feb 2017
Versions Affected All versions up to v1.3
Configurations Af-
fected

All

Impact Denial of Service (secure world panic)
Fix Version 15 Feb 2017 Pull Request #841
Credit ARM

The MDCR_EL3.SDD bit controls AArch64 secure self-hosted invasive debug enablement. By default, the
BL1 and BL31 images of the current version of ARM Trusted Firmware (TF) unconditionally assign this bit
to 0 in the early entrypoint code, which enables debug exceptions from the secure world. This can be seen in
the implementation of the el3_arch_init_common AArch64 macro . Given that TF does not currently
contain support for this feature (for example, by saving and restoring the appropriate debug registers), this may
allow a normal world attacker to induce a panic in the secure world.

The MDCR_EL3.SDD bit should be assigned to 1 to disable debug exceptions from the secure world.

Earlier versions of TF (prior to commit 495f3d3) did not assign this bit. Since the bit has an architecturally
UNKNOWN reset value, earlier versions may or may not have the same problem, depending on the platform.

A similar issue applies to the MDCR_EL3.SPD32 bits, which control AArch32 secure self-hosted invasive
debug enablement. TF assigns these bits to 00 meaning that debug exceptions from Secure EL1 are enabled
by the authentication interface. Therefore this issue only exists for AArch32 Secure EL1 code when secure
privileged invasive debug is enabled by the authentication interface, at which point the device is vulnerable to
other, more serious attacks anyway.

However, given that TF contains no support for handling debug exceptions, theMDCR_EL3.SPD32 bits should
be assigned to 10 to disable debug exceptions from AArch32 Secure EL1.

Finally, this also issue applies to AArch32 platforms that use the TF SP_MIN image or integrate the AArch32
equivalent of the el3_arch_init_common macro. Here the affected bits are SDCR.SPD, which should
also be assigned to 10 instead of 00

660 Chapter 9. Security Advisories

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7564
https://github.com/ARM-software/arm-trusted-firmware/pull/841
https://github.com/ARM-software/arm-trusted-firmware/blob/bcc2bf0/include/common/aarch64/el3_common_macros.S#L85
https://github.com/ARM-software/arm-trusted-firmware/commit/495f3d3
https://github.com/ARM-software/arm-trusted-firmware/blob/bcc2bf0/include/common/aarch32/el3_common_macros.S#L41
https://github.com/ARM-software/arm-trusted-firmware/blob/bcc2bf0/include/common/aarch32/el3_common_macros.S#L41

Trusted Firmware-A, Release 2.10.4

9.3 Advisory TFV-3 (CVE-2017-7563)

Title RO memory is always executable at AArch64 Secure EL1
CVE ID CVE-2017-7563
Date 06 Apr 2017
Versions Affected v1.3 (since Pull Request #662)
Configurations Af-
fected

AArch64 BL2, TSP or other users of xlat_tables library executing at AArch64
Secure EL1

Impact Unexpected Privilege Escalation
Fix Version Pull Request #924
Credit ARM

The translation table library in ARM Trusted Firmware (TF) (under lib/xlat_tables and
lib/xlat_tables_v2) provides APIs to help program translation tables in the MMU. The
xlat_tables client specifies its required memory mappings in the form of mmap_region struc-
tures. Each mmap_region has memory attributes represented by the mmap_attr_t enumeration
type. This contains flags to control data access permissions (MT_RO/MT_RW) and instruction execu-
tion permissions (MT_EXECUTE/MT_EXECUTE_NEVER). Thus a mapping specifying both MT_RO and
MT_EXECUTE_NEVER should result in a Read-Only (RO), non-executable memory region.

This feature does not work correctly for AArch64 images executing at Secure EL1. Any memory re-
gion mapped as RO will always be executable, regardless of whether the client specified MT_EXECUTE or
MT_EXECUTE_NEVER.

The vulnerability is known to affect the BL2 and Test Secure Payload (TSP) images on platforms that enable
the SEPARATE_CODE_AND_RODATA build option, which includes all ARM standard platforms, and the
upstreamXilinx andNVidia platforms. TheROdata section for these images on these platforms is unexpectedly
executable instead of non-executable. Other platforms or xlat_tables clients may also be affected.

The vulnerability primarily manifests itself after Pull Request #662. Before that, xlat_tables clients could
not specify instruction execution permissions separately to data access permissions. All RO normal memory
regions were implicitly executable. Before Pull Request #662. the vulnerability would only manifest itself for
device memory mapped as RO; use of this mapping is considered rare, although the upstream QEMU platform
uses this mapping when the DEVICE2_BASE build option is used.

Note that one or more separate vulnerabilities are also required to exploit this vulnerability.

The vulnerability is due to incorrect handling of the execute-never bits in the translation tables. The EL3 trans-
lation regime uses a single XN bit to determine whether a region is executable. The Secure EL1&0 translation
regime handles 2 Virtual Address (VA) ranges and so uses 2 bits, UXN and PXN. The xlat_tables library
only handles the XN bit, which maps to UXN in the Secure EL1&0 regime. As a result, this programs the Secure
EL0 execution permissions but always leaves the memory as executable at Secure EL1.

The vulnerability is mitigated by the following factors:

• The xlat_tables library ensures that all Read-Write (RW) memory regions are non-executable by setting
the SCTLR_ELx.WXN bit. This overrides any value of the XN, UXN or PXN bits in the translation tables.
See the enable_mmu() function:

9.3. Advisory TFV-3 (CVE-2017-7563) 661

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7563
https://github.com/ARM-software/arm-trusted-firmware/pull/662
https://github.com/ARM-software/arm-trusted-firmware/pull/924
https://github.com/ARM-software/arm-trusted-firmware/pull/662
https://github.com/ARM-software/arm-trusted-firmware/pull/662

Trusted Firmware-A, Release 2.10.4

sctlr = read_sctlr_el##_el(); \
sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT; \

• AArch32 configurations are unaffected. Here the XN bit controls execution privileges of the currently
executing translation regime, which is the desired behaviour.

• ARMTFEL3 code (for example BL1 and BL31) ensures that all non-securememorymapped into the se-
cure world is non-executable by setting the SCR_EL3.SIF bit. See the el3_arch_init_common
macro in el3_common_macros.S.

9.4 Advisory TFV-4 (CVE-2017-9607)

Title Malformed Firmware Update SMC can result in copy or authentication of unex-
pected data in secure memory in AArch32 state

CVE ID CVE-2017-9607
Date 20 Jun 2017
Versions Af-
fected

None (only between 22 May 2017 and 14 June 2017)

Configurations
Affected

Platforms that use AArch32 BL1 plus untrusted normal world firmware update code ex-
ecuting before BL31

Impact Copy or authentication of unexpected data in the secure memory
Fix Version Pull Request #979 (merged on 14 June 2017)
Credit ARM

The include/lib/utils_def.h header file provides the check_uptr_overflow()macro, which
aims at detecting arithmetic overflows that may occur when computing the sum of a base pointer and an offset.
This macro evaluates to 1 if the sum of the given base pointer and offset would result in a value large enough
to wrap around, which may lead to unpredictable behaviour.

The macro code is at line 52, referring to the version of the code as of commit c396b73:

/*
* Evaluates to 1 if (ptr + inc) overflows, 0 otherwise.
* Both arguments must be unsigned pointer values (i.e. uintptr_t).
*/

#define check_uptr_overflow(ptr, inc) \
(((ptr) > UINTPTR_MAX - (inc)) ? 1 : 0)

This macro does not work correctly for AArch32 images. It fails to detect overflows when the sum of its two
parameters fall into the [2^32, 2^64 - 1] range. Therefore, any AArch32 code relying on this macro to
detect such integer overflows is actually not protected.

The buggy code has been present in ARM Trusted Firmware (TF) since Pull Request #678 was merged (on
18 August 2016). However, the upstream code was not vulnerable until Pull Request #939 was merged (on 22
May 2017), which introduced AArch32 support for the Trusted Board Boot (TBB) feature. Before then, the
check_uptr_overflow() macro was not used in AArch32 code.

662 Chapter 9. Security Advisories

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9607
https://github.com/ARM-software/arm-trusted-firmware/pull/979
https://github.com/ARM-software/arm-trusted-firmware/commit/c396b73
https://github.com/ARM-software/arm-trusted-firmware/pull/678
https://github.com/ARM-software/arm-trusted-firmware/pull/939

Trusted Firmware-A, Release 2.10.4

The vulnerability resides in the BL1 FWU SMC handling code and it may be exploited when all the following
conditions apply:

• Platform code uses TF BL1 with the TRUSTED_BOARD_BOOT build option.

• Platform code uses the Firmware Update (FWU) code provided in bl1/bl1_fwu.c, which is part of
the TBB support.

• TF BL1 is compiled with the ARCH=aarch32 build option.

In this context, the AArch32 BL1 image might fail to detect potential integer overflows in the input validation
checks while handling the FWU_SMC_IMAGE_COPY and FWU_SMC_IMAGE_AUTH SMCs.

The FWU_SMC_IMAGE_COPY SMC handler is designed to copy an image into secure memory for subsequent
authentication. This is implemented by the bl1_fwu_image_copy() function, which has the following
function prototype:

static int bl1_fwu_image_copy(unsigned int image_id,
uintptr_t image_src,
unsigned int block_size,
unsigned int image_size,
unsigned int flags)

image_src is an SMC argument and therefore potentially controllable by an attacker. A very large 32-bit
value, for example 2^32 -1, may result in the sum of image_src and block_size overflowing a 32-bit
type, which check_uptr_overflow()will fail to detect. Depending on its implementation, the platform-
specific function bl1_plat_mem_check() might get defeated by these unsanitized values and allow the
following memory copy operation, that would wrap around. This may allow an attacker to copy unexpected
data into secure memory if the memory is mapped in BL1’s address space, or cause a fatal exception if it’s not.

The FWU_SMC_IMAGE_AUTH SMC handler is designed to authenticate an image resident in secure mem-
ory. This is implemented by the bl1_fwu_image_auth() function, which has the following function
prototype:

static int bl1_fwu_image_auth(unsigned int image_id,
uintptr_t image_src,
unsigned int image_size,
unsigned int flags)

Similarly, if an attacker has control over the image_src or image_size arguments through the SMC
interface and injects high values whose sum overflows, they might defeat the bl1_plat_mem_check()
function and make the authentication module read data outside of what’s normally allowed by the platform
code or crash the platform.

Note that in both cases, a separate vulnerability is required to leverage this vulnerability; for example a way to
get the system to change its behaviour based on the unexpected secure memory accesses. Moreover, the normal
world FWU code would need to be compromised in order to send a malformed FWU SMC that triggers an
integer overflow.

The vulnerability is known to affect all ARM standard platforms when enabling the TRUSTED_BOARD_BOOT
and ARCH=aarch32 build options. Other platforms may also be affected if they fulfil the above conditions.

9.4. Advisory TFV-4 (CVE-2017-9607) 663

Trusted Firmware-A, Release 2.10.4

9.5 Advisory TFV-5 (CVE-2017-15031)

Title Not initializing or saving/restoring PMCR_EL0 can leak secure world timing infor-
mation

CVE ID CVE-2017-15031
Date 02 Oct 2017, updated on 04 Nov 2019
Versions Af-
fected

All, up to and including v2.1

Config-
urations
Affected

All

Impact Leakage of sensitive secure world timing information
Fix Version Pull Request #1127 (merged on 18 October 2017)

Commit e290a8fcbc (merged on 23 August 2019)
Commit c3e8b0be9b (merged on 27 September 2019)

Credit Arm, Marek Bykowski

The PMCR_EL0 (Performance Monitors Control Register) provides details of the Performance Monitors im-
plementation, including the number of counters implemented, and configures and controls the counters. If the
PMCR_EL0.DP bit is set to zero, the cycle counter (when enabled) counts during secure world execution, even
when prohibited by the debug signals.

Since TF-A does not save and restore PMCR_EL0 when switching between the normal and secure worlds,
normal world code can set PMCR_EL0.DP to zero to cause leakage of secure world timing information. This
register should be added to the list of saved/restored registers both when entering EL3 and also transitioning to
S-EL1.

Furthermore, PMCR_EL0.DP has an architecturally UNKNOWN reset value. Since Arm TF does not initialize
this register, it’s possible that on at least some implementations, PMCR_EL0.DP is set to zero by default. This
and other bits with an architecturally UNKNOWN reset value should be initialized to sensible default values in
the secure context.

The same issue exists for the equivalent AArch32 register, PMCR, except that here PMCR_EL0.DP architec-
turally resets to zero.

NOTE: The original pull request referenced above only fixed the issue for S-EL1 whereas the EL3 was fixed in
the later commits.

664 Chapter 9. Security Advisories

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15031
https://github.com/ARM-software/arm-trusted-firmware/pull/1127
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=e290a8fcbc
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=c3e8b0be9b

Trusted Firmware-A, Release 2.10.4

9.6 Advisory TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754)

Title Trusted Firmware-A exposure to speculative processor vulnerabilities using
cache timing side-channels

CVE ID CVE-2017-5753 / CVE-2017-5715 / CVE-2017-5754
Date 03 Jan 2018 (Updated 11 Jan, 18 Jan, 26 Jan, 30 Jan and 07 June 2018)
Versions Affected All, up to and including v1.4
Configurations
Affected

All

Impact Leakage of secure world data to normal world
Fix Version Pull Request #1214, Pull Request #1228, Pull Request #1240 and Pull Request #1405
Credit Google / Arm

This security advisory describes the current understanding of the Trusted Firmware-A exposure to the spec-
ulative processor vulnerabilities identified by Google Project Zero. To understand the background and wider
impact of these vulnerabilities on Arm systems, please refer to the Arm Processor Security Update.

9.6.1 Variant 1 (CVE-2017-5753)

At the time of writing, no vulnerable patterns have been observed in upstream TF code, therefore no
workarounds have been applied or are planned.

9.6.2 Variant 2 (CVE-2017-5715)

Where possible on vulnerable CPUs, Arm recommends invalidating the branch predictor as early as possible on
entry into the secure world, before any branch instruction is executed. There are a number of implementation
defined ways to achieve this.

For Cortex-A57 and Cortex-A72 CPUs, the Pull Requests (PRs) in this advisory invalidate the branch predictor
when entering EL3 by disabling and re-enabling the MMU.

For Cortex-A73 and Cortex-A75 CPUs, the PRs in this advisory invalidate the branch predictor when en-
tering EL3 by temporarily dropping into AArch32 Secure-EL1 and executing the BPIALL instruction. This
workaround is significantly more complex than the “MMU disable/enable” workaround. The latter is not ef-
fective at invalidating the branch predictor on Cortex-A73/Cortex-A75.

Note that if other privileged software, for example a Rich OS kernel, implements its own branch predictor
invalidation during context switch by issuing an SMC (to execute firmware branch predictor invalidation), then
there is a dependency on the PRs in this advisory being deployed in order for those workarounds to work. If
that other privileged software is able to workaround the vulnerability locally (for example by implementing
“MMU disable/enable” itself), there is no such dependency.

Pull Request #1240 and Pull Request #1405 optimise the earlier fixes by implementing a specified CVE-
2017-5715 workaround SMC (SMCCC_ARCH_WORKAROUND_1) for use by normal world privileged soft-
ware. This is more efficient than calling an arbitrary SMC (for example PSCI_VERSION). Details of SM-
CCC_ARCH_WORKAROUND_1 can be found in the CVE-2017-5715 mitigation specification. The specifica-
tion and implementation also enable the normal world to discover the presence of this firmware service.

9.6. Advisory TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754) 665

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754
https://github.com/ARM-software/arm-trusted-firmware/pull/1214
https://github.com/ARM-software/arm-trusted-firmware/pull/1228
https://github.com/ARM-software/arm-trusted-firmware/pull/1240
https://github.com/ARM-software/arm-trusted-firmware/pull/1405
https://googleprojectzero.blogspot.co.uk/2018/01/reading-privileged-memory-with-side.html
http://www.arm.com/security-update
https://github.com/ARM-software/arm-trusted-firmware/pull/1240
https://github.com/ARM-software/arm-trusted-firmware/pull/1405
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://developer.arm.com/cache-speculation-vulnerability-firmware-specification

Trusted Firmware-A, Release 2.10.4

On Juno R1 we measured the round trip latency for both the PSCI_VERSION and SM-
CCC_ARCH_WORKAROUND_1 SMCs on Cortex-A57, using both the “MMU disable/enable” and “BPIALL
at AArch32 Secure-EL1” workarounds described above. This includes the time spent in test code conforming
to the SMC Calling Convention (SMCCC) from AArch64. For the SMCCC_ARCH_WORKAROUND_1
cases, the test code uses SMCCC v1.1, which reduces the number of general purpose registers it needs
to save/restore. Although the BPIALL instruction is not effective at invalidating the branch predictor on
Cortex-A57, the drop into Secure-EL1 with MMU disabled that this workaround entails effectively does
invalidate the branch predictor. Hence this is a reasonable comparison.

The results were as follows:

Test Time (ns)
PSCI_VERSION baseline (without PRs in this advisory) 515
PSCI_VERSION baseline (with PRs in this advisory) 527
PSCI_VERSION with “MMU disable/enable” 930
SMCCC_ARCH_WORKAROUND_1 with “MMU disable/enable” 386
PSCI_VERSION with “BPIALL at AArch32 Secure-EL1” 1276
SMCCC_ARCH_WORKAROUND_1 with “BPIALL at AArch32 Secure-EL1” 770

Due to the high severity and wide applicability of this issue, the above workarounds are enabled by default (on
vulnerable CPUs only), despite some performance and code size overhead. Platforms can choose to disable
them at compile time if they do not require them. Pull Request #1240 disables the workarounds for unaffected
upstream platforms.

For vulnerable AArch32-only CPUs (for example Cortex-A8, Cortex-A9 and Cortex-A17), the BPIALL in-
struction should be used as early as possible on entry into the secure world. For Cortex-A8, also set ACTLR[6]
to 1 during early processor initialization. Note that the BPIALL instruction is not effective at invalidating the
branch predictor on Cortex-A15. For that CPU, set ACTLR[0] to 1 during early processor initialization, and
invalidate the branch predictor by performing an ICIALLU instruction.

On AArch32 EL3 systems, the monitor and secure-SVC code is typically tightly integrated, for example as
part of a Trusted OS. Therefore any Variant 2 workaround should be provided by vendors of that software and
is outside the scope of TF. However, an example implementation in the minimal AArch32 Secure Payload,
SP_MIN is provided in Pull Request #1228.

Other Arm CPUs are not vulnerable to this or other variants. This includes Cortex-A76, Cortex-A53, Cortex-
A55, Cortex-A32, Cortex-A7 and Cortex-A5.

For more information about non-Arm CPUs, please contact the CPU vendor.

9.6.3 Variant 3 (CVE-2017-5754)

This variant is only exploitable between Exception Levels within the same translation regime, for example
between EL0 and EL1, therefore this variant cannot be used to access secure memory from the non-secure
world, and is not applicable for TF. However, Secure Payloads (for example, Trusted OS) should provide
mitigations on vulnerable CPUs to protect themselves from exploited Secure-EL0 applications.

The only Arm CPU vulnerable to this variant is Cortex-A75.

666 Chapter 9. Security Advisories

https://github.com/ARM-software/arm-trusted-firmware/pull/1240
https://github.com/ARM-software/arm-trusted-firmware/pull/1228

Trusted Firmware-A, Release 2.10.4

9.7 Advisory TFV-7 (CVE-2018-3639)

Title Trusted Firmware-A exposure to cache speculation vulnerability Variant
4

CVE ID CVE-2018-3639
Date 21 May 2018 (Updated 7 June 2018)
Versions Affected All, up to and including v1.5
Configurations Affected All
Impact Leakage of secure world data to normal world
Fix Version Pull Request #1392, Pull Request #1397
Credit Google

This security advisory describes the current understanding of the Trusted Firmware-A (TF-A) exposure to
Variant 4 of the cache speculation vulnerabilities identified by Google Project Zero. To understand the back-
ground and wider impact of these vulnerabilities on Arm systems, please refer to the Arm Processor Security
Update.

At the time of writing, the TF-A project is not aware of a Variant 4 exploit that could be used against TF-A.
It is likely to be very difficult to achieve an exploit against current standard configurations of TF-A, due to the
limited interfaces into the secure world with attacker-controlled inputs. However, this is becoming increasingly
difficult to guarantee with the introduction of complex new firmware interfaces, for example the Software
Delegated Exception Interface (SDEI). Also, the TF-A project does not have visibility of all vendor-supplied
interfaces. Therefore, the TF-A project takes a conservative approach by mitigating Variant 4 in hardware
wherever possible during secure world execution. The mitigation is enabled by setting an implementation
defined control bit to prevent the re-ordering of stores and loads.

For each affected CPU type, TF-A implements one of the two following mitigation approaches in Pull Request
#1392 and Pull Request #1397. Both approaches have a system performance impact, which varies for each
CPU type and use-case. The mitigation code is enabled by default, but can be disabled at compile time for
platforms that are unaffected or where the risk is deemed low enough.

Arm CPUs not mentioned below are unaffected.

9.7.1 Static mitigation

For affected CPUs, this approach enables the mitigation during EL3 initialization, following every PE reset.
No mechanism is provided to disable the mitigation at runtime.

This approach permanently mitigates the entire software stack and no additional mitigation code is required in
other software components.

TF-A implements this approach for the following affected CPUs:

• Cortex-A57 and Cortex-A72, by setting bit 55 (Disable load pass store) of CPUACTLR_EL1
(S3_1_C15_C2_0).

• Cortex-A73, by setting bit 3 of S3_0_C15_C0_0 (not documented in the Technical ReferenceManual
(TRM)).

9.7. Advisory TFV-7 (CVE-2018-3639) 667

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https://github.com/ARM-software/arm-trusted-firmware/pull/1392
https://github.com/ARM-software/arm-trusted-firmware/pull/1397
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
http://www.arm.com/security-update
http://www.arm.com/security-update
http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
https://github.com/ARM-software/arm-trusted-firmware/pull/1392
https://github.com/ARM-software/arm-trusted-firmware/pull/1392
https://github.com/ARM-software/arm-trusted-firmware/pull/1397

Trusted Firmware-A, Release 2.10.4

• Cortex-A75, by setting bit 35 (reserved in TRM) of CPUACTLR_EL1 (S3_0_C15_C1_0).

9.7.2 Dynamic mitigation

For affected CPUs, this approach also enables the mitigation during EL3 initialization, following every PE
reset. In addition, this approach implements SMCCC_ARCH_WORKAROUND_2 in the Arm architectural range
to allow callers at lower exception levels to temporarily disable the mitigation in their execution context, where
the risk is deemed low enough. This approach enables mitigation on entry to EL3, and restores the mitigation
state of the lower exception level on exit from EL3. For more information on this approach, see Firmware
interfaces for mitigating cache speculation vulnerabilities.

This approach may be complemented by additional mitigation code in other software components, for exam-
ple code that calls SMCCC_ARCH_WORKAROUND_2. However, even without any mitigation code in other
software components, this approach will effectively permanently mitigate the entire software stack, since the
default mitigation state for firmware-managed execution contexts is enabled.

Since the expectation in this approach is that more software executes with the mitigation disabled, this may
result in better system performance than the static approach for some systems or use-cases. However, for
other systems or use-cases, this performance saving may be outweighed by the additional overhead of SM-
CCC_ARCH_WORKAROUND_2 calls and TF-A exception handling.

TF-A implements this approach for the following affected CPU:

• Cortex-A76, by setting and clearing bit 16 (reserved in TRM) of CPUACTLR2_EL1
(S3_0_C15_C1_1).

9.8 Advisory TFV-8 (CVE-2018-19440)

Title Not saving x0 to x3 registers can leak information fromoneNormalWorld SMC
client to another

CVE ID CVE-2018-19440
Date 27 Nov 2018
Versions Affected All
Configurations Af-
fected

Multiple normal world SMC clients calling into AArch64 BL31

Impact Leakage of SMC return values from one normal world SMC client to another
Fix Version Pull Request #1710
Credit Secmation

When taking an exception to EL3, BL31 saves the CPU context. The aim is to restore it before returning into
the lower exception level software that called into the firmware. However, for an SMC exception, the general
purpose registers x0 to x3 are not part of the CPU context saved on the stack.

As per the SMC Calling Convention, up to 4 values may be returned to the caller in registers x0 to x3. In
TF-A, these return values are written into the CPU context, typically using one of the SMC_RETx() macros
provided in the include/lib/aarch64/smccc_helpers.h header file.

668 Chapter 9. Security Advisories

https://developer.arm.com/cache-speculation-vulnerability-firmware-specification
https://developer.arm.com/cache-speculation-vulnerability-firmware-specification
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19440
https://github.com/ARM-software/arm-trusted-firmware/pull/1710
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

Before returning to the caller, the restore_gp_registers() function is called. It restores the values
of all general purpose registers taken from the CPU context stored on the stack. This includes registers x0 to
x3, as can be seen in the lib/el3_runtime/aarch64/context.S file at line 339 (referring to the
version of the code as of commit c385955):

/*
* This function restores all general purpose registers except x30 from the
* CPU context. x30 register must be explicitly restored by the caller.
*/

func restore_gp_registers
ldp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]
ldp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2]

In the case of an SMC handler that does not use all 4 return values, the remaining ones are left unchanged in
the CPU context. As a result, restore_gp_registers() restores the stale values saved by a previous
SMC request (or asynchronous exception to EL3) that used these return values.

In the presence of multiple normal world SMC clients, this behaviour might leak some of the return values
from one client to another. For example, if a victim client first sends an SMC that returns 4 values, a malicious
client may then send a second SMC expecting no return values (for example, a SDEI_EVENT_COMPLETE
SMC) to get the 4 return values of the victim client.

In general, the responsibility for mitigating threats due to the presence of multiple normal world SMC clients
lies with EL2 software. When present, EL2 software must trap SMC calls from EL1 software to ensure secure
behaviour.

For this reason, TF-A does not save x0 to x3 in the CPU context on an SMC synchronous exception. It has
behaved this way since the first version.

We can confirm that at least upstream KVM-based systems mitigate this threat, and are therefore unaffected
by this issue. Other EL2 software should be audited to assess the impact of this threat.

EL2 software might find mitigating this threat somewhat onerous, because for all SMCs it would need to be
aware of which return registers contain valid data, so it can sanitise any unused return registers. On the other
hand, mitigating this in EL3 is relatively easy and cheap. Therefore, TF-A will now ensure that no information
is leaked through registers x0 to x3, by preserving the register state over the call.

Note that AArch32 TF-A is not affected by this issue. The SMC handling code in SP_MIN already saves
all general purpose registers - including r0 to r3, as can be seen in the include/lib/aarch32/
smccc_macros.S file at line 19 (referring to the version of the code as of commit c385955):

/*
* Macro to save the General purpose registers (r0 - r12), the banked
* spsr, lr, sp registers and the `scr` register to the SMC context on entry
* due a SMC call. The `lr` of the current mode (monitor) is expected to be
* already saved. The `sp` must point to the `smc_ctx_t` to save to.
* Additionally, also save the 'pmcr' register as this is updated whilst
* executing in the secure world.
*/

.macro smccc_save_gp_mode_regs
/* Save r0 - r12 in the SMC context */
stm sp, {r0-r12}

9.8. Advisory TFV-8 (CVE-2018-19440) 669

https://github.com/ARM-software/arm-trusted-firmware/commit/c385955
https://github.com/ARM-software/arm-trusted-firmware/commit/c385955

Trusted Firmware-A, Release 2.10.4

9.9 Advisory TFV-9 (CVE-2022-23960)

Title Trusted Firmware-A exposure to speculative processor vulnerabilities with branch pre-
diction target reuse

CVE ID CVE-2022-23960
Date 08 Mar 2022
Versions
Affected

All, up to and including v2.6

Config-
urations
Affected

All

Impact Potential leakage of secure world data to normal world if an attacker is able to find a TF-A
exfiltration primitive that can be predicted as a valid branch target, and somehow induce mis-
prediction onto that primitive. There are currently no known exploits.

Fix Ver-
sion

Gerrit topic #spectre_bhb

Credit Systems and Network Security Group at Vrije Universiteit Amsterdam for CVE-2022-23960,
Arm for patches

This security advisory describes the current understanding of the Trusted Firmware-A exposure to the new
speculative processor vulnerability. To understand the background and wider impact of these vulnerabilities on
Arm systems, please refer to the Arm Processor Security Update. The whitepaper referred to below describes
the Spectre attack and mitigation in more detail including implementation specific mitigation details for all
impacted Arm CPUs.

9.9.1 CVE-2022-23960

Where possible on vulnerable CPUs that implement FEAT_CSV2, Arm recommends inserting a loop
workaround with implementation specific number of iterations that will discard the branch history on exception
entry to a higher exception level for the given CPU. This is done as early as possible on entry into EL3, before
any branch instruction is executed. This is sufficient to mitigate Spectre-BHB on behalf of all secure world
code, assuming that no secure world code is under attacker control.

The below table lists the CPUs that mitigate against this vulnerability in TF-A using the loop workaround(all
cores that implement FEAT_CSV2 except the revisions of Cortex-A73 and Cortex-A75 that implements
FEAT_CSV2).

670 Chapter 9. Security Advisories

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23960
https://review.trustedfirmware.org/q/topic:"spectre_bhb"+(status:open%20OR%20status:merged)
http://www.arm.com/security-update

Trusted Firmware-A, Release 2.10.4

Core
Cortex-A72(from r1p0)
Cortex-A76
Cortex-A76AE
Cortex-A77
Cortex-A78
Cortex-A78AE
Cortex-A78C
Cortex-X1
Cortex-X2
Cortex-X3
Cortex-A710
Cortex-A715
Cortex-A720
Neoverse-N1
Neoverse-N2
Neoverse-V1
Neoverse-V2
Neoverse-V3

For all other cores impacted by Spectre-BHB, some of which that do not implement FEAT_CSV2 and some
that do e.g. Cortex-A73, the recommended mitigation is to flush all branch predictions via an implementation
specific route.

In case local workaround is not feasible, the Rich OS can invoke the SMC (SMCCC_ARCH_WORKAROUND_3)
to apply the workaround. Refer to SMCCC Calling Convention specification for more details.

Gerrit topic #spectre_bhb This patchset implements the Spectre-BHB loop workaround for CPUs mentioned in
the above table. For CPUs supporting speculative barrier instruction, the loop workaround is optimised by using
SB in place of the common DSB and ISB sequence. It also mitigates against this vulnerability for Cortex-A72
CPU versions that support the CSV2 feature (from r1p0). The patch stack also includes an implementation
for a specified CVE-2022-23960 workaround SMC(SMCCC_ARCH_WORKAROUND_3) for use by normal
world privileged software. Details of SMCCC_ARCH_WORKAROUND_3 can be found in the SMCCC Calling
Convention specification. The specification and implementation also enables the normal world to discover the
presence of this firmware service. This patch also implements SMCCC_ARCH_WORKAROUND_3 for Cortex-
A57, Coxtex-A72, Cortex-A73 and Cortex-A75 using the existing workaround. for CVE-2017-5715. Cortex-
A15 patch extends Spectre V2 mitigation to Spectre-BHB.

The above workaround is enabled by default (on vulnerable CPUs only). Platforms can choose to disable them
at compile time if they do not require them.

For more information about non-Arm CPUs, please contact the CPU vendor.

9.9. Advisory TFV-9 (CVE-2022-23960) 671

https://developer.arm.com/documentation/den0028/latest
https://review.trustedfirmware.org/q/topic:"spectre_bhb"+(status:open%20OR%20status:merged)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23960
https://developer.arm.com/documentation/den0028/latest
https://developer.arm.com/documentation/den0028/latest

Trusted Firmware-A, Release 2.10.4

9.10 Advisory TFV-10 (CVE-2022-47630)

Title Incorrect validation of X.509 certificate exten-
sions can result in an out-of-bounds read.

CVE ID CVE-2022-47630
Date Reported on 12 Dec 2022
Versions Affected v1.2 to v2.8
Configurations Affected BL1 and BL2 with Trusted Boot enabled with cus-

tom, downstream usages of get_ext() and/or
auth_nvctr() interfaces. Not exploitable in up-
stream TF-A code.

Impact Out-of-bounds read.
Fix Version • fd37982a19a4a291 “fix(auth): forbid junk af-

ter extensions”
• 72460f50e2437a85 “fix(auth): require at least
one extension to be present”

• f5c51855d36e399e “fix(auth): properly vali-
date X.509 extensions”

• abb8f936fd0ad085 “fix(auth): avoid out-of-
bounds read in auth_nvctr()”

Note that 72460f50e2437a85 is not fixing
any vulnerability per se but it is required for
f5c51855d36e399e to apply cleanly.

Credit Demi Marie Obenour, Invisible Things Lab

This security advisory describes a vulnerability in the X.509 parser used to parse boot certificates in TF-A
trusted boot: it is possible for a crafted certificate to cause an out-of-bounds memory read.

Note that upstream platforms are not affected by this. Only downstream platforms may be, if (and only if) the
interfaces described below are used in a different context than seen in upstream code. Details of such context
is described in the rest of this document.

To fully understand this security advisory, it is recommended to refer to the following standards documents:

• RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile.

• ITU-T X.690, ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER).

672 Chapter 9. Security Advisories

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47630
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=fd37982a19a4a291
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=72460f50e2437a85
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=f5c51855d36e399e
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=abb8f936fd0ad085
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=72460f50e2437a85
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=f5c51855d36e399e
https://www.ietf.org/rfc/rfc5280.txt
https://www.itu.int/ITU-T/studygroups/com10/languages/X.690_1297.pdf

Trusted Firmware-A, Release 2.10.4

9.10.1 Bug 1: Insufficient certificate validation

The vulnerability lies in the following source file: drivers/auth/mbedtls/
mbedtls_x509_parser.c. By design, get_ext() does not check the return value of the various
mbedtls_*() functions, as cert_parse() is assumed to have guaranteed that they will always succeed.
However, it passes the end of an extension as the end pointer to these functions, whereas cert_parse()
passes the end of the TBSCertificate. Furthermore, cert_parse() does not check that the contents
of the extension have the same length as the extension itself. It also does not check that the extension block
extends to the end of the TBSCertificate.

This is a problem, as mbedtls_asn1_get_tag() leaves *p and *len undefined on failure. In prac-
tice, this results in get_ext() continuing to parse at different offsets than were used (and validated) by
cert_parse(), which means that the in-bounds guarantee provided by cert_parse() no longer holds.
The result is that it is possible for get_ext() to read memory past the end of the certificate. This could
potentially access memory with dangerous read side effects, or leak microarchitectural state that could theo-
retically be retrieved through some side-channel attacks as part of a more complex attack.

9.10.2 Bug 2: Missing bounds check in auth_nvctr()

auth_nvctr() does not check that the buffer provided is long enough to hold an ASN.1 INTEGER. Since
auth_nvctr() will only ever read 6 bytes, it is possible to read up to 6 bytes past the end of the buffer.

9.10.3 Exploitability Analysis

Upstream TF-A Code

In upstream TF-A code, the only caller of auth_nvctr() takes its input from get_ext(), which means
that the second bug is exploitable, so is the first. Therefore, only the first bug need be considered.

All standard chains of trust provided in TF-A source tree (that is, under drivers/auth/) require that
the certificate’s signature has already been validated prior to calling get_ext(), or any function that calls
get_ext(). Platforms taking their chain of trust from a dynamic configuration file (such as fdts/
cot_descriptors.dtsi) are also safe, as signature verification will always be done prior to any calls
to get_ext() or auth_nvctr() in this case, no matter the order of the properties in the file. Therefore,
it is not possible to exploit this vulnerability pre-authentication in upstream TF-A.

Furthermore, the data read through get_ext() only ever gets used by the authentication framework
(drivers/auth/auth_mod.c), which greatly reduces the range of inputs it will ever receive and thus
the impact this has. Specifically, the authentication framework uses get_ext() in three cases:

1. Retrieving a hash from an X.509 certificate to check the integrity of a child certificate (see
auth_hash()).

2. Retrieving the signature details from an X.509 certificate to check its authenticity and integrity (see
auth_signature()).

3. Retrieving the security counter value from an X.509 certificate to protect it from unauthorized rollback
to a previous version (see auth_nvctr()).

9.10. Advisory TFV-10 (CVE-2022-47630) 673

Trusted Firmware-A, Release 2.10.4

None of these uses authentication framework write to the out-of-bounds memory, so no memory corruption is
possible.

In summary, there are 2 separate issues - one in get_ext() and another one in auth_nvctr() - but
neither of these can be exploited in the context of TF-A upstream code.

Only in the following 2 cases do we expect this vulnerability to be triggerable prior to authentication:

• The platform uses a custom chain of trust which uses the non-volatile counter authentication method
(AUTH_METHOD_NV_CTR) before the cryptographic authentication method (AUTH_METHOD_SIG).

• The chain of trust uses a custom authentication method that calls get_ext() before cryptographic
authentication.

Custom Image Parsers

If the platform uses a custom image parser instead of the certificate parser, the bug in the certificate parser is
obviously not relevant. The bug in auth_nvctr() may be relevant, but only if the returned data is:

• Taken from an untrusted source (meaning that it is read prior to authentication).

• Not already checked to be a primitively-encoded ASN.1 tag.

In particular, if the custom image parser implementation wraps a 32-bit integer in an ASN.1 INTEGER, it is
not affected.

9.11 Advisory TFV-11 (CVE-2023-49100)

Title A Malformed SDEI SMC can cause out of bound memory read.
CVE ID CVE-2023-49100
Date Reported on 12 Oct 2023
Versions Affected TF-A releases v1.5 to v2.9 LTS releases lts-v2.8.0 to lts-v2.8.11
Configurations Af-
fected

Platforms with SDEI support

Impact Denial of Service (secure world panic)
Fix Version a7eff3477 “fix(sdei): ensure that interrupt ID is valid”
Credit Christian Lindenmeier @_chli_ Marcel Busch @0ddc0de IT Security Infrastruc-

tures Lab

This security advisory describes a vulnerability in the SDEI services, where a rogue Non-secure caller invoking
a SDEI_INTERRUPT_BIND SMC call with an invalid interrupt ID causes out of bound memory read.

SDEI_INTERRUPT_BIND is used to bind any physical interrupt into a normal priority SDEI event.
The interrupt can be a private peripheral interrupt (PPI) or a shared peripheral interrupt (SPI). Refer to
SDEI_INTERRUPT_BIND in the SDEI Specification for further details.

The vulnerability exists when the SDEI client passes an interrupt ID which is not implemented by the GIC.
This will result in a data abort exception or a EL3 panic depending on the GIC version used in the system.

674 Chapter 9. Security Advisories

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-49100
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=a7eff3477dcf3624c74f5217419b1a27b7ebd2aa
https://twitter.com/_chli_
https://twitter.com/0ddc0de
https://www.cs1.tf.fau.de/
https://www.cs1.tf.fau.de/
https://developer.arm.com/documentation/den0054/latest/

Trusted Firmware-A, Release 2.10.4

• GICv2 systems:

Call stack:
sdei_interrupt_bind(interrupt ID)
-> plat_ic_get_interrupt_type(interrupt ID)

-> gicv2_get_interrupt_group(interrupt ID)
-> gicd_get_igroupr(distributor base, interrupt ID)

-> gicd_read_igroupr(distributor base, interrupt ID).

gicd_read_igroupr() will eventually do a MMIO read to an unimplemented IGROUPR
register. Which may cause a data abort or an access to a random EL3 memory␣
↪→region.

• GICv3 systems:

Call stack:
sdei_interrupt_bind(interrupt ID)

-> plat_ic_get_interrupt_type(interrupt ID)
-> gicv3_get_interrupt_group(interrupt ID, core ID)
-> is_sgi_ppi(interrupt ID)

is_sgi_ppi() will end up in an EL3 panic on encountering an invalid interrupt␣
↪→ID.

The vulnerability is fixed by ensuring that the Interrupt ID provided by the SDEI client is a valid PPI or SPI,
otherwise return an error code indicating that the parameter is invalid.

/* Bind an SDEI event to an interrupt */
static int sdei_interrupt_bind(unsigned int intr_num)
{

sdei_ev_map_t *map;
bool retry = true, shared_mapping;

/* Interrupt must be either PPI or SPI */
if (!(plat_ic_is_ppi(intr_num) || plat_ic_is_spi(intr_num)))

return SDEI_EINVAL;

9.11. Advisory TFV-11 (CVE-2023-49100) 675

CHAPTER

TEN

DESIGN DOCUMENTS

10.1 TF-A CMake buildsystem

Author
Balint Dobszay

Organization
Arm Limited

Contact
Balint Dobszay <balint.dobszay@arm.com>

Status
Accepted

Table of Contents

• TF-A CMake buildsystem

– Abstract

– Introduction

– Main features

∗ Structured configuration description

∗ Target description

∗ Compiler abstraction

∗ External tools

– Workflow

– Example

676

mailto:balint.dobszay@arm.com

Trusted Firmware-A, Release 2.10.4

10.1.1 Abstract

This document presents a proposal for a new buildsystem for TF-A using CMake, and as part of this a reusable
CMake framework for embedded projects. For a summary about the proposal, please see the Phabricator wiki
page. As mentioned there, the proposal consists of two phases. The subject of this document is the first phase
only.

10.1.2 Introduction

The current Makefile based buildsystem of TF-A has become complicated and hard to maintain, there is a need
for a new, more flexible solution. The proposal is to use CMake language for the new buildsystem. The main
reasons of this decision are the following:

• It is a well-established, mature tool, widely accepted by open-source projects.

• TF-M is already using CMake, reducing fragmentation for tf.org projects can be beneficial.

• CMake has various advantages over Make, e.g.:

– Host and target system agnostic project.

– CMake project is scalable, supports project modularization.

– Supports software integration.

– Out-of-the-box support for integration with several tools (e.g. project generation for various IDEs,
integration with cppcheck, etc).

Of course there are drawbacks too:

• Language is problematic (e.g. variable scope).

• Not embedded approach.

To overcome these and other problems, we need to create workarounds for some tasks, wrap CMake functions,
etc. Since this functionality can be useful in other embedded projects too, it is beneficial to collect the new code
into a reusable framework and store this in a separate repository. The following diagram provides an overview
of the framework structure:

10.1. TF-A CMake buildsystem 677

https://developer.trustedfirmware.org/w/tf_a/cmake-buildsystem-proposal/
https://developer.trustedfirmware.org/w/tf_a/cmake-buildsystem-proposal/

Trusted Firmware-A, Release 2.10.4

10.1.3 Main features

Structured configuration description

In the current Makefile system the build configuration description, validation, processing, and the target cre-
ation, source file description are mixed and spread across several files. One of the goals of the framework is to
organize this.

The framework provides a solution to describe the input build parameters, flags, macros, etc. in a structured
way. It contains two utilities for this purpose:

• Map: simple key-value pair implementation.

• Group: collection of related maps.

The related parameters shall be packed into a group (or “setting group”). The setting groups shall be defined
and filled with content in config files. Currently the config files are created and edited manually, but later a
configuration management tool (e.g. Kconfig) shall be used to generate these files. Therefore, the framework
does not contain parameter validation and conflict checking, these shall be handled by the configuration tool.

Target description

The framework provides an API called STGT (‘simple target’) to describe the targets, i.e. what is the build
output, what source files are used, what libraries are linked, etc. The API wraps the CMake target functions,
and also extends the built-in functionality, it can use the setting groups described in the previous section. A
group can be applied onto a target, i.e. a collection of macros, flags, etc. can be applied onto the given output
executable/library. This provides a more granular way than the current Makefile system where most of these
are global and applied onto each target.

678 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

Compiler abstraction

Apart from the built-in CMake usage of the compiler, there are some common tasks that CMake does not solve
(e.g. preprocessing a file). For these tasks the framework uses wrapper functions instead of direct calls to the
compiler. This way it is not tied to one specific compiler.

External tools

In the TF-A buildsystem some external tools are used, e.g. fiptool for image generation or dtc for device tree
compilation. These tools have to be found and/or built by the framework. For this, the CMake find_package
functionality is used, any other necessary tools can be added later.

10.1.4 Workflow

The following diagram demonstrates the development workflow using the framework:

The process can be split into two main phases:

In the provisioning phase, first we have to obtain the necessary resources, i.e. clone the code repository and
other dependencies. Next we have to do the configuration, preferably using a config tool like KConfig.

In the development phase first we run CMake, which will generate the buildsystem using the selected generator
backend (currently only the Makefile generator is supported). After this we run the selected build tool which
in turn calls the compiler, linker, packaging tool, etc. Finally we can run and debug the output executables.

Usually during development only the steps in this second phase have to be repeated, while the provisioning
phase needs to be done only once (or rarely).

10.1.5 Example

This is a short example for the basic framework usage.

First, we create a setting group called mem_conf and fill it with several parameters. It is worth noting the
difference between CONFIG and DEFINE types: the former is only a CMake domain option, the latter is only
a C language macro.

Next, we create a target called fw1 and add the mem_conf setting group to it. This means that all source and
header files used by the target will have all the parameters declared in the setting group. Then we set the target
type to executable, and add some source files. Since the target has the parameters from the settings group,

10.1. TF-A CMake buildsystem 679

Trusted Firmware-A, Release 2.10.4

we can use it for conditionally adding source files. E.g. dram_controller.c will only be added if MEM_TYPE
equals dram.

group_new(NAME mem_conf)
group_add(NAME mem_conf TYPE DEFINE KEY MEM_SIZE VAL 1024)
group_add(NAME mem_conf TYPE CONFIG DEFINE KEY MEM_TYPE VAL dram)
group_add(NAME mem_conf TYPE CFLAG KEY -Os)

stgt_create(NAME fw1)
stgt_add_setting(NAME fw1 GROUPS mem_conf)
stgt_set_target(NAME fw1 TYPE exe)

stgt_add_src(NAME fw1 SRC
${CMAKE_SOURCE_DIR}/main.c

)

stgt_add_src_cond(NAME fw1 KEY MEM_TYPE VAL dram SRC
${CMAKE_SOURCE_DIR}/dram_controller.c

)

Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.

10.2 Enhance Context Management library for EL3 firmware

Authors
Soby Mathew & Zelalem Aweke

Organization
Arm Limited

Contact
Soby Mathew <soby.mathew@arm.com> & Zelalem Aweke <zelalem.aweke@arm.com>

Status
RFC

Table of Contents

• Enhance Context Management library for EL3 firmware

– Introduction

– Design Principles

– Context Allocation and Initialization

– Introducing Root Context

– Conclusion

680 Chapter 10. Design Documents

mailto:soby.mathew@arm.com
mailto:zelalem.aweke@arm.com

Trusted Firmware-A, Release 2.10.4

10.2.1 Introduction

The context management library in TF-A provides the basic CPU context initialization and management rou-
tines for use by different components in EL3 firmware. The original design of the library was done keeping in
mind the 2 world switch and hence this design pattern has been extended to keep up with growing requirements
of EL3 firmware. With the introduction of a new Realm world and a separate Root world for EL3 firmware, it is
clear that this library needs to be refactored to cater for future enhancements and reduce chances of introducing
error in code. This also aligns with the overall goal of reducing EL3 firmware complexity and footprint.

It is expected that the suggestions below could have legacy implications and hence we are mainly targeting
SPM/RMM based systems. It is expected that these legacy issues will need to be sorted out as part of imple-
mentation on a case by case basis.

10.2.2 Design Principles

The below section lays down the design principles for re-factoring the context management library :

(1) Decentralized model for context mgmt

Both the Secure and Realm worlds have associated dispatcher component in EL3 firmware to allow man-
agement of their respective worlds. Allowing the dispatcher to own the context for their respective world
and moving away from a centralized policy management by context management library will remove the
world differentiation code in the library. This also means that the library will not be responsible for CPU
feature enablement for Secure and Realm worlds. See point 3 and 4 for more details.

The Non Secure world does not have a dispatcher component and hence EL3 firmware (BL31)/context
management library needs to have routines to help initialize the Non Secure world context.

(2) EL3 should only initialize immediate used lower EL

Due to the way TF-A evolved, from EL3 interacting with an S-EL1 payload to SPM in S-EL2, there is
some code initializing S-EL1 registers which is probably redundant when SPM is present in S-EL2. As
a principle, EL3 firmware should only initialize the next immediate lower EL in use. If EL2 needs to
be skipped and is not to be used at runtime, then EL3 can do the bare minimal EL2 init and init EL1
to prepare for EL3 exit. It is expected that this skip EL2 configuration is only needed for NS world to
support legacy Android deployments. It is worth removing this skip EL2 for Non Secure config support
if this is no longer used.

(3) Maintain EL3 sysregs which affect lower EL within CPU context

The CPU context contains some EL3 sysregs and gets applied on a per-world basis (eg: cptr_el3, scr_el3,
zcr_el3 is part of the context because different settings need to be applied between each world). But this
design pattern is not enforced in TF-A. It is possible to directly modify EL3 sysreg dynamically during
the transition between NS and Secure worlds. Having multiple ways of manipulating EL3 sysregs for
different values between the worlds is flaky and error prone. The proposal is to enforce the rule that any
EL3 sysreg which can be different between worlds is maintained in the CPU Context. Once the context
is initialized the EL3 sysreg values corresponding to the world being entered will be restored.

(4) Allow more flexibility for Dispatchers to select feature set to save and restore

The current functions for EL2CPU context save and restore is a single function which takes care of saving
and restoring all the registers for EL2. This method is inflexible and it does not allow to dynamically

10.2. Enhance Context Management library for EL3 firmware 681

Trusted Firmware-A, Release 2.10.4

detect CPU features to select registers to save and restore. It also assumes that both Realm and Secure
world will have the same feature set enabled from EL3 at runtime and makes it hard to enable different
features for each world. The framework should cater for selective save and restore of CPU registers
which can be controlled by the dispatcher.

For the implementation, this could mean that there is a separate assembly save and restore routine corre-
sponding to Arch feature. The memory allocation within the CPU Context for each set of registers will
be controlled by a FEAT_xxx build option. It is a valid configuration to have context memory allocated
but not used at runtime based on feature detection at runtime or the platform owner has decided not to
enable the feature for the particular world.

10.2.3 Context Allocation and Initialization

The above figure shows how the CPU context is allocated within TF-A. The allocation for Secure and Realm
world is by the respective dispatcher. In the case of NS world, the context is allocated by the PSCI lib. This
scheme allows TF-A to be built in various configurations (with or without Secure/Realm worlds) and will
result in optimal memory footprint. The Secure and Realm world contexts are initialized by invoking context
management library APIs which then initialize each world based on conditional evaluation of the security
state of the context. The proposal here is to move the conditional initialization of context for Secure and
Realm worlds to their respective dispatchers and have the library do only the common init needed. The library
can export helpers to initialize registers corresponding to certain features but should not try to do different
initialization between the worlds. The library can also export helpers for initialization of NS CPU Context
since there is no dispatcher for that world.

This implies that any world specific code in context mgmt lib should now bemigrated to the respective “owners”.
To maintain compatibility with legacy, the current functions can be retained in the lib and perhaps define new
ones for use by SPMD and RMMD. The details of this can be worked out during implementation.

682 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.2.4 Introducing Root Context

Till now, we have been ignoring the fact that Root world (or EL3) itself could have some settings which are
distinct from NS/S/Realm worlds. In this case, Root world itself would need to maintain some sysregs settings
for its own execution andwould need to use sysregs of lower EL (eg: PAuth, pmcr) to enable some functionalities
in EL3. The current sequence for context save and restore in TF-A is as given below:

Note1: The EL3 CPU context is not a homogenous collection of EL3 sysregs but a collection of EL3 and some
other lower EL registers. The save and restore is also not done homogenously but based on the objective of
using the particular register.

Note2: The EL1 context save and restore can possibly be removed when switching to S-EL2 as SPM can take
care of saving the incoming NS EL1 context.

It can be seen that the EL3 sysreg values applied while the execution is in Root world corresponds to the world
it came from (eg: if entering EL3 from NS world, the sysregs correspond to the values in NS context). There
is a case that EL3 itself may have some settings to apply for various reasons. A good example for this is the
cptr_el3 regsiter. Although FPU traps need to be disabled for Non Secure, Secure and Realm worlds, the EL3
execution itself may keep the trap enabled for the sake of robustness. Another example is, if the MTE feature
is enabled for a particular world, this feature will be enabled for Root world as well when entering EL3 from
that world. The firmware at EL3 may not be expecting this feature to be enabled and may cause unwanted
side-effects which could be problematic. Thus it would be more robust if Root world is not subject to EL3

10.2. Enhance Context Management library for EL3 firmware 683

Trusted Firmware-A, Release 2.10.4

sysreg values from other worlds but maintains its own values which is stable and predictable throughout root
world execution.

There is also the case that when EL3 would like to make use of some Architectural feature(s) or do some
security hardening, it might need programming of some lower EL sysregs. For example, if EL3 needs to make
use of Pointer Authentication (PAuth) feature, it needs to program its own PAuth Keys during execution at
EL3. Hence EL3 needs its own copy of PAuth registers which needs to be restored on every entry to EL3. A
similar case can be made for DIT bit in PSTATE, or use of SP_EL0 for C Runtime Stack at EL3.

The proposal here is to maintain a separate root world CPU context which gets applied for Root world ex-
ecution. This is not the full CPU_Context, but subset of EL3 sysregs (el3_sysreg) and lower EL sysregs
(root_exc_context) used by EL3. The save and restore sequence for this Root context would need to be done
in an optimal way. The el3_sysreg does not need to be saved on EL3 Exit and possibly only some registers in
root_exc_context of Root world context would need to be saved on EL3 exit (eg: SP_EL0).

The new sequence for world switch including Root world context would be as given below :

Having this framework in place will allow Root world to make use of lower EL registers easily for its own
purposes and also have a fixed EL3 sysreg setting which is not affected by the settings of other worlds. This
will unify the Root world register usage pattern for its own execution and remove some of the adhoc usages in
code.

684 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.2.5 Conclusion

Of all the proposals, the introduction of Root world context would likely need further prototyping to confirm
the design and we will need to measure the performance and memory impact of this change. Other changes
are incremental improvements which are thought to have negligible impact on EL3 performance.

Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.

10.3 Interaction between Measured Boot and an fTPM (PoC)

Measured Boot is the process of cryptographically measuring the code and critical data used at boot time, for
example using a TPM, so that the security state can be attested later.

The current implementation of the driver included in TF-A supports several backends and each has a different
means to store the measurements. This section focuses on the TCG event log backend, which stores measure-
ments in secure memory.

See details of Measured Boot Design.

The driver also provides mechanisms to pass the Event Log to normal world if needed.

This manual provides instructions to build a proof of concept (PoC) with the sole intention of showing how
Measured Boot can be used in conjunction with a firmware TPM (fTPM) service implemented on top of OP-
TEE.

Note: The instructions given in this document are meant to be used to build a PoC to show how Measured
Boot on TF-A can interact with a third party (f)TPM service and they try to be as general as possible. Different
platforms might have different needs and configurations (e.g. different SHA algorithms) and they might also
use different types of TPM services (or even a different type of service to provide the attestation) and therefore
the instructions given here might not apply in such scenarios.

10.3.1 Components

The PoC is built on top of the OP-TEE Toolkit, which has support to build TF-A with support for Measured
Boot enabled (and run it on a Foundation Model) since commit cf56848.

The aforementioned toolkit builds a set of images that contain all the components needed to test that the Event
Log was properly created. One of these images will contain a third party fTPM service which in turn will be
used to process the Event Log.

The reason to choose OP-TEE Toolkit to build our PoC around it is mostly for convenience. As the fTPM
service used is an OP-TEE TA, it was easy to add build support for it to the toolkit and then build the PoC
around it.

The most relevant components installed in the image that are closely related to Measured Boot/fTPM func-
tionality are:

10.3. Interaction between Measured Boot and an fTPM (PoC) 685

https://trustedcomputinggroup.org/resource/tcg-efi-platform-specification/
https://github.com/OP-TEE/build

Trusted Firmware-A, Release 2.10.4

• OP-TEE: As stated earlier, the fTPM service used in this PoC is built as an OP-TEE
TA and therefore we need to include the OP-TEE OS image. Support to interfac-
ing with Measured Boot was added to version 3.9.0 of OP-TEE by implementing the
PTA_SYSTEM_GET_TPM_EVENT_LOG syscall, which allows the former to pass a copy
of the Event Log to any TA requesting it. OP-TEE knows the location of the Event Log by
reading the DTB bindings received from TF-A. Visit DTB binding for Event Log properties
for more details on this.

• fTPM Service: We use a third party fTPM service in order to validate the Measured Boot
functionality. The chosen fTPM service is a sample implementation for Aarch32 architec-
ture included on the ms-tpm-20-ref reference implementation from Microsoft. The service
was updated in order to extend theMeasured Boot Event Log at boot up and it uses the afore-
mentioned PTA_SYSTEM_GET_TPM_EVENT_LOG call to retrieve a copy of the former.

Note: Arm does not provide an fTPM implementation. The fTPM service used here is a third
party one which has been updated to supportMeasured Boot service as provided by TF-A. As such,
it is beyond the scope of this manual to test and verify the correctness of the output generated by
the fTPM service.

• TPMKernel module: In order to interact with the fTPM service, we need a kernel module
to forward the request from user space to the secure world.

• tpm2-tools: This is a set of tools that allow to interact with the fTPM service. We use this
in order to read the PCRs with the measurements.

10.3.2 Building the PoC for the Arm FVP platform

As mentioned before, this PoC is based on the OP-TEE Toolkit with some extensions to enable Measured Boot
and an fTPM service. Therefore, we can rely on the instructions to build the original OP-TEE Toolkit. As a
general rule, the following steps should suffice:

(1) Start by following the Get and build the solution instructions to build the OP-TEE toolkit. On step 3,
you need to get the manifest for FVP platform from the main branch:

$ repo init -u https://github.com/OP-TEE/manifest.git -m fvp.xml

Then proceed synching the repos as stated in step 3. Continue following the instructions and stop before
step 5.

(2) Next you should obtain the Armv8-A Foundation Platform (For Linux Hosts Only). The bi-
nary should be untar’ed to the root of the repo tree, i.e., like this: <fvp-project>/
Foundation_Platformpkg. In the end, after cloning all source code, getting the toolchains and
“installing” Foundation_Platformpkg, you should have a folder structure that looks like this:

$ ls -la
total 80
drwxrwxr-x 20 tf-a_user tf-a_user 4096 Jul 1 12:16 .
drwxr-xr-x 23 tf-a_user tf-a_user 4096 Jul 1 10:40 ..

(continues on next page)

686 Chapter 10. Design Documents

https://github.com/microsoft/ms-tpm-20-ref
https://github.com/tpm2-software/tpm2-tools
https://optee.readthedocs.io/en/latest/building/gits/build.html#get-and-build-the-solution
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
drwxrwxr-x 12 tf-a_user tf-a_user 4096 Jul 1 10:45 build
drwxrwxr-x 16 tf-a_user tf-a_user 4096 Jul 1 12:16 buildroot
drwxrwxr-x 51 tf-a_user tf-a_user 4096 Jul 1 10:45 edk2
drwxrwxr-x 6 tf-a_user tf-a_user 4096 Jul 1 12:14 edk2-platforms
drwxr-xr-x 7 tf-a_user tf-a_user 4096 Jul 1 10:52 Foundation_
↪→Platformpkg
drwxrwxr-x 17 tf-a_user tf-a_user 4096 Jul 2 10:40 grub
drwxrwxr-x 25 tf-a_user tf-a_user 4096 Jul 2 10:39 linux
drwxrwxr-x 15 tf-a_user tf-a_user 4096 Jul 1 10:45 mbedtls
drwxrwxr-x 6 tf-a_user tf-a_user 4096 Jul 1 10:45 ms-tpm-20-ref
drwxrwxr-x 8 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_client
drwxrwxr-x 10 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_examples
drwxrwxr-x 12 tf-a_user tf-a_user 4096 Jul 1 12:13 optee_os
drwxrwxr-x 8 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_test
drwxrwxr-x 7 tf-a_user tf-a_user 4096 Jul 1 10:45 .repo
drwxrwxr-x 4 tf-a_user tf-a_user 4096 Jul 1 12:12 toolchains
drwxrwxr-x 21 tf-a_user tf-a_user 4096 Jul 1 12:15 trusted-firmware-a

(3) Now enter into ms-tpm-20-ref and get its dependencies:

$ cd ms-tpm-20-ref
$ git submodule init
$ git submodule update
Submodule path 'external/wolfssl': checked out
↪→'9c87f979a7f1d3a6d786b260653d566c1d31a1c4'

(4) Now, you should be able to continue with step 5 in “Get and build the solution” instructions. In order to
enable support for Measured Boot, you need to set the following build options:

$ MEASURED_BOOT=y MEASURED_BOOT_FTPM=y make -j `nproc`

Note: The build process will likely take a long time. It is strongly recommended to pass the -j option
to make to run the process faster.

After this step, you should be ready to run the image.

10.3.3 Running and using the PoC on the Armv8-A Foundation AEM FVP

With everything built, you can now run the image:

$ make run-only

Note: Using make run will build and run the image and it can be used instead of simply make. However,
once the image is built, it is recommended to use make run-only to avoid re-running all the building rules,
which would take time.

10.3. Interaction between Measured Boot and an fTPM (PoC) 687

https://optee.readthedocs.io/en/latest/building/gits/build.html#get-and-build-the-solution

Trusted Firmware-A, Release 2.10.4

When FVP is launched, two terminal windows will appear. FVP terminal_0 is the userspace terminal
whereas FVP terminal_1 is the counterpart for the secure world (where TAs will print their logs, for
instance).

Log into the image shell with user root, no password will be required. Then we can issue the ftpm command,
which is an alias that

(1) loads the ftpm kernel module and

(2) calls tpm2_pcrread, which will access the fTPM service to read the PCRs.

When loading the ftpm kernel module, the fTPM TA is loaded into the secure world. This TA then requests
a copy of the Event Log generated during the booting process so it can retrieve all the entries on the log and
record them first thing.

Note: For this PoC, nothing loaded after BL33 and NT_FW_CONFIG is recorded in the Event Log.

The secure world terminal should show the debug logs for the fTPM service, including all the measurements
available in the Event Log as they are being processed:

M/TA: Preparing to extend the following TPM Event Log:
M/TA: TCG_EfiSpecIDEvent:
M/TA: PCRIndex : 0
M/TA: EventType : 3
M/TA: Digest : 00
M/TA: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
M/TA: : 00 00 00
M/TA: EventSize : 33
M/TA: Signature : Spec ID Event03
M/TA: PlatformClass : 0
M/TA: SpecVersion : 2.0.2
M/TA: UintnSize : 1
M/TA: NumberOfAlgorithms : 1
M/TA: DigestSizes :
M/TA: #0 AlgorithmId : SHA256
M/TA: DigestSize : 32
M/TA: VendorInfoSize : 0
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 3
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
M/TA: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
M/TA: EventSize : 17
M/TA: Signature : StartupLocality
M/TA: StartupLocality : 0
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256

(continues on next page)

688 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
M/TA: Digest : 58 26 32 6e 64 45 64 da 45 de 35 db 96 fd ed 63
M/TA: : 2a 6a d4 0d aa 94 b0 b1 55 e4 72 e7 1f 0a e0 d5
M/TA: EventSize : 5
M/TA: Event : BL_2
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : cf f9 7d a3 5c 73 ac cb 7b a0 25 80 6a 6e 50 a5
M/TA: : 6b 2e d2 8c c9 36 92 7d 46 c5 b9 c3 a4 6c 51 7c
M/TA: EventSize : 6
M/TA: Event : BL_31
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 23 b0 a3 5d 54 d9 43 1a 5c b9 89 63 1c da 06 c2
M/TA: : e5 de e7 7e 99 17 52 12 7d f7 45 ca 4f 4a 39 c0
M/TA: EventSize : 10
M/TA: Event : HW_CONFIG
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 4e e4 8e 5a e6 50 ed e0 b5 a3 54 8a 1f d6 0e 8a
M/TA: : ea 0e 71 75 0e a4 3f 82 76 ce af cd 7c b0 91 e0
M/TA: EventSize : 14
M/TA: Event : SOC_FW_CONFIG
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 01 b0 80 47 a1 ce 86 cd df 89 d2 1f 2e fc 6c 22
M/TA: : f8 19 ec 6e 1e ec 73 ba 5a be d0 96 e3 5f 6d 75
M/TA: EventSize : 6
M/TA: Event : BL_32
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 5d c6 ef 35 5a 90 81 b4 37 e6 3b 52 da 92 ab 8e
M/TA: : d9 6e 93 98 2d 40 87 96 1b 5a a7 ee f1 f4 40 63
M/TA: EventSize : 18
M/TA: Event : BL32_EXTRA1_IMAGE
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1

(continues on next page)

10.3. Interaction between Measured Boot and an fTPM (PoC) 689

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 39 b7 13 b9 93 db 32 2f 1b 48 30 eb 2c f2 5c 25
M/TA: : 00 0f 38 dc 8e c8 02 cd 79 f2 48 d2 2c 25 ab e2
M/TA: EventSize : 6
M/TA: Event : BL_33
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 25 10 60 5d d4 bc 9d 82 7a 16 9f 8a cc 47 95 a6
M/TA: : fd ca a0 c1 2b c9 99 8f 51 20 ff c6 ed 74 68 5a
M/TA: EventSize : 13
M/TA: Event : NT_FW_CONFIG

These logs correspond to the measurements stored by TF-A during the measured boot process and therefore,
they should match the logs dumped by the former during the boot up process. These can be seen on the
terminal_0:

NOTICE: Booting Trusted Firmware
NOTICE: BL1: v2.5(release):v2.5
NOTICE: BL1: Built : 10:41:20, Jul 2 2021
NOTICE: BL1: Booting BL2
NOTICE: BL2: v2.5(release):v2.5
NOTICE: BL2: Built : 10:41:20, Jul 2 2021
NOTICE: TCG_EfiSpecIDEvent:
NOTICE: PCRIndex : 0
NOTICE: EventType : 3
NOTICE: Digest : 00
NOTICE: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00␣
↪→00
NOTICE: : 00 00 00
NOTICE: EventSize : 33
NOTICE: Signature : Spec ID Event03
NOTICE: PlatformClass : 0
NOTICE: SpecVersion : 2.0.2
NOTICE: UintnSize : 1
NOTICE: NumberOfAlgorithms : 1
NOTICE: DigestSizes :
NOTICE: #0 AlgorithmId : SHA256
NOTICE: DigestSize : 32
NOTICE: VendorInfoSize : 0
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 3
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00␣
↪→00
NOTICE: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00␣

(continues on next page)

690 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
↪→00
NOTICE: EventSize : 17
NOTICE: Signature : StartupLocality
NOTICE: StartupLocality : 0
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 58 26 32 6e 64 45 64 da 45 de 35 db 96 fd ed␣
↪→63
NOTICE: : 2a 6a d4 0d aa 94 b0 b1 55 e4 72 e7 1f 0a e0␣
↪→d5
NOTICE: EventSize : 5
NOTICE: Event : BL_2
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : cf f9 7d a3 5c 73 ac cb 7b a0 25 80 6a 6e 50␣
↪→a5
NOTICE: : 6b 2e d2 8c c9 36 92 7d 46 c5 b9 c3 a4 6c 51␣
↪→7c
NOTICE: EventSize : 6
NOTICE: Event : BL_31
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 23 b0 a3 5d 54 d9 43 1a 5c b9 89 63 1c da 06␣
↪→c2
NOTICE: : e5 de e7 7e 99 17 52 12 7d f7 45 ca 4f 4a 39␣
↪→c0
NOTICE: EventSize : 10
NOTICE: Event : HW_CONFIG
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 4e e4 8e 5a e6 50 ed e0 b5 a3 54 8a 1f d6 0e␣
↪→8a
NOTICE: : ea 0e 71 75 0e a4 3f 82 76 ce af cd 7c b0 91␣
↪→e0
NOTICE: EventSize : 14
NOTICE: Event : SOC_FW_CONFIG
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1

(continues on next page)

10.3. Interaction between Measured Boot and an fTPM (PoC) 691

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 01 b0 80 47 a1 ce 86 cd df 89 d2 1f 2e fc 6c␣
↪→22
NOTICE: : f8 19 ec 6e 1e ec 73 ba 5a be d0 96 e3 5f 6d␣
↪→75
NOTICE: EventSize : 6
NOTICE: Event : BL_32
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 5d c6 ef 35 5a 90 81 b4 37 e6 3b 52 da 92 ab␣
↪→8e
NOTICE: : d9 6e 93 98 2d 40 87 96 1b 5a a7 ee f1 f4 40␣
↪→63
NOTICE: EventSize : 18
NOTICE: Event : BL32_EXTRA1_IMAGE
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 39 b7 13 b9 93 db 32 2f 1b 48 30 eb 2c f2 5c␣
↪→25
NOTICE: : 00 0f 38 dc 8e c8 02 cd 79 f2 48 d2 2c 25 ab␣
↪→e2
NOTICE: EventSize : 6
NOTICE: Event : BL_33
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 25 10 60 5d d4 bc 9d 82 7a 16 9f 8a cc 47 95␣
↪→a6
NOTICE: : fd ca a0 c1 2b c9 99 8f 51 20 ff c6 ed 74 68␣
↪→5a
NOTICE: EventSize : 13
NOTICE: Event : NT_FW_CONFIG
NOTICE: BL1: Booting BL31
NOTICE: BL31: v2.5(release):v2.5
NOTICE: BL31: Built : 10:41:20, Jul 2 2021

Following upwith the fTPM startup process, we can see that all themeasurements in the Event Log are extended
and recorded in the appropriate PCR:

M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000

(continues on next page)

692 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: 9 Event logs processed

After the fTPM TA is loaded, the call to insmod issued by the ftpm alias to load the ftpm kernel module
returns, and then the TPM PCRs are read by means of tpm_pcrread command. Note that we are only
interested in the SHA256 logs here, as this is the algorithm we used on TF-A for the measurements (see the
field AlgorithmId on the logs above):

sha256:
0 : 0xA6EB3A7417B8CFA9EBA2E7C22AD5A4C03CDB8F3FBDD7667F9C3EF2EA285A8C9F
1 : 0x00
2 : 0x00
3 : 0x00
4 : 0x00
5 : 0x00
6 : 0x00
7 : 0x00
8 : 0x00
9 : 0x00
10: 0x00
11: 0x00
12: 0x00
13: 0x00
14: 0x00
15: 0x00
16: 0x00
17: 0xFF
18: 0xFF
19: 0xFF
20: 0xFF
21: 0xFF
22: 0xFF
23: 0x00

In this PoC we are only interested in PCR0, which must be non-null. This is because the boot process records
all the images in this PCR (see field PCRIndex on the Event Log above). The rest of the records must be 0
at this point.

10.3. Interaction between Measured Boot and an fTPM (PoC) 693

Trusted Firmware-A, Release 2.10.4

Note: The fTPM service used has support only for 16 PCRs, therefore the content of PCRs above 15 can be
ignored.

Note: As stated earlier, Arm does not provide an fTPM implementation and therefore we do not validate here
if the content of PCR0 is correct or not. For this PoC, we are only focused on the fact that the event log could
be passed to a third party fTPM and its records were properly extended.

10.3.4 Fine-tuning the fTPM TA

As stated earlier, the OP-TEE Toolkit includes support to build a third party fTPM service. The build options
for this service are tailored for the PoC and defined in the build environment variable FTPM_FLAGS (see
<toolkit_home>/build/common.mk) but they can bemodified if needed to better adapt it to a specific
scenario.

The most relevant options for Measured Boot support are:

• CFG_TA_DEBUG: Enables debug logs in the Terminal_1 console.

• CFG_TEE_TA_LOG_LEVEL: Defines the log level used for the debug messages.

• CFG_TA_MEASURED_BOOT: Enables support for measured boot on the fTPM.

• CFG_TA_EVENT_LOG_SIZE: Defines the size, in bytes, of the larger event log that the fTPM is
able to store, as this buffer is allocated at build time. This must be at least the same as the size of the
event log generated by TF-A. If this build option is not defined, the fTPM falls back to a default value
of 1024 bytes, which is enough for this PoC, so this variable is not defined in FTPM_FLAGS.

Copyright (c) 2021-2023, Arm Limited. All rights reserved.

10.4 DRTM Proof of Concept

Dynamic Root of Trust for Measurement (DRTM) begins a new trust environment by measuring and executing
a protected payload.

Static Root of Trust for Measurement (SRTM)/Measured Boot implementation, currently used by TF-A covers
all firmwares, from the boot ROM to the normal world bootloader. As a whole, they make up the system’s
TCB. These boot measurements allow attesting to what software is running on the system and enable enforcing
security policies.

As the boot chain grows or firmware becomes dynamically extensible, establishing an attestable TCB becomes
more challenging. DRTM provides a solution to this problem by allowing measurement chains to be started
at any time. As these measurements are stored separately from the boot-time measurements, they reduce the
size of the TCB, which helps reduce the attack surface and the risk of untrusted code executing, which could
compromise the security of the system.

694 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.4.1 Components

• DCE-Preamble: The DCE Preamble prepares the platform for DRTM by doing any needed configu-
ration, loading the target payload image(DLME), and preparing input parameters needed by DRTM.
Finally, it invokes the DL Event to start the dynamic launch.

• D-CRTM: The D-CRTM is the trust anchor (or root of trust) for the DRTM boot sequence and is where
the dynamic launch starts. The D-CRTM must be implemented as a trusted agent in the system. The
D-CRTM initializes the TPM for DRTM and prepares the environment for the next stage of DRTM, the
DCE. The D-CRTM measures the DCE, verifies its signature, and transfers control to it.

• DCE: The DCE executes on an application core. The DCE verifies the system’s state, measures security-
critical attributes of the system, prepares the memory region for the target payload, measures the payload,
and finally transfers control to the payload.

• DLME: The protected payload is referred to as the Dynamically Launched Measured Environment, or
DLME. The DLME begins execution in a safe state, with a single thread of execution, DMA protections,
and interrupts disabled. The DCE provides data to the DLME that it can use to verify the configuration
of the system.

In this proof of concept, DCE and D-CRTM are implemented in BL31 and DCE-Preamble and DLME are
implemented in UEFI application. A DL Event is triggered as a SMC by DCE-Preamble and handled by
D-CRTM, which launches the DLME via DCE.

This manual provides instructions to build TF-A code with pre-buit EDK2 and DRTM UEFI application.

10.4.2 Building the PoC for the Arm FVP platform

(1) Use the below command to clone TF-A source code -

$ git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git

(2) There are prebuilt binaries required to execute the DRTM implementation in the prebuilts-drtm-
bins. Download EDK2 FVP_AARCH64_EFI.fd and UEFI DRTM application test-disk.img binary from
prebuilts-drtm-bins.

(3) Build the TF-A code using below command

$ make CROSS_COMPILE=aarch64-none-elf- ARM_ROTPK_LOCATION=devel_rsa
DEBUG=1 V=1 BL33=</path/to/FVP_AARCH64_EFI.fd> DRTM_SUPPORT=1
MBEDTLS_DIR=</path/to/mbedTLS-source> USE_ROMLIB=1 all fip

10.4. DRTM Proof of Concept 695

https://downloads.trustedfirmware.org/tf-a/drtm
https://downloads.trustedfirmware.org/tf-a/drtm
https://downloads.trustedfirmware.org/tf-a/drtm

Trusted Firmware-A, Release 2.10.4

10.4.3 Running DRTM UEFI application on the Armv8-A AEM FVP

To run the DRTM test application along with DRTM implementation in BL31, you need an FVPmodel. Please
use the version of FVP_Base_RevC-2xAEMvA model advertised in the TF-A documentation.

FVP_Base_RevC-2xAEMvA \
--data cluster0.cpu0=</path/to/romlib.bin>@0x03ff2000 \
--stat \
-C bp.flashloader0.fname=<path/to/fip.bin> \
-C bp.secureflashloader.fname=<path/to/bl1.bin> \
-C bp.ve_sysregs.exit_on_shutdown=1 \
-C bp.virtioblockdevice.image_path=<path/to/test-disk.img> \
-C cache_state_modelled=1 \
-C cluster0.check_memory_attributes=0 \
-C cluster0.cpu0.etm-present=0 \
-C cluster0.cpu1.etm-present=0 \
-C cluster0.cpu2.etm-present=0 \
-C cluster0.cpu3.etm-present=0 \
-C cluster0.stage12_tlb_size=1024 \
-C cluster1.check_memory_attributes=0 \
-C cluster1.cpu0.etm-present=0 \
-C cluster1.cpu1.etm-present=0 \
-C cluster1.cpu2.etm-present=0 \
-C cluster1.cpu3.etm-present=0 \
-C cluster1.stage12_tlb_size=1024 \
-C pctl.startup=0.0.0.0 \
-Q 1000 \
"$@"

The bottom of the output from uart1 should look something like the following to indicate that the last SMC to
unprotect memory has been fired successfully.

...

INFO: DRTM service handler: version
INFO: ++ DRTM service handler: TPM features
INFO: ++ DRTM service handler: Min. mem. requirement features
INFO: ++ DRTM service handler: DMA protection features
INFO: ++ DRTM service handler: Boot PE ID features
INFO: ++ DRTM service handler: TCB-hashes features
INFO: DRTM service handler: dynamic launch
WARNING: DRTM service handler: close locality is not supported
INFO: DRTM service handler: unprotect mem

Copyright (c) 2022, Arm Limited. All rights reserved.

696 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.5 Runtime Security Subsystem (RSS)

This document focuses on the relationship between the Runtime Security Subsystem (RSS) and the application
processor (AP). According to the ARM reference design the RSS is an independent core next to the AP and
the SCP on the same die. It provides fundamental security guarantees and runtime services for the rest of the
system (e.g.: trusted boot, measured boot, platform attestation, key management, and key derivation).

At power up RSS boots first from its private ROM code. It validates and loads its own images and the ini-
tial images of SCP and AP. When AP and SCP are released from reset and their initial code is loaded then
they continue their own boot process, which is the same as on non-RSS systems. Please refer to the RSS
documentation1 for more details about the RSS boot flow.

The last stage of the RSS firmware is a persistent, runtime component. Much like AP_BL31, this is a passive
entity which has no periodical task to do and just waits for external requests from other subsystems. RSS and
other subsystems can communicate with each other over message exchange. RSS waits in idle for the incoming
request, handles them, and sends a response then goes back to idle.

10.5.1 RSS communication layer

The communication between RSS and other subsystems are primarily relying on the Message Handling Unit
(MHU) module. The number of MHU interfaces between RSS and other cores is IMPDEF. Besides MHU
other modules also could take part in the communication. RSS is capable of mapping the AP memory to its
address space. Thereby either RSS core itself or a DMA engine if it is present, can move the data between
memory belonging to RSS or AP. In this way, a bigger amount of data can be transferred in a short time.

The MHU comes in pairs. There is a sender and receiver side. They are connected to each other. An MHU
interface consists of two pairs of MHUs, one sender and one receiver on both sides. Bidirectional communica-
tion is possible over an interface. One pair provides message sending from AP to RSS and the other pair from
RSS to AP. The sender and receiver are connected via channels. There is an IMPDEF number of channels
(e.g: 4-16) between a sender and a receiver module.

The RSS communication layer provides two ways for message exchange:

• Embedded messaging: The full message, including header and payload, are exchanged over the
MHU channels. A channel is capable of delivering a single word. The sender writes the data to the
channel register on its side and the receiver can read the data from the channel on the other side. One
dedicated channel is used for signalling. It does not deliver any payload it is just meant for signalling
that the sender loaded the data to the channel registers so the receiver can read them. The receiver uses
the same channel to signal that data was read. Signalling happens via IRQ. If the message is longer than
the data fit to the channel registers then the message is sent over in multiple rounds. Both, sender and
receiver allocate a local buffer for the messages. Data is copied from/to these buffers to/from the channel
registers.

• Pointer-access messaging: The message header and the payload are separated and they are
conveyed in different ways. The header is sent over the channels, similar to the embedded messaging but
the payload is copied over by RSS core (or by DMA) between the sender and the receiver. This could be
useful in the case of long messages because transaction time is less compared to the embedded messaging
mode. Small payloads are copied by the RSS core because setting up DMA would require more CPU

1 https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/readme.html

10.5. Runtime Security Subsystem (RSS) 697

https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/readme.html

Trusted Firmware-A, Release 2.10.4

cycles. The payload is either copied into an internal buffer or directly read-written by RSS. Actual
behavior depends on RSS setup, whether the partition supports memory-mapped iovec. Therefore,
the sender must handle both cases and prevent access to the memory, where payload data lives, while
the RSS handles the request.

The RSS communication layer supports both ways of messaging in parallel. It is decided at runtime based on
the message size which way to transfer the message.

+--+ +-------------------+
AP		
	+--->	SRAM
+--		
BL1 / BL2 / BL31		
+--+ | +-------------------+

| ^ | ^ ^
| send IRQ | receive |direct | |
V | |access | |

+--------------------+ +--------------------+ | | |
| MHU sender | | MHU receiver | | | Copy data |
+--------------------+ +--------------------+ | | |

	channels				channels				
	e.g: 4-16				e.g: 4-16			V	

+--------------------+ +--------------------+ | +-------+ |
| MHU receiver | | MHU sender | | +->| DMA | |
+--------------------+ +--------------------+ | | +-------+ |

| ^ | | ^ |
IRQ | receive | send | | | Copy data |

V | | | V V
+--+ | | +-------------------+
	--+-+	
RSS		SRAM
+--+ +-------------------+

Note: The RSS communication layer is not prepared for concurrent execution. The current use case only
requires message exchange during the boot phase. In the boot phase, only a single core is running and the rest
of the cores are in reset.

Message structure

A description of the message format can be found in the RSS communication design2 document.
2 https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/rss_comms.html

698 Chapter 10. Design Documents

https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/rss_comms.html

Trusted Firmware-A, Release 2.10.4

Source files

• RSS comms: drivers/arm/rss

• MHU driver: drivers/arm/mhu

API for communication over MHU

The API is defined in these header files:

• include/drivers/arm/rss_comms.h

• include/drivers/arm/mhu.h

10.5.2 RSS provided runtime services

RSS provides the following runtime services:

• Measured boot: Securely store the firmware measurements which were computed during the boot
process and the associated metadata (image description, measurement algorithm, etc.). More info on
measured boot service in RSS can be found in the measured_boot_integration_guide3 .

• Delegated attestation: Query the platform attestation token and derive a delegated at-
testation key. More info on the delegated attestation service in RSS can be found in the dele-
gated_attestation_integration_guide4 .

• OTP assets management: Public keys used byAP during the trusted boot process can be requested
from RSS. Furthermore, AP can request RSS to increase a non-volatile counter. Please refer to the RSS
key management5 document for more details.

Runtime service API

The RSS provided runtime services implement a PSA aligned API. The parameter encoding follows the PSA
client protocol described in the Firmware Framework for M6 document in chapter 4.4. The imple-
mentation is restricted to the static handle use case therefore only the psa_call API is implemented.

3 https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/measured_boot/measured_boot_integration_guide.rst
4 https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/delegated_attestation/delegated_attest_integration_guide.

rst
5 https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/rss_key_management.html
6 https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_

Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93

10.5. Runtime Security Subsystem (RSS) 699

https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/measured_boot/measured_boot_integration_guide.rst
https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/delegated_attestation/delegated_attest_integration_guide.rst
https://git.trustedfirmware.org/TF-M/tf-m-extras.git/tree/partitions/delegated_attestation/delegated_attest_integration_guide.rst
https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/rss_key_management.html
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93

Trusted Firmware-A, Release 2.10.4

Software and API layers

+----------------+ +---------------------+
| BL1 / BL2 | | BL31 |
+----------------+ +---------------------+

| |
| extend_measurement() | get_delegated_key()
| | get_platform_token()
V V

+----------------+ +---------------------+
| PSA protocol | | PSA protocol |
+----------------+ +---------------------+

| |
| psa_call() | psa_call()
| |
V V

+--+
| RSS communication protocol |
+--+

| ^
| mhu_send_data() | mhu_receive_data()
| |
V |

+--+
| MHU driver |
+--+

| ^
| Register access | IRQ
V |

+--+
| MHU HW on AP side |
+--+

^
| Physical wires
|
V

+--+
| MHU HW on RSS side |
+--+

| ^
| IRQ | Register access
V |

+--+
| MHU driver |
+--+

| |
V V

+---------------+ +------------------------+
| Measured boot | | Delegated attestation |
| service | | service |
+---------------+ +------------------------+

700 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.5.3 RSS based Measured Boot

Measured Boot is the process of cryptographically measuring (computing the hash value of a binary) the code
and critical data used at boot time. The measurement must be stored in a tamper-resistant way, so the security
state of the device can be attested later to an external party. RSS provides a runtime service which is meant to
store measurements and associated metadata alongside.

Data is stored in internal SRAMwhich is only accessible by the secure runtime firmware of RSS. Data is stored
in so-called measurement slots. A platform has IMPDEF number of measurement slots. The measurement
storage follows extend semantics. This means that measurements are not stored directly (as it was taken) instead
they contribute to the current value of the measurement slot. The extension implements this logic, where ||
stands for concatenation:

new_value_of_measurement_slot = Hash(old_value_of_measurement_slot ||␣
↪→measurement)

Supported hash algorithms: sha-256, sha-512

Measured Boot API

Defined here:

• include/lib/psa/measured_boot.h

psa_status_t
rss_measured_boot_extend_measurement(uint8_t index,

const uint8_t *signer_id,
size_t signer_id_size,
const uint8_t *version,
size_t version_size,
uint32_t measurement_algo,
const uint8_t *sw_type,
size_t sw_type_size,
const uint8_t *measurement_value,
size_t measurement_value_size,
bool lock_measurement);

Measured Boot Metadata

The following metadata can be stored alongside the measurement:

• Signer-id: Mandatory. The hash of the firmware image signing public key.

• Measurement algorithm: Optional. The hash algorithm which was used to compute the mea-
surement (e.g.: sha-256, etc.).

• Version info: Optional. The firmware version info (e.g.: 2.7).

• SW type: Optional. Short text description (e.g.: BL1, BL2, BL31, etc.)

10.5. Runtime Security Subsystem (RSS) 701

Trusted Firmware-A, Release 2.10.4

Note: Version info is not implemented in TF-A yet.

The caller must specify in which measurement slot to extend a certain measurement and metadata. A measure-
ment slot can be extended by multiple measurements. The default value is IMPDEF. All measurement slot is
cleared at reset, there is no other way to clear them. In the reference implementation, the measurement slots
are initialized to 0. At the first call to extend the measurement in a slot, the extend operation uses the default
value of the measurement slot. All upcoming extend operation on the same slot contributes to the previous
value of that measurement slot.

The following rules are kept when a slot is extended multiple times:

• Signer-idmust be the same as the previous call(s), otherwise a PSA_ERROR_NOT_PERMITTED
error code is returned.

• Measurement algorithm: must be the same as the previous call(s), otherwise, a
PSA_ERROR_NOT_PERMITTED error code is returned.

In case of error no further action is taken (slot is not locked). If there is a valid data in a sub-sequent call then
measurement slot will be extended. The rest of the metadata is handled as follows when a measurement slot is
extended multiple times:

• SW type: Cleared.

• Version info: Cleared.

Note: Extending multiple measurements in the same slot leads to some metadata information loss. Since
RSS is not constrained on special HW resources to store the measurements and metadata, therefore it is worth
considering to store all of them one by one in distinct slots. However, they are one-by-one included in the
platform attestation token. So, the number of distinct firmware image measurements has an impact on the size
of the attestation token.

The allocation of the measurement slot among RSS, Root and Realm worlds is platform dependent. The
platform must provide an allocation of the measurement slot at build time. An example can be found in
tf-a/plat/arm/board/tc/tc_bl1_measured_boot.c Furthermore, the memory, which holds
the metadata is also statically allocated in RSS memory. Some of the fields have a static value (measure-
ment algorithm), and some of the values have a dynamic value (measurement value) which is updated by the
bootloaders when the firmware image is loaded andmeasured. Themetadata structure is defined in include/
drivers/measured_boot/rss/rss_measured_boot.h.

struct rss_mboot_metadata {
unsigned int id;
uint8_t slot;
uint8_t signer_id[SIGNER_ID_MAX_SIZE];
size_t signer_id_size;
uint8_t version[VERSION_MAX_SIZE];
size_t version_size;
uint8_t sw_type[SW_TYPE_MAX_SIZE];
size_t sw_type_size;
void *pk_oid;

(continues on next page)

702 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
bool lock_measurement;

};

Signer-ID API

This function calculates the hash of a public key (signer-ID) using the Measurement algorithm and
stores it in the rss_mboot_metadata field named signer_id. Prior to calling this function, the caller
must ensure that the signer_id field points to the zero-filled buffer.

Defined here:

• include/drivers/measured_boot/rss/rss_measured_boot.h

int rss_mboot_set_signer_id(struct rss_mboot_metadata *metadata_ptr,
const void *pk_oid,
const void *pk_ptr,
size_t pk_len)

• First parameter is the pointer to the rss_mboot_metadata structure.

• Second parameter is the pointer to the key-OID of the public key.

• Third parameter is the pointer to the public key buffer.

• Fourth parameter is the size of public key buffer.

• This function returns 0 on success, a signed integer error code otherwise.

Build time config options

• MEASURED_BOOT: Enable measured boot. It depends on the platform implementation whether RSS or
TPM (or both) backend based measured boot is enabled.

• MBOOT_RSS_HASH_ALG: Determine the hash algorithm to measure the images. The default value is
sha-256.

Measured boot flow

Sample console log

INFO: Measured boot extend measurement:
INFO: - slot : 6
INFO: - signer_id : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : FW_CONFIG
INFO: - sw_type_size: 10

(continues on next page)

10.5. Runtime Security Subsystem (RSS) 703

Trusted Firmware-A, Release 2.10.4

RSS SCP AP

RSS_BL1_1

RSS_BL1_1

RSS_BL1_2

RSS_BL1_2

RSS_BL2

RSS_BL2

RSS_S

RSS_S

SCP_BL1

SCP_BL1

AP_BL1

AP_BL1

AP_BL2

AP_BL2

AP_BL31

AP_BL31

RSS Boot phase

Reset

ROM code, XIP

OTP code, XIP

Stored in flash, loaded and executed in RAM

Validate, measure

BL1_2 measurement
saved to a shared buffer

Pass execution

Validate, measure, load

RSS_BL2 measurement
saved to a shared buffer

Pass execution

Validate, measure, load

Validate, measure, load

RSS_S and SCP_BL1
measurements saved
to a shared buffer

Release from reset

MHU init between RSS and SCP

Configure memory

Waits for SCP

Done

Validate, measure, load

AP_BL1 measurement
saved to a shared buffer

Release from reset

Pass execution

Measurements read from
shared buffer and saved by
Measured Boot service to
measurement slots.

RSS Runtime / AP Boot phase

MHU init between RSS and AP

Measure and load:
FW_CONFIG
TB_FW_CONFIG

Extend measurement

Measured Boot:
store measurement

Validate, measure,load

Extend measurement

Measured Boot:
store measurement

Pass execution

Measure and load:
HW_CONFIG

Extend measurement

Measured Boot:
store measurement

Validate, measure,load

Measure and load:
BL31

Extend measurement

Measured Boot:
store measurement

Measure and load:
RMM

Extend measurement

Measured Boot:
store measurement

Pass execution

RSS / AP Runtime

704 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: - algorithm : 2000009
INFO: - measurement : aa ea d3 a7 a8 e2 ab 7d 13 a6 cb 34 99 10 b9 a1
INFO: : 1b 9f a0 52 c5 a8 b1 d7 76 f2 c1 c1 ef ca 1a df
INFO: - locking : true
INFO: FCONF: Config file with image ID:31 loaded at address = 0x4001010
INFO: Loading image id=24 at address 0x4001300
INFO: Image id=24 loaded: 0x4001300 - 0x400153a
INFO: Measured boot extend measurement:
INFO: - slot : 7
INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : TB_FW_CONFIG
INFO: - sw_type_size: 13
INFO: - algorithm : 2000009
INFO: - measurement : 05 b9 dc 98 62 26 a7 1c 2d e5 bb af f0 90 52 28
INFO: : f2 24 15 8a 3a 56 60 95 d6 51 3a 7a 1a 50 9b b7
INFO: - locking : true
INFO: FCONF: Config file with image ID:24 loaded at address = 0x4001300
INFO: BL1: Loading BL2
INFO: Loading image id=1 at address 0x404d000
INFO: Image id=1 loaded: 0x404d000 - 0x406412a
INFO: Measured boot extend measurement:
INFO: - slot : 8
INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : BL_2
INFO: - sw_type_size: 5
INFO: - algorithm : 2000009
INFO: - measurement : 53 a1 51 75 25 90 fb a1 d9 b8 c8 34 32 3a 01 16
INFO: : c9 9e 74 91 7d 28 02 56 3f 5c 40 94 37 58 50 68
INFO: - locking : true

10.5.4 Delegated Attestation

Delegated Attestation Service was mainly developed to support the attestation flow on the ARM Confiden-
tial Compute Architecture (ARM CCA)7. The detailed description of the delegated attestation
service can be found in the Delegated Attestation Service Integration GuidePage 699, 4

document.

In the CCA use case, the Realm Management Monitor (RMM) relies on the delegated attestation service of
the RSS to get a realm attestation key and the CCA platform token. BL31 does not use the service for its own
purpose, only calls it on behalf of RMM. The access to MHU interface and thereby to RSS is restricted to BL31
only. Therefore, RMM does not have direct access, all calls need to go through BL31. The RMM dispatcher
module of the BL31 is responsible for delivering the calls between the two parties.

7 https://developer.arm.com/documentation/DEN0096/A_a/?lang=en

10.5. Runtime Security Subsystem (RSS) 705

https://developer.arm.com/documentation/DEN0096/A_a/?lang=en

Trusted Firmware-A, Release 2.10.4

Note: Currently the connection between the RMM dispatcher and the PSA/RSS layer is not yet implemented.
RMM dispatcher just returns hard coded data.

Delegated Attestation API

Defined here:

• include/lib/psa/delegated_attestation.h

psa_status_t
rss_delegated_attest_get_delegated_key(uint8_t ecc_curve,

uint32_t key_bits,
uint8_t *key_buf,
size_t key_buf_size,
size_t *key_size,
uint32_t hash_algo);

psa_status_t
rss_delegated_attest_get_token(const uint8_t *dak_pub_hash,

size_t dak_pub_hash_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);

Attestation flow

Sample attestation token

Binary format:

INFO: DELEGATED ATTEST TEST START
INFO: Get delegated attestation key start
INFO: Get delegated attest key succeeds, len: 48
INFO: Delegated attest key:
INFO: 0d 2a 66 61 d4 89 17 e1 70 c6 73 56 df f4 11 fd
INFO: 7d 1f 3b 8a a3 30 3d 70 4c d9 06 c3 c7 ef 29 43
INFO: 0f ee b5 e7 56 e0 71 74 1b c4 39 39 fd 85 f6 7b
INFO: Get platform token start
INFO: Get platform token succeeds, len: 1086
INFO: Platform attestation token:
INFO: d2 84 44 a1 01 38 22 a0 59 03 d1 a9 0a 58 20 00
INFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 19
INFO: 01 00 58 21 01 cb 8c 79 f7 a0 0a 6c ce 12 66 f8
INFO: 64 45 48 42 0e c5 10 bf 84 ee 22 18 b9 8f 11 04
INFO: c7 22 31 9d fb 19 09 5c 58 20 aa aa aa aa aa aa
INFO: aa aa bb bb bb bb bb bb bb bb cc cc cc cc cc cc
INFO: cc cc dd dd dd dd dd dd dd dd 19 09 5b 19 30 00

(continues on next page)

706 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

AP RSS

RMM

RMM

BL31

BL31

DelegAttest

DelegAttest

InitAttest

InitAttest

MeasuredBoot

MeasuredBoot

Crypto

Crypto

RMM Boot phase

get_realm_key(
hash_algo, ...)

get_delegated_key

read_measurement

Compute input
for key derivation
(hash of measurements)

derive_key

Compute public key
hash withhash_algo.

Seed is provisioned
in the factory.

get_delegated_key

get_realm_key

Only private key
is returned. Public
key and its hash
must be computed.
Public key is included
in the realm token.
Its hash is the input
for get_platform_token

get_platform_token(
pub_key_hash , ...)

get_delegated_token

Check pub_key_hash
against derived key.

get_initial_token

Create the token including
the pub_key_hash as the
challenge claim

read_measurement

sign_token

get_initial_token

get_delegated_token

get_platform_token

Platform token is
cached. It is not
changing within
a power cycle.

10.5. Runtime Security Subsystem (RSS) 707

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: 19 09 5f 89 a4 05 58 20 bf e6 d8 6f 88 26 f4 ff
INFO: 97 fb 96 c4 e6 fb c4 99 3e 46 19 fc 56 5d a2 6a
INFO: df 34 c3 29 48 9a dc 38 04 67 31 2e 36 2e 30 2b
INFO: 30 01 64 52 54 5f 30 02 58 20 90 27 f2 46 ab 31
INFO: 85 36 46 c4 d7 c6 60 ed 31 0d 3c f0 14 de f0 6c
INFO: 24 0b de b6 7a 84 fc 3f 5b b7 a4 05 58 20 b3 60
INFO: ca f5 c9 8c 6b 94 2a 48 82 fa 9d 48 23 ef b1 66
INFO: a9 ef 6a 6e 4a a3 7c 19 19 ed 1f cc c0 49 04 67
INFO: 30 2e 30 2e 30 2b 30 01 64 52 54 5f 31 02 58 20
INFO: 52 13 15 d4 9d b2 cf 54 e4 99 37 44 40 68 f0 70
INFO: 7d 73 64 ae f7 08 14 b0 f7 82 ad c6 17 db a3 91
INFO: a4 05 58 20 bf e6 d8 6f 88 26 f4 ff 97 fb 96 c4
INFO: e6 fb c4 99 3e 46 19 fc 56 5d a2 6a df 34 c3 29
INFO: 48 9a dc 38 04 67 31 2e 35 2e 30 2b 30 01 64 52
INFO: 54 5f 32 02 58 20 8e 5d 64 7e 6f 6c c6 6f d4 4f
INFO: 54 b6 06 e5 47 9a cc 1b f3 7f ce 87 38 49 c5 92
INFO: d8 2f 85 2e 85 42 a4 05 58 20 bf e6 d8 6f 88 26
INFO: f4 ff 97 fb 96 c4 e6 fb c4 99 3e 46 19 fc 56 5d
INFO: a2 6a df 34 c3 29 48 9a dc 38 04 67 31 2e 35 2e
INFO: 30 2b 30 01 60 02 58 20 b8 01 65 a7 78 8b c6 59
INFO: 42 8d 33 10 85 d1 49 0a dc 9e c3 ee df 85 1b d2
INFO: f0 73 73 6a 0c 07 11 b8 a4 05 58 20 b0 f3 82 09
INFO: 12 97 d8 3a 37 7a 72 47 1b ec 32 73 e9 92 32 e2
INFO: 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da 04 60 01 6a
INFO: 46 57 5f 43 4f 4e 46 49 47 00 02 58 20 21 9e a0
INFO: 13 82 e6 d7 97 5a 11 13 a3 5f 45 39 68 b1 d9 a3
INFO: ea 6a ab 84 23 3b 8c 06 16 98 20 ba b9 a4 05 58
INFO: 20 b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32
INFO: 73 e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a
INFO: da 04 60 01 6d 54 42 5f 46 57 5f 43 4f 4e 46 49
INFO: 47 00 02 58 20 41 39 f6 c2 10 84 53 c5 17 ae 9a
INFO: e5 be c1 20 7b cc 24 24 f3 9d 20 a8 fb c7 b3 10
INFO: e3 ee af 1b 05 a4 05 58 20 b0 f3 82 09 12 97 d8
INFO: 3a 37 7a 72 47 1b ec 32 73 e9 92 32 e2 49 59 f6
INFO: 5e 8b 4a 4a 46 d8 22 9a da 04 60 01 65 42 4c 5f
INFO: 32 00 02 58 20 5c 96 20 e1 e3 3b 0f 2c eb c1 8e
INFO: 1a 02 a6 65 86 dd 34 97 a7 4c 98 13 bf 74 14 45
INFO: 2d 30 28 05 c3 a4 05 58 20 b0 f3 82 09 12 97 d8
INFO: 3a 37 7a 72 47 1b ec 32 73 e9 92 32 e2 49 59 f6
INFO: 5e 8b 4a 4a 46 d8 22 9a da 04 60 01 6e 53 45 43
INFO: 55 52 45 5f 52 54 5f 45 4c 33 00 02 58 20 f6 fb
INFO: 62 99 a5 0c df db 02 0b 72 5b 1c 0b 63 6e 94 ee
INFO: 66 50 56 3a 29 9c cb 38 f0 ec 59 99 d4 2e a4 05
INFO: 58 20 b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec
INFO: 32 73 e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22
INFO: 9a da 04 60 01 6a 48 57 5f 43 4f 4e 46 49 47 00
INFO: 02 58 20 98 5d 87 21 84 06 33 9d c3 1f 91 f5 68
INFO: 8d a0 5a f0 d7 7e 20 51 ce 3b f2 a5 c3 05 2e 3c
INFO: 8b 52 31 19 01 09 78 1c 68 74 74 70 3a 2f 2f 61
INFO: 72 6d 2e 63 6f 6d 2f 43 43 41 2d 53 53 44 2f 31
INFO: 2e 30 2e 30 19 09 62 71 6e 6f 74 2d 68 61 73 68
INFO: 2d 65 78 74 65 6e 64 65 64 19 09 61 44 ef be ad

(continues on next page)

708 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
INFO: de 19 09 60 77 77 77 77 2e 74 72 75 73 74 65 64
INFO: 66 69 72 6d 77 61 72 65 2e 6f 72 67 58 60 29 4e
INFO: 4a d3 98 1e 3b 70 9f b6 66 ed 47 33 0e 99 f0 b1
INFO: c3 f2 bc b2 1d b0 ae 90 0c c4 82 ff a2 6f ae 45
INFO: f6 87 09 4a 09 21 77 ec 36 1c 53 b8 a7 9b 8e f7
INFO: 27 eb 7a 09 da 6f fb bf cb fd b3 e5 e9 36 91 b1
INFO: 92 13 c1 30 16 b4 5c 49 5e c0 c1 b9 01 5c 88 2c
INFO: f8 2f 3e a4 a2 6d e4 9d 31 6a 06 f7 a7 73
INFO: DELEGATED ATTEST TEST END

JSON format:

{
"CCA_PLATFORM_CHALLENGE": "b

↪→'00'",
"CCA_PLATFORM_INSTANCE_ID": "b

↪→'01CB8C79F7A00A6CCE1266F8644548420EC510BF84EE2218B98F1104C722319DFB'",
"CCA_PLATFORM_IMPLEMENTATION_ID": "b

↪→'AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDD'",
"CCA_PLATFORM_LIFECYCLE": "secured_3000",
"CCA_PLATFORM_SW_COMPONENTS": [

{
"SIGNER_ID": "b

↪→'BFE6D86F8826F4FF97FB96C4E6FBC4993E4619FC565DA26ADF34C329489ADC38'",
"SW_COMPONENT_VERSION": "1.6.0+0",
"SW_COMPONENT_TYPE": "RT_0",
"MEASUREMENT_VALUE": "b

↪→'9027F246AB31853646C4D7C660ED310D3CF014DEF06C240BDEB67A84FC3F5BB7'"
},
{

"SIGNER_ID": "b
↪→'B360CAF5C98C6B942A4882FA9D4823EFB166A9EF6A6E4AA37C1919ED1FCCC049'",

"SW_COMPONENT_VERSION": "0.0.0+0",
"SW_COMPONENT_TYPE": "RT_1",
"MEASUREMENT_VALUE": "b

↪→'521315D49DB2CF54E49937444068F0707D7364AEF70814B0F782ADC617DBA391'"
},
{

"SIGNER_ID": "b
↪→'BFE6D86F8826F4FF97FB96C4E6FBC4993E4619FC565DA26ADF34C329489ADC38'",

"SW_COMPONENT_VERSION": "1.5.0+0",
"SW_COMPONENT_TYPE": "RT_2",
"MEASUREMENT_VALUE": "b

↪→'8E5D647E6F6CC66FD44F54B606E5479ACC1BF37FCE873849C592D82F852E8542'"
},
{

"SIGNER_ID": "b
↪→'BFE6D86F8826F4FF97FB96C4E6FBC4993E4619FC565DA26ADF34C329489ADC38'",

"SW_COMPONENT_VERSION": "1.5.0+0",
"SW_COMPONENT_TYPE": "",
"MEASUREMENT_VALUE": "b

↪→'B80165A7788BC659428D331085D1490ADC9EC3EEDF851BD2F073736A0C0711B8'"
(continues on next page)

10.5. Runtime Security Subsystem (RSS) 709

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
},
{

"SIGNER_ID": "b
↪→'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",

"SW_COMPONENT_VERSION": "",
"SW_COMPONENT_TYPE": "FW_CONFIG\u0000",
"MEASUREMENT_VALUE": "b

↪→'219EA01382E6D7975A1113A35F453968B1D9A3EA6AAB84233B8C06169820BAB9'"
},
{

"SIGNER_ID": "b
↪→'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",

"SW_COMPONENT_VERSION": "",
"SW_COMPONENT_TYPE": "TB_FW_CONFIG\u0000",
"MEASUREMENT_VALUE": "b

↪→'4139F6C2108453C517AE9AE5BEC1207BCC2424F39D20A8FBC7B310E3EEAF1B05'"
},
{

"SIGNER_ID": "b
↪→'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",

"SW_COMPONENT_VERSION": "",
"SW_COMPONENT_TYPE": "BL_2\u0000",
"MEASUREMENT_VALUE": "b

↪→'5C9620E1E33B0F2CEBC18E1A02A66586DD3497A74C9813BF7414452D302805C3'"
},
{

"SIGNER_ID": "b
↪→'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",

"SW_COMPONENT_VERSION": "",
"SW_COMPONENT_TYPE": "SECURE_RT_EL3\u0000",
"MEASUREMENT_VALUE": "b

↪→'F6FB6299A50CDFDB020B725B1C0B636E94EE6650563A299CCB38F0EC5999D42E'"
},
{

"SIGNER_ID": "b
↪→'b0f382091297d83a377a72471bec3273e99232e24959f65e8b4a4a46d8229ada'",

"SW_COMPONENT_VERSION": "",
"SW_COMPONENT_TYPE": "HW_CONFIG\u0000",
"MEASUREMENT_VALUE": "b

↪→'985D87218406339DC31F91F5688DA05AF0D77E2051CE3BF2A5C3052E3C8B5231'"
}

],
"CCA_ATTESTATION_PROFILE": "http://arm.com/CCA-SSD/1.0.0",
"CCA_PLATFORM_HASH_ALGO_ID": "not-hash-extended",
"CCA_PLATFORM_CONFIG": "b'EFBEADDE'",
"CCA_PLATFORM_VERIFICATION_SERVICE": "www.trustedfirmware.org"

}

710 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.5.5 RSS OTP Assets Management

RSS provides access for AP to assets in OTP, which include keys for image signature verification and non-
volatile counters for anti-rollback protection.

Non-Volatile Counter API

AP/RSS interface for retrieving and incrementing non-volatile counters API is as follows.

Defined here:

• include/lib/psa/rss_platform_api.h

psa_status_t rss_platform_nv_counter_increment(uint32_t counter_id)

psa_status_t rss_platform_nv_counter_read(uint32_t counter_id,
uint32_t size, uint8_t *val)

Through this service, we can read/increment any of the 3 non-volatile counters used on an Arm CCA platform:

• Non-volatile counter for CCA firmware (BL2, BL31, RMM).

• Non-volatile counter for secure firmware.

• Non-volatile counter for non-secure firmware.

Public Key API

AP/RSS interface for reading the ROTPK is as follows.

Defined here:

• include/lib/psa/rss_platform_api.h

psa_status_t rss_platform_key_read(enum rss_key_id_builtin_t key,
uint8_t *data, size_t data_size, size_t *data_length)

Through this service, we can read any of the 3 ROTPKs used on an Arm CCA platform:

• ROTPK for CCA firmware (BL2, BL31, RMM).

• ROTPK for secure firmware.

• ROTPK for non-secure firmware.

10.5. Runtime Security Subsystem (RSS) 711

Trusted Firmware-A, Release 2.10.4

10.5.6 References

Copyright (c) 2023, Arm Limited. All rights reserved.

10.6 PSCI OS-initiated mode

Author
Maulik Shah & Wing Li

Organization
Qualcomm Innovation Center, Inc. & Google LLC

Contact
Maulik Shah <quic_mkshah@quicinc.com> & Wing Li <wingers@google.com>

Status
Accepted

Table of Contents

• PSCI OS-initiated mode

– Introduction

∗ Power state coordination

· Platform-coordinated

· OS-initiated

– Motivation

∗ Scalability

∗ Simplicity

∗ Current vendor implementations and workarounds

– Requirements

∗ PSCI_FEATURES

· CPU_SUSPEND feature flags

∗ PSCI_SET_SUSPEND_MODE

∗ CPU_SUSPEND

· Power state formats

· Races in OS-initiated mode

– Caveats

712 Chapter 10. Design Documents

mailto:quic_mkshah@quicinc.com
mailto:wingers@google.com

Trusted Firmware-A, Release 2.10.4

∗ CPU_OFF

– Implementation

∗ Current implementation of platform-coordinated mode

∗ Proposed implementation of OS-initiated mode

– Testing

∗ Testing on FVP and Google platforms

∗ Testing on STM32MP15

∗ Testing on Qualcomm SC7280

∗ Comparisons on Qualcomm SC7280

· CPUIdle states

· Results

10.6.1 Introduction

Power state coordination

A power domain topology is a logical hierarchy of power domains in a system that arises from the physical
dependencies between power domains.

Local power states describe power states for an individual node, and composite power states describe the com-
bined power states for an individual node and its parent node(s).

Entry into low-power states for a topology node above the core level requires coordinating its children nodes.
For example, in a system with a power domain that encompasses a shared cache, and a separate power domain
for each core that uses the shared cache, the core power domains must be powered down before the shared
cache power domain can be powered down.

PSCI supports two modes of power state coordination: platform-coordinated and OS-initiated.

Platform-coordinated

Platform-coordinated mode is the default mode of power state coordination, and is currently the only supported
mode in TF-A.

In platform-coordinated mode, the platform is responsible for coordinating power states, and chooses the deep-
est power state for a topology node that can be tolerated by its children.

10.6. PSCI OS-initiated mode 713

Trusted Firmware-A, Release 2.10.4

OS-initiated

OS-initiated mode is optional.

In OS-initiatedmode, the calling OS is responsible for coordinating power states, andmay request for a topology
node to enter a low-power state when its last child enters the low-power state.

10.6.2 Motivation

There are two reasons why OS-initiated mode might be a more suitable option than platform-coordinated mode
for a platform.

Scalability

In platform-coordinatedmode, each core independently selects their own local power states, and doesn’t account
for composite power states that are shared between cores.

In OS-initiated mode, the OS has knowledge of the next wakeup event for each core, and can have more precise
control over the entry, exit, and wakeup latencies when deciding if a composite power state (e.g. for a cluster)
is appropriate. This is especially important for multi-cluster SMP systems and heterogeneous systems like
big.LITTLE, where different processor types can have different power efficiencies.

Simplicity

In platform-coordinated mode, the OS doesn’t have visibility when the last core at a power level enters a low-
power state. If the OS wants to perform last man activity (e.g. powering off a shared resource when it is no
longer needed), it would have to communicate with an API side channel to know when it can do so. This
could result in a design smell where the platform is using platform-coordinated mode when it should be using
OS-initiated mode instead.

In OS-initiated mode, the OS can perform last man activity if it selects a composite power state when the last
core enters a low-power state. This eliminates the need for a side channel, and uses the well documented API
between the OS and the platform.

Current vendor implementations and workarounds

• STMicroelectronics

– For their ARM32 platforms, they’re using OS-initiated mode implemented in OP-TEE.

– For their future ARM64 platforms, they are interested in using OS-initiated mode in TF-A.

• Qualcomm

– For their mobile platforms, they’re using OS-initiated mode implemented in their own custom
secure monitor firmware.

714 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

– For their Chrome OS platforms, they’re using platform-coordinated mode in TF-A with custom
driver logic to perform last man activity.

• Google

– They’re using platform-coordinated mode in TF-A with custom driver logic to perform last man
activity.

Both Qualcomm and Google would like to be able to use OS-initiated mode in TF-A in order to simplify custom
driver logic.

10.6.3 Requirements

PSCI_FEATURES

PSCI_FEATURES is for checking whether or not a PSCI function is implemented and what its properties are.

PSCI_FEATURES

Parameters

• func_id – 0x8400_000A.

• psci_func_id – the function ID of a PSCI function.

Return values

• NOT_SUPPORTED – if the function is not implemented.

• feature flags associated with the function – if the function is
implemented.

CPU_SUSPEND feature flags

• Reserved, bits[31:2]

• Power state parameter format, bit[1]

– A value of 0 indicates the original format is used.

– A value of 1 indicates the extended format is used.

• OS-initiated mode, bit[0]

– A value of 0 indicates OS-initiated mode is not supported.

– A value of 1 indicates OS-initiated mode is supported.

See sections 5.1.14 and 5.15 of the PSCI spec (DEN0022D.b) for more details.

10.6. PSCI OS-initiated mode 715

Trusted Firmware-A, Release 2.10.4

PSCI_SET_SUSPEND_MODE

PSCI_SET_SUSPEND_MODE is for switching between the two different modes of power state coordination.

PSCI_SET_SUSPEND_MODE

Parameters

• func_id – 0x8400_000F.

• mode – 0 indicates platform-coordinated mode, 1 indicates OS-initiated mode.

Return values

• SUCCESS – if the request is successful.

• NOT_SUPPORTED – if OS-initiated mode is not supported.

• INVALID_PARAMETERS – if the requested mode is not a valid value (0 or 1).

• DENIED – if the cores are not in the correct state.

Switching from platform-coordinated to OS-initiated is only allowed if the following conditions are met:

• All cores are in one of the following states:

– Running.

– Off, through a call to CPU_OFF or not yet booted.

– Suspended, through a call to CPU_DEFAULT_SUSPEND.

• None of the cores has called CPU_SUSPEND since the last change of mode or boot.

Switching from OS-initiated to platform-coordinated is only allowed if all cores other than the calling core are
off, either through a call to CPU_OFF or not yet booted.

If these conditions are not met, the PSCI implementation must return DENIED.

See sections 5.1.19 and 5.20 of the PSCI spec (DEN0022D.b) for more details.

CPU_SUSPEND

CPU_SUSPEND is for moving a topology node into a low-power state.

CPU_SUSPEND

Parameters

• func_id – 0xC400_0001.

• power_state – the requested low-power state to enter.

• entry_point_address – the address at which the core must resume execution
following wakeup from a powerdown state.

716 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

• context_id – this field specifies a pointer to the saved context that must be re-
stored on a core following wakeup from a powerdown state.

Return values

• SUCCESS – if the request is successful.

• INVALID_PARAMETERS – in OS-initiated mode, this error is returned when a
low-power state is requested for a topology node above the core level, and at least
one of the node’s children is in a local low-power state that is incompatible with the
request.

• INVALID_ADDRESS – if the entry_point_address argument is invalid.

• DENIED – only in OS-initiated mode; this error is returned when a low-power state
is requested for a topology node above the core level, and at least one of the node’s
children is running, i.e. not in a low-power state.

In platform-coordinated mode, the PSCI implementation coordinates requests from all cores to determine the
deepest power state to enter.

In OS-initiated mode, the calling OS is making an explicit request for a specific power state, as opposed to
expressing a vote. The PSCI implementation must comply with the request, unless the request is not con-
sistent with the implementation’s view of the system’s state, in which case, the implementation must return
INVALID_PARAMETERS or DENIED.

See sections 5.1.2 and 5.4 of the PSCI spec (DEN0022D.b) for more details.

Power state formats

Original format

• Power Level, bits[25:24]

– The requested level in the power domain topology to enter a low-power state.

• State Type, bit[16]

– A value of 0 indicates a standby or retention state.

– A value of 1 indicates a powerdown state.

• State ID, bits[15:0]

– Field to specify the requested composite power state.

– The state ID encodings must uniquely describe every possible composite power state.

– In OS-initiated mode, the state ID encoding must allow expressing the power level at which the
calling core is the last to enter a powerdown state.

Extended format

• State Type, bit[30]

• State ID, bits[27:0]

10.6. PSCI OS-initiated mode 717

Trusted Firmware-A, Release 2.10.4

Races in OS-initiated mode

In OS-initiated mode, there are race windows where the OS’s view and implementation’s view of the system’s
state differ. It is possible for the OS to make requests that are invalid given the implementation’s view of the
system’s state. For example, the OS might request a powerdown state for a node from one core, while at the
same time, the implementation observes that another core in that node is powering up.

To address potential race conditions in power state requests:

• The calling OS must specify in each CPU_SUSPEND request the deepest power level for which it sees
the calling core as the last running core (last man). This is required even if the OS doesn’t want the node
at that power level to enter a low-power state.

• The implementation must validate that the requested power states in the CPU_SUSPEND request are
consistent with the system’s state, and that the calling core is the last core running at the requested power
level, or deny the request otherwise.

See sections 4.2.3.2, 6.2, and 6.3 of the PSCI spec (DEN0022D.b) for more details.

10.6.4 Caveats

CPU_OFF

CPU_OFF is always platform-coordinated, regardless of whether the power state coordination mode for sus-
pend is platform-coordinated or OS-initiated. If all cores in a topology node call CPU_OFF, the last core will
power down the node.

In OS-initiated mode, if a subset of the cores in a topology node has called CPU_OFF, the last running core
may call CPU_SUSPEND to request a powerdown state at or above that node’s power level.

See section 5.5.2 of the PSCI spec (DEN0022D.b) for more details.

10.6.5 Implementation

Current implementation of platform-coordinated mode

Platform-coordinated is currently the only supported power state coordination mode in TF-A.

The functions of interest in the psci_cpu_suspend call stack are as follows:

• psci_validate_power_state

– This function calls a platform specific validate_power_state handler, which takes the
power_state parameter, and updates the state_info object with the requested states for
each power level.

• psci_find_target_suspend_lvl

– This function takes the state_info object containing the requested power states for each power
level, and returns the deepest power level that was requested to enter a low power state, i.e. the
target power level.

718 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

• psci_do_state_coordination

– This function takes the target power level and the state_info object containing the requested
power states for each power level, and updates the state_info object with the coordinated
target power state for each level.

• pwr_domain_suspend

– This is a platform specific handler that takes the state_info object containing the target power
states for each power level, and transitions each power level to the specified power state.

Proposed implementation of OS-initiated mode

To add support for OS-initiated mode, the following changes are proposed:

• Add a boolean build option PSCI_OS_INIT_MODE for a platform to enable optional support for PSCI
OS-initiated mode. This build option defaults to 0.

Note: If PSCI_OS_INIT_MODE=0, the following changes will not be compiled into the build.

• Update psci_features to return 1 in bit[0] to indicate support for OS-initiated mode for
CPU_SUSPEND.

• Define a suspend_mode enum: PLAT_COORD and OS_INIT.

• Define a psci_suspend_mode global variable with a default value of PLAT_COORD.

• Implement a new function handler psci_set_suspend_mode for PSCI_SET_SUSPEND_MODE.

• Since psci_validate_power_state calls a platform specific validate_power_state
handler, the platform implementation should populate the state_info object based on the state ID
from the given power_state parameter.

• psci_find_target_suspend_lvl remains unchanged.

• Implement a new function psci_validate_state_coordination that ensures the request sat-
isfies the following conditions, and denies any requests that don’t:

– The requested power states for each power level are consistent with the system’s state

– The calling core is the last core running at the requested power level

This function differs from psci_do_state_coordination in that:

– The psci_req_local_pwr_states map is not modified if the request were to be denied

– The state_info argument is never modified since it contains the power states requested by the
calling OS

• Update psci_cpu_suspend_start to do the following:

– If PSCI_SUSPEND_MODE is PLAT_COORD, call psci_do_state_coordination.

– If PSCI_SUSPEND_MODE is OS_INIT, call psci_validate_state_coordination.
If validation fails, propagate the error up the call stack.

10.6. PSCI OS-initiated mode 719

Trusted Firmware-A, Release 2.10.4

• Add a new optional member pwr_domain_validate_suspend to plat_psci_ops_t to al-
low the platform to optionally perform validations based on hardware states.

• The platform specific pwr_domain_suspend handler remains unchanged.

720 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

10.6. PSCI OS-initiated mode 721

Trusted Firmware-A, Release 2.10.4

10.6.6 Testing

The proposed patches can be found at https://review.trustedfirmware.org/q/topic:psci-osi.

Testing on FVP and Google platforms

The proposed patches add a new CPU Suspend in OSI mode test suite to TF-A Tests. This has been enabled
and verified on the FVP_Base_RevC-2xAEMvA platform and Google platforms, and excluded from all other
platforms via the build option PLAT_TESTS_SKIP_LIST.

Testing on STM32MP15

The proposed patches have been tested and verified on the STM32MP15 platform, which has a single cluster
with 2 CPUs, by Gabriel Fernandez <gabriel.fernandez@st.com> from STMicroelectronics with this device
tree configuration:

cpus {
#address-cells = <1>;
#size-cells = <0>;

cpu0: cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0>;
enable-method = "psci";
power-domains = <&CPU_PD0>;
power-domain-names = "psci";

};
cpu1: cpu@1 {

device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <1>;
enable-method = "psci";
power-domains = <&CPU_PD1>;
power-domain-names = "psci";

};

idle-states {
cpu_retention: cpu-retention {

compatible = "arm,idle-state";
arm,psci-suspend-param = <0x00000001>;
entry-latency-us = <130>;
exit-latency-us = <620>;
min-residency-us = <700>;
local-timer-stop;

};
};

domain-idle-states {
CLUSTER_STOP: core-power-domain {

(continues on next page)

722 Chapter 10. Design Documents

https://review.trustedfirmware.org/q/topic:psci-osi
mailto:gabriel.fernandez@st.com

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
compatible = "domain-idle-state";
arm,psci-suspend-param = <0x01000001>;
entry-latency-us = <230>;
exit-latency-us = <720>;
min-residency-us = <2000>;
local-timer-stop;

};
};

};

psci {
compatible = "arm,psci-1.0";
method = "smc";

CPU_PD0: power-domain-cpu0 {
#power-domain-cells = <0>;
power-domains = <&pd_core>;
domain-idle-states = <&cpu_retention>;

};

CPU_PD1: power-domain-cpu1 {
#power-domain-cells = <0>;
power-domains = <&pd_core>;
domain-idle-states = <&cpu_retention>;

};

pd_core: power-domain-cluster {
#power-domain-cells = <0>;
domain-idle-states = <&CLUSTER_STOP>;

};
};

Testing on Qualcomm SC7280

The proposed patches have been tested and verified on the SC7280 platform by Maulik Shah
<quic_mkshah@quicinc.com> from Qualcomm with this device tree configuration:

cpus {
#address-cells = <2>;
#size-cells = <0>;

CPU0: cpu@0 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x0>;
enable-method = "psci";
power-domains = <&CPU_PD0>;
power-domain-names = "psci";

};

(continues on next page)

10.6. PSCI OS-initiated mode 723

mailto:quic_mkshah@quicinc.com

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
CPU1: cpu@100 {

device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x100>;
enable-method = "psci";
power-domains = <&CPU_PD1>;
power-domain-names = "psci";

};

CPU2: cpu@200 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x200>;
enable-method = "psci";
power-domains = <&CPU_PD2>;
power-domain-names = "psci";

};

CPU3: cpu@300 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x300>;
enable-method = "psci";
power-domains = <&CPU_PD3>;
power-domain-names = "psci";

}

CPU4: cpu@400 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x400>;
enable-method = "psci";
power-domains = <&CPU_PD4>;
power-domain-names = "psci";

};

CPU5: cpu@500 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x500>;
enable-method = "psci";
power-domains = <&CPU_PD5>;
power-domain-names = "psci";

};

CPU6: cpu@600 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x600>;
enable-method = "psci";
power-domains = <&CPU_PD6>;
power-domain-names = "psci";

(continues on next page)

724 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
};

CPU7: cpu@700 {
device_type = "cpu";
compatible = "arm,kryo";
reg = <0x0 0x700>;
enable-method = "psci";
power-domains = <&CPU_PD7>;
power-domain-names = "psci";

};

idle-states {
entry-method = "psci";

LITTLE_CPU_SLEEP_0: cpu-sleep-0-0 {
compatible = "arm,idle-state";
idle-state-name = "little-power-down";
arm,psci-suspend-param = <0x40000003>;
entry-latency-us = <549>;
exit-latency-us = <901>;
min-residency-us = <1774>;
local-timer-stop;

};

LITTLE_CPU_SLEEP_1: cpu-sleep-0-1 {
compatible = "arm,idle-state";
idle-state-name = "little-rail-power-down";
arm,psci-suspend-param = <0x40000004>;
entry-latency-us = <702>;
exit-latency-us = <915>;
min-residency-us = <4001>;
local-timer-stop;

};

BIG_CPU_SLEEP_0: cpu-sleep-1-0 {
compatible = "arm,idle-state";
idle-state-name = "big-power-down";
arm,psci-suspend-param = <0x40000003>;
entry-latency-us = <523>;
exit-latency-us = <1244>;
min-residency-us = <2207>;
local-timer-stop;

};

BIG_CPU_SLEEP_1: cpu-sleep-1-1 {
compatible = "arm,idle-state";
idle-state-name = "big-rail-power-down";
arm,psci-suspend-param = <0x40000004>;
entry-latency-us = <526>;
exit-latency-us = <1854>;
min-residency-us = <5555>;
local-timer-stop;

(continues on next page)

10.6. PSCI OS-initiated mode 725

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
};

};

domain-idle-states {
CLUSTER_SLEEP_0: cluster-sleep-0 {

compatible = "arm,idle-state";
idle-state-name = "cluster-power-down";
arm,psci-suspend-param = <0x40003444>;
entry-latency-us = <3263>;
exit-latency-us = <6562>;
min-residency-us = <9926>;
local-timer-stop;

};
};

};

psci {
compatible = "arm,psci-1.0";
method = "smc";

CPU_PD0: cpu0 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&LITTLE_CPU_SLEEP_0 &LITTLE_CPU_SLEEP_1>

↪→;
};

CPU_PD1: cpu1 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&LITTLE_CPU_SLEEP_0 &LITTLE_CPU_SLEEP_1>

↪→;
};

CPU_PD2: cpu2 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&LITTLE_CPU_SLEEP_0 &LITTLE_CPU_SLEEP_1>

↪→;
};

CPU_PD3: cpu3 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&LITTLE_CPU_SLEEP_0 &LITTLE_CPU_SLEEP_1>

↪→;
};

CPU_PD4: cpu4 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&BIG_CPU_SLEEP_0 &BIG_CPU_SLEEP_1>;

(continues on next page)

726 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
};

CPU_PD5: cpu5 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&BIG_CPU_SLEEP_0 &BIG_CPU_SLEEP_1>;

};

CPU_PD6: cpu6 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&BIG_CPU_SLEEP_0 &BIG_CPU_SLEEP_1>;

};

CPU_PD7: cpu7 {
#power-domain-cells = <0>;
power-domains = <&CLUSTER_PD>;
domain-idle-states = <&BIG_CPU_SLEEP_0 &BIG_CPU_SLEEP_1>;

};

CLUSTER_PD: cpu-cluster0 {
#power-domain-cells = <0>;
domain-idle-states = <&CLUSTER_SLEEP_0>;

};
};

Comparisons on Qualcomm SC7280

CPUIdle states

• 8 CPUs, 1 L3 cache

• Platform-coordinated mode

– CPUIdle states

∗ State0 - WFI

∗ State1 - Core collapse

∗ State2 - Rail collapse

∗ State3 - L3 cache off and system resources voted off

• OS-initiated mode

– CPUIdle states

∗ State0 - WFI

∗ State1 - Core collapse

∗ State2 - Rail collapse

10.6. PSCI OS-initiated mode 727

Trusted Firmware-A, Release 2.10.4

– Cluster domain idle state

∗ State3 - L3 cache off and system resources voted off

Results

• The following stats have been captured with fixed CPU frequencies from the use case of 10 seconds of
device idle with the display turned on and Wi-Fi and modem turned off.

• Count refers to the number of times a CPU or cluster entered power collapse.

• Residency refers to the time in seconds a CPU or cluster stayed in power collapse.

• The results are an average of 3 iterations of actual counts and residencies.

728 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

OS-initiated mode was able to scale better than platform-coordinated mode for multiple CPUs. The count and
residency results for state3 (i.e. a cluster domain idle state) in OS-initiated mode for multiple CPUs were much
closer to the results for a single CPU than in platform-coordinated mode.

Copyright (c) 2023, Arm Limited and Contributors. All rights reserved.

10.7 Measured Boot Design

This document briefly explains the Measured-Boot design implementation in TF-A.

10.7.1 Introduction

Measured Boot is the process of computing and securely recording hashes of code and critical data at each
stage in the boot chain before the code/data is used.

These measurements can be leveraged by other components in the system to implement a complete attestation
system. For example, they could be used to enforce local attestation policies (such as releasing certain platform
keys or not), or they could be securely sent to a remote challenger a.k.a. verifier after boot to attest to the state
of the code and critical-data.

Measured Boot does not authenticate the code or critical-data, but simply records what code/critical-data was
present on the system during boot.

10.7. Measured Boot Design 729

Trusted Firmware-A, Release 2.10.4

It is assumed that BL1 is implicitly trusted (by virtue of immutability) and acts as the root of trust for mea-
surement hence it is not measured.

The Measured Boot implementation in TF-A supports multiple backends to securely store measurements men-
tioned below in the Measured Boot Backends section.

10.7.2 Critical data

All firmware images - i.e. BLx images and their corresponding configuration files, if any - must be measured. In
addition to that, there might be specific pieces of data which needs to be measured as well. These are typically
different on each platform. They are referred to as critical data.

Critical data for the platform can be determined using the following criteria:

1. Data that influence boot flow behaviour such as -

• Configuration parameters that alter the boot flow path.

• Parameters that determine which firmware to load from NV-Storage to SRAM/DRAM to pass the
boot process successfully.

2. Hardware configurations settings, debug settings and security policies that need to be in a valid state for
a device to maintain its security posture during boot and runtime.

3. Security-sensitive data that is being updated by hardware.

Examples of Critical data:

1. The list of errata workarounds being applied at reset.

2. State of fuses such as whether an SoC is in secure mode.

3. NV counters that determine whether firmware is up-to-date and secure.

10.7.3 Measurement slot

The measurement slot resides in a Trusted Module and can be either a secure register or memory. The mea-
surement slot is used to provide a method to cryptographically record (measure) images and critical data on
a platform. The measurement slot update calculation, called an extend operation, is a one-way hash of all
the previous measurements and the new measurement. It is the only way to change the slot value, thus no
measurements can ever be removed or overwritten.

10.7.4 Measured Boot Backends

The Measured Boot implementation in TF-A supports:

1. Event Log

The TCGEvent Log holds a record ofmeasurementsmade into theMeasurement Slot aka PCR (Platform
Configuration Register).

730 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

The TCG EFI Protocol Specification provides details on how to measure components. The Arm docu-
ment Arm®Server Base Security Guide provides specific guidance formeasurements on an SBSA/SBBR
server system. By considering these specifications it is decided that -

1. Use PCR0 for images measurements.

2. Use PCR1 for Critical data measurements.

TCG has specified the architecture for the structure of this log in the TCG EFI Protocol Specification.
The specification describes two event log event records—the legacy, fixed size SHA1 structure called
TCG_PCR_EVENT and the variable length crypto agile structure called TCG_PCR_EVENT2. Event
Log driver implemented in TF-A covers later part.

2. RSS

It is one of physical backend to extend the measurements. Please refer this document Runtime Security
Subsystem (RSS) for more details.

10.7.5 Platform Interface

Every image which gets successfully loaded in memory (and authenticated, if trusted boot is enabled) then gets
measured. In addition to that, platforms can measure any relevant piece of critical data at any point during the
boot. The following diagram outlines the call sequence for Measured Boot platform interfaces invoked from
generic code:

10.7. Measured Boot Design 731

https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://developer.arm.com/documentation/den0086/latest
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf

Trusted Firmware-A, Release 2.10.4

These platform interfaces are used by BL1 and BL2 only, and are declared in include/plat/common/
platform.h. BL31 does not load and thus does not measure any image.

Responsibilities of these platform interfaces are -

1. Function : blx_plat_mboot_init()

void bl1_plat_mboot_init(void);
void bl2_plat_mboot_init(void);

Initialise all Measured Boot backends supported by the platform (e.g. Event Log buffer, RSS). As these
functions do not return any value, the platform should deal with error management, such as logging the
error somewhere, or panicking the system if this is considered a fatal error.

• On the Arm FVP port -

– In BL1, this function is used to initialize the Event Log backend driver, and also to write header
information in the Event Log buffer.

– In BL2, this function is used to initialize the Event Log buffer with the information received
from the BL1. It results in panic on error.

2. Function : plat_mboot_measure_image()

732 Chapter 10. Design Documents

Trusted Firmware-A, Release 2.10.4

int plat_mboot_measure_image(unsigned int image_id,
image_info_t *image_data);

• Measure the image using a hash function of the crypto module.

• Record the measurement in the corresponding backend -

– If it is Event Log backend, then record the measurement in TCG Event Log format.

– If it is a secure crypto-processor (like RSS), then extend the designated PCR (or slot) with the
given measurement.

• This function must return 0 on success, a signed integer error code otherwise.

• On the Arm FVP port, this function measures the given image and then records that measurement
in the Event Log buffer. The passed id is used to retrieve information about on how to measure the
image (e.g. PCR number).

3. Function : blx_plat_mboot_finish()

void bl1_plat_mboot_finish(void);
void bl2_plat_mboot_finish(void);

• Do all teardown operations with respect to initialised Measured Boot backends. This could be -

– Pass the Event Log details (start address and size) to Normal world or to Secure World using
any platform implementation way.

– Measure all critical data if any.

– As these functions do not return any value, the platform should deal with error management,
such as logging the error somewhere, or panicking the system if this is considered a fatal error.

• On the Arm FVP port -

– In BL1, this function is used to pass the base address of the Event Log buffer and its size to
BL2 via tb_fw_config to extend the Event Log buffer with the measurement of various images
loaded by BL2. It results in panic on error.

– In BL2, this function is used to pass the Event Log buffer information (base address and size)
to non-secure(BL33) and trusted OS(BL32) via nt_fw and tos_fw config respectively. See
DTB binding for Event Log properties for a description of the bindings used for Event Log
properties.

4. Function : plat_mboot_measure_critical_data()

int plat_mboot_measure_critical_data(unsigned int critical_data_id,
const void *base,
size_t size);

This interface is not invoked by the generic code and it is up to the platform layer to call it where
appropriate.

This function measures the given critical data structure and records its measurement using the Measured
Boot backend driver. This function must return 0 on success, a signed integer error code otherwise.

10.7. Measured Boot Design 733

Trusted Firmware-A, Release 2.10.4

In FVP, Non volatile counters get measured and recorded as Critical data using the backend via this
interface.

5. Function : plat_mboot_measure_key()

int plat_mboot_measure_key(const void *pk_oid, const void *pk_ptr,
size_t pk_len);

• This function is used by the platform to measure the passed key and publicise it using any of the
supported backends.

• The authentication module within the trusted boot framework calls this function for every ROTPK
involved in verifying the signature of a root certificate and for every subsidiary key that gets ex-
tracted from a key certificate for later authentication of a content certificate.

• A cookie, passed as the first argument, serves as a key-OID pointer associated with the public key
data, passed as the second argument.

• Public key data size is passed as the third argument to this function.

• This function must return 0 on success, a signed integer error code otherwise.

• In FVP platform, this function is used to calculate the hash of the given key and forward this hash
to RSS alongside the measurement of the image which the key signs.

Copyright (c) 2023, Arm Limited. All rights reserved.

Copyright (c) 2020-2022, Arm Limited and Contributors. All rights reserved.

734 Chapter 10. Design Documents

CHAPTER

ELEVEN

THREAT MODEL

Threat modeling is an important part of Secure Development Lifecycle (SDL) that helps us identify potential
threats and mitigations affecting a system.

As the TF-A codebase is highly configurable to allow tailoring it best for each platform’s needs, providing a
holistic threat model covering all of its features is not necessarily the best approach. Instead, we provide a
collection of documents which, together, form the project’s threat model. These are articulated around a core
document, called the Generic Threat Model, which focuses on the most common configuration we expect to
see. The other documents typically focus on specific features not covered in the core document.

As the TF-A codebase evolves and new features get added, these threat model documents will be updated and
extended in parallel to reflect at best the current status of the code from a security standpoint.

Note: Although our aim is eventually to provide threat model material for all features within the
project, we have not reached that point yet. We expect to gradually fill these gaps over time.

Each of these documents give a description of the target of evaluation using a data flow diagram, as well as a
list of threats we have identified using the STRIDE threat modeling technique and corresponding mitigations.

11.1 Generic Threat Model

11.1.1 Introduction

This document provides a generic threat model for TF-A firmware.

11.1.2 Target of Evaluation

In this threat model, the target of evaluation is the Trusted Firmware for A-class Processors (TF-A). This
includes the boot ROM (BL1), the trusted boot firmware (BL2) and the runtime EL3 firmware (BL31) as
shown on Figure 1. Everything else on Figure 1 is outside of the scope of the evaluation.

TF-A can be configured in various ways. In this threat model we consider only the most basic configuration.
To that end we make the following assumptions:

735

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

Trusted Firmware-A, Release 2.10.4

• All TF-A images are run from either ROM or on-chip trusted SRAM. This means TF-A is not vulnerable
to an attacker that can probe or tamper with off-chip memory.

• Trusted boot is enabled. This means an attacker can’t boot arbitrary images that are not approved by
platform providers.

• There is no Secure-EL2. We don’t consider threats that may come with Secure-EL2 software.

• There are no Root and Realm worlds. These are introduced by Realm Management Extension (RME).

The Threat Model for TF-A with Arm CCA support covers these types of configurations.

• No experimental features are enabled. We do not consider threats that may come from them.

Data Flow Diagram

Figure 1 shows a high-level data flow diagram for TF-A. The diagram shows amodel of the different components
of a TF-A-based system and their interactions with TF-A. A description of each diagram element is given on
Table 1. On the diagram, the red broken lines indicate trust boundaries. Components outside of the broken
lines are considered untrusted by TF-A.

Fig. 1: Figure 1: TF-A Data Flow Diagram

736 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

Table 1: Table 1: TF-A Data Flow Diagram Description
Diagram Element Description
DF1

At boot time, images are loaded from non-volatile
memory and verified by TF-A boot firmware.
These images include TF-A BL2 and BL31 images,
as well as other secure and non-secure images.

DF2

TF-A log system framework outputs debug or
informative messages over a UART interface.

Also, characters can be read from a UART
interface.

DF3

Debug and trace IP on a platform can allow access
to registers and memory of TF-A.

DF4

Secure world software (e.g. trusted OS) interact
with TF-A through SMC call interface and/or
shared memory.

DF5

Non-secure world software (e.g. rich OS) interact
with TF-A through SMC call interface and/or
shared memory.

DF6

This path represents the interaction between TF-A
and various hardware IPs such as TrustZone
controller and GIC. At boot time TF-A
configures/initializes the IPs and interacts with
them at runtime through interrupts and registers.

11.1. Generic Threat Model 737

Trusted Firmware-A, Release 2.10.4

11.1.3 Threat Analysis

In this section we identify and provide assessment of potential threats to TF-A firmware. The threats are
identified for each diagram element on the data flow diagram above.

For each threat, we identify the asset that is under threat, the threat agent and the threat type. Each threat is
given a risk rating that represents the impact and likelihood of that threat. We also discuss potential mitigations.

Assets

We have identified the following assets for TF-A:

Table 2: Table 2: TF-A Assets
Asset Description
Sensitive Data

These include sensitive data that an attacker must
not be able to tamper with (e.g. the Root of Trust
Public Key) or see (e.g. secure logs, debugging
information such as crash reports).

Code Execution

This represents the requirement that the platform
should run only TF-A code approved by the
platform provider.

Availability

This represents the requirement that TF-A services
should always be available for use.

738 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

Threat Agents

To understand the attack surface, it is important to identify potential attackers, i.e. attack entry points. The
following threat agents are in scope of this threat model.

Table 3: Table 3: Threat Agents
Threat Agent Description
NSCode

Malicious or faulty code running in the Non-secure
world, including NS-EL0 NS-EL1 and NS-EL2
levels

SecCode

Malicious or faulty code running in the secure
world, including S-EL0 and S-EL1 levels

AppDebug

Physical attacker using debug signals to access
TF-A resources

PhysicalAccess

Physical attacker having access to external device
communication bus and to external flash
communication bus using common hardware

Note: In this threat model an advanced physical attacker that has the capability to tamper with a hardware
(e.g. “rewiring” a chip using a focused ion beam (FIB) workstation or decapsulate the chip using chemicals) is
considered out-of-scope.

Certain non-invasive physical attacks that do not need modifications to the chip, notably those like Power
Analysis Attacks, are out-of-scope. Power analysis side-channel attacks represent a category of security threats
that capitalize on information leakage through a device’s power consumption during its normal operation. These
attacks leverage the correlation between a device’s power usage and its internal data processing activities. This
correlation provides attackers with the means to extract sensitive information, including cryptographic keys.

11.1. Generic Threat Model 739

Trusted Firmware-A, Release 2.10.4

Threat Types

In this threat model we categorize threats using the STRIDE threat analysis technique. In this technique a threat
is categorized as one or more of these types: Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service or Elevation of privilege.

Threat Risk Ratings

For each threat identified, a risk rating that ranges from informational to critical is given based on the likeli-
hood of the threat occurring if a mitigation is not in place, and the impact of the threat (i.e. how severe the
consequences could be). Table 4 explains each rating in terms of score, impact and likelihood.

740 Chapter 11. Threat Model

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

Trusted Firmware-A, Release 2.10.4

Table 4: Table 4: Rating and score as applied to impact and likeli-
hood

Rating (Score) Impact Likelihood
Critical (5)

Extreme impact to entire
organization if exploited.

Threat is almost certain to be
exploited.

Knowledge of the threat and how
to exploit it are in the public
domain.

High (4)

Major impact to entire
organization or single line of
business if exploited

Threat is relatively easy to detect
and exploit by an attacker with
little skill.

Medium (3)

Noticeable impact to line of
business if exploited.

A knowledgeable insider or
expert attacker could exploit the
threat without much difficulty.

Low (2)

Minor damage if exploited or
could be used in conjunction with
other vulnerabilities to perform a
more serious attack

Exploiting the threat would
require considerable expertise
and resources

Informational (1)

Poor programming practice or
poor design decision that may not
represent an immediate risk on
its own, but may have security
implications if multiplied and/or
combined with other threats.

Threat is not likely to be
exploited on its own, but may be
used to gain information for
launching another attack

Aggregate risk scores are assigned to identified threats; specifically, the impact scoremultiplied by the likelihood
score. For example, a threat with high likelihood and low impact would have an aggregate risk score of eight (8);
that is, four (4) for high likelihood multiplied by two (2) for low impact. The aggregate risk score determines
the finding’s overall risk level, as shown in the following table.

11.1. Generic Threat Model 741

Trusted Firmware-A, Release 2.10.4

Table 5: Table 5: Overall risk levels and corresponding aggregate
scores

Overall Risk Level Aggregate Risk Score (Impact multiplied by Likelihood)
Critical 20–25
High 12–19
Medium 6–11
Low 2–5
Informational 1

The likelihood and impact of a threat depends on the target environment in which TF-A is running. For
example, attacks that require physical access are unlikely in server environments while they aremore common in
Internet of Things(IoT) environments. In this threat model we consider three target environments: Internet
of Things(IoT), Mobile and Server.

Threat Assessment

The following threats were identified by applying STRIDE analysis on each diagram element of the data flow
diagram.

For each threat, we strive to indicate whether the mitigations are currently implemented or not. However,
the answer to this question is not always straight forward. Some mitigations are partially implemented in the
generic code but also rely on the platform code to implement some bits of it. This threat model aims to be
platform-independent and it is important to keep in mind that such threats only get mitigated if the platform
code properly fulfills its responsibilities.

Also, some mitigations require enabling specific features, which must be explicitly turned on via a build flag.

When such conditions must be met, these are highlighted in the Mitigations implemented? box.

As our Target of Evaluation is made of several, distinct firmware images, some threats are confined in specific
images, while others apply to each of them. To help developers implement mitigations in the right place, threats
below are categorized based on the firmware image that should mitigate them.

742 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

11.1. Generic Threat Model 743

Trusted Firmware-A, Release 2.10.4

General Threats for All Firmware Images

ID 05
Threat Information leak via UART logs

During the development stages of software it is common to print all sorts of
information on the console, including sensitive or confidential information such
as crash reports with detailed information of the CPU state, current registers
values, privilege level or stack dumps.

This information is useful when debugging problems before releasing the
production version but it could be used by an attacker to develop a working
exploit if left enabled in the production version.

This happens when directly logging sensitive information and more subtly when
logging side-channel information that can be used by an attacker to learn about
sensitive information.

Diagram Elements DF2
Affected TF-A Compo-
nents

BL1, BL2, BL31

Assets Sensitive Data
Threat Agent AppDebug
Threat Type Information Disclosure
Application Server IoT Mobile
Impact N/A Low (2) Low (2)
Likelihood N/A High (4) High (4)
Total Risk Rating N/A Medium (8) Medium (8)
Mitigations Remove sensitive information logging in production releases.

Do not conditionally log information depending on potentially sensitive data.

Do not log high precision timing information.

Mitigations imple-
mented?

Yes / Platform Specific. Requires the right build options to be used.

Crash reporting is only enabled for debug builds by default, see
CRASH_REPORTING build option.

The log level can be tuned at build time, from very verbose to no output at all.
See LOG_LEVEL build option. By default, release builds are a lot less verbose
than debug ones but still produce some output.

Messages produced by the platform code should use the appropriate level of
verbosity so as not to leak sensitive information in production builds.

744 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 06
Threat An attacker can read sensitive data and execute arbitrary code through

the external debug and trace interface

Arm processors include hardware-assisted debug and trace features that can be
controlled without the need for software operating on the platform. If left
enabled without authentication, this feature can be used by an attacker to
inspect and modify TF-A registers and memory allowing the attacker to read
sensitive data and execute arbitrary code.

Diagram Elements DF3
Affected TF-A Compo-
nents

BL1, BL2, BL31

Assets Code Execution, Sensitive Data
Threat Agent AppDebug
Threat Type Tampering, Information Disclosure, Elevation of privilege
Application Server IoT Mobile
Impact N/A High (4) High (4)
Likelihood N/A Critical (5) Critical (5)
Total Risk Rating N/A Critical (20) Critical (20)
Mitigations Disable the debug and trace capability for production releases or enable proper

debug authentication as recommended by [DEN0034].
Mitigations imple-
mented?

Platform specific.

Configuration of debug and trace capabilities is entirely platform specific.

11.1. Generic Threat Model 745

https://developer.arm.com/documentation/den0034/latest

Trusted Firmware-A, Release 2.10.4

ID 08
Threat Memory corruption due to memory overflows and lack of boundary

checking when accessing resources could allow an attacker to execute
arbitrary code, modify some state variable to change the normal flow of
the program, or leak sensitive information

Like in other software, TF-A has multiple points where memory corruption
security errors can arise.

Some of the errors include integer overflow, buffer overflow, incorrect array
boundary checks, and incorrect error management. Improper use of asserts
instead of proper input validations might also result in these kinds of errors in
release builds.

Diagram Elements DF4, DF5
Affected TF-A Compo-
nents

BL1, BL2, BL31

Assets Code Execution, Sensitive Data
Threat Agent NSCode, SecCode
Threat Type Tampering, Information Disclosure, Elevation of Privilege
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood Medium (3 Medium (3) Medium (3)
Total Risk Rating High (15) High (15) High (15)
Mitigations 1) Use proper input validation.

2) Code reviews, testing.

Mitigations imple-
mented?

1) Yes. Data received from normal world, such as addresses and sizes
identifying memory regions, are sanitized before being used. These security
checks make sure that the normal world software does not access memory
beyond its limit.

By default asserts are only used to check for programming errors in debug
builds. Other types of errors are handled through condition checks that remain
enabled in release builds. See TF-A error handling policy. TF-A provides an
option to use asserts in release builds, however we recommend using proper
runtime checks instead of relying on asserts in release builds.

2) Yes. TF-A uses a combination of manual code reviews and automated
program analysis and testing to detect and fix memory corruption bugs. All
TF-A code including platform code go through manual code reviews.
Additionally, static code analysis is performed using Coverity Scan on all TF-A
code. The code is also tested with Trusted Firmware-A Tests on Juno and FVP
platforms.

746 Chapter 11. Threat Model

https://trustedfirmware-a.readthedocs.io/en/latest/process/coding-guidelines.html#error-handling-and-robustness
https://git.trustedfirmware.org/TF-A/tf-a-tests.git/about/

Trusted Firmware-A, Release 2.10.4

ID 11
Threat Misconfiguration of the Memory Management Unit (MMU) may allow a

normal world software to access sensitive data, execute arbitrary code or
access otherwise restricted HW interface

A misconfiguration of the MMU could lead to an open door for software
running in the normal world to access sensitive data or even execute code if the
proper security mechanisms are not in place.

Diagram Elements DF5, DF6
Affected TF-A Compo-
nents

BL1, BL2, BL31

Assets Sensitive Data, Code execution
Threat Agent NSCode
Threat Type Information Disclosure, Elevation of Privilege
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood High (4) High (4) High (4)
Total Risk Rating Critical (20) Critical (20) Critical (20)
Mitigations When configuring access permissions, the principle of least privilege ought to be

enforced. This means we should not grant more privileges than strictly needed,
e.g. code should be read-only executable, read-only data should be read-only
execute-never, and so on.

Mitigations imple-
mented?

Platform specific.

MMU configuration is platform specific, therefore platforms need to make sure
that the correct attributes are assigned to memory regions.

TF-A provides a library which abstracts the low-level details of MMU
configuration. It provides well-defined and tested APIs. Platforms are
encouraged to use it to limit the risk of misconfiguration.

11.1. Generic Threat Model 747

Trusted Firmware-A, Release 2.10.4

ID 13
Threat Leaving sensitive information in the memory, can allow an attacker to

retrieve them.

Accidentally leaving not-needed sensitive data in internal buffers can leak them
if an attacker gains access to memory due to a vulnerability.

Diagram Elements DF4, DF5
Affected TF-A Compo-
nents

BL1, BL2, BL31

Assets Sensitive Data
Threat Agent NSCode, SecCode
Threat Type Information Disclosure
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood Medium (3) Medium (3) Medium (3)
Total Risk Rating High (15) High (15) High (15)
Mitigations Clear the sensitive data from internal buffers as soon as they are not needed

anymore.
Mitigations imple-
mented?

Yes / Platform specific

748 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 15
Threat Improper handling of input data received over a UART interface may

allow an attacker to tamper with TF-A execution environment.

The consequences of the attack depend on the the exact usage of input data
received over UART. Examples are injection of arbitrary data, sensitive data
tampering, influencing the execution path, denial of service (if using blocking
I/O). This list may not be exhaustive.

Diagram Elements DF2, DF4, DF5
Affected TF-A Compo-
nents

BL1, BL2, BL31

Assets Sensitive Data, Code Execution, Availability
Threat Agent NSCode, SecCode
Threat Type Tampering, Information Disclosure, Denial of service, Elevation of privilege.
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood Critical (5) Critical (5) Critical (5)
Total Risk Rating Critical (25) Critical (25) Critical (25)
Mitigations By default, the code to read input data from UART interfaces is disabled (see

ENABLE_CONSOLE_GETC build option). It should only be enabled on a need
basis.

Data received over UART interfaces should be treated as untrusted data. As
such, it should be properly sanitized and handled with caution.

Mitigations imple-
mented?

Platform specific.

Generic code does not read any input data from UART interface(s).

Threats to be Mitigated by the Boot Firmware

The boot firmware here refers to the boot ROM (BL1) and the trusted boot firmware (BL2). Typically it does
not stay resident in memory and it is dismissed once execution has reached the runtime EL3 firmware (BL31).
Thus, past that point in time, the threats below can no longer be exploited.

Note, however, that this is not necessarily true on all platforms. Platform vendors should review these threats
to make sure they cannot be exploited nonetheless once execution has reached the runtime EL3 firmware.

11.1. Generic Threat Model 749

Trusted Firmware-A, Release 2.10.4

ID 01
Threat An attacker can mangle firmware images to execute arbitrary code

Some TF-A images are loaded from external storage. It is possible for an
attacker to access the external flash memory and change its contents physically,
through the Rich OS, or using the updating mechanism to modify the
non-volatile images to execute arbitrary code.

Diagram Elements DF1, DF4, DF5
Affected TF-A Compo-
nents

BL2, BL31

Assets Code Execution
Threat Agent PhysicalAccess, NSCode, SecCode
Threat Type Tampering, Elevation of Privilege
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood Critical (5) Critical (5) Critical (5)
Total Risk Rating Critical (25) Critical (25) Critical (25)
Mitigations 1) Implement the Trusted Board Boot (TBB) feature which prevents malicious

firmware from running on the platform by authenticating all firmware images.

2) Perform extra checks on unauthenticated data, such as FIP metadata, prior
to use.

Mitigations imple-
mented?

1) Yes, provided that the TRUSTED_BOARD_BOOT build option is set to 1.

2) Yes.

750 Chapter 11. Threat Model

https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html

Trusted Firmware-A, Release 2.10.4

ID 02
Threat An attacker may attempt to boot outdated, potentially vulnerable

firmware image

When updating firmware, an attacker may attempt to rollback to an older
version that has unfixed vulnerabilities.

Diagram Elements DF1, DF4, DF5
Affected TF-A Compo-
nents

BL2, BL31

Assets Code Execution
Threat Agent PhysicalAccess, NSCode, SecCode
Threat Type Tampering
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood Critical (5) Critical (5) Critical (5)
Total Risk Rating Critical (25) Critical (25) Critical (25)
Mitigations Implement anti-rollback protection using non-volatile counters (NV counters)

as required by TBBR-Client specification.
Mitigations imple-
mented?

Yes / Platform specific.

After a firmware image is validated, the image revision number taken from a
certificate extension field is compared with the corresponding NV counter
stored in hardware to make sure the new counter value is larger than the current
counter value.

Platforms must implement this protection using platform specific
hardware NV counters.

11.1. Generic Threat Model 751

https://developer.arm.com/documentation/den0006/d/

Trusted Firmware-A, Release 2.10.4

ID 03
Threat An attacker can use Time-of-Check-Time-of-Use (TOCTOU) attack to

bypass image authentication during the boot process

Time-of-Check-Time-of-Use (TOCTOU) threats occur when the security
check is produced before the time the resource is accessed. If an attacker is
sitting in the middle of the off-chip images, they could change the binary
containing executable code right after the integrity and authentication check
has been performed.

Diagram Elements DF1
Affected TF-A Compo-
nents

BL1, BL2

Assets Code Execution, Sensitive Data
Threat Agent PhysicalAccess
Threat Type Elevation of Privilege
Application Server IoT Mobile
Impact N/A Critical (5) Critical (5)
Likelihood N/A Medium (3) Medium (3)
Total Risk Rating N/A High (15) High (15)
Mitigations Copy image to on-chip memory before authenticating it.
Mitigations imple-
mented?

Platform specific.

The list of images to load and their location is platform specific. Platforms are
responsible for arranging images to be loaded in on-chip memory.

752 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 04
Threat An attacker with physical access can execute arbitrary image by

bypassing the signature verification stage using glitching techniques

Glitching (Fault injection) attacks attempt to put a hardware into a undefined
state by manipulating an environmental variable such as power supply.

TF-A relies on a chain of trust that starts with the ROTPK, which is the key
stored inside the chip and the root of all validation processes. If an attacker can
break this chain of trust, they could execute arbitrary code on the device. This
could be achieved with physical access to the device by attacking the normal
execution flow of the process using glitching techniques that target points
where the image is validated against the signature.

Diagram Elements DF1
Affected TF-A Compo-
nents

BL1, BL2

Assets Code Execution
Threat Agent PhysicalAccess
Threat Type Tampering, Elevation of Privilege
Application Server IoT Mobile
Impact N/A Critical (5) Critical (5)
Likelihood N/A Medium (3) Medium (3)
Total Risk Rating N/A High (15) High (15)
Mitigations Mechanisms to detect clock glitch and power variations.
Mitigations imple-
mented?

No.

The most effective mitigation is adding glitching detection and mitigation
circuit at the hardware level.

However, software techniques, such as adding redundant checks when
performing conditional branches that are security sensitive, can be used to
harden TF-A against such attacks. At the moment TF-A doesn’t implement
such mitigations.

Measured Boot Threats (or lack of)

In the current Measured Boot design, BL1, BL2, and BL31, as well as the secure world components,
form the SRTM. Measurement data is currently considered an asset to be protected against attack, and this
is achieved by storing them in the Secure Memory. Beyond the measurements stored inside the TCG-

11.1. Generic Threat Model 753

Trusted Firmware-A, Release 2.10.4

compliant Event Log buffer, there are no other assets to protect or threats to defend against that could
compromise TF-A execution environment’s security.

There are general security assets and threats associated with remote/delegated attestation. However, these
are outside the TF-A security boundary and should be dealt with by the appropriate agent in the plat-
form/system. Since current Measured Boot design does not use local attestation, there would be no further
assets to protect(like unsealed keys).

A limitation of the current Measured Boot design is that it is dependent upon Secure Boot as implementa-
tion of Measured Boot does not extend measurements into a discrete TPM, where they would be securely
stored and protected against tampering. This implies that if Secure-Boot is compromised, Measured Boot
may also be compromised.

Platforms must carefully evaluate the security of the default implementation since the SRTM includes all
secure world components.

Threats to be Mitigated by the Runtime EL3 Firmware

ID 07
Threat An attacker can perform a denial-of-service attack by using a broken

SMC call that causes the system to reboot or enter into unknown state.

Secure and non-secure clients access TF-A services through SMC calls.
Malicious code can attempt to place the TF-A runtime into an inconsistent
state by calling unimplemented SMC call or by passing invalid arguments.

Diagram Elements DF4, DF5
Affected TF-A Compo-
nents

BL31

Assets Availability
Threat Agent NSCode, SecCode
Threat Type Denial of Service
Application Server IoT Mobile
Impact Medium (3) Medium (3) Medium (3)
Likelihood High (4) High (4) High (4)
Total Risk Rating High (12) High (12) High (12)
Mitigations Validate SMC function ids and arguments before using them.
Mitigations imple-
mented?

Yes / Platform specific.

For standard services, all input is validated.

Platforms that implement SiP services must also validate SMC call arguments.

754 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 09
Threat Improperly handled SMC calls can leak register contents

When switching between worlds, TF-A register state can leak to software in
different security contexts.

Diagram Elements DF4, DF5
Affected TF-A Compo-
nents

BL31

Assets Sensitive Data
Threat Agent NSCode, SecCode
Threat Type Information Disclosure
Application Server IoT Mobile
Impact Medium (3) Medium (3) Medium (3)
Likelihood High (4) High (4) High (4)
Total Risk Rating High (12) High (12) High (12)
Mitigations Save and restore registers when switching contexts.
Mitigations imple-
mented?

Yes.

This is the default behaviour in TF-A. Build options are also provided to
save/restore additional registers such as floating-point registers. These should
be enabled if required.

11.1. Generic Threat Model 755

Trusted Firmware-A, Release 2.10.4

ID 10
Threat SMC calls can leak sensitive information from TF-A memory via

microarchitectural side channels

Microarchitectural side-channel attacks such as Spectre can be used to leak
data across security boundaries. An attacker might attempt to use this kind of
attack to leak sensitive data from TF-A memory.

Diagram Elements DF4, DF5
Affected TF-A Compo-
nents

BL31

Assets Sensitive Data
Threat Agent SecCode, NSCode
Threat Type Information Disclosure
Application Server IoT Mobile
Impact Medium (3) Medium (3) Medium (3)
Likelihood Medium (3) Medium (3) Medium (3)
Total Risk Rating Medium (9) Medium (9) Medium (9)
Mitigations Enable appropriate side-channel protections.
Mitigations imple-
mented?

Yes / Platform specific.

TF-A implements software mitigations for Spectre type attacks as
recommended by Cache Speculation Side-channels for the generic code.

SiPs should implement similar mitigations for code that is deemed to be
vulnerable to such attacks.

756 Chapter 11. Threat Model

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

Trusted Firmware-A, Release 2.10.4

ID 12
Threat Incorrect configuration of Performance Monitor Unit (PMU) counters

can allow an attacker to mount side-channel attacks using information
exposed by the counters

Non-secure software can configure PMU registers to count events at any
exception level and in both Secure and Non-secure states. This allows a
Non-secure software (or a lower-level Secure software) to potentially carry out
side-channel timing attacks against TF-A.

Diagram Elements DF5, DF6
Affected TF-A Compo-
nents

BL31

Assets Sensitive Data
Threat Agent NSCode
Threat Type Information Disclosure
Application Server IoT Mobile
Impact Medium (3) Medium (3) Medium (3)
Likelihood Low (2) Low (2) Low (2)
Total Risk Rating Medium (6) Medium (6) Medium (6)
Mitigations Follow mitigation strategies as described in Secure Development Guidelines.
Mitigations imple-
mented?

Yes / platform specific.

General events and cycle counting in the Secure world is prohibited by default
when applicable.

However, on some implementations (e.g. PMUv3) Secure world event
counting depends on external debug interface signals, i.e. Secure world event
counting is enabled if external debug is enabled.

Configuration of debug signals is platform specific, therefore platforms need to
make sure that external debug is disabled in production or proper debug
authentication is in place. This should be the case if threat #06 is properly
mitigated.

11.1. Generic Threat Model 757

https://trustedfirmware-a.readthedocs.io/en/latest/process/security-hardening.html#secure-development-guidelines

Trusted Firmware-A, Release 2.10.4

Threats to be Mitigated by an External Agent Outside of TF-A

ID 14
Threat Attacker wants to execute an arbitrary or untrusted binary as the secure

OS.

When the option OPTEE_ALLOW_SMC_LOAD is enabled, this trusts the
non-secure world up until the point it issues the SMC call to load the Secure
BL32 payload. If a compromise occurs before the SMC call is invoked, then
arbitrary code execution in S-EL1 can occur or arbitrary memory in EL3 can
be overwritten.

Diagram Elements DF5
Affected TF-A Compo-
nents

BL31, BL32

Assets Code Execution, Sensitive Data
Threat Agent NSCode
Threat Type Tampering, Information Disclosure, Elevation of privilege
Application Server IoT Mobile
Impact Critical (5) Critical (5) Critical (5)
Likelihood High (4) High (4) High (4)
Total Risk Rating Critical (20) Critical (20) Critical (20)
Mitigations When enabling the option OPTEE_ALLOW_SMC_LOAD, the non-secure OS

must be considered a closed platform up until the point the SMC can be invoked
to load OP-TEE.

Mitigations imple-
mented?

None in TF-A itself. This option is only used by ChromeOS currently which
has other mechanisms to to mitigate this threat which are described in OP-TEE
Dispatcher.

Copyright (c) 2021-2023, Arm Limited. All rights reserved.

11.2 EL3 SPMC Threat Model

11.2.1 Introduction

This document provides a threat model for the TF-A EL3 Secure PartitionManager (EL3 SPM) implementation.
The EL3 SPM implementation is based on the Arm Firmware Framework for Arm A-profile specification.

758 Chapter 11. Threat Model

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/components/spd/optee-dispatcher.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/components/spd/optee-dispatcher.rst
https://developer.arm.com/docs/den0077/latest

Trusted Firmware-A, Release 2.10.4

11.2.2 Target of Evaluation

In this threat model, the target of evaluation is the Secure Partition Manager Core component
(SPMC) within the EL3 firmware. The monitor and SPMD at EL3 are covered by the Generic TF-A threat
model.

The scope for this threat model is:

• The TF-A implementation for the EL3 SPMC

• The implementation complies with the FF-A v1.1 specification.

• Secure partition is statically provisioned at boot time.

• Focus on the run-time part of the life-cycle (no specific emphasis on boot time, factory firmware provi-
sioning, firmware udpate etc.)

• Not covering advanced or invasive physical attacks such as decapsulation, FIB etc.

Data Flow Diagram

Figure 1 shows a high-level data flow diagram for the SPM split into an SPMD and SPMC component at EL3.
The SPMDmostly acts as a relayer/pass-through between the normal world and the secure world. It is assumed
to expose small attack surface.

A description of each diagram element is given in Table 1. In the diagram, the red broken lines indicate trust
boundaries.

Components outside of the broken lines are considered untrusted.

Table 6: Table 1: EL3 SPMC Data Flow Diagram Description
Dia-
gram
Ele-
ment

Description

DF1 SP to SPMC communication. FF-A function invocation or implementation-defined Hypervisor
call.
Note:- To communicate with LSP, SP1 performs a direct message request to SPMC targeting
LSP as destination.

DF2 SPMC to SPMD communication.
DF3 SPMD to NS forwarding.
DF4 SPMC to LSP communication. NWd to LSP communication happens through SPMC. LSP can

send direct response SP1 or NWd through SPMC.
DF5 HW control.
DF6 Bootloader image loading.
DF7 External memory access.

11.2. EL3 SPMC Threat Model 759

Trusted Firmware-A, Release 2.10.4

Fig. 2: Figure 1: EL3 SPMC Data Flow Diagram

760 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

11.2.3 Threat Analysis

This threat model follows a similar methodology to the Generic TF-A threat model. The following sections
define:

• Trust boundaries

• Assets

• Theat agents

• Threat types

Trust boundaries

• Normal world is untrusted.

• Secure world and normal world are separate trust boundaries.

• EL3 monitor, SPMD and SPMC are trusted.

• Bootloaders (in particular BL1/BL2 if using TF-A) and run-time BL31 are implicitely trusted by the
usage of trusted boot.

• EL3 monitor, SPMD, SPMC do not trust SPs.

Assets

The following assets are identified:

• SPMC state.

• SP state.

• Information exchange between endpoints (partition messages).

• SPMC secrets (e.g. pointer authentication key when enabled)

• SP secrets (e.g. application keys).

• Scheduling cycles.

• Shared memory.

Threat Agents

The following threat agents are identified:

• Non-secure endpoint (referred NS-Endpoint later): normal world client at NS-EL2 (Hypervisor) or NS-
EL1 (VM or OS kernel).

• Secure endpoint (referred as S-Endpoint later): typically a secure partition.

• Hardware attacks (non-invasive) requiring a physical access to the device, such as bus probing or DRAM
stress.

11.2. EL3 SPMC Threat Model 761

Trusted Firmware-A, Release 2.10.4

Threat types

The following threat categories as exposed in the Generic TF-A threat model are re-used:

• Spoofing

• Tampering

• Repudiation

• Information disclosure

• Denial of service

• Elevation of privileges

Similarly this threat model re-uses the same threat risk ratings. The risk analysis is evaluated based on the
environment being Server or Mobile. IOT is not evaluated as the EL3 SPMC is primarily meant for use
in Client.

Threat Assessment

The following threats are identified by applying STRIDE analysis on each diagram element of the data flow
diagram.

762 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 01
Threat An endpoint impersonates the sender FF-A ID in a direct request/response invocation.
Dia-
gram
Ele-
ments

DF1, DF2, DF3, DF4

Af-
fected
TF-A
Com-
ponents

SPMD, SPMC

Assets SP state
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Spoofing

Appli-
cation

Server Mobile

Impact Critical(5) Critical(5)
Likeli-
hood

Critical(5) Critical(5)

Total
Risk
Rating

Critical(25) Critical(25)

Mitiga-
tions

SPMC must be able to correctly identify an endpoint and enforce checks to disallow spoofing.

Miti-
gations
imple-
mented?

Yes. The SPMC enforces checks in the direct message request/response interfaces such an end-
point cannot spoof the origin and destination worlds (e.g. a NWd originated message directed to
the SWd cannot use a SWd ID as the sender ID). Also enforces check for direct response being
sent only to originator of request.

11.2. EL3 SPMC Threat Model 763

Trusted Firmware-A, Release 2.10.4

ID 02
Threat An endpoint impersonates the receiver FF-A ID in a direct request/response invoca-

tion.
Diagram
Elements

DF1, DF2, DF3, DF4

Affected
TF-A Com-
ponents

SPMD, SPMC

Assets SP state
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Spoofing, Denial of Service

Application Server Mobile
Impact Critical(5) Critical(5)
Likelihood Critical(5) Critical(5)
Total Risk
Rating

Critical(25) Critical(25)

Mitigations Validate if endpoind has permission to send request to other endpoint by implementation
defined means.

Mitigations
imple-
mented?

Platform specific.
The guidance below is left for a system integrator to implement as necessary.
Additionally a software component residing in the SPMC can be added for the purpose of
direct request/response filtering.
It can be configured with the list of known IDs and about which interaction can occur between
one and another endpoint (e.g. which NWd endpoint ID sends a direct request to which SWd
endpoint ID).
This component checks the sender/receiver fields for a legitimate communication between
endpoints.
A similar component can exist in the OS kernel driver, or Hypervisor although it remains
untrusted by the SPMD/SPMC.

764 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 03
Threat Tampering with memory shared between an endpoint and the SPMC.

Amalicious endpoint may attempt tampering with its RX/TX buffer contents while the SPMC
is processing it (TOCTOU).

Diagram
Elements

DF1, DF3, DF7

Affected
TF-A
Compo-
nents

SPMC

Assets Shared memory, Information exchange
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Tampering

Applica-
tion

Server Mobile

Impact High (4) High (4)
Likelihood High (4) High (4)
Total Risk
Rating

High (16) High (16)

Mitiga-
tions

Validate all inputs, copy before use.

Miti-
gations
imple-
mented?

Yes. In context of FF-A v1.1 this is the case of sharing the RX/TX buffer pair and usage in
the PARTITION_INFO_GET or memory sharing primitives.
The SPMC copies the contents of the TX buffer to an internal temporary buffer before pro-
cessing its contents. The SPMC implements hardened input validation on data transmitted
through the TX buffer by an untrusted endpoint.
The TF-A SPMC enforces checks on data transmitted through RX/TX buffers.

11.2. EL3 SPMC Threat Model 765

Trusted Firmware-A, Release 2.10.4

ID 04
Threat An endpoint may tamper with its own state or the state of another endpoint.

A malicious endpoint may attempt violating:
• its own or another SP state by using an unusual combination (or out-of-order)
FF-A function invocations. This can also be an endpoint emitting FF-A function
invocations to another endpoint while the latter in not in a state to receive it (e.g.
SP sends a direct request to the normal world early while the normal world is
not booted yet).

• the SPMC state itself by employing unexpected transitions in FF-A memory
sharing, direct requests and responses, or handling of interrupts This can be led
by random stimuli injection or fuzzing.

Diagram Elements DF1, DF2, DF3
Affected TF-A
Components

SPMD, SPMC

Assets SP state, SPMC state
Threat Agent NS-Endpoint, S-Endpoint
Threat Type Tampering
Application Server Mobile
Impact High (4) High (4)
Likelihood Medium (3) Medium (3)
Total Risk Rating High (12) | High (12)
Mitigations Follow guidelines in FF-A v1.1 specification on state transitions (run-time model).
Mitigations imple-
mented?

Yes. The TF-A SPMC is hardened to follow this guidance.

766 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 05
Threat Replay fragments of past communication between endpoints.

A malicious endpoint may replay a message exchange that occurred between two legitimate end-
points as a matter of triggering a malfunction or extracting secrets from the receiving endpoint. In
particular the memory sharing operation with fragmented messages between an endpoint and the
SPMC may be replayed by a malicious agent as a matter of getting access or gaining permissions
to a memory region which does not belong to this agent.

Dia-
gram
Ele-
ments

DF2, DF3

Af-
fected
TF-A
Com-
po-
nents

SPMC

As-
sets

Information exchange

Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Repudiation

Ap-
plica-
tion

Server Mobile

Im-
pact

Medium (3) Medium (3)

Like-
li-
hood

High (4) High (4)

Total
Risk
Rat-
ing

High (12) High (12)

Mit-
iga-
tions

Strict input validation and state tracking.

Mit-
iga-
tions
im-
ple-
mented?

Platform specific.

11.2. EL3 SPMC Threat Model 767

Trusted Firmware-A, Release 2.10.4

ID 06
Threat A malicious endpoint may attempt to extract data or state information by the use of

invalid or incorrect input arguments.
Lack of input parameter validation or side effects of maliciously forged input parameters might
affect the SPMC.

Diagram
Elements

DF1, DF2, DF3

Affected
TF-A
Compo-
nents

SPMD, SPMC

Assets SP secrets, SPMC secrets, SP state, SPMC state
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Information discolure

Applica-
tion

Server Mobile

Impact High (4) High (4)
Likeli-
hood

Medium (3) Medium (3)

Total
Risk
Rating

High (12) High (12)

Mitiga-
tions

SPMC must be prepared to receive incorrect input data from secure partitions and reject them
appropriately. The use of software (canaries) or hardware hardening techniques (XN, WXN,
pointer authentication) helps detecting and stopping an exploitation early.

Miti-
gations
imple-
mented?

Yes. The TF-A SPMC mitigates this threat by implementing stack protector, pointer authenti-
cation, XN, WXN, security hardening techniques.

768 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 07
Threat Amalicious endpoint may forge a direct message request such that it reveals the internal

state of another endpoint through the direct message response.
The secure partition or SPMC replies to a partition message by a direct message response with
information which may reveal its internal state (e.g. partition message response outside of
allowed bounds).

Diagram
Elements

DF1, DF2, DF3

Affected
TF-A
Compo-
nents

SPMC

Assets SPMC or SP state
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Information discolure

Applica-
tion

Server Mobile

Impact Medium (3) Medium (3)
Likeli-
hood

Low (2) Low (2)

Total
Risk
Rating

Medium (6) Medium (6)

Mitiga-
tions

Follow FF-A specification about state transitions, run time model, do input validation.

Miti-
gations
imple-
mented?

Yes. For the specific case of direct requests targeting the SPMC, the latter is hardened to prevent
its internal state or the state of an SP to be revealed through a direct message response. Further
FF-A v1.1 guidance about run time models and partition states is followed.

11.2. EL3 SPMC Threat Model 769

Trusted Firmware-A, Release 2.10.4

ID 08
Threat Probing the FF-A communication between endpoints.

SPMC and SPs are typically loaded to external memory (protected by a TrustZone memory
controller). A malicious agent may use non invasive methods to probe the external memory bus
and extract the traffic between an SP and the SPMC or among SPs when shared buffers are held
in external memory.

Dia-
gram
Ele-
ments

DF7

Af-
fected
TF-A
Compo-
nents

SPMC

Assets SP/SPMC state, SP/SPMC secrets
Threat
Agent

Hardware attack

Threat
Type

Information disclosure

Appli-
cation

Server Mobile

Impact Medium (3) Medium (3)
Likeli-
hood

Low (2) Medium (3)

Total
Risk
Rating

Medium (6) Medium (9)

Mitiga-
tions

Implement DRAM protection techniques using hardware countermeasures at platform or chip
level.

Miti-
gations
imple-
mented?

Platform specific.

770 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 09
Threat A malicious agent may attempt revealing the SPMC state or secrets by the use of

software-based cache side-channel attack techniques.
Diagram
Elements

DF7

Affected
TF-A
Compo-
nents

SPMC

Assets SP or SPMC state
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Information disclosure

Applica-
tion

Server Mobile

Impact Medium (3) Medium (3)
Likeli-
hood

Low (2) Low (2)

Total Risk
Rating

Medium (6) Medium (6)

Mitiga-
tions

The SPMC may be hardened further with SW mitigations (e.g. speculation barriers) for the
cases not covered in HW. Usage of hardened compilers and appropriate options, code inspec-
tion are recommended ways to mitigate Spectre types of attacks.

Miti-
gations
imple-
mented?

No.

11.2. EL3 SPMC Threat Model 771

Trusted Firmware-A, Release 2.10.4

ID 10
Threat Amalicious endpoint may attempt flooding the SPMCwith requests targeting a service

within an endpoint such that it denies another endpoint to access this service.
Similarly, the malicious endpoint may target a a service within an endpoint such that the latter
is unable to request services from another endpoint.

Diagram
Elements

DF1, DF2, DF3

Affected
TF-A
Compo-
nents

SPMC

Assets SPMC state, Scheduling cycles
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Denial of service

Applica-
tion

Server Mobile

Impact Medium (3) Medium (3)
Likelihood Medium (3) Medium (3)
Total Risk
Rating

Medium (9) Medium (9)

Mitiga-
tions

Bounding the time for operations to complete can be achieved by the usage of a trusted watch-
dog. Other quality of service monitoring can be achieved in the SPMC such as counting a
number of operations in a limited timeframe.

Miti-
gations
imple-
mented?

Platform specific.

772 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

ID 11
Threat Denying a lender endpoint to make progress if borrower endpoint encountered a fatal

exception. Denying a new sender endpoint to make progress if receiver encountered a
fatal exception.

Diagram
Ele-
ments

DF1, DF2, DF3

Affected
TF-A
Compo-
nents

SPMC

Assets Shared resources, Scheduling cycles.
Threat
Agent

NS-Endpoint, S-Endpoint

Threat
Type

Denial of service

Applica-
tion

Server Mobile

Impact Medium (3) Medium (3)
Likeli-
hood

Medium (3) Medium (3)

Total
Risk
Rating

Medium (9) Medium (9)

Mitiga-
tions

SPMCmust be able to detect fatal error in SP and take ownership of shared resources. It should
be able to relinquish the access to shared memory regions to allow lender to proceed. SPMC
must return ABORTED if new direct requests are targeted to SP which has had a fatal error.

Miti-
gations
imple-
mented?

Platform specific.

11.2. EL3 SPMC Threat Model 773

Trusted Firmware-A, Release 2.10.4

ID 12
Threat A malicious endpoint may attempt to donate, share, lend, relinquish or reclaim unau-

thorized memory region.
Diagram El-
ements

DF1, DF2, DF3

Affected
TF-A Com-
ponents

SPMC

Assets SP secrets, SPMC secrets, SP state, SPMC state
Threat
Agent

NS-Endpoint, S-Endpoint

Threat Type Elevation of Privilege
Application Server Mobile
Impact High (4) High (4)
Likelihood High (4) High (4)
Total Risk
Rating

High (16) High (16)

Mitigations Follow FF-A specification guidelines on Memory management transactions.
Mitigations
imple-
mented?

Yes. The SPMC tracks ownership and access state for memory transactions appropriately,
and validating the same for all operations. SPMC follows FF-A v1.1 guidance for memory
transaction lifecycle.

Copyright (c) 2022-2023, Arm Limited. All rights reserved.

11.3 fvp_r-Platform Threat Model

11.3.1 Introduction

This document provides a threat model for TF-A fvp_r platform.

11.3.2 Target of Evaluation

In this threat model, the target of evaluation is the fvp_r platform of Trusted Firmware for A-class Processors
(TF-A). The fvp_r platform provides limited support of AArch64 R-class Processors (v8-R64).

This is a delta document, only pointing out differences from the general TF-A threat-model document, Generic
Threat Model

774 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

BL1 Only

The most fundamental difference between the threat model for the current fvp_r implementation compared to
the general TF-A threat model, is that fvp_r is currently limited to BL1 only. Any threats from the general
TF-A threat model unrelated to BL1 are therefore not relevant to the fvp_r implementation.

The fvp_r BL1 implementation directly loads a customer/partner-defined runtime system. The threat model
for that runtime system, being partner-defined, is out-of-scope for this threat-model.

Relatedly, all exceptions, synchronous and asynchronous, are disabled during BL1 execution. So, any references
to exceptions are not relevant.

EL3 is Unsupported and All Secure

v8-R64 cores do not support EL3, and (essentially) all operation is defined as Secure-mode. Therefore:

• Any threats regarding NS operation are not relevant.

• Any mentions of SMCs are also not relevant.

• Anything otherwise-relevant code running in EL3 is instead run in EL2.

MPU instead of MMU

v8-R64 cores, running in EL2, use an MPU for memory management, rather than an MMU. The MPU in
the fvp_r implementation is configured to function effectively identically with the MMU for the usual BL1
implementation. There are memory-map differences, but the MPU configuration is functionally equivalent.

No AArch32 Support

Another substantial difference between v8-A and v8-R64 cores is that v8-R64 does not support AArch32.
However, this is not believed to have any threat-modeling ramifications.

Threat Assessment

For this section, please reference the Threat Assessment under the general TF-A threat-model document,
Generic Threat Model

The following threats from that document are still relevant to the fvp_r implementation:

• ID 01: An attacker can mangle firmware images to execute arbitrary code.

• ID 03: An attacker can use Time-of-Check-Time-of-Use (TOCTOU) attack to bypass image authenti-
cation during the boot process.

• ID 04: An attacker with physical access can execute arbitrary image by bypassing the signature verifica-
tion stage using clock- or power-glitching techniques.

• ID 05: Information leak via UART logs such as crashes

11.3. fvp_r-Platform Threat Model 775

Trusted Firmware-A, Release 2.10.4

• ID 06: An attacker can read sensitive data and execute arbitrary code through the external debug and
trace interface.

• ID 08: Memory corruption due to memory overflows and lack of boundary checking when accessing
resources could allow an attacker to execute arbitrary code, modify some state variable to change the
normal flow of the program, or leak sensitive.

• ID 11: Misconfiguration of the Memory Protection Unit (MPU) may allow normal world software to
access sensitive data or execute arbitrary code. Arguably, MPUs having fewer memory regions, there
may be a temptation to share memory regions, making this a greater threat. However, since the fvp_r
implementation is limited to BL1, since BL1’s regions are fixed, and since the MPU configuration is
equivalent with that for the fvp platform and others, this is not expected to be a concern.

• ID 15: Improper handling of input data received over a UART interface may allow an attacker to tamper
with TF-A execution environment.

Copyright (c) 2021-2023, Arm Limited. All rights reserved.

11.4 Threat Model for RSS - AP interface

11.4.1 Introduction

This document is an extension for the general TF-A threat-model. It considers those platforms where a Runtime
Security Subsystem (RSS) is included in the SoC next to the Application Processor (AP).

11.4.2 Target of Evaluation

The scope of this threat model only includes the interface between the RSS and AP. Otherwise, the TF-A
Generic Threat Model document is applicable for the AP core. The threat model for the RSS firmware will be
provided by the RSS firmware project in the future.

Data Flow Diagram

This diagram is different only from the general TF-A data flow diagram in that it includes the RSS and highlights
the interface between theAP and the RSS cores. The interface description only focuses on theAP-RSS interface
the rest is the same as in the general TF-A threat-model document.

776 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

Fig. 3: Figure 1: TF-A Data Flow Diagram including RSS

Table 7: Table 1: TF-A - RSS data flow diagram
Diagram Element Description
DF7

Boot images interact with RSS over a
communication channel to record boot
measurements and get image verification keys. At
runtime, BL31 obtains the realm world attestation
signing key from RSS.

Threat Assessment

For this section, please reference the Threat Assessment under the general TF-A threat-model document,
Generic Threat Model. All the threats listed there are applicable for the AP core, here only the differences are
highlighted.

• ID 11: The access to the communication interface between AP and RSS is allowed only for firmware
running at EL3. Accidentally exposing this interface to NSCode can allow malicious code to interact
with RSS and gain access to sensitive data.

• ID 13: Relevant in the context of the realm attestation key, which can be retrieved by BL31 through
DF7. The RSS communication protocol layer mitigates against this by clearing its internal buffer when

11.4. Threat Model for RSS - AP interface 777

Trusted Firmware-A, Release 2.10.4

reply is received. The caller of the API must do the same if data is not needed anymore.

Copyright (c) 2022, Arm Limited. All rights reserved.

11.5 Threat Model for TF-A with Arm CCA support

11.5.1 Introduction

This document provides a threat model of TF-A firmware for platforms with Arm Realm Management Exten-
sion (RME) support which implement Arm Confidential Compute Architecture (Arm CCA).

Although it is a separate document, it references the Generic Threat Model in a number of places, as some of
the contents is commonly applicable to TF-A with or without Arm CCA support.

11.5.2 Target of Evaluation

In this threat model, the target of evaluation is the Trusted Firmware for A-class Processors (TF-A) with RME
support and Arm CCA support. This includes the boot ROM (BL1), the trusted boot firmware (BL2) and the
runtime EL3 firmware (BL31).

Assumptions

We make the following assumptions:

• Realm Management Extension (RME) is enabled on the platform.

• Arm CCA Hardware Enforced Security (HES) is available on the platform, as recommended by Arm
CCA security model:

[R0004] Arm strongly recommends that all implementations of CCA utilize hardware enforced
security (CCA HES).

• All TF-A images run from on-chip memory. Data used by these images also live in on-chip memory.
This means TF-A is not vulnerable to an attacker that can probe or tamper with off-chip memory.

These are requirements of the Arm CCA security model:

[R0147] Monitor code executes entirely from on-chip memory.

[R0149] Any monitor data that may affect the CCA security guarantee, other than GPT, is
either held in on-chip memory, or in external memory but with additional integrity protection.

Note that this threat model hardens [R0149] requirement by forbidding to hold data in external memory,
even if it is integrity-protected - except for GPT data.

• TF-A BL1 image is immutable and thus implicitly trusted. It runs from read-only memory or write-
protected memory. This could be on-chip ROM, on-chip OTP, locked on-chip flash, or write-protected
on-chip RAM for example.

This is a requirement of the Arm CCA security model:

778 Chapter 11. Threat Model

https://developer.arm.com/documentation/DEN0096/A_a
https://developer.arm.com/documentation/DEN0096/A_a
https://developer.arm.com/documentation/DEN0096/A_a
https://developer.arm.com/documentation/DEN0096/A_a

Trusted Firmware-A, Release 2.10.4

[R0158] Arm recommends that all initial boot code is immutable on a secured system.

[R0050] If all or part of initial boot code is instantiated in on-chip memory then other trusted
subsystems or application PE cannot modify that code before it has been executed.

• Trusted boot and measured boot are enabled. This means an attacker can’t boot arbitrary images that are
not approved by platform providers.

These are requirements of the Arm CCA security model:

[R0048] A secured system can only load authorized CCA firmware.

[R0079] All Monitor firmware loaded by PE initial boot is measured and verified as outlined
in Verified boot.

• No experimental features are enabled. These are typically incomplete features, which need more time
to stabilize. Thus, we do not consider threats that may come from them. It is not recommended to use
these features in production builds.

Data Flow Diagram

Figure 1 shows a high-level data flow diagram for TF-A. The diagram shows amodel of the different components
of a TF-A-based system and their interactions with TF-A. A description of each diagram element is given on
Table 1. On the diagram, the red broken lines indicate trust boundaries. Components outside of the broken
lines are considered untrusted by TF-A.

11.5. Threat Model for TF-A with Arm CCA support 779

https://developer.arm.com/documentation/DEN0096/A_a

Trusted Firmware-A, Release 2.10.4

Fig. 4: Figure 1: Data Flow Diagram

780 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

Table 8: Table 1: Data Flow Diagram Description
Diagram Element Description
DF1

Refer to DF1 description in the Generic Threat
Model. Additionally TF-A loads realm images.

DF2-DF6

Refer to DF2-DF6 descriptions in the Generic
Threat Model.

DF7

Boot images interact with Arm CCA HES to record
boot measurements and retrieve data used for AP
images authentication.

The runtime firmware interacts with Arm CCA
HES to obtain sensitive attestation data for the
realm world.

DF8

Realm world software (e.g. TF-RMM) interact
with TF-A through SMC call interface and/or
shared memory.

11.5.3 Threat Analysis

In this threat model, we use the same method to analyse threats as in the Generic Threat Model. This section
only points out differences where applicable.

• There is an additional threat agent: RealmCode. It takes the form of malicious or faulty code running in
the realm world, including R-EL2, R-EL1 and R-EL0 levels.

• At this time we only consider the Server target environment. New threats identified in this threat
model will only be given a risk rating for this environment. Other environments may be added in a
future revision

11.5. Threat Model for TF-A with Arm CCA support 781

Trusted Firmware-A, Release 2.10.4

Threat Assessment

General Threats for All Firmware Images

The following table analyses the General Threats for All Firmware Images in the context of this threat model.
Only deltas are pointed out.

ID Applicable? Comments
05 Yes
06 Yes
08 Yes Additional diagram element:

DF8.
Additional threat agent:
RealmCode.

11 Yes

Misconfiguration of the
Memory Management Unit
(MMU) may allow a
normal/secure/realm world
software to access sensitive
data, execute arbitrary code
or access otherwise restricted
HW interface.

Note that on RME
systems, MMU
configuration also includes
Granule Protection Tables
(GPT) setup.

Additional diagram
elements: DF4, DF7, DF8.

Additional threat agents:
SecCode, RealmCode.

13 Yes Additional diagram element:
DF8.
Additional threat agent:
RealmCode.

15 Yes Additional diagram element:
DF8.
Additional threat agent:
RealmCode.

782 Chapter 11. Threat Model

Trusted Firmware-A, Release 2.10.4

Threats to be Mitigated by the Boot Firmware

The following table analyses the Threats to be Mitigated by the Boot Firmware in the context of this threat model.
Only deltas are pointed out.

ID Applica-
ble?

Comments

01 Yes Additional diagram element: DF8.
Additional threat agent: RealmCode.

02 Yes Additional diagram element: DF8.
Additional threat agent: RealmCode.

03 Yes
04 Yes

Threats to be Mitigated by the Runtime EL3 Firmware

The following table analyses the Threats to be Mitigated by the Runtime EL3 Firmware in the context of this
threat model. Only deltas are pointed out.

ID Applica-
ble?

Comments

07 Yes Additional diagram element: DF8.
Additional threat agent: RealmCode.

09 Yes Additional diagram element: DF8.
Additional threat agent: RealmCode.

10 Yes Additional diagram element: DF8.
Additional threat agent: RealmCode.

12 Yes Additional diagram element: DF8.
Additional threat agent: RealmCode.

14 Yes

Copyright (c) 2023, Arm Limited. All rights reserved.

Copyright (c) 2021-2023, Arm Limited and Contributors. All rights reserved.

11.5. Threat Model for TF-A with Arm CCA support 783

CHAPTER

TWELVE

TOOLS

12.1 TF-A Memory Layout Tool

TF-A’s memory layout tool is a Python script for analyzing the virtual memory layout of TF-A builds.

12.1.1 Prerequisites

1. Python (3.8 or later)

2. Poetry Python package manager

12.1.2 Getting Started

1. Install Poetry

curl -sSL https://install.python-poetry.org | python3 -

2. Install the required packages

poetry install --with memory

3. Verify that the tool runs in the installed virtual environment

poetry run memory --help

12.1.3 Symbol Virtual Map

The tool can be used to generate a visualisation of the symbol table. By default, it prints the symbols representing
the start and end address of the main memory regions in an ELF file (i.e. text, bss, rodata) but can be modified
to print any set of symbols.

$ poetry run memory -s
build-path: build/fvp/release
Virtual Address Map:

+------------__BL1_RAM_END__------------+--------------------------

(continues on next page)

784

https://python-poetry.org/docs/

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
↪→-------------+

+---------__COHERENT_RAM_END__----------+ ␣
↪→ |

+--------__COHERENT_RAM_START__---------+ ␣
↪→ |
0x0403b000 +----------__XLAT_TABLE_END__-----------+ ␣
↪→ |
0x04036000 +---------__XLAT_TABLE_START__----------+ ␣
↪→ |

+--------__BASE_XLAT_TABLE_END__--------+ ␣
↪→ |
0x04035600 +--------------__BSS_END__--------------+ ␣
↪→ |

+-------__BASE_XLAT_TABLE_START__-------+ ␣
↪→ |

+-----__PMF_PERCPU_TIMESTAMP_END__------+ ␣
↪→ |

+---------__PMF_TIMESTAMP_END__---------+ ␣
↪→ |
0x04035400 +--------__PMF_TIMESTAMP_START__--------+ ␣
↪→ |

+-------------__BSS_START__-------------+ ␣
↪→ |
0x04034a00 +------------__STACKS_END__-------------+ ␣
↪→ |
0x04034500 +-----------__STACKS_START__------------+ ␣
↪→ |
0x040344c5 +-----------__DATA_RAM_END__------------+ ␣
↪→ |

+-----------__BL1_RAM_START__-----------+ ␣
↪→ |
0x04034000 +----------__DATA_RAM_START__-----------+ ␣
↪→ |

| +---------__COHERENT_RAM_
↪→END__----------+

| +--------__COHERENT_RAM_
↪→START__---------+
0x0402e000 | +----------__XLAT_TABLE_
↪→END__-----------+
0x04029000 | +---------__XLAT_TABLE_
↪→START__----------+

| +--------__BASE_XLAT_TABLE_
↪→END__--------+
0x04028800 | +--------------__BSS_END__-
↪→-------------+

| +-------__BASE_XLAT_TABLE_
↪→START__-------+

| +-----__PMF_PERCPU_
↪→TIMESTAMP_END__------+

| +---------__PMF_TIMESTAMP_
↪→END__---------+
0x04028580 | +--------__PMF_TIMESTAMP_

(continues on next page)

12.1. TF-A Memory Layout Tool 785

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
↪→START__--------+
0x04028000 | +-------------__BSS_START__
↪→-------------+
0x04027e40 | +------------__STACKS_END__
↪→-------------+
0x04027840 | +-----------__STACKS_START_
↪→_------------+
0x04027000 | +------------__RODATA_END__
↪→-------------+

| +------------__CPU_OPS_END_
↪→_------------+

| +-----------__CPU_OPS_
↪→START__-----------+

| +--------__FCONF_POPULATOR_
↪→END__--------+

| +--------------__GOT_END__-
↪→-------------+

| +-------------__GOT_START__
↪→-------------+

| +---------__PMF_SVC_DESCS_
↪→END__---------+
0x04026c10 | +--------__PMF_SVC_DESCS_
↪→START__--------+
0x04026bf8 | +-------__FCONF_POPULATOR_
↪→START__-------+

| +-----------__RODATA_START_
↪→_------------+
0x04026000 | +-------------__TEXT_END__-
↪→-------------+
0x04021000 | +------------__TEXT_START__
↪→-------------+
0x000062b5 +------------__BL1_ROM_END__------------+ ␣
↪→ |
0x00005df0 +----------__DATA_ROM_START__-----------+ ␣
↪→ |

+------------__CPU_OPS_END__------------+ ␣
↪→ |

+--------------__GOT_END__--------------+ ␣
↪→ |

+-------------__GOT_START__-------------+ ␣
↪→ |
0x00005de8 +------------__RODATA_END__-------------+ ␣
↪→ |

+-----------__CPU_OPS_START__-----------+ ␣
↪→ |

+--------__FCONF_POPULATOR_END__--------+ ␣
↪→ |

+---------__PMF_SVC_DESCS_END__---------+ ␣
↪→ |
0x00005c98 +--------__PMF_SVC_DESCS_START__--------+ ␣
↪→ |
0x00005c80 +-------__FCONF_POPULATOR_START__-------+ ␣

(continues on next page)

786 Chapter 12. Tools

Trusted Firmware-A, Release 2.10.4

(continued from previous page)
↪→ |

+-----------__RODATA_START__------------+ ␣
↪→ |
0x00005000 +-------------__TEXT_END__--------------+ ␣
↪→ |
0x00000000 +------------__TEXT_START__-------------+--------------------------
↪→-------------+

Addresses are displayed in hexadecimal by default but can be printed in decimal instead with the -d option.

Because of the length of many of the symbols, the tool defaults to a text width of 120 chars. This can be
increased if needed with the -w option.

For more detailed help instructions, run:

poetry run memory --help

12.1.4 Memory Footprint

The tool enables users to view static memory consumption. When the options -f, or --footprint are
provided, the script analyses the ELF binaries in the build path to generate a table (per memory type), showing
memory allocation and usage. This is the default output generated by the tool.

$ poetry run memory -f
build-path: build/fvp/release
+--+
| Memory Usage (bytes) [RAM] |
+-----------+------------+------------+------------+------------+------------+
| Component | Start | Limit | Size | Free | Total |
+-----------+------------+------------+------------+------------+------------+
BL1	4034000	4040000	7000	5000	c000
BL2	4021000	4034000	d000	6000	13000
BL2U	4021000	4034000	a000	9000	13000
BL31	4003000	4040000	1e000	1f000	3d000
+-----------+------------+------------+------------+------------+------------+

+--+
| Memory Usage (bytes) [ROM] |
+-----------+------------+------------+------------+------------+------------+
| Component | Start | Limit | Size | Free | Total |
+-----------+------------+------------+------------+------------+------------+
| BL1 | 0 | 4000000 | 5df0 | 3ffa210 | 4000000 |
+-----------+------------+------------+------------+------------+------------+

The script relies on symbols in the symbol table to determine the start, end, and limit addresses of each boot-
loader stage.

12.1. TF-A Memory Layout Tool 787

Trusted Firmware-A, Release 2.10.4

12.1.5 Memory Tree

A hierarchical view of the memory layout can be produced by passing the option -t or --tree to the tool.
This gives the start, end, and size of each module, their ELF segments as well as sections.

$ poetry run memory -t
build-path: build/fvp/release
name start end size
bl1 0 400c000 400c000
├── 00 0 5de0 5de0
│ ├── .text 0 5000 5000
│ └── .rodata 5000 5de0 de0
├── 01 4034000 40344c5 4c5
│ └── .data 4034000 40344c5 4c5
├── 02 4034500 4034a00 500
│ └── .stacks 4034500 4034a00 500
├── 04 4034a00 4035600 c00
│ └── .bss 4034a00 4035600 c00
└── 03 4036000 403b000 5000

└── .xlat_table 4036000 403b000 5000
bl2 4021000 4034000 13000
├── 00 4021000 4027000 6000
│ ├── .text 4021000 4026000 5000
│ └── .rodata 4026000 4027000 1000
└── 01 4027000 402e000 7000

├── .data 4027000 4027809 809
├── .stacks 4027840 4027e40 600
├── .bss 4028000 4028800 800
└── .xlat_table 4029000 402e000 5000

bl2u 4021000 4034000 13000
├── 00 4021000 4025000 4000
│ ├── .text 4021000 4024000 3000
│ └── .rodata 4024000 4025000 1000
└── 01 4025000 402b000 6000

├── .data 4025000 4025065 65
├── .stacks 4025080 4025480 400
├── .bss 4025600 4025c00 600
└── .xlat_table 4026000 402b000 5000

bl31 4003000 4040000 3d000
├── 02 ffe00000 ffe03000 3000
│ └── .el3_tzc_dram ffe00000 ffe03000 3000
├── 00 4003000 4010000 d000
│ └── .text 4003000 4010000 d000
└── 01 4010000 4021000 11000

├── .rodata 4010000 4012000 2000
├── .data 4012000 401219d 19d
├── .stacks 40121c0 40161c0 4000
├── .bss 4016200 4018c00 2a00
├── .xlat_table 4019000 4020000 7000
└── .coherent_ram 4020000 4021000 1000

The granularity of this view can be modified with the --depth option. For instance, if you only require the
tree up to the level showing segment data, you can specify the depth with:

788 Chapter 12. Tools

Trusted Firmware-A, Release 2.10.4

$ poetry run memory -t --depth 2
build-path: build/fvp/release
name start end size
bl1 0 400c000 400c000
├── 00 0 5df0 5df0
├── 01 4034000 40344c5 4c5
├── 02 4034500 4034a00 500
├── 04 4034a00 4035600 c00
└── 03 4036000 403b000 5000
bl2 4021000 4034000 13000
├── 00 4021000 4027000 6000
└── 01 4027000 402e000 7000
bl2u 4021000 4034000 13000
├── 00 4021000 4025000 4000
└── 01 4025000 402b000 6000
bl31 4003000 4040000 3d000
├── 02 ffe00000 ffe03000 3000
├── 00 4003000 4010000 d000
└── 01 4010000 4021000 11000

Copyright (c) 2023, Arm Limited. All rights reserved.

Copyright (c) 2023, Arm Limited. All rights reserved.

12.1. TF-A Memory Layout Tool 789

CHAPTER

THIRTEEN

CHANGE LOG & RELEASE NOTES

This document contains a summary of the new features, changes, fixes and known issues in each release of
Trusted Firmware-A.

13.1 lts-2.10.4 (2024-04-26)

13.1.1 Documentation

• decrease the minimum supported OpenSSL (f491e09)

13.1.2 Resolved Issues

• Architecture

– Performance Monitors Extension (FEAT_PMUv3)

∗ fix breakage on ARMv7 CPUs with SP_min as BL32 (867271f)

• Libraries

– CPU Support

∗ workaround for Cortex-A715 erratum 2728106 (1edbf2a)

∗ workaround for Cortex-X4 erratum 2740089 (3609b0a)

∗ workaround for Cortex-X4 erratum 2763018 (200931d)

13.2 lts-2.10.3 (2024-04-05)

13.2.1 Code Refactoring

• Services

– ERRATA ABI

∗ optimize errata ABI using errata framework (9fe6507)

790

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f491e09e664088c6f777277b4f82f8fac8c328a8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/867271ff8135b1f904ff46a09835283648f392c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1edbf2ae58df6b55fe58c7d723ec7bb61dac32dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3609b0a953958356c4ac6dad38b501b386bfdd96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/200931d2dcecdb7960813f66aace21899ac59640
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9fe65073d4425a626447a2aff3646f65935e89d8

Trusted Firmware-A, Release 2.10.4

∗ workaround platforms non-arm interconnect (a24c800)

13.2.2 New Features

• Libraries

– CPU Support

∗ add support for Poseidon V CPU (a6256d7)

13.2.3 Miscellaneous

• rearrange the fvp_cpu_errata.mk file (5864630)

• rename Poseidon to Neoverse V3 (bafc27c)

• update status of Cortex-X3 erratum 2615812 (635c83e)

13.2.4 Documentation

• threat_model: mark power analysis threats out-of-scope (11cb096)

• Miscellaneous

– SDEI

∗ provide security guidelines when using SDEI (44f36c4)

• Documentation

– Changelog

∗ display all sections (4a10950)

13.2.5 Resolved Issues

• readme: dummy commit for sandbox release (d6b1d48)

• Libraries

– CPU Support

∗ correct variant name for default Poseidon CPU (ef393a3)

∗ add erratum 2701951 to Cortex-X3’s list (a234f54)

∗ fix a defect in Cortex-A715 erratum 2561034 (e86990d)

∗ workaround for Cortex-A715 erratum 2331818 (940ebbe)

∗ workaround for Cortex-A715 erratum 2344187 (3e3ff29)

∗ workaround for Cortex-A715 erratum 2413290 (81931a1)

13.2. lts-2.10.3 (2024-04-05) 791

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a24c8006ea39be65e156283407fa45f7c7592f6e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a6256d7a2638bfb9bdbb10ca907f891eea3f0829
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/58646309aedfa89f3df51e8d4b0be199948f1543
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bafc27c8d7cfb5ba44ea132e3a7d92ab76678516
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/635c83eb456a8ee2191d820c642dfbc0d23ae32c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/11cb0962f7ac35cfecd8e731cee4e7b6095c0faa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44f36c48f2806c25c8ebc7b4ac9b80f0a356a551
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a10950a8538b0469e08e95af079fefe9ee5c895
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d6b1d4807bf5a3c638c33684c377eb018e765964
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef393a3f9fa216f76e96c2dd7493ea448d11ba7a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a234f540b7271406aeea2fb742dddaeaeafed612
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e86990d0911d20ec9bf2701485e5b22db774bb54
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/940ebbe2d1d07ea8187db5b5c3b94e463a5e5dbb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3e3ff298a61473ce7536484a592fa74670b1ae84
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81931a13a83564dea387f22b0006aaf57e94b000

Trusted Firmware-A, Release 2.10.4

∗ workaround for Cortex-A715 erratum 2413290 (b59307e)

∗ workaround for Cortex-A715 erratum 2420947 (04c60d5)

∗ workaround for Cortex-A715 erratum 2429384 (301698e)

∗ workaround for Cortex-A720 erratum 2926083 (baf1474)

∗ workaround for Cortex-A720 erratum 2940794 (03636f2)

∗ workaround for Cortex-X3 erratum 2372204 (5f8f745)

∗ workaround for Cortex-X4 erratum 2701112 (d466c5d)

• Drivers

– Arm

∗ GIC

· GICv3

· GIC-600

· workaround for Part 1 of GIC600 erratum 2384374 (b7ed781)

13.3 lts-2.10.2 (2024-02-08)

13.3.1 Resolved Issues

• Build System

– move comment for VERSION_PATCH (822bfa3)

– properly manage versions in .versionrc.js (7bccacd)

– update versions (e8e5c77)

13.4 lts-2.10.1 (2024-02-07)

13.4.1 New Features

• Platforms

– Xilinx

∗ Versal

· enable errata management feature (4f5ce87)

• Services

– SPM

∗ SPMD

792 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b59307ef8efd723edac5c2ab244a370d86dcd821
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/04c60d5ef31ccee6178036611e796c9d20da1729
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/301698e15bc87b8dc300fdd3f07bcc2781364c67
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/baf14745f1173621a20e2e190b596af9579bc031
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/03636f2c3d60a7be28898aae5ec6d3e56d1c05ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f8f745c7e996d2767d6567d2beda6bca185de1c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d466c5d4d27b5d24510a314efe8f6ddb3dd44ff8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7ed781eea7478a724183de93a741fc3aa9f7914
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/822bfa39ce6b961736e4f91a95f8b5d950ffb9ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7bccacddee0b5c42a0f6c112ee23679248314499
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8e5c775929d90df3395701bfef3f50591d1c28e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4f5ce871f6d741329f46af024198d60370d69a28

Trusted Firmware-A, Release 2.10.4

· initialize SCR_EL3.EEL2 bit at RESET (5c972df)

• Miscellaneous

– Security

∗ add support for SLS mitigation (9cec549)

13.4.2 Resolved Issues

• Platforms

– Arm

∗ SGI

· apply workarounds for N2 CPU erratum (bdedd84)

– Rockchip

∗ RK3328

· apply ERRATA_A53_1530924 erratum (b7591e1)

• Libraries

– CPU Support

∗ workaround for Cortex X3 erratum 2641945 (84fcd04)

∗ workaround for Cortex X3 erratum 2743088 (88a8cd0)

∗ workaround for Cortex-A520 erratum 2630792 (4a9ed7a)

∗ workaround for Cortex-A520 erratum 2858100 (8d45e30)

∗ workaround for Cortex-A710 erratum 2778471 (e27b8ec)

∗ workaround for Cortex-A715 erratum 2561034 (2624951)

∗ workaround for Cortex-A78C erratum 2683027 (0e5e994)

∗ workaround for Cortex-A78C erratum 2743232 (6becda5)

∗ workaround for Cortex-X2 erratum 2778471 (b312fa0)

∗ workaround for Cortex-X3 erratum 2266875 (7c227dc)

∗ workaround for Cortex-X3 erratum 2302506 (744f07a)

∗ workaround for Cortex-X3 erratum 2779509 (402b9a9)

∗ workaround for Neoverse V1 erratum 2348377 (25cf284)

∗ workaround for Neoverse V2 erratum 2618597 (f98185e)

∗ workaround for Neoverse V2 erratum 2662553 (d36d167)

∗ add Cortex-A520 definitions (0685a91)

∗ check for SCU before accessing DSU (f940537)

13.4. lts-2.10.1 (2024-02-07) 793

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5c972dfdff0de24580dee78953f02810685e7c7f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9cec5496d3b01da4b6120f8498ac84fcd3877b32
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bdedd844c51c32067a71ab837525981f95665243
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7591e16fc3ef8cf68fca2b1eaa4add4d47feaf7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/84fcd04294a6ddac422cf6bd018ee43e18b10044
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/88a8cd0e542ea1eaa92dcd8b5f6115dc9ed8d525
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a9ed7a29aaec5653918409b2a48f1612b5bec89
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8d45e30a7cf3d14d601f69d0b7e64d6440cf6747
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e27b8ecc73509f34e505cb54844b13499666753c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2624951d205e557f17ee92d2e69bebfebdd3a6b0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e5e994764330d26b80036b31a23143f109ed59d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6becda5d11b135a3b3d59082b7f6b90fe88c5b3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b312fa066209cd19e7f414c9dea19d267bc0431e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c227dc447e80fa387796a613eb0e95c84f2d2b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/744f07ae75471cabb232ff5a7e06b6c4bc70567b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/402b9a9c0c6cb953508840685a7e5138d10d31aa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25cf2844bc7c450ce3f5d7ea18d8b9f88d8cf96e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f98185e1e3c5c3cd0bfb974cea723a194c1b2be2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d36d167516432566918892e38569e4d1ac534fb8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0685a91fd00555340205f18fb163656ad9b32d5f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f9405375addac24e0b4640c8618e0e5a7f5debef

Trusted Firmware-A, Release 2.10.4

13.5 2.10.0 (2023-11-21)

13.5.1 � BREAKING CHANGES

• Architecture

– Performance Monitors Extension (FEAT_PMUv3)

∗ This patch explicitly breaks the EL2 entry path. It is currently unsupported.

See: convert FEAT_MTPMU to C and move to persistent register init (83a4dae)

• Libraries

– EL3 Runtime

∗ Context Management

· Initialisation code for handoff from EL3 to NS-EL1 disabled by default. Platforms which
do that need to enable this macro going forward

See: introduce INIT_UNUSED_NS_EL2 macro (183329a)

• Drivers

– Authentication

∗ remove CryptoCell-712/713 support

See: remove CryptoCell-712/713 support (b65dfe4)

13.5.2 New Features

• Architecture

– CPU feature / ID register handling in general

∗ add AArch32 PAN detection support (d156c52)

∗ add memory retention bit define for CLUSTERPWRDN (278beb8)

∗ deny AArch64-only features when building for AArch32 (733d112)

∗ initialize HFG*_EL2 registers (4a530b4)

– Memory Tagging Extension

∗ adds feature detection for MTE_PERM (4d0b663)

– Performance Monitors Extension (FEAT_PMUv3)

∗ introduce pmuv3 lib/extensions folder (c73686a)

• Platforms

– Allwinner

∗ use reset through scpi for warm/soft reset (0cf5f08)

794 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/83a4dae1af916b938659b39b7d0884359c638185
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/183329a5847df2bc6164ac8e9dbe7de4ca92836d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b65dfe40aef550ee9ef7e869749013cb7f3c4cce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d156c5220adb35971aafa0b0de922992e4b8aa66
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/278beb894aeda23278a01c3c6aff1f40b8ce0a34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/733d112f05ecb29f7d8fce12c66a9721031970df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a530b4c6556c87deb22c027dfaf2c5d6c9997a3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d0b66323b242323ff738431c523aeb6d18dd3d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c73686a11cea8f9d22d7df3c5480f8824cfeec09
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0cf5f08a205e4877c9daef5d90e1086643590226

Trusted Firmware-A, Release 2.10.4

– Arm

∗ add IO policy to use backup gpt header (3e6d245)

∗ ecdsa p384/p256 full key support (b8ae689)

∗ enable FHI PPI interrupt to report CPU errors (f1e4a28)

∗ reuse SPM_MM specific defines for SPMC_AT_EL3 (5df1dcc)

∗ save BL32 image base and size in entry point info (821b01f)

∗ add memory map entry for CPER memory region (4dc91ac)

∗ firmware first error handling support for base RAMs (5b77a0e)

∗ update common platform RAS implementation (7f15131)

∗ FVP

· add mbedtls_asn1_get_len symbol in ROMlib (0605060)

· add public key-OID information in RSS metadata structure (bfbb1cb)

· add spmd logical partition (5cf311f)

· allow configurable FVP Trusted SRAM size (41e56f4)

· capture timestamps in bl stages (ed8f06d)

· implement platform function to measure and publish Public Key (db55d23)

· increase BL1 RW area for PSA_CRYPTO implementation (ce18938)

· mock support for CCA NV ctr (02552d4)

· new SiP call to set an interrupt pending (2032401)

· spmd logical partition smc handler (a1a9a95)

∗ Juno

· add mbedtls_asn1_get_len symbol in ROMlib (ec8ba97)

∗ Morello

· add cpuidle support (4f7330d)

· add support for I2S audio (6bcbe43)

· add TF-A version string to NT_FW_CONFIG (f4e64d1)

· fdts: add CoreSight DeviceTree bindings (3e6cfa7)

· set NT_FW_CONFIG properties for MCC, PCC and SCP version (10fd85d)

∗ RD

· RD-N2

· enable base element RAM RAS support on RD-N2 platform (0288632)

· add defines needed for spmc-el3 (b4bed4b)

13.5. 2.10.0 (2023-11-21) 795

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3e6d245772ccb4b43f1ba6cd9d1bb8abe86a516c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b8ae68908de5560436c565ac22d59c0cbfc9a7df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1e4a28d3f9e4c5e7905f44d41c13de63d735864
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5df1dccd0be06cc45e82a57dc01be5b6b5d1a21b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/821b01fa7521c0d6a0f16d02929fac3c44d14f86
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4dc91ac9069271325ffd3552a6a146256f5d0da3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b77a0e6759733d8a7de86e4492bd9b8628282d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f15131df42a42fef86cc594a56b6e7998dd2ba4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/06050601d2a0ff06f92ca30ab988cbaf4e9929a1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bfbb1cbaac3e74da37d906c9ce1d39993dce8b66
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5cf311f3a41fc114289265305a6254a8fb412c0e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/41e56f422df47b8bc1a7699ff258999f900a6290
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed8f06ddda52bc0333f79e9ff798419e67771ae5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/db55d23d34b687cf6ce79c0723fedf10ef7227be
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ce189383dc816cf1a48c1a94329c00f44d8acdc3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02552d45e526766e000f3e3ae91ef381d402dab1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/20324013b17706751ecdd68f57c0ab95c522ca7e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a1a9a950713468a734ef3d8da210baf97f7c1071
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ec8ba97e4ffde486670cb5a22ec4aac01409d92e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4f7330dc78ee620b8564a4bbc1ca2f2ae4cd1d9e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6bcbe437909d3779111e19774f911c625e98f1b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4e64d1f5e8277013c35dbd8e056b8071942f759
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3e6cfa7bd05521935c7753401dad823d044bfa23
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/10fd85d8f4a8f338942616ed403a1e02a388a16f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02886326659db3e4f46c0abd10be91a2de82cc90
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b4bed4b769e907c8431b07f698da24660dfe0059

Trusted Firmware-A, Release 2.10.4

· add plat hook for memory transaction (f99dcba)

· enable Neoverse N2 CPU error handling support (e802748)

· introduce accessor function to obtain datastore (f458934)

· introduce platform handler for Group0 interrupt (c47d049)

∗ SGI

· remove RAS setup call from common code (0f5e8eb)

· firmware first error handling for Neoverse N2 CPU (31d1e4f)

· increase sp memmap size (7c33bca)

∗ TC

· define memory ranges for tc platform (9be6b16)

· implement platform function to measure and publish Public Key (eee9fb0)

· deprecate Arm TC1 FVP platform (6a2b11c)

– Aspeed

∗ AST2700

· add Aspeed AST2700 platform support (85f199b)

– Intel

∗ add intel_rsu_update() to sip_svc_v2 (e3c3a48)

∗ ccu driver for Agilex5 SoC FPGA (02df499)

∗ clock manager support for Agilex5 SoC FPGA (1b1a3eb)

∗ cold/warm reset and smp support for Agilex5 SoC FPGA (79626f4)

∗ ddr driver for Agilex5 SoC FPGA (29461e4)

∗ mailbox and SMC support for Agilex5 SoC FPGA (8e59b9f)

∗ memory controller support for Agilex5 SoC FPGA (18adb4e)

∗ mmc support for Agilex5 SoC FPGA (4a577da)

∗ pinmux, peripheral and Handoff support for Agilex5 SoC FPGA (fcbb5cf)

∗ platform enablement for Agilex5 SoC FPGA (7931d33)

∗ power manager for Agilex5 SoC FPGA (a8bf898)

∗ reset manager support for Agilex5 SoC FPGA (9b8d813)

∗ restructure sys mgr for Agilex (6197dc9)

∗ restructure sys mgr for S10/N5X (b653f3c)

∗ sdmmc/nand/combo-phy/qspi driver for Agilex5 SoC FPGA (ddaf02d)

∗ setup SEU ERR read interface for FP8 (91239f2)

796 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f99dcbace7015169ac5d230b8007686d144962fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e80274880bf694fd0b0e869a6ceb67e95e547544
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f45893426546703d9e21970889e6333ca30c0dd7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c47d0491ed078cfa8ca400e182fd4a44acd8041a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0f5e8eb4536e27f5fd99b1367b18710927b014b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31d1e4ff8dd70dc0094ff44df0c1844d27430e77
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c33bcab5973fb73b8278c674677663f5109948e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9be6b168fb482835a13ad39e7567721f74d513f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eee9fb02f7b2c29befa27a0f2f0b6cb966f6d7c5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a2b11c29da50eed969834f6c6ee97cdb90cb51e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85f199b774476706b21f793503b36d861cab0a14
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e3c3a48c85dd1478e311e2e773a22fecfda69ec5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02df49900006ed44b4a0c239299dd45ca8509c17
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1b1a3eb1edff99b49bb40ad4172073d04a230938
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/79626f460f115cc32b0dbeb48e72828d2dbf662a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/29461e4c880235532385c01f202e638fb5ba11de
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8e59b9f42374aaa641409b6469c8fe9245a33107
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/18adb4efa42946252b489d02f06cccb61ad0c867
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a577da6612ef6584695311e687ca00c57d68d53
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fcbb5cf7eadb8b048149941b08f09d04a860fee0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7931d3322dc137447981d261e900f5a62d2181ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a8bf898f02185ed838d8039949800843146ab245
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9b8d813cc96173ce8ab7634dea17fb7f89b21626
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6197dc98feba98c3e123256424d2d33d5de997b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b653f3caf0f5e624604564c8c89ac8f4b450ba20
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ddaf02d17142187d9f17acd4900aafa598666317
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/91239f2c05c5df041e4a570a9d29c0ccbc34269a

Trusted Firmware-A, Release 2.10.4

∗ system manager support for Agilex5 SoC FPGA (7618403)

∗ uart support for Agilex5 SoC FPGA (34971f8)

∗ vab support for Agilex5 SoC FPGA (4754925)

– MediaTek

∗ add APU bootup control smc call (94a9e62)

∗ add APU watchdog timeout control (baa0d45)

∗ MT8188

· add apusys ao devapc setting (777e3b7)

· add backup/restore function when power on/off (233d604)

· add devapc setting of apusys rcx (5986ae5)

· add DSB before udelay (b254b98)

· add emi mpu protection for APU secure memory (176846a)

· add EMI MPU support for SCP and DSP (013006f)

· add support for SMC from OP-TEE (34d9d61)

· enable apusys domain remap (b5900c9)

· enable apusys mailbox mpu protect (ad7673a)

· increase TZRAM_SIZE from 192KB to 256KB (aa1cb27)

· modify APU DAPC permission (d06edab)

· update return value in mtk_emi_mpu_sip_handler (d07eee2)

∗ MT8195

· increase TZRAM (4f79b67)

– NXP

∗ i.MX

· add dummy ‘plat_mboot_measure_key’ function (b9bceef)

· i.MX 8M

· add more dram pll setting (8947404)

· detect console base address during runtime (df730d9)

· enable snvs privileged registers access (8d150c9)

· move the gpc reg & macro to a separate header file (2a6ffa9)

· i.MX 8M Nano

· add workaround for errata ERR050362 (8562564)

· i.MX 9

13.5. 2.10.0 (2023-11-21) 797

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7618403110dad81c84822332225a7a687dc7f684
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34971f816a777df5afb6672990b9eceda60e84b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4754925057b27d5992d4c913276602666d303b01
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94a9e6243e3978b42017639dad93481267bcf6e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/baa0d45ced6b058681ade9213e30ab0e91f4f4fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/777e3b71bb0a37f98b4105af657d97c2afc2d0bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/233d604f500b5693b0caa6bcfdf0e2f766fd4cbd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5986ae57aa4468b392d0f5fcb8b5bc04388fa3e2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b254b9815ee25c90264a2305940bc575910f55e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/176846a50b73267ff787432f74a1d9607b57ed20
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/013006f1f889f5869502147af464e38619459463
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34d9d619f1c58549736b63aa5c5cddd7f171762e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b5900c92a1579371ea6f40199c70673beb08b1ac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad7673adef9bc5eaeef333ecaca8e85e82abe342
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aa1cb279b62d82e3d6e7b6ec17b9eb71d598497e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d06edabfd14e0d196139fb1c780017f34366ae0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d07eee245b3fcc6b276969df34dc63ded1d4c8a2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4f79b67250641f67327c3e351d2f8339e8fd2d26
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b9bceef8eebf5c0f7f213921cca885a3f3c64ec1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/89474044a59d74cc088eb09292e99a3ca623fe33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/df730d94cb5850683371dd695e242a0c3817f070
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8d150c9524b1459b61c9d881100e20da827c1bd0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2a6ffa99afb6091110231381d1263407e9d88c3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85625646692597ba8a1829efaadf56163450efaf

Trusted Firmware-A, Release 2.10.4

· i.MX93

· add cpuidle and basic suspend support (422d30c)

· add OPTEE support (27a0be7)

· add reset & poweroff support (cf7ef4c)

· add the basic support (2368d7b)

· add the trdc driver (2935291)

· allow SoC masters access to system TCM (3d3b769)

· protect OPTEE memory to secure access only (f560f84)

· update the ocram trdc config for did10 (eb76a24)

– QEMU

∗ add sdei support for QEMU (cef76a7)

∗ add “cortex-a710” cpu support (4734a62)

∗ add “neoverse-n2” cpu support (408f9cb)

∗ add “neoverse-v1” cpu support (6d8d7d2)

∗ add “neoverse-v1” cpu support (214de62)

∗ add A55 cpu support for virt (409c20c)

∗ add dummy plat_mboot_measure_key() BL1 function (8e2fd6a)

∗ add dummy plat_mboot_measure_key() function (f0f11ac)

∗ implement firmware handoff on qemu (322af23)

∗ SBSA

· handle platform version (c681d02)

· handle GIC base (1e67b1b)

· handle GIC ITS address (4171e98)

– QTI

∗ MSM8916

· add port for MDM9607 (78aac78)

· add port for MSM8909 (cf0a75f)

· add port for MSM8939 (c28e96c)

· add SP_MIN port for AArch32 (45b2bd0)

· add Test Secure Payload (TSP) port (6b8f9e1)

· allow selecting which UART to use (aad23f1)

· clear CACHE_LOCK for MMU-500 r2p0+ (d9b0442)

798 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/422d30c626beef689967b56d26a68f029e7b7cf9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/27a0be77a064cbc87aaefecbf45fe0a2b133b188
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf7ef4c762ddb573ffb6f1f434c04fdc52f6c2cf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2368d7b157c169b84bc46d3d8a57d080507e81bd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2935291009c2933714a027b7b5cd1c8e41f70aff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d3b769a7c112bff9468dbb21e36ce44125a72c0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f560f843bdc0e33ef47918a6c10676fa6aff95ac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eb76a2416a9bd5239db7b55d846bd2a16eec417a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cef76a7c5df7056cb73667e4e0b83d022e1b50fa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4734a62d2c22f5b6a1e2b0369248d42fb9eddd1b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/408f9cb485796a73c5b87da70644665a13c685e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6d8d7d2380d5120b3235c6f00eddcab126c3d648
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/214de62c92b2fc4b7edda9d9d637b7a4c0ba1fa5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/409c20c84dcfa61de68754152f331a7277609fb2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8e2fd6a84b17fde92cef48ecaccdc3b666ef0588
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0f11acd86650da04a41298acbf4ae38b7e25894
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/322af23445fe7a86eaad335b8a0f2ed523f5c1df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c681d02c6ce2652307a4fcef16bd5626135dfad9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1e67b1b17a1692dd653d31016ccd8fa18b5f8f67
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4171e981d13e6aa764c2520a2b513beafe449818
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/78aac78ad246ac8a04e1946bb9cd41b5734ba909
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf0a75f04df8e90c7958304e6e0499a7d2e2519c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c28e96cd52f8fbdbbfd0bbc8bacef353ac65bfd6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/45b2bd0acbf4678eb59d36eb0db7746f5286a868
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b8f9e16a7849852abaf190f96130462f70eae17
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aad23f1a2c109fb853e498c17fa1e97fbdb6522c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d9b04423cfbf18cb510fb8e65ad02e7a1f4fe873

Trusted Firmware-A, Release 2.10.4

· initialize CCI-400 for multiple clusters (1240dc7)

· power on L2 caches for secondary clusters (c822d26)

– ST

∗ add RCC registers list (4cfbb84)

∗ allow AARCH64 compilation for common code (dad7181)

∗ introduce new platform STM32MP2 (35527fb)

∗ support gcc as linker (7762531)

∗ update STM32MP DT files (4c8e8ea)

∗ STM32MP1

· add FWU with boot from NOR-SPI (dfbadfd)

· STM32MP15

· disable OP-TEE shared memory (fb1d3bd)

∗ STM32MP2

· add console configuration (87a940e)

· generate stm32 file (e5839ed)

– Texas Instruments

∗ add TI-SCI query firmware capabilities command support (7ab7828)

∗ query firmware for suspend capability (ce1008f)

∗ remove extra core counts in cluster 2 and 3 (e986845)

– Xilinx

∗ add support to get chipid (0563601)

∗ clean macro names (bfd0626)

∗ fix IPI calculation for Versal/NET (69a5bee)

∗ move IPI related macros to plat_ipi.h (b2258ce)

∗ remove crash console unused macros (473ada6)

∗ setup local/remote id in header (068b0bc)

∗ switch boot console to runtime (9c1c8f0)

∗ sync macro names (04a4833)

∗ used console also as crash console (3e6b96e)

∗ Versal

· add support for SMCC ARCH SOC ID (079c6e2)

· add tsp support (7ff4d4f)

13.5. 2.10.0 (2023-11-21) 799

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1240dc7ef11e850bdf7a4e66de3d858e26555842
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c822d26506a589d4fa017246eeb83627f2efb554
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4cfbb84aeb361d8e4d72f0b0652d02918168b55e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dad718169815f7cec09144b770fc66c6d9c58d17
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/35527fb41829102083b488a5150c0c707c5ede15
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7762531216a599d98dcf88aef8f8e980e0db90ed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4c8e8ea772905c1420720a900dd3e7d94eefbc7e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dfbadfd96b6f3d383e8f1c3c8b0c91ca2110ea2e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb1d3bd9330ce70f735a344dd4223faffb261118
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/87a940e027dd11d0ec03ec605f205374b18361ba
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e5839ed79e34b8aa8c7c94da8c79e8ee8a7467df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7ab782801f8c78ae6a8293d25cad687c86a4ac4e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ce1008fef1ace613bc36886fd1627164edfef245
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e9868458e6de2ffb3c08e2fafa444a812b895337
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0563601f03f0404bbc57464d3458c07614f920ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bfd0626554374dd94a0105a5633df0afeae731b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/69a5bee4c3633fd963d97f90f3a98e95a640d2da
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b2258ce30cf720d71b1022c9cbee135c879027c5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/473ada6be65af7fdad85845336f42ed481eea11b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/068b0bc6e39f1fc18f9450619942c711f860a7e2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9c1c8f010143e179dee76381f3796f3801e6d220
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/04a483359fef61353d95619e84ec6b495b27adfb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3e6b96e869238f21c8887b835c3bfed487dbe653
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/079c6e2403fd07db2b41f7c6e7e8c568467a2c6b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7ff4d4fbe58273541da86fa72786d4bd4604be9a

Trusted Firmware-A, Release 2.10.4

· ddr address reservation in dtb at runtime (56d1857)

· enable assertion (0375188)

· retrieval of console information from dtb (7c36fbc)

· Versal NET

· add cluster check in handoff parameters (01c8c6a)

· add support for SMCC ARCH SOC ID (1873e7f)

· add the IPI CRC checksum macro support (ba56b01)

· add tsp support (639b367)

· ddr address reservation in dtb at runtime (46a08aa)

· enable assertion (80cb4b1)

· get the handoff params using IPI (a36ac40)

· remove empty crash console setup (6a14246)

· retrieval of console information from dtb (a467e81)

∗ ZynqMP

· enable assertion (2243ba3)

· remove pm_ioctl_set_sgmii_mode api (7414aaa)

· retrieval of console information from dtb (3923462)

– Nuvoton

∗ added support for npcm845x chip (edcece1)

• Bootloader Images

– BL2

∗ add gpt support (6ed98c4)

– BL31

∗ reuse SPM_MM specific defines for SPMC_AT_EL3 (f5e1bed)

– BL32

∗ print entry point before exiting SP_MIN (94e1be2)

• Services

– RME

∗ save PAuth context when RME is enabled (13cc1aa)

∗ RMMD

· enable SME for RMM (f92eb7e)

· pass SMCCCv1.3 SVE hint bit to RMM (6788963)

800 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56d1857efc21cff5e75aa65bba21e333a8552d04
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0375188a3e114edf62a732e80ea0f08dde3bf0b0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c36fbcc13793899390a01a9b4a623ff2fbf7ee1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/01c8c6a5542fbf09fa91bbdbc95b735bbc9f02d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1873e7f7d879c3d0aba54c3785df534b9a7037b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ba56b012c8ba8e5c4e6f77ab8a921e494d040a44
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/639b3676cc30dcf3e3e4d478906e7f7f37a7f1e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/46a08aab4c56ad9e3f57b127a02fead1e6b8cf38
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/80cb4b14049c01df9a57cad9d1b94b10f904462f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a36ac40c4e93e56380374301f558f508ad2cbf96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a14246ad469664b56f1fdb111433515ffcccaf6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a467e813a362fae69484e70ecb26fd8b14489d38
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2243ba3c38ae5bab894709a4e98f188815398ef1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7414aaa1a1e31df66866f0e1c97ba7c9add2427f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3923462239c9e54088bd5b01fd5df469b2758582
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/edcece15c76423832fc1ffdb255528bf4c719516
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ed98c45db01023d52a47eb4ede0ffb44de85f00
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f5e1bed2669cce46a1d7c6b8d3f8f884b4d589b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94e1be2b2918d8e70ac33cc8551e913d75e86398
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/13cc1aa70a666bc8f768569e5481b3daf499b7d1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f92eb7e261bdaea54c10ad34451a7667a6eb4084
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/678896301b807cb1130ca27fa53acc66d57b855e

Trusted Firmware-A, Release 2.10.4

∗ RMM

· update RMI VERSION command as per EAC5 (ade6000)

– SPM

∗ separate StMM SP specifics to add support for a S-EL0 SP (549bc04)

∗ EL3 SPMC

· add a flag to enable support to load SEL0 SP (801cd3c)

∗ SPMD

· add partition info get regs (0b850e9)

· add spmd logical partitions (890b508)

· el3 direct message API (66bdfd6)

· get logical partitions info (95f7f6d)

– ERRATA ABI

∗ add support for Cortex-X3 (9c16521)

• Libraries

– CPU Support

∗ add a concise way to implement AArch64 errata (3f4c1e1)

∗ add a way to automatically report errata (4f748cc)

∗ add errata framework helpers (445f7b5)

∗ add more errata framework helpers (94a75ad)

∗ add support for Gelas CPU (02586e0)

∗ add support for hermes cpu (a00e907)

∗ add support for Nevis CPU (5497958)

∗ add support for Travis CPU (a0594ad)

∗ conform DSU errata to errata framework PCS (ee6d04d)

∗ make revision procedure call optional (4d22b0e)

∗ wrappers to propagate AArch32 errata info (34c51f3)

– EL3 Runtime

∗ modify vector entry paths (d04c04a)

∗ RAS

· reuse SPM_MM specific defines for SPMC_AT_EL3 (6e92a82)

· use FEAT_IESB for error synchronization (6597fcf)

– Translation Tables

13.5. 2.10.0 (2023-11-21) 801

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ade6000ff0b3aa41d581d5738ce42f5ea4d3b77d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/549bc04f148f3b42ea0808b9ab0794a48d67007d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/801cd3c84a7bb8a66c5a40de25e611ec6448239c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b850e9e7c89667f9a12d49492a60baf44750dd9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/890b5088203e990d683a9c837e976be62c6501aa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66bdfd6e4e6d8e086a30397be6055dbb04846895
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95f7f6d86a6aadc9d235684fd1aa57ddc4c56ea9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9c16521606b1269ef13a69ec450b8d14ef92bde9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3f4c1e1e7b976e6950cbcc4ddf8c32e989d837ac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4f748cc44cb12160dfca86d94a1075f38f7c99e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/445f7b5191992c760e1089f566b94473a0432a1e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94a75ad456a8bda75ca1e4343f00be249a201a69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02586e0e28e590fbc5e8461cfdc03db08485c14f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a00e907696dd7dcae9ec221ea4ee49d4179a8e2a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/549795895cae55b11c1a7ce522aa6740de863fb4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a0594add2e2661a1b1e1f392bf015687004197bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ee6d04d449d7a23840bab00f3d3ffd88c6c7bca6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d22b0e5ba01b423f9f5200e4702750102635145
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34c51f327d47653637cf3604b4cd20819e795f25
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d04c04a4e8d968f9f82de810a3c763474e3faeb7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e92a82c81d2b0e49df730f68c8312beec1d3b48
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6597fcf169fa548d40f1e63391d12d207c491266

Trusted Firmware-A, Release 2.10.4

∗ detect 4KB and 16KB page support when FEAT_LPA2 is present (bff074d)

– C Standard Library

∗ add %X to printf/snprintf (483edc2)

∗ implement memcpy_s in lib (f328bff)

– PSA

∗ interface with RSS for retrieving ROTPK (50316e2)

– Firmware Handoff

∗ introduce firmware handoff library (3ba2c15)

∗ port BL31-BL33 interface to fw handoff framework (94c90ac)

• Drivers

– Authentication

∗ add CCA NV ctr to CCA CoT (e3b1cc0)

∗ add explicit entries for key OIDs (0cffcdd)

∗ create a zero-OID for Subject Public Key (9505d03)

∗ ecdsa p384 key support (557f7d8)

∗ measure and publicise the Public Key (9eaa5a0)

∗ mbedTLS

· update to 3.4.1 (e686cdb)

· add deprecation notice (267c106)

∗ mbedTLS-PSA

· initialise mbedtls psa crypto (4eaaaa1)

· introduce PSA_CRYPTO build option (5782b89)

· mbedTLS PSA Crypto with ECDSA (255ce97)

· register an ad-hoc PSA crypto driver (38f8936)

· use PSA crypto API during hash calculation (484b586)

· use PSA crypto API during signature verification (eaa62e8)

· use PSA crypto API for hash verification (2ed061c)

– Measured Boot

∗ introduce platform function to measure and publish Public Key (2971bad)

– GUID Partition Tables Support

∗ add interface to init gpt (f08460d)

∗ add support to use backup GPT header (ad2dd65)

802 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bff074dd941d4fb51d6abade5db4b636f977d6f7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/483edc207a533a5eaf07fa1e2c47f29f1dc64e4a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f328bff667c12099e82de6e94f3775a124ee78c7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/50316e226fbbe30b5eb4121225958a9b63e58bb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3ba2c15147cc0c86342a443cd0cbfab3d2931c06
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94c90ac8168f4e257b67e138a53a2dbc612e4194
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e3b1cc0c51c7b0bae6abd81e15e4c2a00442c5db
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0cffcdd617986f0750b384620f5b960059d91fc9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9505d03e368d8e620c4defeb53dad846d5bc7e62
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/557f7d806a62a460404f8d1bec84c9400585930b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9eaa5a09ed5805ec6423bc751b4254fba19090c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e686cdb450bbf01d42850457f83e45208a2655f8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/267c106f02e6996071985adbe695406a4978e97f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4eaaaa19299040cfee0585d7daa744dee716d398
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5782b890d29646924d8bd3f46acdc73a6e02feb2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/255ce97d609a93ab5528a653735abc46c2627e8f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/38f893692ad9b8edb5413f4b2b9cd15a9b485685
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/484b58696d627c68869d86e2c401a9088392659e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eaa62e825e31fb22a6245d9a5ab9cf5c9f8c0e46
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2ed061c43525b8a9cd82b38d31277a8df594edd5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2971bad8d48c6f0ddb7436efd16375bd72ade6bd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f08460dc085283f25fd6b5df792f263ccdf22421
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad2dd65871b4411c735271f98a4fa5102abb2a00

Trusted Firmware-A, Release 2.10.4

– Arm

∗ Ethos-N

· update npu error handling (4796d2d)

∗ RSS

· set the signer-ID in the RSS metadata (60861a0)

– ST

∗ Clock

· allow aarch64 compilation of STGEN functions (b1718c6)

· stub fdt_get_rcc_secure_state (19c3808)

∗ UART

· add AARCH64 stm32_console driver (c6d070c)

• Miscellaneous

– AArch64

∗ add stack debug information to assembly routines (f832885)

– DT Bindings

∗ add the STM32MP2 clock and reset bindings (3ccb708)

– FDTs

∗ Morello

· add thermal framework (0b22160)

∗ STM32MP2

· add stm32mp257f-ev1 board (9aa5371)

· introduce stm32mp25 pinctrl files (2c62cc4)

· introduce stm32mp25 SoCs family (0dc283d)

– TBBR

∗ add image id for backup GPT (1051606)

∗ update PK_DER_LEN for ECDSA P-384 keys (c1ec23d)

• Documentation

– introduce STM32MP2 doc (ee5076f)

– save BL32 image base and size in entry point info (31dcf23)

– add a threat model for TF-A with Arm CCA (4463541)

– cover threats inherent to receiving data over UART (348446a)

– add a section for experimental build options (4885600)

13.5. 2.10.0 (2023-11-21) 803

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4796d2d9bb4a1c0ccaffa4f6b49dbb0f0304d1d1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/60861a04e06d98ba6a9ae984cc5565f064fac9d1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b1718c6382cff096c46dd216b5c99586eb303d29
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/19c38081d3cbb4062d8894e6c3ec3c4e1d01a767
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c6d070cdba2c9a37b2253354f4cc3ba7e127e35d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f8328853031ab6dfc57059ff181138babc7779a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3ccb708ecede0858c3c8633942dd9ceec1511fa5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b221603e909cd493feeaab96d9c6f5458c628a8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9aa5371f2fde18ed9ef466f3ee08e599bcdca2dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c62cc4a879b3ca5414227a2ddcd965814f3d112
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0dc283d29e4d962553046ea7ba30e90ea64f6d3d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1051606c3df3b5a0ebd4e4dad1e5e4a57e2f4d69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c1ec23dd60954582a9b5dd49e85b092e9ece0680
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ee5076f9716591333f1f5aa73b02c130c57917db
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31dcf2345172de50b098d7a080c65ee6faa87df8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/446354122cea54255630d250064f5f889045acb0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/348446ad2a836f7fa0ab05cdf6142342a1c4a4b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/48856003bfaf8c8d0ce7b29e2e1262f7f1dfbb5d

Trusted Firmware-A, Release 2.10.4

• Build System

– include plat header in fdt build (e03dcc8)

– manage patch version in Makefile (055ebec)

– march option selection (7794d6c)

– pass CCA NV ctr option to cert_create (0f19b7a)

– .gitignore to include memory tools (82257de)

– allow gcc linker on Aarch32 platforms (cfe6767)

– bump certifi to version 2023.7.22 (6cbf432)

– convert tabs and ifdef comparisons (72f027c)

– convert tabs to spaces (1ca73b4)

– disable ENABLE_FEAT_MPAM for Aarch32 (a07b459)

– include Cortex-A78AE cpu file for FVP (b996db1)

– pass parameters through response files (430be43)

– remove duplicated include order (c189adb)

– remove handling of mandatory options (1ca902a)

• Tools

– Firmware Image Package Tool

∗ add ability to build statically (4d4fec2)

– Secure Partition Tool

∗ generate ARM_BL2_SP_LIST_DTS file from sp_layout.json (20629b3)

– Certificate Creation Tool

∗ add new option for CCA NV ctr (60753a6)

∗ add pkcs11 engine support (616b3ce)

∗ ecdsa p384 key support (c512c89)

– Memory Mapping Tool

∗ add tabular memory use data (d9d5eb1)

∗ add topological memory view (cc60aba)

804 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e03dcc8f5ee2c2c48732745c5c364951eb36ceec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/055ebeca1b642ae69885a95e3c102f95d567a11e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7794d6c8f8c44acc14fbdc5ada5965310056be1e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0f19b7aada428e0ca69d27ab016928b8fbc64a79
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/82257de06df2f744b12907079d5224bd56704de1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cfe6767f7dd483f1bd76b2ba88a75809e013c5bd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cbf43204f3ca7cc6db621652da182743748af3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72f027c335a9e20e479e0d684132401546685616
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ca73b4f4a0f6929a6649b4eb12e4ce45644a892
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a07b4590dd06c9e27ec6d403003bcf55afa9dc27
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b996db168dcdac89245bb2cb60212e3e1b3ad061
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/430be4396bbf779c9d2cac0ed8fefd07c7b8fde2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c189adbd5559a31078749fd3ddd483337ad609f6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ca902a537d622b9f7f53f872586120ae75e2603
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d4fec281861066ab2249bc3db7c2decdd176f34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/20629b3153bccdda32116ed5c4861e61fa1fba95
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/60753a63290e255d6c4d34d0145ac00e8d69c9cf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/616b3ce27d9a8a83a189a16ff6a05698bc6df3c8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c512c89cde91f10e1b283522ac956fa4da85a797
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d9d5eb138ded8d4abeaf0cd1341ddf451aa299b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc60aba227e74a171c924146a0b745450af72f3d

Trusted Firmware-A, Release 2.10.4

13.5.3 Resolved Issues

• Architecture

– CPU feature / ID register handling in general

∗ move nested virtualization support to optionals (8b2048c)

– Memory Partitioning and Monitoring (MPAM) Extension (FEAT_MPAM)

∗ refine MPAM initialization and enablement process (edebefb)

– Performance Monitors Extension (FEAT_PMUv3)

∗ make MDCR_EL3.MTPME=1 out of reset (33815eb)

• Platforms

– register PLAT_SP_PRI only if not already registered (bf01999)

– Arm

∗ add Event Log area behind Trustzone Controller (d836df7)

∗ correct the SPMC_AT_EL3 condition (a0ef1c0)

∗ fix GIC macros for GICv4.1 support (f1df8f1)

∗ add RAS_FFH_SUPPORT check for RAS EHF priority (1c01284)

∗ do not program DSU CLUSTERPWRDN register (3209b35)

∗ FPGA

· enable CPU features required for ARMv9.2 cores (b321c24)

∗ FVP

· adjust BL2 maximum size as per total SRAM size (965aace)

· adjust BL31 maximum size as per total SRAM size (24e224b)

· conditionally increase XLAT and MMAP table entries (03cf4e9)

· extract core id from mpidr for pwrc operations (70bc744)

· increase maximum MMAP and XLAT entries count (12fe591)

· increase the maximum size of Event Log (f1dfaa4)

· resolve broken workaround reference (bcb3ea9)

· update pwr_domain_suspend (f51d277)

· update system suspend in OS-initiated mode (e0ef05b)

∗ Morello

· configure platform specific secure SPIs (80f8769)

∗ N1SDP

13.5. 2.10.0 (2023-11-21) 805

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8b2048c1c019d799d1806926724c2fbbc399c4c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/edebefbcbc01f4ab67a7838e0191736fd9ee0192
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33815eb7194e662169676b2ce88ee4785aac9ccd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bf01999aba3949e810b7c66d3a164c4e3a964bf8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d836df71ea50e0863f7858f71b06653058e64140
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a0ef1c0ef030e8fee8ad8f8a5f4a0fa911403a7c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1df8f10c6906519c54483f1f7a67f5cc507ec31
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1c012840cab6529edbbc1bc7e3bcba11477a6955
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3209b35d2a372e71b96f3efbd7631d32518dc9b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b321c243423b9341bc04e839a795ff31247eacd5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/965aacea919525baa03308a5a08205e506be0bf4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24e224b41cc6fda4b507861cf8e409d8e4a3f7cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/03cf4e9aad2774ce221ccfe6f345ffcc8aabee4a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70bc74441b9901ee91ebb32be1def1e645374488
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12fe591b3e05255c167c5a9e21eaac2a9946f55c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1dfaa42cf1a93523501ce694260d88acee7c0c0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bcb3ea92f8626e48340bd65c7c3007953e0ee8f4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f51d277de3e5f84eafafb32596ca0b154d11c4d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0ef05bb2c260e0441186dd8647dea531bb1daf3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/80f8769b26efcbce842d0ed62950603dfd83ef9b

Trusted Firmware-A, Release 2.10.4

· configure platform specific secure SPIs (7b0c95a)

· fix spi_ids range for n1sdp multichip boot (31f60a9)

∗ SGI

· update PLAT_SP_PRI macro definition (6f689a5)

∗ TC

· Correct return type (b0542b5)

· rename macro to match PSA spec (1fc20d7)

∗ Corstone-1000

· add cpu_helpers.S to platform.mk (cb27274)

· modify boot device dependencies (3ff5fc2)

· removing the signature area (5856a91)

– Aspeed

∗ AST2700

· add device mapping for coherent memory (cef2e92)

– Broadcom

∗ fix misspelled header inclusion guard (a9779c1)

– Cadence

∗ update console flush uart driver (e27bebb)

– Intel

∗ fix ncore ccu snoop dvm enable bug (106aa54)

∗ resolved coverity checking (1af7bf7)

∗ update boot scratch cold register to use cold 8 (655af4f)

∗ update checking for memcpy and memset (c418064)

– MediaTek

∗ support saving/restoring GICR registers (f73466e)

– NVIDIA

∗ Tegra

· return correct error code for plat_core_pos_by_mpidr (6bd79b1)

– NXP

∗ i.MX

· i.MX 8M

· make IMX_BOOT_UART_BASE autodetection option more obvious (101f070)

806 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7b0c95abc8e399a4a676647f4cffffa7ed21b3e6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31f60a968347497562b0129134928d7ac4767710
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6f689a51a577f740b341744e62c667733a79df94
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b0542b58ca77b922cf879dfb7d38356b32399c56
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1fc20d7f523e5c4bafb23584b1309ca432307ea4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cb27274c9964deab3b613a48c1f293c122126ee5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3ff5fc2b35638afea2fad3cd0c76dcadc1adb8c2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5856a91a641a4cd7403143bb90b098855a77ac16
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cef2e92568045da4e1d26a9ebfb38b0176b4ec33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a9779c11daa251abb9c523b4e01e6ef26c7d46fc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e27bebb0fe84bf58eed1fb61a65da9280309f24e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/106aa54d922c8d0980c527530cbb417141fe3f83
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1af7bf71c042add4f473c056f850a8a4792b6bbd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/655af4f49278476ebac6bb865e325eca865684f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c418064eb5ae2f223457e4a25a91f379e8cf5223
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f73466e9a2fe35fc31a7a58a2e24308a9db341d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6bd79b13f8a8566d047ff25da9110a887b4e36e7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/101f07022a0337b074c03e60078b94789bc766f6

Trusted Firmware-A, Release 2.10.4

· map BL32 memory only if SPD_opteed or SPD_trusty is enabled (4827613)

– QEMU

∗ fix 32-bit builds with stack protector (e57ca89)

∗ SBSA

· align FIP base to BL1 size (408cde8)

– QTI

∗ SC7280

· update pwr_domain_suspend (a43be0f)

· update system suspend in OS-initiated mode (0a9270a)

– Renesas

∗ R-Car

· add mandatory fields in ‘reserved-memory’ node (f945498)

· R-Car 3

· fix CPG register code comment (69c371b)

· update Draak and Eagle board IDs (281edfe)

– ST

∗ allow crypto lib compilation in aarch64 (76e4fab)

∗ enable RTC clock before accessing nv counter (77ce6a5)

∗ flush UART at the end of uart_read() (a9cb7d0)

∗ properly check LOADADDR (9f72f5e)

∗ reduce MMC block_buffer (a2500ab)

∗ setting default KEY_SIZE (6f3ca8a)

∗ update comment on encryption key (5c506c7)

∗ update dt_get_ddr_size() type (2a4abe0)

∗ STM32MP1

· add void entry in plat_def_toc_entries (8214ecd)

· properly check PSCI functions return (241f874)

· use the BSEC nodes compatible for stm32mp13 (2171bd9)

– Texas Instruments

∗ align static device region addresses to reduce MMU table count (53a868f)

∗ fix TISCI API changes during refactor (d7a7135)

∗ release lock in all TI-SCI xfer return paths (e92375e)

13.5. 2.10.0 (2023-11-21) 807

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4827613c9a8db6238e9411b508ef20bda3113146
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e57ca899efe414bd685e89e335a21d15a25b04f8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/408cde8a59080ac2caa11c4d99474b2ef09f90df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a43be0f61003df1d8cf01bd706d5af305428c022
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0a9270abe82b396bf6fa15c7eb39c3499452686a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f945498faab3bd44f0f957931809de2f59517814
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/69c371bc16533eb97a1d9bc408f9f17da87ba641
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/281edfee02bc72d81aa4972d60216647f932f3df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/76e4fab000825c4361b4b9843c6e0c2f4f6eb1fd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77ce6a561eae769419559632afa4d807a4fc33b6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a9cb7d002df4f09dce779b5b56640c2fdd77ba3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9f72f5eac81c23fe39415b2346b112f64fba8610
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2500ab7aba27ed5d613718f5f15371bbe895ca6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6f3ca8ada60addc601f685fa51619d2101d7406a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5c506c73751cc3f51df88826b89b5f729d8955c5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2a4abe0b37f8d1987019c3de30e3301d8f8958d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8214ecdab22a72877dfff539eee31cfb92f36423
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/241f8745459ae413ca22fcc0f1081da8de48796f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2171bd9511258e7aebaa3ce2f9498093d3a3c63e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/53a868f676d9ad6ec37d69155241883b8e7bf0bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7a7135d32a8c7da004c0c19b75bd4e2813f9759
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e92375e07cf54c2fbac6616e58116c98507ac177

Trusted Firmware-A, Release 2.10.4

∗ remove check for zero value in BL31 boot args (44edd3b)

– Xilinx

∗ add headers to resolve compile time issue (744d60a)

∗ dcache flush for dtb region (93ed138)

∗ don’t reserve 1 more byte (c3b69bf)

∗ dynamic mmap region for dtb (7ca7fb1)

∗ remove clock_setrate and clock_getrate api (e5955d7)

∗ remove console error message (f9820f2)

∗ update dtb when dtb address and tf-a ddr flow is used (fdf8f92)

∗ DCC (Debug Communication Channel)

· add dcc console unregister function (0936abe)

· enable DCC also for crash console (c6d9186)

∗ Versal

· add missing irq mapping for wakeup src (06b9c4c)

· fix BLXX memory limits for user defined values (f123b91)

· make pmc ipi channel as secure (96eaafa)

· type cast addresses to fix integer overflow (bfe82cf)

· use correct macro name for ocm base address (56afab7)

· Versal NET

· add redundant call to avoid glitches (cebb7cc)

· change flag to increase security (e8efb65)

· correct device node indexes (66b5620)

· don’t clear pending interrupts (fb73ea6)

· fix BLXX memory limits for user defined values (a80da38)

· make pmc ipi channel as secure (2c65b79)

· use correct macro name for uart baudrate (e2ef1df)

∗ ZynqMP

· do not export apu_ipi (237c5a7)

· fix BLXX memory limits for user defined values (8ce2fbf)

· fix prepare_dtb() memory description (3efee73)

· fix sdei arm_validate_ns_entrypoint() (3b3c70a)

· handling of type el3 interrrupts (e8d61f7)

808 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44edd3bd7cfe1d5fb1599ab5eee9b81efea984e0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/744d60aab4e0173e21564fde092884c10267a6cc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/93ed138006dc09e5b09222cabae8952dd5363ad2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c3b69bf17bc0231b0dae613dc9e1e01e41f32236
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7ca7fb1bf0873824531a6eee2da1214b61496b02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e5955d7c63291a736efe75fb93effbc3fefb19fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f9820f21b8317fb3a08598452b252f7a6a2a4ad7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fdf8f929df078943c24154e25d9d7661139826b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0936abe9b235dd996e9466288415bb994acbbe8f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c6d9186f60a08b4a44b1ecf38071eacdc9553ef6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/06b9c4c87df0b2a052e4f3330b86cc572c7bf885
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f123b91fddfcc882577590bbf4a54e1497ef9a64
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/96eaafa3f855ea9e0b6ce13a44f37fa9f1026207
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bfe82cff6f6ab8e557e7ad7db8eae573f1fb02f3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56afab73a852fd3e10e607d2d86dedc3bae3ff2d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cebb7cc110e02281060ec854a28a3bee382d8efa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8efb65afb996c9832384c96b36aee3092b56a4b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66b5620c873ef656f779a4c2d844b187ba474d9d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb73ea6cc3f9f4f51195b416a0f803a72d81eff6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a80da3899a5eea6bc022c37101ac0b7d970846f7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c65b79e256ea5ead117efeaa5d39c3e53c83bdc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e2ef1dfcdbef7e448e9dd96852ffb8489c187d34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/237c5a74a295d6306529be024aaa3d6af4b32898
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8ce2fbffe37ddcab5071601f1b311ee82a56b7cc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3efee73d528578162b8eb046dce540f0c5f0041a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3b3c70a418522176f3a55d8e266e3968f7d4f832
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8d61f7d91901f577030f6a45a71cf389b96d9dc

Trusted Firmware-A, Release 2.10.4

· make zynqmp_devices structure smaller (7e3e799)

· remove unused headers (6288636)

· resolve runtime error in TSP (81ad3b1)

· type cast addresses to fix overflow issue (9129163)

· validate clock_id to avoid OOB variable access (abc79c2)

– Nuvoton

∗ fix typo in platform.mk (c7efb78)

• Bootloader Images

– BL2

∗ bl2 start address for RESET_TO_BL2+ENABLE_PIE (d478ac1)

– BL31

∗ resolve runtime console garbage in next stage (889e3d1)

– BL32

∗ always include arm_arch_svc in SP_MIN (cd0786c)

∗ avoid clearing argument registers in RESET_TO_SP_MIN case (56055e8)

∗ TSP

· fix destination ID in direct request (ed23d27)

· flush uart console (ae074b3)

• Services

– RME

∗ RMMD

· enable sme using sme_enable_per_world (c0e16d3)

– SPM

∗ EL3 SPM

· fix LSP direct message response (c040621)

· improve direct messaging validation (48fe24c)

∗ EL3 SPMC

· avoid descriptor size calc overflow (27c0242)

· correctly account for emad_offset (0c2583c)

· fix incorrect CASSERT (1dd79f9)

· only call spmc_shm_check_obj() on complete objects (d781959)

· prevent total_page_count overflow (2d4da8e)

13.5. 2.10.0 (2023-11-21) 809

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e3e79995a3c02871211dd0e983fb6e886a9c518
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/62886363a16f0dcef3b6acdff0a96880cf9940ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81ad3b14b95e019eaa8d89d444680c14ede4d8ab
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/91291633a1c99736803f39edb21cad95a3517ee8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/abc79c275be764d76bd983837ffc487664182dac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c7efb78f8edc8fa66bbe2f9bad390d29f6a43fb0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d478ac16c9002114da1c4708a0efb083c494ce2f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/889e3d1c68e37dc9f75ae432703fa8ffc7259546
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd0786c73e536a1d2507d77ce49e2ae2b8ee71a1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56055e87b0a756d4756a22ed26b855fbe7afe93c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed23d274fae0b2787421a1b2558d7c1e9ebb07ab
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ae074b369a25747acf98a23389e9d67b39738c71
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c0e16d30ab70c51737f7a01a6b365d27c1a94f3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c040621dba5f4c097441e67c9fd99b9df174ba4e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/48fe24c50cd4990a76f88e89b77e71b9a90aec6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/27c02425089548786a18d355b15acccd51880676
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0c2583c6fbfd03e70915554d4093e5f9148f3792
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1dd79f9e2316e5a7a78b0ad5a34ec50288338e6f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d781959f81923bc3a59e77abd44df2fcc61f044e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d4da8e265660ce7580219b51d5e79fd99ce1458

Trusted Firmware-A, Release 2.10.4

· remove experimental flag (630a06c)

· use uint64_t for 64-bit type (43318e4)

· use version-dependent minimum descriptor length (52d8d50)

· validate descriptor headers (56c052d)

· validate memory address alignment (327b5b8)

· validate shmem descriptor alignment (dd94372)

∗ SPMD

· coverity scan issues (b04343f)

· fix FFA_VERSION forwarding (76d53ee)

· perform G0 interrupt acknowledge and deactivation (6c91fc4)

· relax use of EHF with SPMC at S-EL2 (bb6d0a1)

– ERRATA ABI

∗ added Neoverse N2 to Errata ABI list (7e030b3)

∗ fix the rev-var for Cortex-A710 (5c8fcc0)

∗ update the Cortex-A76 errata ABI struct (92d5b50)

∗ update the Cortex-A78C errata ABI struct (7f2caec)

∗ update the neoverse-N1 errata ABI struct (56747a5)

∗ update the Neoverse-N2 errata ABI struct (80af87e)

• Libraries

– CPU Support

∗ assert invalid cpu_ops obtained (3f721c6)

∗ check for SME presence in Gelas (0bbd432)

∗ fix minor issue seen with a9 cpu (af70470)

∗ fix the rev-var for Cortex-A710 (2bf7939)

∗ fix the rev-var of Cortex-X2 (8ae66d6)

∗ fix the rev-var of Neoverse-V1 (ab2b56d)

∗ flush L2 cache for Cortex-A7/12/15/17 (c5c160c)

∗ integer suffix macro definition (1a56ed4)

∗ reduce generic_errata_report()’s size (f43e09a)

∗ revert erroneous use of override_vector_table macro in Cortex-A73 (9a0c812)

∗ update the fix for Cortex-A78AE erratum 1941500 (67a2ad1)

∗ update the rev-var for Cortex-A78AE (c814619)

810 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/630a06c4c64f3a6804dd633081190241b1e78484
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/43318e4a4dcc79935150de75fe5dccbb615f4719
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52d8d506e715dbbeba0938cecd30ac6624d1dcfc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56c052d31126c93b3c6782ea8e0c3348b5299b75
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/327b5b8b74faedefc45e861c797197cf6fbd6def
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dd94372d77ff107726a7be53318b5694f3309ddb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b04343f3c912c8abc1a37b0ebe461ab574959ecd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/76d53ee1aafca7ba908c7439670509107377b309
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c91fc44580415aaca4cbd774d4373475f33deb2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb6d0a174f76240728cd911130703e712520ce16
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e030b376329a0466ffe7676be215770bb46d10f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5c8fcc0ca7f5e6dc3aea947800e146fe0ffe9b84
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/92d5b501d4ba7e00e2ddfd546dc90b786966a352
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f2caecdbc64d1fbd34942285e1194e85c5e8614
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56747a5caa50eedeb627795f1c37e0a14953c2bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/80af87e476ec3dd1ad26d7a906da82268a29e2b5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3f721c6edd20cef11c241a3ef84d94c06f5bebb4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0bbd4329bf73b0da1ed69578c385dd36358e261e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af704705c135f85b8b1eeda938e3dcdba3f6e561
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2bf7939a7b313352deb6c6b77ee1316eff142a7c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8ae66d624e2f7cae9577ff8f99e0a45e21fb353d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab2b56df266f73aa53ca348d7945b119e1ef71c7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c5c160cdddd1c365a447c1fcd148fabb9014cce0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1a56ed4b357e9023637c74c39c6885c558a737d2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f43e09a12e4f4f32185d3e2accceb65895d1f16b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9a0c81257ff116b2ca33f5b6737e0a000fb7e551
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67a2ad171d1fb604d4cba8fa7f92ccb66d1ef3f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c814619a364aea3bd55b5ea238541864c0de7dab

Trusted Firmware-A, Release 2.10.4

∗ workaround for Cortex-A510 erratum 2080326 (6e86475)

∗ workaround for Cortex-A710 erratum 2742423 (d7bc2cb)

∗ workaround for Cortex-X2 erratum 2742423 (fe06e11)

∗ workaround for Cortex-X3 erratum 2070301 (2454316)

∗ workaround for Cortex-X3 erratum 2742421 (5b0e443)

∗ workaround for Neoverse N2 erratum 2009478 (74bfe31)

∗ workaround for Neoverse N2 erratum 2340933 (68085ad)

∗ workaround for Neoverse N2 erratum 2346952 (6cb8be1)

∗ workaround for Neoverse N2 erratum 2743014 (eb44035)

∗ workaround for Neoverse N2 erratum 2779511 (12d2806)

∗ workaround for Neoverse V2 erratum 2331132 (8852fb5)

∗ workaround for Neoverse V2 erratum 2719105 (b011402)

∗ workaround for Neoverse V2 erratum 2743011 (58dd153)

∗ workaround for Neoverse V2 erratum 2779510 (ff34264)

∗ workaround for Neoverse V2 erratum 2801372 (40c81ed)

– EL3 Runtime

∗ leverage generic interrupt controller helpers (07f867b)

∗ restrict lower el EA handlers in FFH mode (6d22b08)

∗ Context Management

· make ICC_SRE_EL2 fixup generic to all worlds (5e8cc72)

· set MDCR_EL3.{NSPBE, STE} explicitly (99506fa)

∗ RAS

· remove RAS_FFH_SUPPORT and introduce FFH_SUPPORT (f87e54f)

· restrict ENABLE_FEAT_RAS to have only two states (970a4a8)

– PSCI

∗ add optional pwr_domain_validate_suspend to plat_psci_ops_t (d348861)

– SMCCC

∗ ensure that mpidr passed through SMC is valid (e60c184)

∗ pass SMCCCv1.3 SVE hint to internal flags (b2d8517)

– Translation Tables

∗ fix defects on the xlat library reported by coverity scan (2974ad8)

∗ set MAX_PHYS_ADDR to total mapped physical region (1a38aaf)

13.5. 2.10.0 (2023-11-21) 811

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e86475d55fa2981bc342a0eb78b86be233d7718
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7bc2cb4303088873a715bcaa2ac3e0096b9d7f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fe06e118ab0837ff173f6b7e576dcc34b2d26bb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2454316c2ae4411d0071d88c3db3c95598f12498
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b0e4438d0e604e80ffff17d02e37cae0f4b2a8f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/74bfe31fd2c992d8e1e13bf396a9d5c136967ca5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68085ad4827ac7daa39767d479d0565daa32cb47
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cb8be17a53f4e11880ba13b78fca15895281cfe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eb44035cdec5d47d7eb3c904c8e5d8443b9dfcba
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12d28067c9e76a78b148ed6fb94faf96de5e8502
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8852fb5b7d94229475446c81cfa58851bc2204ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b01140256b5c0620cbde8e98c0df0e95343a3c71
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/58dd153cc88e832a6b019f1d4c2e6d64986ea69d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff342643bcfaf20d61148b90a068694fa1c44dca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40c81ed5335191fbe32466e56aa4fb6db1da466c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/07f867b12251235b8582bec38e9cf39a95703e77
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6d22b089ffb1793d581fde4de76245397ad7d4ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5e8cc7278659820bcd64c243cbd89c131462314c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99506face112410ae37cf617b6efa809b4eee0ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f87e54f73cfee5042df526af6185ac6d9653a8f5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/970a4a8d8c0d6894fe2fd483d06b6392639e8760
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d34886140c74c0afc48ab20e63523505fcfb4b7d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e60c18471fc7488cc0bf1dc7eae3b43be77045a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b2d851785f6c03cae4feb015fe69091582e18f5e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2974ad87b8561706176e113e2ec4457c919cb99a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1a38aafbff93e478aa6f9e19af1ed76024062a73

Trusted Firmware-A, Release 2.10.4

• Drivers

– Authentication

∗ allow hashes of different lengths (22a5354)

∗ don’t overwrite pk with converted pk when rotpk is hash (1046b41)

– Measured Boot

∗ don’t strip last non-0 char (b85bcb8)

– MMC

∗ initialises response buffer with zeros (b1a2c51)

– MTD

∗ NAND

· reset the SLC NAND (f4d765a)

· SPI NAND

· add Quad Enable management (da7a33c)

– SCMI

∗ add parameter for plat_scmi_clock_rates_array (ca9d6ed)

– UFS

∗ performs unsigned shift for doorbell (e47d8a5)

∗ set data segment length (9d6786c)

– Arm

∗ GIC

· GICv3

· map generic interrupt type to GICv3 group (632e5ff)

· move invocation of gicv3_get_multichip_base function (36704d0)

· GIC-600

· fix gic600 maximum SPI ID (69ed7dc)

– Renesas

∗ R-Car3

· update DDR setting (138ddcb)

– ST

∗ Clock

· disabling CKPER clock is not functional on stm32mp13 (1bbcb58)

∗ Crypto

812 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/22a53545aa37c06a1ffd0f3c15e870b256a41cb7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1046b41808b23b4079f04cad370646e05207ded5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b85bcb8ec92126c238572ed7d242115125e411e1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b1a2c51a0820fce803431e6ee5bd078bb1a65b0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4d765a12815e3f4bd9c4dff5fd88661b3615114
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/da7a33cf2f27545d9d290ff0c2ee1ec333b061bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ca9d6edc892165c38f1b2710b537c10d4a57062d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e47d8a58b0d5745c943c36fad2ec8a98af709bea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d6786cacee7c0eff33d1cec42c09c7002dd83d2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/632e5ffeb8f50a98090065b63d9d071b72acd23c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/36704d09c6b26045fe2d18530a020ed23d74593d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/69ed7dc2e964c66eb8ff926a63a47b701ae1f3c6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/138ddcbf4d330d13a11576d973513014055f98c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1bbcb58a69c4ee2ee13e9d5de4499438ca08b149

Trusted Firmware-A, Release 2.10.4

· do not read RNG data if it’s not ready (53092a7)

· use GENMASK_32 to define PKA registers masks (379d77b)

∗ DDR

· express memory size with size_t type (b4e1e8f)

∗ UART

· allow 64 bit compilation (6fef0f6)

· correctly check UART enabled in flush fonction (a527380)

· skip console flush if UART is disabled (b156d7b)

• Miscellaneous

– AArch32

∗ disable workaround discovery on aarch32 for now (d1f2748)

– FDTs

∗ STM32MP1

· move /omit-if-no-ref/ to overlay files (f351f91)

· STM32MP13

· correct the BSEC nodes compatible (85c2ea8)

· cosmetic fixes in PLL nodes (8b82663)

– SDEI

∗ ensure that interrupt ID is valid (a7eff34)

– TBBR

∗ guard defines under MBEDTLS_CONFIG_FILE (81c2e15)

∗ unrecognised ‘tos-fw-key-cert’ option (f1cb5bd)

• Documentation

– match boot-order size to implementation (fd1479d)

– add missing line in the fiptool command for stm32mp1 (d526d00)

– fix build errors for latexpdf (443d6ea)

– remove out-dated information about CI review comments (74306b2)

– replace deprecated urls under tfa/docs (5fdf198)

– update maintainers list (9766f41)

– updated certain Neoverse N2 erratum status in docs (d6d34b3)

– use rsvg-convert as the conversion backend (c365476)

• Tools

13.5. 2.10.0 (2023-11-21) 813

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/53092a7780fa3d1b926aae8666f1c5a19cb039f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/379d77b3705b0f3a88332663bba956289cad5797
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b4e1e8fbf0dde5679d6b3717b8579f7a3343fdf8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6fef0f67e47b3b42fc9b5dbc55bdef00a970765d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a5273808aa1a4514f7849ca91b7859e15bf82bff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b156d7b1cca1542f0c1c6f5d4354c43e048dc4a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d1f2748ed25748237e894c68c5a163326a8c33b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f351f9110f29a33923780c40d0896832fdb0ac81
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85c2ea8fd325797a44e814b575611aafae9e7613
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8b826636a39e0f20cc2c0557288b1eeab46fb923
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a7eff3477dcf3624c74f5217419b1a27b7ebd2aa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81c2e1566dc4484c23d293961744489a9a6ea3f0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1cb5bd19034407f2de7cad23f2cc52ca924e561
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fd1479d9194d3f3ec98d235e077c9d6e24276fa2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d526d00a13f86bbd2c073c065b6e9aff339e1b41
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/443d6ea69992986f56246bcee44e537ab8dec069
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/74306b2ac8971693d148b34d02c556d94b3e4926
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5fdf198c117a4b6dbcf5242f5136f7224ceff6ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9766f41d3c4cae4cd515c2f9266bb7adb4725349
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d6d34b39132425dfa8c75352711c463d2989a216
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c3654760033c08e7ffa9337e05c48336032eacb9

Trusted Firmware-A, Release 2.10.4

– Firmware Image Package Tool

∗ move juno plat_fiptool.mk (570a230)

– Certificate Creation Tool

∗ fix key loading logic (bb3b0c0)

∗ key: Avoid having a temporary value for pkey in key_load (ea6f845)

– Memory Mapping Tool

∗ reintroduce support for GNU map files (d0e3053)

13.6 2.9.0 (2023-05-16)

13.6.1 � BREAKING CHANGES

• Libraries

– EL3 Runtime

∗ RAS

· The previous RAS_EXTENSION is now deprecated. The equivalent functionality can be
achieved by the following 2 options:

· ENABLE_FEAT_RAS

· RAS_FFH_SUPPORT

See: replace RAS_EXTENSION with FEAT_RAS (9202d51)

• Drivers

– Authentication

∗ unify REGISTER_CRYPTO_LIB

See: unify REGISTER_CRYPTO_LIB (dee99f1)

– Arm

∗ Ethos-N

· The Linux Kernel NPU driver can no longer directly configure and boot the NPU in a
TZMP1 build. The API version has therefore been given a major version bump with this
change.

See: add protected NPU firmware setup (6dcf3e7)

· Building the FIP when TZMP1 support is enabled in the NPU driver now requires a
parameter to specify the NPU firmware file.

See: load NPU firmware at BL2 (33bcaed)

• Build System

814 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/570a23099c32cafcb63ecb6cc0516d76ea099daf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb3b0c0b09ff1d969ddd49b99642740ce2a07064
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ea6f8452f6eb561a0fa96a712da93fcdba40cd9c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0e3053c4f5b9d2bc70daf4db3c71f99c6da216d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9202d51990c192e8bc041e6f53d5ce63ee908665
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dee99f10b1dcea09091f4a1d53185153802dfb64
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6dcf3e774457cf00b91abda715adfbefce822877
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33bcaed1211ab27968433b546979687bc1182630

Trusted Firmware-A, Release 2.10.4

– BL2_AT_EL3 renamed to RESET_TO_BL2 across the repository.

See: distinguish BL2 as TF-A entry point and BL2 running at EL3 (42d4d3b)

– check boolean flags are not empty

See: check boolean flags are not empty (1369fb8)

– All input and output linker section names have been prefixed with the period character, e.g.
cpu_ops -> .cpu_ops.

See: always prefix section names with . (da04341)

– The EXTRA_LINKERFILE build system variable has been replaced with the
<IMAGE>_LINKER_SCRIPT_SOURCES variable. See the commit message for more
information.

See: permit multiple linker scripts (a6ff006)

– The LINKERFILE, BL_LINKERFILE and <IMAGE_LINKERFILE> build system variables
have been renamed. See the commit message for more information.

See: clarify linker script generation (8227493)

13.6.2 Resolved Issues

• Architecture

– CPU feature / ID register handling in general

∗ context-switch: move FGT availability check to callers (de8c489)

∗ make stub enable functions “static inline” (d7f3ed3)

∗ resolve build errors due to compiler optimization (e8f0dd5)

– Memory Partitioning and Monitoring (MPAM) Extension (FEAT_MPAM)

∗ feat_detect: support major/minor (1f8be7f)

∗ remove unwanted param for “endfunc” macro (0e0bd25)

∗ run-time checks for mpam save/restore routines (ed80440)

– Pointer Authentication Extension

∗ make pauth_helpers linking generic (90ce8b8)

– Performance Monitors Extension (FEAT_PMUv3)

∗ switch FVP PMUv3 SPIs to PPI (d7c455d)

∗ unconditionally save PMCR_EL0 (1d6d680)

– Scalable Matrix Extension (FEAT_SME, FEAT_SME2)

∗ disable SME for SPD=spmd (2fd2fce)

– Statistical profiling Extension (FEAT_SPE)

13.6. 2.9.0 (2023-05-16) 815

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/42d4d3baacb3b11c68163ec85de1bf2e34e0c882
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1369fb82c8e809c1a59a0d99184dbfd2d0b81afa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/da04341ed52d214139fe2d16667ef5b58c38e502
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a6ff0067ab57d848d3fb28a3eb2b47e6cf2a6092
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/82274936374bf630bf5256370e93a531fdda6372
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/de8c489247458c00f7b48301fb5c5273c7a628fc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7f3ed3655b85223583d8c2d9e719f364266ef26
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8f0dd58da231b81ba0ce6f27aaf1e31b4d4c429
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1f8be7fc66fb59b197dde3b4ea83314b1728c6b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e0bd250ef08ba70b34db9eb0cab0f6ef4d08edf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed804406bf2ee04bde1c17683cec6f679ea1e160
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/90ce8b8718d079b9e906d06bdd6a72da6cc5b636
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7c455d8cca85de4a520da33db6523c9c8a7ee38
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d6d6802dd547c8b378a9a47572ee72e68cceb3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2fd2fcedff0595a7050328fa60dc4850d6b424bf

Trusted Firmware-A, Release 2.10.4

∗ drop SPE EL2 context switch code (16e3ddb)

• Platforms

– Allwinner

∗ check RSB availability in DT on H6 (658b315)

– Arm

∗ arm_rotpk_header undefined reference (95302e4)

∗ A5DS

· add default value for ARM_DISABLE_TRUSTED_WDOG (115ab63)

∗ CSS

· fix invalid redistributor poweroff (60719e4)

∗ FPGA

· include missing header file (b7253a1)

∗ FVP

· correct ehf priority for SPM_MM (fb2fd55)

· incorrect UUID name in FVP tb_fw_config (7f2bf23)

· unconditionally include lib/psa headers (72db458)

· work around BL31 progbits exceeded (138221c)

· work around DRTM_SUPPORT BL31 progbits exceeded (7762e5d)

∗ Morello

· add platform-specific power domain functions (02a5bcb)

∗ N1SDP

· add platform-specific power domain functions (5bdafc4)

∗ RD

· RD-N1 Edge

· change variable type to fix gcc sign conversion error (3a3e0e5)

∗ TC

· increase TC_TZC_DRAM1_SIZE (7e3f6a8)

· change the FIP offset to 8 KiB boundary (d07b8aa)

· change the properties of optee reserved memory (2fff46c)

· enable dynamic feature detection of FEAT_SVE for NormalWorld (67265f2)

· enable the execution of both platform tests (657b90e)

· only suspend booting after running plat tests (9b26655)

816 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/16e3ddba1f049106387dfe21989243d2fc4cf061
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/658b3154d5b06a467b65cb79d31da751ffc6f5a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95302e4b234589e0487996a5c0f1e111c21ffedc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/115ab63872ab36f8202f4c4aab093c4e9182d4e7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/60719e4e0965aead49d927f12bf2a37bd2629012
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7253a14cdc633a606472ec4e5aa4123158e2013
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb2fd558d8102ad79e5970714e0afec31a6138d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f2bf23dec6e6467704d7d71ec44bee030912987
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72db45852d84db6ade0da2a232a44df3e5228b6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/138221c2457b9d04101b84084c07d576b0eb5a51
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7762e5d0ed5c28b0a77dc25cc566cf54a69af7e6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02a5bcb0bc3c8596894b6d0ec8c979b330db387a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5bdafc4099b446609965f9132e6c52a7bdeb9ac8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3a3e0e5371e99b3764fd8e8d98a447911f3bb915
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e3f6a87d74efec780c0832c0535dd64ef830cfa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d07b8aac39abc3026233e316686f4643d076f8d6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2fff46c80fe4aa27cd55ad4bfbe43c3823095259
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67265f2f6d7604147080033a1c99150e9a020f28
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/657b90ea1aa2831a7feed31f07fc8e92213e6465
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9b266556d308c0af6f932fedd1c41fbda05204aa

Trusted Firmware-A, Release 2.10.4

· unify TC ROM start addresses (f9e11c7)

· update the name of mbedtls config header (d5fc899)

– Broadcom

∗ add braces around bodies of conditionals (9f58bfb)

– Intel

∗ add mailbox error return status for FCS_DECRYPTION (76ed322)

∗ agilex bitstream pre-authenticate (4b3d323)

∗ fix Agilex and N5X clock manager to main PLL C0 (5f06bff)

∗ fix fcs_client crashed when increased param size (c42402c)

∗ fix pinmux handoff bug on Agilex (e6c0389)

∗ fix print out ERROR when encounter SEU_Err (1a0bf6e)

∗ fix sp_timer0 is not disabled in firewall on Agilex (8de7167)

∗ fix the pointer of block memory to fill in and bytes being set (afe9fcc)

∗ flash dcache before mmio read (731622f)

∗ mailbox store QSPI ref clk in scratch reg (7f9e9e4)

∗ missing NCORE CCU snoop filter fix in BL2 (b34a48c)

∗ remove checking on TEMP and VOLT checking for HWMON (68ac5fe)

∗ update boot scratch to indicate to Uboot is PSCI ON (7f7a16a)

– NVIDIA

∗ Tegra

· append major revision to the chip_id value (33c4766)

· remove dependency on CPU registers to get boot parameters (0b9f05f)

· Tegra 210

· support legacy SMC_ID 0xC2FEFE00 (40a4e2d)

– NXP

∗ i.MX

· i.MX 8M

· add ddr4 dvfs sw workaround for ERR050712 (e00fe11)

· backup mr12/14 value from lpddr4 chip (a2655f4)

· correct the rank info get fro mstr (5277c09)

· fix coverity out of bound access issue (0331b1c)

· fix the current fsp init (25c4323)

13.6. 2.9.0 (2023-05-16) 817

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f9e11c724bb7c919dc9bd5dd8fca1e04140374d2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5fc8992c7b63675b6fc4b2c00a1e1acfdaaeee2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9f58bfbbe90d2891c289cd27ab7d2ede8b5572d4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/76ed32236aa396cb0e15eb049bea03710ca1992d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4b3d323acdd21d8853e38e135bf990b3767ca354
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f06bffa831638fd95d2160209000ef36d2a22ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c42402cdf8a3dfc6f6e62a92b2898066e8cc46f6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e6c038909193b83bc293de9b1eb65440e75f8c91
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1a0bf6e1d8fe899359535c0a0a68c2be5e5acaf4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8de7167eb661ff730a79bd2c6db15c22fdc62c8a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/afe9fcc3d262ca279a747c8ab6fa8bacf79c76fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/731622fe757ab2bcc0492ad27bafecf24206ddac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f9e9e4b40152c0cb52bcc53ac3d32fd1c978416
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b34a48c1ce0dd7e44eac4ceb0537b337857b057f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68ac5fe14c0220673d7ee88a99b3d02be1fef530
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f7a16a6c0a49af593fa080eb66f72a20bb07299
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33c476601cf48a4b02259b8cb43819acd824804f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b9f05fcaea069bff6894d99ec5babc4be29ca67
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40a4e2d84c38ffae899eaa2c33c1e280312919cf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e00fe11df3fee04c7f3137817294d464466dab22
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2655f48697416b8350ba5b3f7f44f1f0be79d4e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5277c09606450daaffa43f3cf15fcc427d7ba612
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0331b1c6111d198195298a2885dbd93cac1ad26a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25c43233e866326326f9f82bfae03357c396a99f

Trusted Firmware-A, Release 2.10.4

· fix the dfiphymaster setting after dvfs (ad0cbbf)

· fix the dram retention random hang on some imx8mq Rev2.0 (4bf5019)

· fix the rank to rank space issue (3330084)

· i.MX 8Q

· fix compilation with gcc >= 12.x (e75a3b6)

∗ Layerscape

· fix errata a008850 (c45791b)

· fix nv_storage assert checking (5d599b7)

· unlock write access SMMU_CBn_ACTLR (0ca1d8f)

· LX2

· init global data before using it (50aa0ea)

· LS1046A

· 4 keys secureboot failure resolved (c0c157a)

– QEMU

∗ enable dynamic feature detection of FEAT_SVE for NormalWorld (fc259b6)

∗ SBSA

· enable FGT (c598692)

· enable SVE and SME (9bff7ce)

– QTI

∗ MSM8916

· add timeout for crash console TX flush (7e002c8)

· drop unneeded initialization of CNTACR (d833af3)

· flush dcache after writing msm8916_entry_point (01ba69c)

· print \r before \n on UART console (3fb7e40)

– Raspberry Pi

∗ Raspberry Pi 3

· initialize SD card host controller (bd96d53)

– Renesas

∗ align incompatible function pointers (90c4b3b)

– Rockchip

∗ use semicolon instead of comma (8557d49)

– ST

818 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad0cbbf513dfabe51a401c06be504e57d6b143ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4bf5019228cf89e0cbc2cd03627f755d51e3e198
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3330084979e4c1a39a92f0642000664c79a00dda
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e75a3b6e89c4bce11d1885426f22262def9bd664
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c45791b2f20909c9a9d2bae84dafc17f55892fc8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d599b71ea6e0020f4f9d0e7af303726483217bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ca1d8fba3bee32242b123ae28ad5c83a657aa0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/50aa0ea7acd21e7e9920a91a14db14a9f8c63700
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c0c157a680fcb100afed3e1ea9d342deea72ea05
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fc259b6c3a551efbc810c8e08e82b7b5378f57ba
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c598692d0c6a79dd10c34d5a4a740c90261cfc65
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9bff7ce37545162d417953ac36c6878216815b94
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e002c8a13172c44f55ab49062861479b6622884
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d833af3ab50cd2cfecb8868c3d5340df1572f042
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/01ba69cd9b833047653186858a6929e6c9379989
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3fb7e40a21b1570a8ce1cd1708134fa7a05d94fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bd96d533dc28c4c938aa54905787688823cbccac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/90c4b3b62d5303c22fdc5f65f0db784de0f4ac95
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8557d491b6dbd6cbf27cc2ae6425f6cb29ca2c35

Trusted Firmware-A, Release 2.10.4

∗ add U suffix for unsigned numbers (9c1aa12)

∗ explicitly check operators precedence (56048fe)

∗ include utils.h to solve compilation error (377846b)

∗ make metadata_block_spec static (d1d8a9b)

∗ rework secure-status check in fdt_get_status() (0ebaf22)

∗ use Boolean type for tests (45d2d49)

∗ use indices when counting GPIOs in DT (e7d7544)

∗ STM32MP1

· add const for strings in stm32mp_get_soc_name() (d7f5bed)

· add missing platform.h include (6e55f9e)

· always define PKA algos flags (e0e2d64)

· remove boolean check on PLAT_TBBR_IMG_DEF (231a0ad)

· rework DWL buffer cache invalidation (127ed00)

– Texas Instruments

∗ do not take system power reference in bl31_platform_setup() (9977948)

∗ fix typo in boot authentication message name (81f525e)

– Xilinx

∗ fix misra defects (964e559)

∗ handle CRC failure in IPI (5e92be5)

∗ handle CRC failure in IPI callback (6173d91)

∗ initialize values to device enum members (5c62d59)

∗ remove asserts around arg0/arg1 (8be2044)

∗ remove unnecessary condition (c984123)

∗ remove unused mailbox macros (15f49cb)

∗ resolve integer handling issue (4e46db4)

∗ use lib/smccc.h macros instead of trusty spd (0ee07d7)

∗ Versal

· check smc_fid 23:16 bits (4a50363)

· fix incorrect regbase for PMC IPI (c4185d5)

· initialize the variable with value 0 in pm code (cd73d62)

· print proper atf handoff source (0fe002c)

· replace FPD_MAINCCI* macros (245d30e)

13.6. 2.9.0 (2023-05-16) 819

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9c1aa1253c9c77487b73d46a89941e81e80864eb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56048fe215997ab6788ebd251e8cde094392dfc7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/377846b65e8eb946a6560f1200ca4ca0e1eb8b99
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d1d8a9bad0be53792e219625b0d327cc4855378f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ebaf222899c1c33fe8bd0e69bd2c287ebe1154b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/45d2d495e77c9c8f3e80774e48a80e4882c8ac0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e7d75448b9e46dee22fe23b37c28a522b9ec3a6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7f5bed90eaacee0a223bcf23438dfb76dee08e6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e55f9e2cde0426c39ccda87b00047f85d30f97d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0e2d64f47654e4d86d0e400977eab0e4a01523e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/231a0adb6abc35c125d4177749af37042575eca2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/127ed0008e03abb98b5447cb80c5634dfa554e7d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9977948112d732935362a3fe8518e3b2e4b7f6b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81f525ecc75a3d8b344a27881098fcaab65f2d8f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/964e55928c8f966633cc57e41987aa00890f5da7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5e92be5121e8ecd81a0f89eaae0d1a7ac8f4bfd7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6173d914d673249ec47c080909c31a1654545913
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5c62d599274b5d9facd4996b50c1a1e153b247a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8be20446706c6b2fe911804385f308817495d2d4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c984123669a7ba7b8d1dc168db8e130ee52bbb1e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15f49cb49d7daf2cd771c80d3dd80ff15874b40b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4e46db40fc86ddc0556c42ba01198d13002fcf14
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ee07d796cece8074eb296415c88872504dee682
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a50363aaeaa16edafcff17486006049b30e1e2f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c4185d5103080621393edb770a56aa274f9af1a7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd73d62b0e0920ca4e6c4fea7ab65bcbd63e07de
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0fe002c9be899f005316ea196ad4c6b08815d482
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/245d30efe617af68c674b411d63c680dca1c21dd

Trusted Firmware-A, Release 2.10.4

· sync location based on IPI_ID macros (92a43bd)

· Versal NET

· fix irq for IPI0 (95bbfbc)

· clear power down bit during wakeup (5f0f7e4)

· clear power down interrupt status before enable (2d056db)

· correct aff level for cpu off (6ada9dc)

· disable wakeup interrupt during client wakeup (e663f09)

· enable wake interrupt during client suspend (39fffe5)

· fix setting power down state (1f79bdf)

· populate gic v3 rdist data statically (355dc3d)

· resolve misra 10.6 warnings (8c23775)

· resolve misra rule 20.7 warnings (21d1966)

· use spin_lock instead of bakery_lock (0b3a2cf)

∗ ZynqMP

· add bitmask for get_op_char API (ad4b667)

· check return status of pm_get_api_version (c92ad36)

· check smc_fid 23:16 bits (09b342a)

· conditional reservation of memory in DTB (c52a142)

· enable A53 workaround(errata 1530924) (d8133d7)

· fix bl31_zynqmp_setup.c coding style (26ef5c2)

· fix DT reserved allocated size (2c03915)

· fix xck24 silicon ID (f156590)

· initialize uint32 with value 0U in pm code (e65584a)

· move EM SMC range to SIP range (acbae39)

· panic w/o handoff structure in !JTAG (fbe4dbe)

· remove redundant api_version check (d0b58c8)

· remove unused PLAT_NUM_POWER_DOMAINS (72c3124)

· separate EM from PM SMCs (a911396)

· update MAX_XLAT_TABLES for DDR memory range (12446ce)

· update the conflicting EEMI API IDs (bcc1348)

· with DEBUG=1 move bl31 to DDR range (2537f07)

• Bootloader Images

820 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/92a43bdf366502c6919bbd2c8e4f687c51d9738c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95bbfbc6e0789cba871e2518dba76ff9bf712331
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f0f7e47e05f98587d424c2162d1ce20af4f588d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d056db4e4981e0f8a58de0d1e44e46058b308f4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ada9dc325aaa29e2f4c87575093401197856639
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e663f09b3cc2a3c933191c110557c6ffe5db6d6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/39fffe552fb04028de750e6080d9a8ba46e89b8c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1f79bdfd9ae105135a0192017d6f9368045228e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/355dc3d4deacf73a3d354682bcda454e6d13ed66
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8c23775e88bfc4ffa2b0eaf815d4f79992d344e6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21d1966a23b57425a400730270c8694e37b1a85c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b3a2cf0226878ad7098cc6cd1a97ade74fd9c38
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad4b667d3ba7ece4cf28106aef6f91259b5b06ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c92ad369ca3a548ecbf30add110b1561fe416c10
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/09b342a9d3aa030bde6d52e39203b9b8c8e6b106
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c52a142b7ceb397b4d66cc90f2bc717acc7263cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d8133d7785969b417cbace293db6393c55844fac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/26ef5c29c62def3a21591dd216180d86063acdb4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c03915322ede112030fcfb8097d4697b92fcc2f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f156590767d5f80e942fa3f88a9b6a94c13ceb55
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e65584a017fadf002d5bdd1e95527c48610a6963
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/acbae3998bd829ae4b31ea9da59055e3624991a5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fbe4dbeec906038795f72d8f9284a812bd6a852d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0b58c8a9bff3cabfdb59e052ab7eaecfe64b305
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72c3124f584609275424bf52a20fd707d4f1af6a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a9113966c35af281e9c8972b1209646963ff55d0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12446ce89e351959aebb610eb2e35cdc7eb84d26
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bcc1348b6bb2fcd987c8f047fa9f526f32768258
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2537f0725ee7d8f46bef3e5b49134419b5c3367b

Trusted Firmware-A, Release 2.10.4

– BL31

∗ avoid clearing of argument registers in RESET_TO_BL31 case (3e14df6)

– BL32

∗ TSP

· loop / crash if mmap of region fails (8c353e0)

· use verbose for power logs (3354915)

• Services

– RME

∗ update sample platform attestation token (19c1dce)

∗ TRP

· preserve RMI SMC X4 when not used as return (b96253d)

∗ RMMD

· add missing padding to RMM Boot Manifest and initialize it (dc0ca64)

– SPM

∗ EL3 SPMC

· fix coverity scan warnings (1543d17)

· improve bound check for descriptor (def7590)

· report execution state in partition info get (62cd8f3)

∗ SPMD

· fix build error with spmd (fd51b21)

• Libraries

– CPU Support

∗ do not put RAS check before using esb (9ec2ca2)

∗ use hint instruction for “tsb csync” (7a181b7)

∗ workaround for Cortex-A510 erratum 2684597 (aea4ccf)

∗ workaround for Cortex-A710 erratum 2282622 (89d85ad)

∗ workaround for Cortex-A710 erratum 2768515 (b87b02c)

∗ workaround for Cortex-A78 erratum 2742426 (a63332c)

∗ workaround for Cortex-A78 erratum 2772019 (b10afcc)

∗ workaround for Cortex-A78 erratum 2779479 (7d1700c)

∗ workaround for Cortex-A78C erratum 1827430 (672eb21)

∗ workaround for Cortex-A78C erratum 1827440 (b01a59e)

13.6. 2.9.0 (2023-05-16) 821

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3e14df6f63303adb134d525b373ec7f08c1b1dc6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8c353e0058e95cfa20c9a760ebd0908a9a9aa1c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3354915fff2ad5f97551c22a44a90f4ff7b7cc9b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/19c1dcef88cb837abe175b89739e75e27539a561
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b96253db08383c3edfb417c505c8da6f7b1dbe75
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dc0ca64e4b6c86090eee025293e7ae7f1fe1cf12
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1543d17b9876add1cb89c1f5ffe0e6a129f5809e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/def7590b3e34ff69b297c239cb8948d0bdc9c691
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/62cd8f3147ed7fb146168c59cab3ba0e006210ad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fd51b21573ec2e0d815caecb89cc323aac0fca6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ec2ca2d453176179f923d7e0fbaac05341ebdc6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7a181b7d046a710db5238fb37047816636d2bb8a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aea4ccf8d9f3eabbc931f0e82df65ffca28c25e5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/89d85ad0aad4fef7f56a9e18968b49e2b843ca9d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b87b02cf1d93f2be2113192cd5f1927e33121a80
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a63332c517ac5699644d3e2fbf159d3e35c32549
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b10afcce5ff1202e1cd922dbd3c1e5980b478429
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7d1700c4d475358539c9a84cb325183c86a06f33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/672eb21e26a41657b8146372d4283e794b430c5f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b01a59eb2a0456ca3ae6b8d020068ba846f813d4

Trusted Firmware-A, Release 2.10.4

∗ workaround for Cortex-A78C erratum 2772121 (00230e3)

∗ workaround for Cortex-A78C erratum 2779484 (66bf3ba)

∗ workaround for Cortex-X2 erratum 2282622 (f9c6301)

∗ workaround for Cortex-X2 erratum 2768515 (1cfde82)

∗ workaround for Cortex-X3 erratum 2615812 (c7e698c)

∗ workaround for Neoverse N2 erratum 2743089 (1ee7c82)

∗ workaround for Neoverse V1 errata 2743233 (f1c3eae)

∗ workaround for Neoverse V1 errata 2779461 (2757da0)

∗ workaround for Neoverse V1 erratum 2743093 (31747f0)

∗ workaround platforms non-arm interconnect (ab062f0)

– EL3 Runtime

∗ allow SErrors when executing in EL3 (1cbe42a)

∗ do not save scr_el3 during EL3 entry (e61713b)

∗ restore SPSR/ELR/SCR after esb (ff1d2ef)

∗ RAS

· do not put RAS check before esb macro (7d5036b)

– FCONF

∗ fix FCONF_ARM_IO_UUID_NUMBER value (e208f32)

∗ make struct fconf_populator static (40e740d)

– OP-TEE

∗ address late comments and fix bad rc (8d7c80f)

∗ return UUID for image loading service (85ab882)

– PSCI

∗ do not panic on illegal MPIDR (8a6d0d2)

∗ potential array overflow with cpu on (6632741)

∗ remove unreachable switch/case blocks (ad27f4b)

∗ tighten psci_power_down_wfi behaviour (695a48b)

– GPT

∗ fix compilation error for gpt_rme.c (a0d5147)

– SMCCC

∗ check smc_fid [23:17] bits (f8a3579)

– C Standard Library

822 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/00230e37e3c21fed4a46eeb69dea9d808f8402b4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66bf3ba482e46137e19f368f1386436a33eaba74
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f9c6301d743405bd91b9a1fe433ce14fa60a830f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1cfde82227558a8cc1792c068bc7a7cdf8feab43
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c7e698cfdedbe2b1c8212dd71477f289f7644953
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ee7c8232c153203d104f148a33e6f641d503f96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1c3eae9e091a63b42eebae8b03d4d470c9c3f75
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2757da06149238041308060e5cb51f0870a02a15
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31747f057b13b5934b607b7021139e58a55f7766
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab062f0510d42b2019667e3f4df82a1f57121412
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1cbe42a510812a4a4415a26ba46821cad1c04b68
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e61713b00715fc988a970687f9bf53418b81b0ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff1d2ef387f085fdada4a122284b3b044fdde09c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7d5036b8ec911d83ede6eb73f1693b6f160d90ed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e208f3244b311a23b3e7fa1c03b3e98a6228714a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40e740dc14e807455d8db99dc758af355aa7fa8f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8d7c80fa4c5ab17e25d6d82ff0b1e67795e903fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85ab88238183be1e27835e14e3588fb73e0f6aa7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a6d0d262ae03db0a0bedd047a2df6f95e8823f6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66327414fb1e3248d443f4eb2835f437625fb92c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad27f4b5d918bbd1feb9a2deed3cb0e2ae39616e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/695a48b5b4366d1005f8b9a0fc83726914668fb5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a0d5147b8282374e107461421bb229272fde924b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f8a35797b919d8ea041480bd5eb2a334e7056e0b

Trusted Firmware-A, Release 2.10.4

∗ properly define SCHAR_MIN (06c01b0)

∗ remove __putchar alias (28dc825)

– Context Management

∗ enable SCXTNUM access (01cf14d)

• Drivers

– Authentication

∗ avoid out-of-bounds read in auth_nvctr() (abb8f93)

∗ forbid junk after extensions (fd37982)

∗ only accept v3 X.509 certificates (e9e4a2a)

∗ properly validate X.509 extensions (f5c5185)

∗ reject invalid padding in digests (f47547b)

∗ reject junk after certificates (ca34dbc)

∗ reject padding after BIT STRING in signatures (a8c8c5e)

∗ require at least one extension to be present (72460f5)

∗ require bit strings to have no unused bits (8816dbb)

∗ use NULL instead of 0 for pointer check (654b65b)

∗ mbedTLS

· fix mbedtls coverity issues (a9edc32)

– Console

∗ correct scopes for console symbols (03bd481)

∗ fix crash on spin_unlock with cache disabled (5fb6946)

– I/O

∗ compare function pointers with NULL (06d223c)

– MMC

∗ align part config type (53cbc94)

∗ do not modify r_data in mmc_send_cmd() (bf78a65)

∗ explicitly check operators precedence (14cda51)

∗ remove redundant reset_to_idle call (bc0a738)

– GUID Partition Tables Support

∗ add missing curly braces (1290662)

∗ add U suffix for unsigned numbers (d1c6c49)

– SCMI

13.6. 2.9.0 (2023-05-16) 823

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/06c01b085fb28fcfe26d747da2ba33415dbd52b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28dc82580e50961f9b76933b20d576a6afc5035c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/01cf14dd41cae9c68cb5e76a815747a0d2a19a4a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/abb8f936fd0ad085b1966bdc2cddf040ba3865e3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fd37982a19a4a2911912ce321b9468993a0919ad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e9e4a2a6fd33d8fc21b00cfc9816a3dd3fef47fe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f5c51855d36e399e6e22cc1eb94f6b58e51b3b6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f47547b35462571636a76b737602e827ae43bc24
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ca34dbc0cdb1c4e1ab62aa4dd195cf9389b9edb7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a8c8c5ef2a8f5a27772eb708f2201429dd8d32b2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72460f50e2437a85ce5229c430931aab8f4a0d5b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8816dbb3819e626d14e1bb9702f6446cb80e26f0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/654b65b36d60a9c08e1d0cd88b35cd7bc2c813af
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a9edc32c8964ffe047909b4847edd710b5879f35
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/03bd48102b575a9c86eed73866a5f9cd4d03e2d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5fb6946ad70f5c6e82502a704633bba1dd82e507
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/06d223cb4f54543299b96d40a682e33f9147e192
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/53cbc949670877d1b661782ab452f6fac2302ce3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bf78a6504254be9bf2cee38828a72f84773d4aa7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14cda5168de45bbbcce1a5152140111d4fc8fd21
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc0a73866f3e4f7138892b228eb592be118b40d2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1290662034578b4e52443c79f34dfd7c284c0435
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d1c6c495541b6e387179f987acbef274a12c7535

Trusted Firmware-A, Release 2.10.4

∗ change function prototype to fix gcc error (f0f2c90)

∗ fix compilation error in scmi base (7c38934)

– UFS

∗ device present (DP) field is set to ‘1’ (83103d1)

∗ flush the entire PRDT (83ef869)

∗ only allow using one slot (56db7b8)

∗ poll UCRDY for all commands (6e57b2f)

∗ set the PRDT length field properly (20fdbcf)

– Arm

∗ Ethos-N

· add workaround for erratum 2838783 (5a89947)

∗ GIC

· wrap cache enabled assert under plat_can_cmo (78fbb0e)

· GICv3

· fixed bug in the initialization of GICv3 SGIs/(E)PPIs interrupt priorities (5d68e89)

· restore scr_el3 after changing it (1d0d5e4)

· workaround for NVIDIA erratum T241-FABRIC-4 (a02a45d)

∗ RSS

· do not consider MHU_ERR_ALREADY_INIT as error (55a7aa9)

· fix msg deserialization bugs in comms (dda0528)

· remove null-terminator from RSS metadata (85a14bc)

– NXP

∗ fix fspi coverity issue (5199b3b)

∗ fix sd secure boot failure (236ca56)

∗ fix tzc380 memory regions config (07d8e34)

∗ use semicolon instead of comma (50b8ea1)

∗ NXP Crypto

· fix coverity issue (e492299)

· fix secure boot assert inclusion (334badb)

∗ DDR

· add checking return value (e83812f)

· apply Max CDD values for warm boot (00bb8c3)

824 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0f2c90365d933ee0a160b4bf5723fc303d9ab73
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c3893423d6ba5088f92f4ebdb626285759a1bcd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/83103d1264fe3cd7d54f3a89121d6889b4d33980
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/83ef8698f9d1477c892cad15b4e48574ed634903
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56db7b8b08d5bb350a02e1f794dc6eb02827917f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e57b2f00e36e63da765e3aa1650b03772999726
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/20fdbcf502bd457a4b74ffa9a610d573594f1f6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5a89947ab3ef8541b7adb6058af9ef141073043d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/78fbb0ec8372a638b2b2a0276776892141ff43f8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d68e8913ea983b21eb4a1163e6215ff8f8e96e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d0d5e40206c693e24b0a4de7dbcfc4b79f3138e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a02a45dfef4b02fa363a5f843ba6a0aac52d181f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/55a7aa9252acfc9712a914e74bcddefc3a8d6390
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dda052851a78fad150b6565ea4bb75644bd37dce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85a14bc0a9598668c4678f9eda2ba497acba5ced
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5199b3b93c6ada8dd830f625f77987d3474a6f98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/236ca5667e8ac82aa53d4e933a78e6ca1ebf456e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/07d8e34fdd5a81b6fe5f805560be44c1063cea79
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/50b8ea115f117e17646d73fe7606bee14bd02630
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e49229911f4e08e317453883886a113f3332b776
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/334badb50f3ad55762785a6ba0266c2eb4d93e8e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e83812f11a2d725931de88308c5b520d88bcca86
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/00bb8c37e0fe57ae2126857ce2d2700106a76884

Trusted Firmware-A, Release 2.10.4

· fix coverity issue (2d541cb)

· fix underrun coverity issue (87612ea)

· use CDDWW for write to read delay (fa01056)

– ST

∗ Clock

· avoid arithmetics on pointers (4198fa1)

· give the size for parent_mp13 and dividers_mp13 tables (ee21709)

· remove useless switch (69a2e32)

· use Boolean type for tests (c3ae7da)

∗ Crypto

· move flag control into source code (6a187a0)

· remove platdata functions (6b3ca0a)

· set get_plain_pk_from_asn1() static (70a422b)

∗ GPIO

· define shift as uint32_t (5d942ff)

∗ SDMMC2

· check transfer size before filling register (029f81e)

∗ ST PMIC

· define pmic_regs table size (3cebeec)

· enclose macro parameter in parentheses (be7195d)

∗ Regulator

· enclose macro parameters in parentheses (91af163)

· explicitly check operators precedence (68083e7)

· rework for_each_*rdev macros (6a3ffb5)

· use Boolean type for tests (9a00daf)

∗ USB

· replace redundant checks with asserts (02af589)

• Style

– correct some typos (1b491ee)

• Miscellaneous

– AArch64

∗ allow build with ARM_ARCH_MINOR=4 (78f56ee)

13.6. 2.9.0 (2023-05-16) 825

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d541cbcbe90217df107e1ac0c4adb76d647b283
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/87612eaefff34548b72fed0d8c93dcf73f9b8c81
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fa0105693c85eacf6eda22eca63f220d304f7768
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4198fa1db7297d8385bb6624d4bd475870e5bf12
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ee21709e98a9e0f60a46d79caf5b702a0b7941cc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/69a2e320b6798ce3cf5cb27bf70e3384cfac3ebb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c3ae7da02dd8b358239dde47c3325e333af81056
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a187a002ee72ef865222870b2ecf99cf4d4efb8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b3ca0a81723290e2d9b33c406c0e65c1870baa8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70a422ba83df3f572af1d2931e950feb78592ca3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d942ff1964131bf33f445f66175fe8211c77e23
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/029f81e04c0232843f3e546fa080778a1008a9c5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3cebeec2ae452d33ec0cea322f4ab18137e41631
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be7195d06cb7731fe0d906c6eabe6cb6f39f29b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/91af163cbbfab936e70568998e8b9dcb10203b8e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68083e7ad5ded7adbeca147546bbda6c14cab049
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a3ffb53910f136d14ddad5042da01a03e5087c4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9a00daf9dd0a25da45a43142ca27126e6e26a622
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02af589cfa8d8aefaffeef3390e3fb8fdf51978f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1b491eead580d7849a45a38f2c6a935a5d8d1160
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/78f56ee71c9ffe7a6ee36268f0fe1f7ca7d01738

Trusted Firmware-A, Release 2.10.4

– FDT Wrappers

∗ use correct prototypes (e0c56fd)

– FDTs

∗ STM32MP1

· STM32MP15

· use /omit-if-no-ref/ for spi and i2c (d480df2)

· use interrupts-extended for i2c2 (600c8f7)

– PIE

∗ pass -fpie to the preprocessor as well (966660e)

– UUID

∗ add missing #include directives (12562af)

– add missing click dependency (ff12683)

– add parenthesis for tests in MIN, MAX and CLAMP macros (8406db1)

– increase BL32 limit (c2a7612)

– remove old-style declarations (f4b8470)

– remove useless “return” at void functions (af4d8c6)

– unify fallthrough annotations (e138400)

• Documentation

– add a build.tools.python entry (4052d95)

– add few missed links for Security Advisories (43f3a9c)

– add plantuml as a dependency (65982a9)

– add readthedocs configuration file (8a84776)

– deprecate plat_convert_pk() in v2.9 (e0f58c7)

– make required compiler version == rather than >= (415195c)

– python version must be string (3aa919e)

– specify python version to 3.10 (a7773c5)

• Build System

– add a default value for INVERTED_MEMMAP (4d32f91)

– allow lower address access with gcc-12 (dea23e2)

– allow warnings when using lld (ebac692)

– partially fix qemu aarch32 build (c68736d)

• Tools

826 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0c56fd71fbd7e8ef307777db8940fb2cf3c9957
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d480df2116fc0d629d52f654bc218ee36251cb33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/600c8f7d953d466e0ec5fd04bd6ef2e44c9c9125
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/966660ecd0c8a3d6e4d18a5352bb431e71a9a793
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12562af369e897c67aa45bfeb97cd7bb5d500cf6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff12683e87e44ead813600fac5415e05e7f95700
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8406db14fbba19c25d000eaeab538a0474795da1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c2a76122c88e9ba5de493e1aa765ad170614a31d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4b8470feee4437fb3984baeee8c61ed91f63f51
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af4d8c6d505c001ee78ea9dd9d8dd76ba039af9b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e138400d1c19a561eaf9f23b0cadc07226684561
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4052d9583c850feeb8add29734bda0ef0343c238
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/43f3a9c4d67da76a00f9050e7cfe1333da51ff92
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/65982a94ef113d5d652d8e1a521b219be75fca42
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a84776340bf4215d235b7b6dc09cf94aed8c6b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0f58c7fb685560933e3583cb1dfab8fb2963692
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/415195c03e6e1b3a5335ee242ab4116d2d1ac0b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3aa919eb278e7e0b23742ea043d79e1b1f1d75c6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a7773c590d0319bdf3b4ddc67c7b22180020224b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d32f9138d61719bbaab57fdd853877a7e06b1cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dea23e245fb890c6c06eff7d1aed8fffa981fc05
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ebac6922d1f6fc16c5d3953dfb512553001dcdd3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c68736dab5631af3d9a1d33cb911e90e67e8ee34

Trusted Firmware-A, Release 2.10.4

– NXP Tools

∗ fix coverity issue (4fa0f09)

– Secure Partition Tool

∗ add dependency to SP image (4daeaf3)

– Certificate Creation Tool

∗ change WARN to VERBOSE (76a85cf)

• Dependencies

– add missing aeabi_memset.S (bdedee5)

13.6.3 New Features

• Architecture

– Extended Translation Control Register (FEAT_TCR2).

∗ add FEAT_TCR2 to the changelog (a366640)

∗ support FEAT_TCR2 (d333160)

– CPU feature / ID register handling in general

∗ enable FEAT_SME for FEAT_STATE_CHECKED (45007ac)

∗ enable FEAT_SVE for FEAT_STATE_CHECKED (2b0bc4e)

∗ extend check_feature() to deal with min/max (a4cccb4)

– Guarded Control Stack (FEAT_GCS)

∗ support guarded control stack (688ab57)

– Support for the HCRX_EL2 register (FEAT_HCX)

∗ initialize HCRX_EL2 to its default value (ddb615b)

– Scalable Matrix Extension (FEAT_SME, FEAT_SME2)

∗ enable SME2 functionality for NS world (03d3c0d)

• Platforms

– Allwinner

∗ add extra CPU control registers (b15e2cd)

∗ add function to detect H616 die variant (fbde260)

∗ add support for Allwinner T507 SoC (018c1d8)

– Arm

∗ add ARM_ROTPK_LOCATION variant full key (5f89928)

∗ carveout DRAM1 area for Event Log (6b2e961)

13.6. 2.9.0 (2023-05-16) 827

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4fa0f097399c7d396bc14a6692476ada6981c458
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4daeaf341a347a60fd481fb4a1530f18f8e4c058
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/76a85cfa0ab5e7093ad18601b7e73a1e425d8025
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bdedee5a0f156d05eb62c704e702bfd1c506dc5d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a366640cf22d7d0e610564f81e189f6037ff9473
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d3331603664ca7d4ab1510df09e722e6ffb1df29
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/45007acd46981b9f289f03b283eb53e7ba37bb67
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2b0bc4e028a75d75c6d6942ddd404ef331db29be
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4cccb4f6cbbb35d12bd5f8779f3c6d8d762619c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/688ab57b9349adb19277d88f2469ceeadb8ba083
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ddb615b419074727ac0a1430cf0f88bd018ac8df
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/03d3c0d729e24713d657209bedf74d255550babb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b15e2cda14b3ffddebd8b40cc5c31c1c0e9cbf0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fbde260b11171f0f67afbc631e22fe26366ff448
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/018c1d878fbfd696ebeda52b5188e4658b87bf75
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f899286eac994b8337959ad924a43c1a4a543c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b2e961fb1428c3fe213c524164a00fcaee495c4

Trusted Firmware-A, Release 2.10.4

∗ FVP

· add Event Log maximum size property in DT (1cf3e2f)

· copy the Event Log to TZC secured DRAM area (191aa5d)

· define ns memory in the SPMC manifest (7f28179)

· emulate trapped RNDR (1ae7552)

· enable errata management interface (d3bed15)

· enable FEAT_FGT by default (15107da)

· enable FEAT_HCX by default (2e12418)

· enable support for PSCI OS-initiated mode (e75cc24)

· increase BL1_RW and BL2 size (dbb9c1f)

· introduce PLATFORM_TEST_EA_FFH config (fe38cc6)

· introduce PLATFORM_TEST_RAS_FFH config (5602ce1)

· update device tree with load addresses of TOS_FW config (1779762)

∗ Juno

· support ARM_IO_IN_DTB option for Juno (2fad320)

∗ Morello

· add GPU DT node (cd94c3d)

· add support for HW_CONFIG (be79071)

· implement methods to retrieve soc-id information (cc266bc)

∗ RD

· RD-N2

· add platform id value for rdn2 variant 3 (028c619)

∗ TC

· enable MPAM functionality of L3 DSU cache (b45ec8c)

· add delegated attest and measurement tests (25dd217)

· allow secure watchdog timer to trigger periodically (28b2d86)

· use smmu 700 (ed80eab)

– Intel

∗ extending to support SMMU in FCS (4687021)

∗ fix bridge disable and reset (9ce8251)

∗ implement timer init divider via CPU frequency for N5X (02a9d70)

∗ setup FPGA interface for Agilex (3905f57)

828 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1cf3e2f0a8eb0d6324ce3db68dd5c78bdb690a8a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/191aa5d3fc793c5c4cd8960d1ef7b95010cc9d87
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f28179a46b40ede461326dd329eb832c0d72b0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ae75529bc2e5a213c3e458898c219c34aa99f65
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d3bed15851a1b35b2608f7275f1294c8d4f7aee7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15107daad6b83b4ee1edfebf420b6779a054318e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2e1241888ee82a5a9b3b30acd83a1f4ea6732f1b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e75cc247c744d21e52f834a442bf1c26d0ab6161
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dbb9c1f5b69134ca43c944d84b413331a64fba15
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fe38cc68975b23084b4ba512254926941c865a07
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5602ce1d8db3256a7766776cb908b1f716c2d463
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/177976286e347acd905d8082f31c201b9900d28e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2fad320f5623edcdd23297ab57c4b9b0b0ef872c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd94c3d6ad5e738c2583486b7a973bd8e516089b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be79071ef73b4b08cca310ec7e7d915faea8f036
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc266bcd8c0a1d839151b69436fdf2c1ad07b0a1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/028c6190d9f3d892a84b5b9cbfdbbab808a73acb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b45ec8cea483a38e358146b99205504ff7f98001
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25dd2172ae564c74b7e8b42aa96d5ee9a865ec75
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28b2d86cd28ffc54c6272defcd6f123a925012f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed80eab6a686ce1042300cfbdb90e13366aa08d4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4687021d2eedea880ad8596b32e85da72f8cba02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ce82519c65f0dd93d2673ebb967d02f52b19a04
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02a9d70c4deaa2102386611ac6b305838003148d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3905f57134853f47f6e859b8b6322a7dbbfc49f7

Trusted Firmware-A, Release 2.10.4

– MediaTek

∗ add APU init flow (5243091)

∗ add new features of LPM (917abdd)

∗ add SiP service for OP-TEE (621eaab)

∗ add SMC handler for EMI MPU (c842cc0)

∗ add SPM’s SSPM notifier (c234ad1)

∗ MT8188

· add apu power on/off control (8e38b92)

· add MT8188 SPM debug logs (f85b34b)

· add MT8188 SPM support (45d5075)

· add SPM feature support (f299efb)

· add the register definitions accessed by SPM (1a64689)

· enable SPM and LPM (380f64b)

· keep infra and peri on when system suspend (e56a939)

· update INFRA IOMMU enable flow (98415e1)

∗ MT8195

· add support for SMC from OP-TEE (ccc61e1)

– NVIDIA

∗ Tegra

· implement ‘pwr_domain_off_early’ handler (96d07af)

– NXP

∗ i.MX

· i.MX 8M

· add more dram pll setting (4234b90)

· fix the ddr4 dvfs random hang on imx8m (093888c)

· update the ddr4 dvfs flow to include ddr3l support (0e39488)

· use non-fast wakeup stop mode for system suspend (ef4e5f0)

· i.MX 8Q

· add anamix pll override setting for DSM mode (387a1df)

· add BL31 PIE support (8cfa94b)

· add the dram retention support for imx8mq (dd108c3)

· add version for B2 (99475c5)

13.6. 2.9.0 (2023-05-16) 829

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5243091633b8fe8057cec176ac31adb72fdf3506
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/917abdd99012d01ef4fa804ecec1503bef68ed9b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/621eaab5cc3c9d98783700b7515b1da118b3d21c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c842cc0e5d1432a681cbddce62a852ff282169ae
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c234ad17d7d7278e1afa0f416982bb0f60a04dcf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8e38b928490516d308bdceebc4ad032852bf2716
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f85b34b112eec006c14afab0eadbd45d1b0d0e7e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/45d507599e213f8f3a26502c3ca8de6b1cfdc611
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f299efbea685aa8075ec4d6d0f70d189cce3ee07
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1a64689df5e7bf78aa8724c1d75f414ea62750eb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/380f64b2e39c60cb9a1f751b25cbce11c5e03e20
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e56a939cabb5ae0fe967c19ddacf97304c563f37
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/98415e1a80ca025a000241cf3fc175272890c0e8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ccc61e10029b8ddfcb5cb65201862a18ebbc953d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/96d07af402a5d191b7d1200a75c1b206f21cc395
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4234b902ae37ca05640888e31405ec97c8cde316
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/093888caaf54cbfe38d4b68406d98fbcf5c7d81f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e39488ff3f2edac04d7f5acb58d9a22baa3a69e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef4e5f0f105f184f02ad4d1cc17cecec9b45502a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/387a1df18e0b5bf1d305c72df284b1b89f3c1cd3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8cfa94b7a7fc398cc0ea803891f6277065bb7575
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dd108c3c1fe3f958a38ae255e57b41e5453d077f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99475c5dcc14123dda51bda32d21753f0b4c357d

Trusted Firmware-A, Release 2.10.4

· add workaround code for ERR11171 on imx8mq (88a2646)

· always set up console (36be108)

· correct the slot ack setting for STOP mode (724ac3e)

· enable dram dvfs support on imx8mq (8962bdd)

· make IMX_BOOT_UART_BASE configurable via build parameter (202737e)

· remove empty bl31_plat_runtime_setup (7698dba)

· i.MX 8

· add support for debug uart on lpuart1 (8406447)

∗ Layerscape

· LX2

· enable OCRAM ECC (e8faff3)

· support more variants (c07f5e9)

– QEMU

∗ add “neoverse-n1” cpu support (226f4c8)

∗ add A76/N1 cpu support for virt (6b66693)

∗ combine TF-A artefacts into ROM file (63bb905)

∗ increase max cpus per cluster to 16 (73a7aca)

∗ increase size of bl2 (db2bf3a)

∗ make coherent memory section optional (af994ae)

∗ support el3 spmc (302f053)

∗ support pointer authentication (cffc956)

∗ support s-el2 spmc (36802e2)

∗ update abi between spmd and spmc (25ae7ad)

– QTI

∗ SC7280

· add support for PSCI_OS_INIT_MODE (e528bbe)

∗ MSM8916

· expose more timer frames (1781bf1)

– ST

∗ mandate dtc version 1.4.7 (38ac8bb)

∗ STM32MP1

· add mbedtls-3.3 support config (c9498c8)

830 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/88a264657fad2f71369fec4b53478e8a595d10e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/36be10861e851e7e4df06bb08aab60d8e878d2b2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/724ac3e2c23441d11f642f2ae91c8a8834ea179f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8962bdd603508f649fd7a332e580c0e456ccc0ad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/202737efda85b2ea61934123b8ffa492f5dc3679
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7698dbab96072881e0912322db5036529bf8553c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8406447f13c65fe93aab7ed641b7e8fe3eb47a0b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8faff3da962ce112e32d8f1fdb8155e078eae75
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c07f5e9e50959a3667e5a96ac808d1d16bb72698
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/226f4c8e35c4441e80ad523b9105eab4ca630396
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b66693685f828a51c7f78bfa402d6b192169a6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/63bb90569792893a4e7401004c23cde488fda0cc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/73a7aca2a53d4dbb62909c5741830eee9eac5ee8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/db2bf3ac193f66f365b962b911e7bb2ffbde0a25
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af994ae8a089ead6082ca82036d30074f554ed52
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/302f05354f5aab340c315e0d04915367c65c6b27
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cffc956edf3a14508ed5740c1ed093326ca67e72
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/36802e2c792f79ab630b53298dfd4f1e5a95d173
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25ae7ad1878244f78206cc7c91f7bdbd267331a1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e528bbec74af359714203c7f8d356074733ea9cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1781bf1c40594e3a3f36404da793d5c7a6bca533
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/38ac8bbbe450343e8545a44f370ff9da57cbed26
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c9498c8f56387ad23530dcc6e57940d2b118d907

Trusted Firmware-A, Release 2.10.4

– Texas Instruments

∗ add PSCI system_off support (0bdef26)

∗ add sub and patch version number support (852378f)

∗ disable L2 dataless UniqueClean evictions (10d5cf1)

∗ do not handle EAs in EL3 (2fcd408)

∗ set L2 cache data ram latency on A72 cores to 4 cycles (aee2f33)

∗ set L2 cache ECC and and parity on A72 cores (81858a3)

∗ set snoop-delayed exclusive handling on A72 cores (5668db7)

∗ synchronize access to secure proxy threads (312eec3)

– Xilinx

∗ add device node indexes (407eb6f)

∗ sync copyright format (2774965)

∗ Versal

· replace irq array with switch case (0ec6c31)

· switch to xlat_v2 (0e9f54e)

· Versal NET

· add jtag dcc support (30e8bc3)

· add support for set wakeup source (c38d90f)

· add support for uart1 console (2f1b4c5)

∗ ZynqMP

· add hooks for custom runtime setup (88a8938)

· add hooks for mmap and early setup (7013400)

· add SMCCC_ARCH_SOC_ID support (8f9ba3f)

· add support for custom sip service (496d708)

· build pm code as library (3af2ee9)

· bump up version of query_data API (aaf5ce7)

· make stack size configurable (5753665)

• Services

– RME

∗ read DRAM information from FVP DTB (8268590)

∗ set DRAM information in Boot Manifest platform data (a97bfa5)

∗ RMM

13.6. 2.9.0 (2023-05-16) 831

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0bdef264c2bd356e2a89fc5ac7c438694618d272
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/852378fd60d8cc536799639774f1e4ffe124131d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/10d5cf1b26f03d61a90cdcff5163965fa48e291c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2fcd408bb3a6756767a43c073c597cef06e7f2d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aee2f33a675891f660fc0d06e739ce85f3472075
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81858a353f8e45f5cc57ce855188043b1745ea08
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5668db72b724dc256d9b300f6938a08625624a48
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/312eec3ecde9837f61fc0d7b46b4197ec2257ee7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/407eb6fda06d7be034dc7f1c537183f64126f074
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/27749653c7dbea1bd5b34a39085bc7cb12d46501
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ec6c31320c6d86e89dce8775af2bbdfa7a302fa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e9f54e5bb7f4b44bca9c63cce37913070fea23a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/30e8bc365c1007da97f93c71e5fa16b6be56b679
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c38d90f7964ddf186f4cbaad6da91dd0a44627e3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2f1b4c55502262dba0ccd147f87cdb38cf4131f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/88a8938e62989b7319b20c46c046aa8845852ce9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70134000842cbc7c052031dd453bdec8f4cb73f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8f9ba3f344545740fc44e90fb8322c7728ae94ec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/496d708154d893fb9f412390acd433337faccecc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3af2ee906842378ee91f07aa4ea5565cd1a0f8c2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aaf5ce77fb22f54a8ca7bc8d3be6172dacbfc0c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/57536653e62765f9529d045b118ad881369bc73a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/826859049859a5bd88e142695e10a559d85721c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a97bfa5ff18b2682e3b9c528cbd5fb16ceec3393

Trusted Firmware-A, Release 2.10.4

· add support for the 2nd DRAM bank (346cfe2)

– SPM

∗ EL3 SPMC

· make platform logical partition optional (555677f)

∗ SPMD

· add support for FFA_EL3_INTR_HANDLE_32 ABI (6671b3d)

· copy tos_fw_config in secure region (0cea2ae)

· fail safe if SPM fails to initialize (0d33649)

· introduce FFA_PARTITION_INFO_GET_REGS (eaaf517)

· introduce platform handler for Group0 interrupt (f0b64e5)

· map SPMC manifest region as EL3_PAS (8c829a9)

· register handler for group0 interrupt from NWd (a1e0e87)

– ERRATA_ABI

∗ errata management firmware interface (ffea384)

• Libraries

– CPU Support

∗ add support for blackhawk cpu (6578343)

∗ add support for chaberton cpu (516a52f)

– EL3 Runtime

∗ handle traps for IMPDEF registers accesses (0ed3be6)

∗ introduce system register trap handler (ccd81f1)

– FCONF

∗ rename ‘ns-load-address’ to ‘secondary-load-address’ (05e5503)

– OP-TEE

∗ add device tree for coreboot table (f4bbf43)

∗ add loading OP-TEE image via an SMC (05c69cf)

– PSCI

∗ add support for OS-initiated mode (606b743)

∗ add support for PSCI_SET_SUSPEND_MODE (b88a441)

∗ introduce ‘pwr_domain_off_early’ hook (6cf4ae9)

∗ update PSCI_FEATURES (9a70e69)

– C Standard Library

832 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/346cfe2b46a83bc9e6656f43ec55a196503b154a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/555677fe81c5e1888254ac36acb0a02b3850dc46
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6671b3d8224a8c4c3fea7cbe66b56945c432393f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0cea2ae07db089e60322677021da4743a084f9ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0d33649e3e2a21def73327522b9861b4619fc5c2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eaaf517cd1bd8c9d5e3e6d2d202a69a0cbcb45bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0b64e507e9105813d9a5d16f70101cf0d8ca5a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8c829a9240109dd7a66a3c26f734f23477b12551
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a1e0e871f10201a9dbdc1dadfd27904888246adc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ffea3844c00daf8dee466840a4932cac04b3eb57
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6578343bb2aab6ec5ae309097047a83445aa12da
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/516a52f6f5cda6acb311ffd6e8fb77f2e09c1357
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ed3be6fc2c8d275862959d1ee6a0354cc01ad5d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ccd81f1e097c3eafe38523110c8eebabbe662508
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/05e550302103a527b9f8d3869942c203c7b2dd65
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4bbf435554e87de31c0a70039aa03b19962aaea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/05c69cf75edf53478e23fce157fea72372b49597
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/606b7430077c15695a5b3bcfbad4975f00c9bf95
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b88a4416b5e5f2bda2240c632ba79e15a9a75c45
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cf4ae979a5f8be23927b97ecfe789dabcb53dbd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9a70e69e059863d7aec11883e6345b54058264e0

Trusted Firmware-A, Release 2.10.4

∗ add %c to printf/snprintf (44d9706)

∗ add support for fallthrough statement (023f1be)

– PSA

∗ add read_measurement API (6d0525a)

∗ interface with RSS for NV counters (8374508)

• Drivers

– Authentication

∗ compare platform and certificate ROTPK for authentication (f1e693a)

∗ mbedTLS

· add support for mbedtls-3.3 (51e0615)

– UFS

∗ adds timeout and error handling (2c5bce3)

– Arm

∗ Ethos-N

· add check for NPU in SiP setup (a2cdbb1)

· add event and aux control support (7820777)

· add multiple asset allocators (8a921e3)

· add NPU firmware validation (313b776)

· add NPU sleeping SMC call (2a2e3e8)

· add NPU support in fiptool (c91b08c)

· add protected NPU firmware setup (6dcf3e7)

· add protected NPU TZMP1 regions (d77c11e)

· add reserved memory address support (a19a024)

· add reset type to reset SMC calls (fa37d30)

· add separate RO and RW NSAIDs (986c4e9)

· add SMC call to get FW properties (e9812dd)

· add stream extends and attr support (e64abe7)

· add support for NPU to cert_create (f309607)

· add support to set up NSAID (70a296e)

· load NPU firmware at BL2 (33bcaed)

∗ GIC

· GICv3

13.6. 2.9.0 (2023-05-16) 833

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44d9706e5428d8e3588d04565c7cd738ffc1e472
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/023f1bed1dde23564e3b66a99c4a45b09e38992b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6d0525aafe17e7affb0f71e86a5121989c150c42
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8374508b00909cdffbe6233cf8fddcb49924faed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1e693a77548950cfffcb1d5a4b67cf349e0aed9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/51e061591bbf13af2486c3bb5f37ed609578d145
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c5bce3833848dac4fbb2ae19be418145e68c8a1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2cdbb1df088cde410aea1d5989dfc500aaf7939
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7820777fa3c8ca454ab40d5d8a8ba0e311bbb6f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a921e354575cd16aaa6f2f5a2aeaaaea35ab886
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/313b776f851ed184abb265df2b6269fe78f48ecd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2a2e3e87706b56fd1b8e787d3a552cfc12725934
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c91b08c8a44aafac4f72c64aa8d4777b8c73647e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6dcf3e774457cf00b91abda715adfbefce822877
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d77c11e896e04be93caa4a56e50646af6806843f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a19a0241a6f1573e11d4d747dabb756d15ac4801
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fa37d30856fef6742bd82e4e0a3252a4d0b9e091
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/986c4e991ace5cb40bed35145184e66863c47152
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e9812ddca6e72c0501ef1e84753f335dcafb74cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e64abe7bdaeed99093ae5b4aab8956a04ff4075a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f309607229e049a6ff9cbc858efa4dd0c0b921b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70a296ee8641802dc60754aec5b18d8347820a5c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33bcaed1211ab27968433b546979687bc1182630

Trusted Firmware-A, Release 2.10.4

· enlarge the range for intr_num of structure interrupt_prop_t (d5eee8f)

∗ RSS

· add TC platform UUIDs for RSS images (6ef63af)

∗ SBSA

· helper api for refreshing watchdog timer (e8166d3)

• Miscellaneous

– AArch64

∗ make ID system register reads non-volatile (c2fb8ef)

– FDTs

∗ STM32MP1

· use /omit-if-no-ref/ for pins nodes (0aae96c)

· STM32MP15

· add support for prtt1x board family (3812ceb)

– PIE/POR

∗ support permission indirection and overlay (062b6c6)

• Documentation

– allow verbose build (f771a34)

• Build System

– add support for new binutils versions (1f49db5)

– allow additional CFLAGS for library build (5a65fcd)

– Git Hooks

∗ add pre-commit hook (cf9346c)

– add support for poetry (793f72c)

• Tools

– Firmware Image Package Tool

∗ handle FIP in a disk partition (06e69f7)

• Dependencies

– Compiler runtime libraries

∗ update source files (658ce7a)

834 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5eee8f3fbf53fce84c979e68433a27c93e3e96b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ef63af65f55e9402e4cdc534928faceb9c6e003
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8166d3e5937b8db43921b5049672b16af7f58e0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c2fb8ef66ccc8222c70ab802cdaf29f1592cbbb6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0aae96cfb9ef826d207f2d18d4a9f21fa1a5dee7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3812ceba8fcd682faeed6e71190a848771fd2022
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/062b6c6bf23f9656332b0aa3fed59c15f34f9361
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f771a3446356d92c6c27df5c4f3bb07a2561b36b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1f49db5f25cdd4e43825c9bcc0575070b80f628c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5a65fcd5f9c67baa681f664e4596760ca1f2606a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf9346cb83804feb083b56a668eb0a462983e038
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/793f72c06ca1c2782f800c9f20980ca6b7870072
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/06e69f7c94637c693ea5eb26038096c196d10f07
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/658ce7ad8eceb40741cd40f1639a6d923f922fad

Trusted Firmware-A, Release 2.10.4

13.7 2.8.0 (2022-11-15)

13.7.1 � BREAKING CHANGES

• Drivers

– Arm

∗ Ethos-N

· add support for SMMU streams

See: add support for SMMU streams (b139f1c)

13.7.2 New Features

• Architecture

– pass SMCCCv1.3 SVE hint bit to dispatchers (0fe7b9f)

– Branch Record Buffer Extension (FEAT_BRBE)

∗ add brbe under feature detection mechanism (1298f2f)

– Confidential Compute Architecture (CCA)

∗ introduce new “cca” chain of trust (56b741d)

– Pointer Authentication Extension

∗ add/modify helpers to support QARMA3 (9ff5f75)

– Trapping support for RNDR/RNDRRS (FEAT_RNG_TRAP)

∗ add EL3 support for FEAT_RNG_TRAP (ff86e0b)

– Scalable Matrix Extension (FEAT_SME)

∗ fall back to SVE if SME is not there (26a3351)

– Scalable Vector Extension (FEAT_SVE)

∗ support full SVE vector length (bebcf27)

– Trace Buffer Extension (FEAT_TRBE)

∗ add trbe under feature detection mechanism (47c681b)

• Platforms

– Arm

∗ add support for cca CoT (f242379)

∗ forbid running RME-enlightened BL31 from DRAM (1164a59)

∗ provide some swd rotpk files (98662a7)

∗ retrieve the right ROTPK for cca (50b4497)

13.7. 2.8.0 (2022-11-15) 835

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b139f1cf975f9968eb8bd1182a173b976ecf06f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0fe7b9f2bcdf754c483399c841e5f0ec71e53ef3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1298f2f13d6d97dfcac120a2ee68d5eea3797068
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56b741d3e41cd6b2f6863a372a9489c819e2b0e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ff5f754aea00d0e86ba5191839fc0faef949fe0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff86e0b4e6c34d28b8642dd8eb9cbdd517bad195
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/26a3351edab1501d7e19ae96540c34b2700ac32f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bebcf27f1c75f48cc129e8608cba113d0db32ef8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/47c681b7d7f03e77f6cdd7b5d116ae64671ab8ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f24237921e3fa61e64fa1ec845e14e2748d04a2b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1164a59cb16a9bbc672fa6d07895bc6fa0361bcb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/98662a73c903b06f53c9f9da6a9404187fc10352
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/50b449776df11cac06347e8ef1af5dae701a0e3a

Trusted Firmware-A, Release 2.10.4

∗ CSS

· add interrupt handler for reboot request (f1fe144)

· add per-cpu power down support for warm reset (158ed58)

∗ FVP

· add example manifest for TSP (3cf080e)

· add crypto support in BL31 (c9bd1ba)

· add plat API to set and get the DRTM error (586f60c)

· add plat API to validate that passed region is non-secure (d5f225d)

· add platform hooks for DRTM DMA protection (d72c486)

· build delegated attestation in BL31 (0271edd)

· dts: drop 32-bit .dts files (b920330)

· fdts: update rtsm_ve DT files from the Linux kernel (2716bd3)

· increase BL31’s stack size for DRTM support (44df105)

· increase MAX_XLAT_TABLES entries for DRTM support (8a8dace)

· support building RSS comms driver (29e6fc5)

∗ RD

· RD-N2

· add a new ‘isolated-cpu-list’ property (afa4157)

· add SPI ID ranges for RD-N2 multichip platform (9f0835e)

· enable extended SPI support (108488f)

∗ SGI

· increase memory reserved for bl31 image (a62cc91)

· read isolated cpu mpid list from sds (4243ef4)

· add page table translation entry for secure uart (2a7e080)

· bump bl1 rw size (94df8da)

· configure SRAM and BL31 size for sgi platform (8fd820f)

· deviate from arm css common uart related definitions (173674a)

· enable css implementation of warm reset (18884c0)

· remove override for ARM_BL31_IN_DRAM build-option (a371327)

· route TF-A logs via secure uart (0601083)

∗ TC

· add MHU addresses for AP-RSS comms on TC2 (6299c3a)

836 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1fe1440db197d514b5484e780cfb90f504c62b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/158ed580bdf5736abfa9f16f61be1ca1609e0e41
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3cf080ed61e90668f0c44ca7f577e51c081e5c7c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c9bd1bacffd9697ec4ebac77e45588cf6c261a3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/586f60cc571f0f3b6d20eb5033717e9b0cc66af4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5f225d95d3dc7473340ffebfcb9068b54f91a17
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d72c486b52dc654e4216d41dcc1b0f87bdbdf3e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0271eddb0c00b01033bf651f0eeaf659c0c2dd39
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b92033075aa27031091e184b54f4dc278ecb27bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2716bd33e318821c373b3d4dce88110a340a740d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44df105ff867aeb2aa5d20faa3e8389866099956
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a8dace5a5cd3a51d67df3cea86628f29cc96013
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/29e6fc5cc7d0c8bc4ba615fd97df4cb65d3c7ba3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/afa41571b856509c25c66c331737b895144b681b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9f0835e9156f13b56336a47a4b51e90719a852ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/108488f9ac026f036c0de2b824b339a30f9a0cbb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a62cc91aeedbdcfb3396983ed165eb35b8d4c3fa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4243ef41d480fd8e870f74defe263156a6c02c8d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2a7e080cc50be5739afcfb3b7db59e4d610a7d53
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94df8da3ab520330b2e7d276603f33e284c27b3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8fd820ffb918ad8fdc1f2c72cc64dad5eaff77aa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/173674ae428aa23e8f2a38d5542d0ea52eed7e80
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/18884c002e6c298f27d6e4792eab2c9f4d89bddb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a371327ba9fc2e1c5988ac1436b29c42aab8dfd8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0601083f0ce0045bd957c1343d2196be0887973b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6299c3a0f7c8220b0bf15723ec8995b72bf97677

Trusted Firmware-A, Release 2.10.4

· add RSS-AP message size macro (445130b)

· add RTC PL031 device tree node (a816de5)

· enable RSS backend based measured boot (6cb5d32)

· increase maximum BL1/BL2/BL31 sizes (e6c1316)

· introduce TC2 platform (eebd2c3)

· move start address for BL1 to 0x1000 (9335c28)

– HiSilicon

∗ HiKey960

· add a FF-A logical partition (25a357f)

· add memory sharing hooks for SPMC_AT_EL3 (5f905a2)

· add plat-defines for SPMC_AT_EL3 (feebd4c)

· add SP manifest for SPMC_AT_EL3 (6971642)

· define a datastore for SPMC_AT_EL3 (e618c62)

· increase secure workspace to 64MB (e0eea33)

· read serial number from UFS (c371b83)

· upgrade to xlat_tables_v2 (6cfc807)

– MediaTek

∗ add more flexibility of mtk_pm.c (6ca2046)

∗ add more options for build helper (5b95e43)

∗ add smcc call for MSDC (4dbe24c)

∗ extend SiP vendor subscription events (99d30b7)

∗ implement generic platform port (394b920)

∗ introduce mtk init framework (52035de)

∗ move dp drivers to common folder (d150b62)

∗ move lpm drivers back to common (cd7890d)

∗ move mtk_cirq.c drivers to cirq folder (cc76896)

∗ support coreboot BL31 loading (ef988ae)

∗ MT8186

· add EMI MPU support for SCP and DSP (3d4b6f9)

∗ MT8188

· add armv8.2 support (45711e4)

· add audio support (c70f567)

13.7. 2.8.0 (2022-11-15) 837

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/445130b127f411bdf4958fa10f292a930c9ae57d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a816de564f927ebb72ab7692b8b3f46073179310
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cb5d3268fa41d15480c4e070a51577b333767fe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e6c131655fa168ffd1ae738a74ba25e5f850036c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eebd2c3f61c90942fb186fa43fbb4c4a543d8b55
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9335c28a019ee2d9ab7a0f9276b91415f3c9f1bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25a357f1932cf2b0d125dd98b82eeacad14005ea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f905a249839e9e20ebf44c22d95caaf3a2e5611
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/feebd4c7a86b6f0fcc1eb5008ba5f7d44e75beaf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6971642d23d0c5e33e507eb78b7c569045e2f85d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e618c621b3ece7a0262ff9245027132982e6207c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0eea337b32e37bbef9bad1310b96b9c0d86f7b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c371b83f0c5b503c21bd1b6092bc0230032329ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cfc8078d032d278e09523e236ab5b36f69f2ec0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ca2046ef15dcf19fbda5f12cbfe1004d340c969
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b95e439c745dcf94899238b82826d8f1d32acbe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4dbe24cf7d2b04c552f394062f42c30fee7e26a6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99d30b72c02502731ecf116acfda44ee3c2c9e5e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/394b92084d53e2bf8960731be7a79c999871f127
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52035dee1ae7b0f2f0d5f16c734ca7a5cea127b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d150b6296e6960f2548b265b8b23e6cdb502d3b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd7890d79e9d508e82f3078f02e8277f8c8df181
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc76896d9e416b15548b2d6bf068e5d3f9b4064a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef988aed9e09a4108b87decb14dee5f2d23230a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d4b6f932444c7b0f70f8654b92193b294527056
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/45711e4e1614fbed75ea645777cc2bb11d4be96f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c70f567ad75c30a990cb60c71b6c0b02538366fd

Trusted Firmware-A, Release 2.10.4

· add cpu_pm driver (4fe7e6a)

· add DCM driver (bc9410e)

· add DFD control in SiP service (7079a94)

· add display port control in SiP service (a4e5023)

· add EMI MPU basic drivers (8454f0d)

· add IOMMU enable control in SiP service (be45724)

· add LPM driver support (f604e4e)

· add MCUSYS support (4cc1ff7)

· add pinctrl support (ec4cfb9)

· add pmic and pwrap support (e9310c3)

· add reset and poweroff functions (a72b9e7)

· add RTC support (af5d8e0)

· add support for PTP3 (44a1051)

· apply ERRATA for CA-78 (abb995a)

· enable MTK_PUBEVENT_ENABLE (0b1186a)

· initialize GIC (cfb0516)

· initialize platform for MediaTek MT8188 (de310e1)

· initialize systimer (215869c)

– NXP

∗ i.MX

· i.MX 8M

· add dram retention flow for imx8m family (c71793c)

· add support for high assurance boot (720e7b6)

· add the anamix pll override setting (66d399e)

· add the ddr frequency change support for imx8m family (9c336f6)

· add the PU power domain support on imx8mm/mn (44dea54)

· keep pu domains in default state during boot stage (9d3249d)

· make psci common code pie compatible (5d2d332)

· i.MX 8M Nano

· add BL31 PIE support (62d37a4)

· add hab and map required memory blocks (b5f06d3)

· enable dram retention suuport on imx8mn (2003fa9)

838 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4fe7e6a8d9f09c40d087167432cb07621c175b3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc9410e2376e0b6355ea6440aa90ad968fc5f3b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7079a942bd9705fd9e0cd220324f7dfd9c53dcad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4e502319d136d8854ef2ed4aaa6d5368541e551
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8454f0d65eeb85b72f454376faa0f7a15226e240
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be457248c6b0a7f3c61bd95af58372938d13decd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f604e4ef6e306c6d87e17e77e50a68aad0510110
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4cc1ff7ef2c3544ef1aabeb2973a2d8f7800776b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ec4cfb91fc197a024d1edb9fae5e9ce100e5b200
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e9310c34b018944a6c29a8f408f0a34b43a0df6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a72b9e7754a27e6ebccf79f0cc4fb7cc5a0a8a5e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af5d8e07955ddef9000c64de94deb2703e6ffcf0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44a10511c9e5a66b3a33abba44856a7a5dc5e655
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/abb995abbe45874a397351cbb134ae32d4cc545b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b1186a3e6fd6daffaef3f6cf59650bb9121191c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cfb0516f3cc36e3d0ec9b0bdabf1eb6ea2b275c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/de310e1e5f0b76b9de2b93759344540e0109c8eb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/215869c693c136192505a004ec368f503f146505
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c71793c6476fa2828f866b8d7b272289f0d9a15c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/720e7b66f2353ef7ed32a8f85f8396fbc0766ffc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66d399e454b160ce358346cfa9142a24d8493a41
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9c336f6118a94970f4045641a971fd1e24dba462
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44dea5444b087acd758b1c8370999be635e17e43
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d3249de8078e33b90193d8f91f4914acc36c6ec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d2d3328db88846accd179c96d71bab79a150937
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/62d37a4362456694bdae6d8921c2c7572a0d99a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b5f06d3dfad8c27bdf528b083ef919ce4022c52d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2003fa94dc9b9eda575ebfd686308c6f87c366f0

Trusted Firmware-A, Release 2.10.4

· i.MX 8MMini

· add BL31 PIE support (a8e6a2c)

· add hab and map required memory blocks (5941f37)

· enable dram retention suuport on imx8mm (b7abf48)

· i.MX 8M Plus

· add BL31 PIE support (7a443fe)

· add hab and map required memory blocks (62a93aa)

· i.MX 8Q

· add 100us delay after USB OTG SRC bit 0 clear (66345b8)

∗ Layerscape

· LS1043A

· LS1043ARDB

· update ddr configure for ls1043ardb-pd (18af644)

– QEMU

∗ increase size of bl31 (0e6977e)

– QTI

∗ fix to support cpu errata (6cc743c)

∗ updated soc version for sc7180 and sc7280 (39fdd3d)

– Socionext

∗ Synquacer

· add BL2 support (48ab390)

· add FWU Multi Bank Update support (a193825)

· add TBBR support (19aaeea)

– ST

∗ add trace for early console (00606df)

∗ enable MMC_FLAG_SD_CMD6 for SD-cards (53d5b8f)

∗ properly manage early console (5223d88)

∗ search pinctrl node by compatible (b14d3e2)

∗ STM32MP1

· add a check on TRUSTED_BOARD_BOOT with secure chip (54007c3)

· add a stm32mp crypto library (ad3e46a)

· add define for external scratch buffer for nand devices (9ee2510)

13.7. 2.8.0 (2022-11-15) 839

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a8e6a2c83ce511dad88eb68f98a3191fa93564d4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5941f37288a5ceac495cbdbd3e3d02f1a3c55e0a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7abf485ee15c3e5b16522bb91dd6b0c24bfbfc0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7a443fefa4eaef65332a38c8189573b5b4b4a1e3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/62a93aa7afcd022f06d322c36979f0aa02713beb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66345b8b13dc32bcd9f6af3c04f60532e7d82858
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/18af644279b36e841068db0e1c857dedf1456b38
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e6977eee178a6436e4a7e1503ea854989316ff4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cc743cf0fa9b216f2af8ff87c716dcc0bb6f6a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/39fdd3d85d1165cd1b876288532000c5c6eb1ecb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/48ab390444e1dabb669430ace9b8e5a80348eed0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a19382521c583b3dde89df14678b011960097f6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/19aaeea00bc4fba94af7aca508af878136930f4a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/00606df01201fcad509ea9ddff89d5f176bee793
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/53d5b8ff50d322f764b1f5a8c882b9ee1ba952c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5223d88032dcecb880d620e63bfa70799dc6cc1a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b14d3e22b4964ce589d107e7fd68601bf070f44c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/54007c37d560dd170efa52a79feb206aefb90ed4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad3e46a35cb208e16adfe3d753214739583dca10
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ee2510b62ef9428d767523ddb9c5a39b7a2b954

Trusted Firmware-A, Release 2.10.4

· add early console in SP_min (14a0704)

· add plat_report_*_abort functions (0423868)

· add RNG initialization in BL2 for STM32MP13 (2742374)

· add the decryption support (cd79116)

· add the platform specific build for tools (461d631)

· add the TRUSTED_BOARD_BOOT support (beb625f)

· allow to override MTD base offset (e0bbc19)

· configure the serial boot load address (4b2f23e)

· extend STM32MP_EMMC_BOOT support to FIP format (95e4908)

· manage second NAND OTP on STM32MP13 (d3434dc)

· manage STM32MP13 rev.Y (a3f97f6)

· optionally use paged OP-TEE (c4dbcb8)

· remove unused function from boot API (f30034a)

· retrieve FIP partition by type UUID (1dab28f)

· save boot auth status and partition info (ab2b325)

· update ROM code API for header v2 management (89c0774)

· STM32MP13

· change BL33 memory mapping (10f6dc7)

· STM32MP15

· manage OP-TEE shared memory (722ca35)

– Texas Instruments

∗ K3

· add support for J784S4 SoCs (4a566b2)

– Xilinx

∗ Versal

· add infrastructure to handle multiple interrupts (e497421)

· get the handoff params using IPI (205c7ad)

· resolve the misra 10.1 warnings (b86e1aa)

· update macro name to generic and move to common place (f99306d)

· Versal NET

· add support for QEMU COSIM platform (6a079ef)

· add documentation for Versal NET SoC (4efdc48)

840 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14a070408d9231dc1c487dfe36058b93faf5915c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0423868373026a667f0c004e4d365fa12fd734ef
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2742374414c5891ac37fd4d42ba62c3cff1474c6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd791164a9ad2f42d25d24012715bbe763b41e1c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/461d631acae9daec77c9668216280cbf66240249
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/beb625f90bfd1858b9d413cae67457e57c79a118
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0bbc190d500e53ee0566af85639d3cdbbe7177d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4b2f23e55f27b6baccf3e858234e69685d51fcf4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95e4908e17fbb44aed1f8612fefdd6d21fef8f49
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d3434dca0b3acb902fe3a6cf39065ba917f69b1c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a3f97f66c36e987a6617f1f39c3b9e64b763212c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c4dbcb885201c89a44df203661af007945782993
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f30034a298a8d7260464cbcf2d2306bff533d6dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1dab28f99dfa03dc11538056a90f00f37bfb1085
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab2b325c1ab895e626d4e11a9f26b9e7c968f8d8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/89c07747d0396b92c83af8736ff49ef8c09bc176
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/10f6dc789350ed5915a474b2d411890261b741ae
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/722ca35ecc1c5de8682ca8df315a6369d0c21946
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a566b26ae6135d4c13deab9d3f1c40c1cb8960a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e497421d7f1e13d15313d1ca71a8e91f370cce1e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/205c7ad4cd73e5c091b03f23a3a3be74da5c8aea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b86e1aade1c0953bd60ae0b35f1c3571ee8bae3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f99306d49ba074279c5402a0a34e6bc9797d77de
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a079efd909b459448f561618df24fa94038dbad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4efdc488961502033262613b6f20abcee68bbf84

Trusted Firmware-A, Release 2.10.4

· add SMP support for Versal NET (8529c76)

· add support for IPI (0bf622d)

· add support for platform management (0654ab7)

· add support for Xilinx Versal NET platform (1d333e6)

∗ ZynqMP

· optimization on pinctrl_functions (314f9f7)

· add support for ProvenCore (358aa6b)

· add support for xck24 silicon (86869f9)

· protect eFuses from non-secure access (d0b7286)

· resolve the misra 10.1 warnings (bfd7c88)

• Bootloader Images

– add interface to query TF-A semantic ver (dddf428)

– BL32

∗ TSP

· add FF-A support to the TSP (4a8bfdb)

· add ffa_helpers to enable more FF-A functionality (e9b1f30)

· enable test cases for EL3 SPMC (15ca1ee)

· increase stack size for tsp (5b7bd2a)

• Services

– add a SPD for ProvenCore (b0980e5)

– RME

∗ RMMD

· add support for RMM Boot interface (8c980a4)

· add support to create a boot manifest (1d0ca40)

– SPM

∗ add tpm event log node to spmc manifest (054f0fe)

∗ SPMD

· avoid spoofing in FF-A direct request (5519f07)

– DRTM

∗ add a few DRTM DMA protection APIs (2b13a98)

∗ add DRTM parameters structure version check (c503ded)

∗ add Event Log driver support for DRTM (4081426)

13.7. 2.8.0 (2022-11-15) 841

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8529c7694f8d614e76dcc80b394ec8a6751df44c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0bf622de68cd353a8406f76647b6afd8791d675d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0654ab7f75449307c79789e12be7aab2338edcc3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d333e69091f0c71854a224e8cfec08695b7d1f3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/314f9f7957fbab12dc8d073cf054b99520372e0e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/358aa6b21118ae4eedf816f663aa950b58f7fd4e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/86869f99d0c144ed18fb947866554a4a56b67741
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0b7286e48f0a34e7e9a8db3948caf1809193430
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bfd7c881905702082e3c2a56d5228ccf5fe98f11
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dddf4283b043ad0a81d27bd5bb2f0c647c511e11
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a8bfdb90956ecec02ba5e189fe5452817a65179
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e9b1f300a974a7e82190b95899c3128b73088488
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15ca1ee342a4dcd8a73a4ae158d245cd4266c832
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b7bd2af0b2972dfffeaa674947c0082d6b5126b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b0980e584398fc5adc908cd68f1a6deefa943d29
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8c980a4a468aeabb9e49875fec395c625a0c2b2b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d0ca40e9084903d21e570bb312646626aaf574b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/054f0fe1361ba0cb339fb0902470988a82a24cf7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5519f07cd46a4139615a3e8f5e57d1834b23a6f8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2b13a985994213f766ada197427f96e064f1b59b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c503ded2c5d9ceec9fba4cc0901805307a14af3d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40814266d53b7154daf5d212de481b397db43823

Trusted Firmware-A, Release 2.10.4

∗ add PCR entries for DRTM (ff1e42e)

∗ add platform functions for DRTM (2a1cdee)

∗ add remediation driver support in DRTM (1436e37)

∗ add standard DRTM service (e62748e)

∗ check drtm arguments during dynamic launch (40e1fad)

∗ ensure that no SDEI event registered during dynamic launch (b1392f4)

∗ ensure that passed region lies within Non-Secure region of DRAM (764aa95)

∗ flush dcache before DLME launch (67471e7)

∗ introduce drtm dynamic launch function (bd6cc0b)

∗ invalidate icache before DLME launch (2c26597)

∗ prepare DLME data for DLME launch (d42119c)

∗ prepare EL state during dynamic launch (d1747e1)

∗ retrieve DRTM features (e9467af)

∗ take DRTM components measurements before DLME launch (2090e55)

∗ update drtm setup function (d54792b)

• Libraries

– CPU Support

∗ add library support for Hunter ELP (8c87bec)

∗ add a64fx cpu to tf-a (74ec90e)

∗ make cache ops conditional (04c7303)

∗ remove plat_can_cmo check for aarch32 (92f8be8)

∗ update doc and check for plat_can_cmo (a2e0123)

– OP-TEE

∗ check paged_image_info (c0a11cd)

– PSCI

∗ add a helper function to ensure that non-boot PEs are offline (ce14a12)

– C Standard Library

∗ introduce __maybe_unused (351f9cd)

– PSA

∗ add delegated attestation partition API (4b09ffe)

∗ remove initial attestation partition API (420deb5)

• Drivers

842 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff1e42e20aa247ba11cf81742abff07ece376ba8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2a1cdee4f5e6fe0b90399e442075880acad1869e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1436e37dcb894a539a22da48a34ef01566ae728b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e62748e3f1f16934f0ef2d5742f3ca0b125eaea2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40e1fad69b9f28ab5e57cea33261bf629b05519c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b1392f429cdd368ea2b8e183a1ac0fb31deaf694
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/764aa951b2ca451694c74791964a712d423d8206
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67471e75b3cf48c361e71894a666bce4395bbb35
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bd6cc0b2388c52f2b232427be61ff52c042d724a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c265975a76977c6373636f5f28e114d1b73e10e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d42119cc294fbca2afc263fe5e44538a0ca5e7b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d1747e1b8e617ad024456791ce0ab8950bb282ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e9467afb2d483ccec8f816902624d848e8f21d86
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2090e55283c4bf85c7a61735ca0e872745c55896
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d54792bd93f76b943bf0559c8373b898e0e3b93c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8c87becbc64f2e233ac905aa006d5e15a63a9a8b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/74ec90e69bbd0e932a61f5461eedc4abd1b99d44
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/04c7303b9c3d2215eebc3d59431519990abe03d0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/92f8be8fd1e77be67e9c9711afa8705204758304
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2e0123484e62df8ed9f2943dbd158471bf31221
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c0a11cd8698394e1d3d3d7c9cedb19846ba59223
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ce14a12f8b8f02b7221f37c7c4b46f909c1a4346
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/351f9cd8897fd3ea52db2421721a152494b16328
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4b09ffef49663ebc8c8f5c3da19636208fe2fa06
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/420deb5a0dbbd35962e5449f82434c703e7a1179

Trusted Firmware-A, Release 2.10.4

– Authentication

∗ allow to verify PublicKey with platform format PK (40f9f64)

∗ enable MBEDTLS_CHECK_RETURN_WARNING (a4e485d)

∗ Crypto

· update crypto module for DRTM support (e43caf3)

∗ mbedTLS

· update mbedTLS driver for DRTM support (8b65390)

– I/O

∗ MTD

· add platform function to allow using external buffer (f29c070)

– MMC

∗ get boot partition size (f462c12)

∗ manage SD Switch Function for high speed mode (e5b267b)

– MTD

∗ add platform function to allow using external buffer (f29c070)

– GUID Partition Tables Support

∗ allow to find partition by type UUID (564f5d4)

– SCMI

∗ send powerdown request to online secondary cpus (14a2892)

∗ set warm reboot entry point (5cf9cc1)

– Arm

∗ Ethos-N

· add support for SMMU streams (b139f1c)

∗ GIC

· add APIs to raise NS and S-EL1 SGIs (dcb31ff)

· GICv3

· validate multichip data for GIC-700 (a78b3b3)

∗ RSS

· add new comms protocols (3125901)

– ST

∗ Crypto

· add AES decrypt/auth by SAES IP (4bb4e83)

13.7. 2.8.0 (2022-11-15) 843

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40f9f644e8af34e745dbaec73d7128c0a4902e54
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4e485d7bf1c428d64e90e9821e4b1a109d10626
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e43caf3890817e91b3d35b5ae1149a208f1a4016
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8b653909b7e2371c6dcddbeac112b9671c886f34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f29c0702d2e7a67327b67766f91793d8ae6d0f73
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f462c1249ac41f43423011bb12ace38cbeb0af4c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e5b267bba14c55e7906d120c52d4e8e8bbb68df6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f29c0702d2e7a67327b67766f91793d8ae6d0f73
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/564f5d477663bc007916a11c48bdd8b9be4ad369
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14a289230918b23b0985e215d38614dc7480bd02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5cf9cc130a90fd8c4503c57ec4af235b469fd473
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b139f1cf975f9968eb8bd1182a173b976ecf06f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dcb31ff79096fc88b45df8068e5de83b93f833ed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a78b3b382b07675a89a66ddffe926ed225eeb245
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31259019235aebf7aa533d5c893940f597fb1a8b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4bb4e836498b0131feefbba3f857a0bf3b89e543

Trusted Firmware-A, Release 2.10.4

· add ECDSA signature check with PKA (b0fbc02)

· add STM32 RNG driver (af8dee2)

· remove BL32 HASH driver usage (6b5fc19)

· update HASH for new hardware version used in STM32MP13 (68039f2)

∗ SDMMC2

· define FIFO size (b46f74d)

· make reset property optional (8324b16)

· manage CMD6 (3deebd4)

∗ UART

· add initialization with the device tree (d99998f)

· manage STM32MP_RECONFIGURE_CONSOLE (ea69dcd)

• Miscellaneous

– Debug

∗ add AARCH32 CP15 fault registers (bb22891)

∗ add helpers for aborts on AARCH32 (6dc5979)

– FDTs

∗ STM32MP1

· add CoT and fuse references for authentication (928fa66)

· change pin-controller to pinctrl (44fea93)

· STM32MP13

· use STM32MP_DDR_S_SIZE in fw-config (936f29f)

· STM32MP15

· add Avenger96 board with STM32MP157A DHCOR SoM (51e2230)

· add support for STM32MP157C based DHCOM SoM on PDK2 board (eef485a)

– SDEI

∗ add a function to return total number of events registered (e6381f9)

– TBBR

∗ increase PK_DER_LEN size (1ef303f)

• Tools

– Firmware Image Package Tool

∗ add cca, core_swd, plat cert in FIP (147f52f)

– Certificate Creation Tool

844 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b0fbc02aea76d31e749444da63b084e6b2bd089b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af8dee20d5fee29f34ccd9b9556e0c23655ff549
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b5fc19227ff8935b1352c0e4c0d716ebee60aa2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68039f2d14626adce09512871d6cde20ff45e1d9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b46f74d4e68ee08b6e912cd7f855a16cc5e79a6a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8324b16cd5e0b1ae2f85264a74f879e8fb1bca2a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3deebd4ccf39904d7fe777f53e9dbaa86691d653
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d99998f76ed2e8676be25e31e9479a90c16c7098
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ea69dcdc737d8b48fec769042922914e988153ef
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb2289142cbf0f3546c1034e0500b5dc32aef740
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6dc5979a6cb2121e4c16e7bd62e24030e0f42755
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/928fa66272a0985c900c996912b54904c64d0520
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44fea93bf729f631f6ae47e06ac7b6012a795791
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/936f29f6b51b3c7f37fd34e30a7f1f7c3944b361
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/51e223058fe70b311542178f1865514745fa7874
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eef485abb13b6df9a94137edd82904aab0ecf02d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e6381f9cf8c0c62c32d5a4765aaf166f50786914
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ef303f9f79020330bbd8e48ac652e8f2121a41b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/147f52f3e81f7ccf1dae90bc5687ec137feeb46c

Trusted Firmware-A, Release 2.10.4

∗ define the cca chain of trust (0a6bf81)

∗ update for ECDSA brainpoolP256r/t1 support (e78ba69)

• Dependencies

– Compiler runtime libraries

∗ update compiler-rt source files (8a6a956)

– libfdt

∗ add function to set MAC addresses (1aa7e30)

∗ upgrade libfdt source files (94b2f94)

– zlib

∗ update zlib source files (a194255)

13.7.3 Resolved Issues

• Architecture

– Performance Monitors Extension (FEAT_PMUv3)

∗ add sensible default for MDCR_EL2 (7f85619)

– Scalable Matrix Extension (FEAT_SME)

∗ add missing ISBs (46e92f2)

• Platforms

– Arm

∗ FVP

· fdts: Fix idle-states entry method (0e3d880)

· fdts: fix memtimer subframe addressing (3fd12bb)

· fdts: unify and fix PSCI nodes (6b2721c)

∗ FVP Versatile Express

· fdts: Fix vexpress,config-bus subnode names (60da130)

∗ Morello

· dts: add model names (30df890)

· dts: fix DP SMMU IRQ ordering (fba729b)

· dts: fix DT node naming (41c310b)

· dts: fix GICv3 compatible string (982f258)

· dts: fix SCMI shmem/mboxes grouping (8aeb1fc)

· dts: fix SMMU IRQ ordering (5016ee4)

13.7. 2.8.0 (2022-11-15) 845

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0a6bf811d7f873a180ef4b9f96f5596b26d270c6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e78ba69e3525c968118eb91f443b1e9db9eee5f5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a6a9560b5dcccfb68064c0c8c9b4b47981c6ac7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1aa7e302a84bbf46a97bcfbb54b6b6d57de76cee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94b2f94bd63258c300b53ad421488c3c4455712b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a194255d75ed9e2ef56bd6e14349a3e7d86af934
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f8561985778cbe5cdc7d57984c818119e87adaf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/46e92f2862326cbe57acecb2d0f3c2ffbcc176d2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e3d88070f69c6aa7cc51a2847cbba3535992397
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3fd12bb8c622917d8491082b1472c39efb89c0cf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b2721c01691743a65475e82944e2f8868bf0159
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/60da130a8c5ac29bc35870180c35ca04db506e0f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/30df8904d0f6973bbce1ecb51f14c1e4725ddf0b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fba729b0ca22be379792ce677296cda075036753
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/41c310b4f691c1eefcd0234619bc751966389297
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/982f2585bb27b58c017af70d852a433f36711db1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8aeb1fcf832d4e06157a1bed1d18ba244c1fe9ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5016ee44a740127f7865dc26ed0efbbff1481c7e

Trusted Firmware-A, Release 2.10.4

· dts: fix stdout-path target (67a8a5c)

· dts: remove #a-c and #s-c from memory node (f33e113)

· dts: use documented DPU compatible string (3169572)

· move BL31 to run from DRAM space (05330a4)

∗ N1SDP

· add numa node id for pcie controllers (2974d2f)

· mapping Run-time UART to IOFPGA UART0 (4a81e91)

· replace non-inclusive terms from dts file (e6ffafb)

∗ TC

· resolve the static-checks errors (066450a)

· tc2 bl1 start address shifted by one page (8597a8c)

– Intel

∗ fix asynchronous read response by copying data to input buffer (dd7adcf)

∗ fix Mac verify update and finalize for return response data (fbf7aef)

– MediaTek

∗ remove unused cold_boot.[c|h] (8cd3b69)

∗ switch console to runtime state before leaving BL31 (fcf4dd9)

∗ use uppercase for definition (810d568)

∗ wrap cold_boot.h with MTK_SIP_KERNEL_BOOT_ENABLE (24476b2)

∗ MT8186

· fix SCP permission (8a998b5)

· fix EMI_MPU domain setting for DSP (28a8b73)

· fix the DRAM voltage after the system resumes (600f168)

· move SSPM base register definition to platform_def.h (2a2b51d)

∗ MT8188

· add mmap entry for CPU idle SRAM (32071c0)

· refine c-state power domain for extensibility (e35f4cb)

· refine gic init flow after system resume (210ebbb)

– NXP

∗ i.MX

· i.MX 8M

· correct serial output for HAB JR0 (6e24d79)

846 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67a8a5c92e7c65108b3cdf6f4f9dd2de7e22f3cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f33e113c7a7dffd8ed219f25191907fd64bcf19f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3169572ed1bf0de17bb813583cab7ea295a8ec8d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/05330a49cd91c346a8b9dc3aff35d0032db4d413
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2974d2f2d03e842ed5e01e2e04dd3de6c1d07277
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a81e91f2752a817364e1fccedb08bb453ad5a56
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e6ffafbeeae8c78abac37475f19899f0c98523ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/066450abf326f1a68a21cdddf29f62eff95041a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8597a8cbc23f0f03a15d013dd44a4ed59c991872
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dd7adcf3a89a75973a88118eeb867d1c212c4ad0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fbf7aef408a9f67fabc712bbfd52438290364879
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8cd3b693d6d5d3db2433a96c5f2905d92a387cc4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fcf4dd9f794b28bbfff3ee7d66bac8d5e260f46a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/810d568141050db7d500c5f5ad91efaff93d2036
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24476b2e6128dae2ca2ac46344e18f6f02eae7bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a998b5aca3ca895a7722e7496a7fd18cd838f94
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28a8b738feaade74f23af0e889005e687fde38b5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/600f168172a9281a0061f84e4da5318e08762aa1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2a2b51d8f76e2acdabb431e928beb90e0a30c87c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/32071c0263899e0e7a4b7f2c754e6363547f33b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e35f4cbf80ba671c42644c1ac7f8f6541042c6e5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/210ebbb0a6a0520cb3a5930c4fefa94baee33462
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e24d795094e7fac1edc13336ce0bfd39d98e66f

Trusted Firmware-A, Release 2.10.4

· fix dram retention fsp_table access (6c8f523)

· move caam init after serial init (901d74b)

· update poweroff related SNVS_LPCR bits only (ad6eb19)

· i.MX 8Q

· correct architected counter frequency (21189b8)

– QEMU

∗ enable SVE and SME (337ff4f)

– QTI

∗ adding secure rm flag (b5959ab)

– Raspberry Pi

∗ Raspberry Pi 3

· tighten platform pwr_domain_pwr_down_wfi behaviour (028c4e4)

– Renesas

∗ R-Car

· R-Car 3

· fix RPC-IF device node name (08ae247)

– Rockchip

∗ align fdt buffer on 8 bytes (621acbd)

∗ RK3399

· explicitly define the sys_sleep_flag_sram type (7a5e90a)

– Socionext

∗ Synquacer

· increase size of BL33 (a12a66d)

– ST

∗ add max size for FIP in eMMC boot part (e7cb4a8)

∗ add missing string.h include (0d33d38)

∗ STM32MP1

· enable crash console in FIQ handler (484e846)

· fdts: stm32mp1: align DDR regulators with new driver (9eed71b)

· update the FIP load address for serial boot (32f2ca0)

· STM32MP13

· correct USART addresses (de1ab9f)

13.7. 2.8.0 (2022-11-15) 847

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c8f523138cd94bc0608708e821a09b02c8c2f5a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/901d74b2d46cbd8b1d27477fa16388520fdabab1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad6eb1951b986f30635025bbdf29e257b6b1e362
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21189b8e21062b71c9056ac1cf60d25bb018007c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/337ff4f1dd6604738d79fd3fa275ae74d74256b2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b5959ab029fb0a8a271967b0bd7ef438d59061bd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/028c4e42d8f632d40081b88f66d0d05c7d7c9b23
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/08ae2471b1417f1d8083a79771338aa2a00b6711
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/621acbd055d712ab8bf79054911155598fdb74d0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7a5e90a89d91d6662d3e468893e07c91b3a165ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a12a66d0d6d4732d41a27b1ecbc8874731c78101
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e7cb4a86b884d2922984d3cd4651fb905650cfd6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0d33d38334cae909a66c74187a36b5833afb8093
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/484e846a03a1af5f88e2e28835b6349cc5977935
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9eed71b7221c5fc7ed887f1087e42c9f1a62f581
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/32f2ca04bfd2d93329f2f17d9c9d134f339710f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/de1ab9fe052deba06a0904b10a6e0312ca49658e

Trusted Firmware-A, Release 2.10.4

– Xilinx

∗ include missing header (28ba140)

∗ miscellaneous fixes for xilinx platforms (bfc514f)

∗ remove unnecessary header include (0ee2dc1)

∗ update define for ZynqMP specific functions (24b5b53)

∗ Versal

· add SGI register call version check (5897e13)

· enable a72 erratum 859971 and 1319367 (769446a)

· fix code indentation issues (72583f9)

· fix macro coding style issues (80806aa)

· fix Misra-C violations in bl31_setup and pm_svc_main (68ffcd1)

· remove clock related macros (47f8145)

· resolve misra 10.1 warnings (19f92c4)

· resolve misra 15.6 warnings (1117a16)

· resolve misra 8.13 warnings (3d2ebe7)

· resolve the misra 4.6 warnings (f7c48d9)

· resolve the misra 4.6 warnings (912b7a6)

· route GIC IPI interrupts during setup (04cc91b)

· use only one space for indentation (dee5885)

· Versal NET

· Enable a78 errata workarounds (bcc6e4a)

· add default values for silicon (faa22d4)

· use api_id directly without FUNCID_MASK (b0eb6d1)

∗ ZynqMP

· fix coverity scan warnings (1ac6af1)

· ensure memory write finish with dsb() (ac6c135)

· fix for incorrect afi write mask value (4264bd3)

· move bl31 with DEBUG=1 back to OCM (389594d)

· move debug bl31 based address back to OCM (0ba3d7a)

· remove additional 0x in %p print (05a6107)

· resolve misra 4.6 warnings (cdb6211)

· resolve misra 8.13 warnings (8695ffc)

848 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28ba1400216d7c7195929d1bd53f059a440a89a2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bfc514f10393fb7f4641ad5e75049f3acc246dd2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ee2dc118c34ceacc921fee196a4ba9102bdfbea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24b5b53a5922de40e53f0a7ecf65d3d0acc30a0d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5897e135445e2bf3345297fbe9971a113506d714
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/769446a6899d840df8aa5746ec32bf7530fc9826
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72583f92e6cc1d691b709e05c3ae280dce016fef
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/80806aa1234606bb55af40ae0667cdf4d44423be
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68ffcd1bb22f2c2eac6c3329a1974b3e8ec6f515
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/47f8145324181b86b6f460fb0c92144ef43e4e14
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/19f92c4cfe014c5495f3073917119385b0014eda
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1117a16e0379986ea68581c02fb2fee40937452b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d2ebe756a50c27a00a03ae7f0109ed04681ac96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f7c48d9e30e9444f1fdb808ae5d06ed675e335fa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/912b7a6fe46619e5df55dbd0b95d306f7bb2695c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/04cc91b43c1d10fcba563e18f06336987e6e3a24
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dee588591328b96d9b9ef908869c8b42bd2632f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bcc6e4a02a88056b9c45ff28f405e09444433528
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/faa22d48d9929d57975b84ab76cb595afdcf57f4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b0eb6d124b1764264778d17b1519bfe62b7b9337
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ac6af1199e2d14492a9d75aaba69bc775e55bd8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ac6c135c83fe4efa4d6e9b9c06e899b57ce5647a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4264bd33e718023c62a2776e3ca40db88fce8b08
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/389594dfa7e60a720d60f0d55296f91ba1610de5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ba3d7a4ca04486f45d062fab54238d9a554a682
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/05a6107ff18b03f4ca33496268398133abf04aaa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cdb62114cfcdaeb85e64bcde459342a0a95f58e3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8695ffcfcb3801ea287fae7652ba1c350636831f

Trusted Firmware-A, Release 2.10.4

· resolve MISRA-C:2012 R.10.1 warnings (c889088)

· resolve the misra 4.6 warnings (15dc3e4)

· resolve the misra 4.6 warnings (ffa9103)

· resolve the misra 8.6 warnings (7b1a6a0)

• Bootloader Images

– BL31

∗ allow use of EHF with S-EL2 SPMC (7c2fe62)

∗ harden check in delegate_async_ea (d435238)

∗ pass the EA bit to ‘delegate_sync_ea’ (df56e9d)

• Services

– RME

∗ refactor RME fid macros (fb00dc4)

∗ relax RME compiler requirements (7670ddb)

∗ update FVP platform token (364b4cd)

∗ use RMM shared buffer for attest SMCs (dc65ae4)

∗ xlat table setup fails for bl2 (e516ba6)

∗ RMMD

· return X4 output value (8e51ccc)

– SPM

∗ EL3 SPMC

· check descriptor size for overflow (eed15e4)

· compute full FF-A V1.1 desc size (be075c3)

· deadlock when relinquishing memory (ac568b2)

· error handling in allocation (cee8bb3)

· fix detection of overlapping memory regions (0dc3518)

· fix incomplete reclaim validation (c4adbe6)

· fix location of fragment length check (21ed9ea)

· fix relinquish validation check (b4c3621)

• Libraries

– CPU Support

∗ fix cpu version check for Neoverse N2, V1 (03ebf40)

∗ workaround for Cortex-A510 erratum 2666669 (afb5d06)

13.7. 2.8.0 (2022-11-15) 849

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c889088386432af69e3ca853825c4219884c1cc1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15dc3e4f8d9730ce58cc599fb9970d486c8b9202
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ffa910312c371080f4d0d50eb1354ad05b7be7a8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7b1a6a08ccc7522687f66e6e989bbc597d08ab06
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c2fe62f1347bb94d82e9fdd3bc5eaebedaf0bc7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d435238dc364f0c9f0e41661365f83d83899829d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/df56e9d199939c571b3fd8f539d213fc36e14494
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb00dc4a7b208cf416d082bb4367b54286bc8e3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7670ddb1fb5d4fa5e2e234375f7a4c0763f1c57a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/364b4cddbab859a56e63813aab4e983433187191
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dc65ae46439f4d1be06e3a016fe76319d7a62954
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e516ba6de5e248e93156b5261cedbff811226e0e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8e51cccaefc1e0e79ac2f0667ffec1cc46cf7665
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eed15e4310a7bcd90bf6d66b00037e05186329bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be075c3edf634a2df1065597266c3e41d284287b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ac568b2bccb9da71f2bd7f1c7204189d1ff678d9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cee8bb3b38ea266a5008719548965352ec695cae
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0dc35186669ddaedb3a932e103c3976bc3bf75d6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c4adbe6e67617bb2d4f0ffb1c1daa3395f7ac227
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21ed9ea32325fc556fa7e907e4995888bd3a3b45
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b4c3621e0dc8e7ec6d3229253e0326f12c8fe5a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/03ebf409c711e9f2006cedded7dc415dfe566975
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/afb5d069a6fa049f18e90fa50e714b8a4acc55f4

Trusted Firmware-A, Release 2.10.4

∗ workaround for Cortex-A710 2216384 (b781fcf)

∗ workaround for Cortex-A710 erratum 2291219 (888eafa)

∗ workaround for Cortex-A76 erratum 2743102 (4927309)

∗ workaround for Cortex-A77 erratum 2743100 (4fdeaff)

∗ workaround for Cortex-A78C erratum 2376749 (5d3c1f5)

∗ workaround for Cortex-X3 erratum 2313909 (7954412)

∗ workaround for Neoverse N1 erratum 2743102 (8ce4050)

∗ workaround for Neoverse-N2 erratum 2326639 (43438ad)

∗ workaround for Neoverse-N2 erratum 2388450 (884d515)

∗ workaround for Cortex A78C erratum 2242638 (6979f47)

∗ workaround for Cortex-A510 erratum 2347730 (11d448c)

∗ workaround for Cortex-A510 erratum 2371937 (a67c1b1)

∗ workaround for Cortex-A710 erratum 2147715 (3280e5e)

∗ workaround for Cortex-A710 erratum 2371105 (3220f05)

∗ workaround for Cortex-A77 erratum 2356587 (7bf1a7a)

∗ workaround for Cortex-A78C 2132064 (8008bab)

∗ workaround for Cortex-A78C erratum 2395411 (4b6f002)

∗ workaround for Cortex-X2 erratum 2371105 (bc0f84d)

∗ workaround for Neoverse-N2 erratum 2376738 (e6602d4)

∗ workaround for Neoverse-V1 erratum 1618635 (14a6fed)

∗ workaround for Neoverse-V1 erratum 2294912 (39eb5dd)

∗ workaround for Neoverse-V1 erratum 2372203 (57b73d5)

– EL3 Runtime

∗ RAS

· restrict RAS support for NS world (46cc41d)

· trap “RAS error record” accesses only for NS (00e8f79)

– FCONF

∗ fix type error displaying disable_auth (381f465)

– PSCI

∗ fix MISRA failure - Memory - illegal accesses (0551aac)

– GPT

∗ correct the GPC enable sequence (14cddd7)

850 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b781fcf139c3a609f1adffb8097a23eadbed53a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/888eafa00b99aa06b4ff688407336811a7ff439a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49273098a5ccd87a2084a85f9e47d74fa3ecfc90
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4fdeaffe860a998e8503b847ecceec60dcddcdc5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d3c1f58905d3b7350e02c4687dceaf0971700b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/79544126943a90d31d81177655be11f75330ffed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8ce40503ad00fe0dd35de6e51551da2b4f08a848
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/43438ad1ad6651964e9ae75d35f40aed8d86d088
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/884d515625aa09b22245c32db2fcc9222c7f34fd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6979f47fecfd34ac1405117c23f2e36ecb552a20
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/11d448c93463180d03b46e9ba204124ff7ad5116
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a67c1b1b2b521c888790c68e4201ecce0836a0e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3280e5e655ad64b6e299e18624d9c586e6b37cb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3220f05ef900addccb6e444d6746e4ed28c9804f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7bf1a7aaaa41034587e43d5805b42da83090b85b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8008babd58f60c91a88ad79df3d32f63596b433a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4b6f0026ea2622b3f46cdef5b468853ddd281b39
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc0f84de40d4f1efddfb50071fff09d32f0ea9b2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e6602d4b153b81b49b39c22e70f052f9018687b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14a6fed5ac14035f578a75a9758f9df7ba4d7496
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/39eb5ddbbf98bdb6c012a9d852f489f2f8e15c05
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/57b73d553305d89da7098f9b53b0a2356ca7ff8b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/46cc41d5592a16f702f7f0c0c41f8948a3e11cda
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/00e8f79c15d36f65f6c7f127177105e02177cbc0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/381f465ca92f7c9759e85c1bfb4c95ceda26581e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0551aac5637a638d4b9d8865a2c20ec5153de3bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14cddd7a58799c8a9d349a4adc0136c1ab5d0b6c

Trusted Firmware-A, Release 2.10.4

– C Standard Library

∗ pri*ptr macros for aarch64 (d307229)

– PSA

∗ fix Null pointer dereference error (c32ab75)

∗ update measured boot handle (4d879e1)

∗ add missing semicolon (d219ead)

∗ align with original API in tf-m-extras (471c989)

∗ extend measured boot logging (901b0a3)

– Context Management

∗ remove explicit ICC_SRE_EL2 register read (2b28727)

– Semihosting

∗ fix seek call failure check (7c49438)

• Drivers

– Authentication

∗ correct sign-compare warning (ed38366)

– Measured Boot

∗ add SP entries to event_log_metadata (e637a5e)

∗ clear the entire digest array of Startup Locality event (70b1c02)

∗ fix verbosity level of RSS digests traces (2abd317)

– MMC

∗ remove broken, unsecure, unused eMMC RPMB handling (86b015e)

∗ resolve the build error (ccf8392)

– SCMI

∗ base: fix protocol list querying (cad90b5)

∗ base: fix protocol list response size (d323f0c)

– UFS

∗ add retries to ufs_read_capacity (28645eb)

∗ fix slot base address computation (7d9648d)

∗ init utrlba/utrlbau with desc_base (9d6d1a9)

∗ point utrlbau to header instead of upiu (9d3f6c4)

∗ removes dp and run-stop polling loops (660c208)

∗ retry commands on unit attention (3d30955)

13.7. 2.8.0 (2022-11-15) 851

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d307229d754ae4d833ed50be50420aaf070065bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c32ab75c41adfe28a60f1ff159012a7d78e72fdc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d879e1e5a40cefae5b5e13086a16741bf3f6d67
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d219ead1db5ca02ec7c7905ac01d7b268c5026ae
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/471c9895a630560561717067113e4c4d7127bb9f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/901b0a3015a652d9eb66c063b0984fade9adf08f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2b28727e6dafdaa08a517b5a97bda5de26cc8919
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c4943887477754024f0f736461d9543d502efcc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed38366f1dfeb0b0789fd69b400728598ae3c64e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e637a5e19da72599229fd2c70e793c123aaf14ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70b1c025003452602f68feb13402c705e44145aa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2abd317d27a26bbfa3da7fe3fe709da3fa0f09af
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/86b015eb1be57439c2a01cb35d800c7f1b5c8467
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ccf8392ccb105638fe710901d3c7ed6594d9450e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cad90b569db7c547470cca922bd93207adcadfad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d323f0cf000f1d999bf78d89c0037af76b6bf8d8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28645ebd706fe6ac9f34db9f7be5657fe4cffc1a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7d9648dd6cf3b1dcd90b6917d9d0b545b1c4c975
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d6d1a94c99c3a0e89792c5cc118a1d8c8a9dbb7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d3f6c4b6068b3a4747f5d1dc650607876eff583
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/660c208d9bd2770f295005fc26a9b6f788567f41
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d309556c75bcdb59fd4e4178fa2b79aa472dc90

Trusted Firmware-A, Release 2.10.4

– Arm

∗ GIC

· GICv3

· fix overflow caused by left shift (6aea762)

· update the affinity mask to 8 bit (e689048)

· GIC-600

· implement workaround to forward highest priority interrupt (e1b15b0)

∗ RSS

· clear the message buffer (e3a6fb8)

· determine the size of sw_type in RSS mboot metadata (2c8f2a9)

· fix build issues with comms protocol (ab545ef)

· reduce input validation for measured boot (13a129e)

· remove dependency on attestation header (6aa7154)

· rename AP-RSS message size macro (70247dd)

– NXP

∗ DDR

· fix firmware buffer re-mapping issue (742c23a)

– ST

∗ Clock

· correct MISRA C2012 15.6 (56f895e)

· correctly check ready bit (3b06a53)

• Miscellaneous

– AArch64

∗ make AArch64 FGT feature detection more robust (c687776)

– Debug

∗ backtrace stack unwind misses lr adjustment (a149eb4)

∗ decouple “get_el_str()” from backtrace (0ae4a3a)

– FDTs

∗ STM32MP1

· STM32MP13

· align sdmmc pins with kernel (c7ac7d6)

· cleanup DT files (4c07deb)

852 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6aea7624a01cc39c19d4237c4b108659270a61c5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e689048e20af70983e0d384301c408fc725cb5eb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e1b15b09a530f2a0b0edc4384e977452d6b389eb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e3a6fb84f523e68d2f1398348d1ae2635f3e57bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c8f2a9ad45023354516d419dc9fda2a4f02812b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab545efddcdbf5d08ad3b1e8f4ea15a0faf168a7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/13a129e8dcea358033f3c83b2d81b25129e02d43
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6aa71542f35047ea0b537e3a6016de6c579c9d6b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70247ddbbd0a55a1ddf1d02f2a35b5cad3949dd1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/742c23aab79a21803472c5b4314b43057f1d3e84
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/56f895ede3a2a4a97c0e4f8270050aff20a167bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3b06a53044e754979cb0608fd93a137a5879a6a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c6877763cd3a286983df160c8207368174c1b820
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a149eb4d87453f58418ad32c570090739a3e0dd6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ae4a3a3f0cd841b83f2944dde9837ea67f08813
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c7ac7d65a7d1ee1b656bf1260ede6b8e2226bbac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4c07deb53e0e7daafc93bc67fdcbb3de7b73d730

Trusted Firmware-A, Release 2.10.4

· correct PLL nodes name (93ed4f0)

· remove secure status (8ef8e0e)

· update SDMMC max frequency (c9a4cb5)

– Security

∗ optimisations for CVE-2022-23960 (e74d658)

• Documentation

– document missing RMM-EL3 runtime services (e50fedb)

– add LTS maintainers (ab0d4d9)

– update maintainers list (f23ce63)

– Changelog

∗ fix the broken link to commitlintrc.js (c1284a7)

• Build System

– disable default PIE when linking (7b59241)

– discard sections also with SEPARATE_NOBITS_REGION (64207f8)

– ensure that the correct rule is called for tools (598b166)

– fix arch32 build issue for clang (94eb127)

– make TF-A use provided OpenSSL binary (e95abc4)

• Tools

– Secure Partition Tool

∗ fix concurrency issue for SP packages (0aaa382)

∗ operators “is/is not” in sp_mk_gen.py (1a28f29)

∗ ‘sp_mk_generator.py’ reference to undef var (0be2475)

• Dependencies

– add missing aeabi_memcpy.S (93cec69)

13.8 2.7.0 (2022-05-20)

13.8.1 New Features

• Architecture

– Statistical profiling Extension (FEAT_SPE)

∗ add support for FEAT_SPEv1p2 (f20eb89)

– Branch Record Buffer Extension (FEAT_BRBE)

13.8. 2.7.0 (2022-05-20) 853

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/93ed4f0801f5b3571abdd7e039d09d508c987063
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8ef8e0e30e301e6b2595d571f004ae86b1a1ce06
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c9a4cb552cdd168fcab2c0383b8fbe30dc99092f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e74d658181e5e69b6b5e16b40adc1ffef4c1efb9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e50fedbc869341d044d4cb3479a0ab3d4edaf225
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab0d4d9d44fe54535a0ae647092a3cfff368f126
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f23ce639050481cda939b9e4738ed01d46481ee3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c1284a7f93309c88fd781d2b4720f742e147284e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7b5924184566bcdcc01966905ffdcabcd6ea4b32
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/64207f858f5cbf44aa6528be19a863acc4444568
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/598b166bbc2f09fc219d44ecff0c870854bfa093
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/94eb127719881f39c7f235c887fb2c0b82341696
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e95abc4c01822ef43e9e874d63d6596dc0b57279
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0aaa382fe2395c82c9491b199b6b82819afd368f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1a28f290b8224eb1d78a2476faaedc5154f82208
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0be2475f6990a37d2d54b7ed06bac9cb46f4660d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/93cec697deb654303379cae8f25a31dc8b90cd31
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f20eb893a072bb9b404eedb886e8c65fe76ffb45

Trusted Firmware-A, Release 2.10.4

∗ add BRBE support for NS world (744ad97)

– Extended Cache Index (FEAT_CCIDX)

∗ update the do_dcsw_op function to support FEAT_CCIDX (d0ec1cc)

• Platforms

– add SZ_* macros (1af59c4)

– Allwinner

∗ add SMCCC SOCID support (436cd75)

∗ allow to skip PMIC regulator setup (67412e4)

∗ apx803: add aldo1 regulator (a29f6e7)

∗ choose PSCI states to avoid translation (159c36f)

∗ provide CPU idle states to the rich OS (e2b1877)

∗ simplify CPU_SUSPEND power state encoding (52466ec)

– Arm

∗ FVP

· measure critical data (cf21064)

· update HW_CONFIG DT loading mechanism (39f0b86)

· enable RSS backend based measured boot (c44e50b)

∗ Morello

· add changes to enable TBBR boot (4af5397)

· add DTS for Morello SoC platform (572c8ce)

· add support for nt_fw_config (6ad6465)

· add TARGET_PLATFORM flag (8840711)

· configure DMC-Bing mode (9b8c431)

· expose scmi protocols in fdts (87639aa)

· split platform_info sds struct (4a7a9da)

· zero out the DDR memory space (2d39b39)

∗ N1SDP

· add support for nt_fw_config (cf85030)

· enable trusted board boot on n1sdp (fe2b37f)

∗ RD

· RD-N2

· add board support for rdn2cfg2 variant (efeb438)

854 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/744ad97445ce7aa65adaef376d0b5bafc12a90d3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0ec1cc437c59e64ecba44710dbce82a04ff892d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1af59c457010e6e3e6536752736eb02115bca543
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/436cd754f2b0f9c0ce3094961bd1e179eeff2fc1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67412e4d7ae3defaac78ef5e351c63e06cfd907a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a29f6e76cbf76d509c00f84f068b59864d210dfd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/159c36fd2fc5afbe979e5028b9e845ed4b7a40f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e2b18771fc2a0528dda18dbdaac08dd8530df25a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52466ec38ef312da62ad062720a03a183329f831
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf21064ec8a1889f64de48e30e38285227d27745
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/39f0b86a76534d0b7c71dd0c8b34f1a74480386b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c44e50b72567205650c6455f3a258f36af0c84dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4af53977533bee7b5763d3efad1448545c2ebef7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/572c8ce255397f7cff9640676e510817a8e4c6a3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ad6465e5ce452688cac079f16d26f64e9f4ce3c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8840711f33131969ec6b62ca3da079cf0573ac8b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9b8c431e2b2d656da7f8c4158e3d32e104446fec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/87639aab0b6a30d4f49d069c0ea06900b11072a6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a7a9dafbc953089957a0cc1a7183731a5b003e1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d39b39704c1e4f2a189543ac4ff05ae58e5f5c8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf85030efe73439e06295f8185b0a6bebf7b5eae
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fe2b37f6858168a56c3d393bc72f560468d02165
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/efeb43808d2e3ed23e1d51d5e86460db92971e96

Trusted Firmware-A, Release 2.10.4

· add support for rdedmunds variant (ef515f0)

∗ SGI

· add page table translation entry for secure uart (33d10ac)

· deviate from arm css common uart related definitions (f2cccca)

· enable fpregs context save and restore (18fa43f)

· route TF-A logs via secure uart (987e2b7)

∗ TC

· add reserved memory region for Gralloc (ad60a42)

· enable CI-700 PMU for profiling (fbfc598)

· enable GPU (82117bb)

· enable SMMU for DPU (4a6ebee)

· enable tracing (59da207)

∗ Corstone-1000

· identify bank to load fip (cf89fd5)

· implement platform specific psci reset (a599c80)

· made changes to accommodate 3MB for optee (854d1c1)

– Intel

∗ add macro to switch between different UART PORT (447e699)

∗ add RSU ‘Max Retry’ SiP SMC services (4c26957)

∗ add SiP service for DCMF status (984e236)

∗ add SMC for enquiring firmware version (c34b2a7)

∗ add SMC support for Get USERCODE (93a5b97)

∗ add SMC support for HWMON voltage and temp sensor (52cf9c2)

∗ add SMC support for ROM Patch SHA384 mailbox (77902fc)

∗ add SMC/PSCI services for DCMF version support (44eb782)

∗ add SMPLSEL and DRVSEL setup for Stratix 10 MMC (bb0fcc7)

∗ add support for F2S and S2F bridge SMC with mask to enable, disable and reset bridge
(11f4f03)

∗ allow to access all register addresses if DEBUG=1 (7e954df)

∗ create source file for firewall configuration (afa0b1a)

∗ enable firewall for OCRAM in BL31 (ae19fef)

∗ enable SMC SoC FPGA bridges enable/disable (b7f3044)

13.8. 2.7.0 (2022-05-20) 855

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef515f0d3466a8beded4fd662718abbd97391b13
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33d10ac8bf134519f303fd7ce5fb5d583be2f515
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f2ccccaa81ec14a80fedb48c37226e5d852ada7a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/18fa43f753b79cfc3cc5426a3ef50b04efbf6206
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/987e2b7c20eb4ab4215ff5289b715300f5cec054
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad60a42cd79713984065dca8540c091c49755f32
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fbfc59840f9cd0ea53921c7f6fb9f4850a3b42ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/82117bb48180175c25936b0ff9e33563e25e18f4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a6ebeeca37ece34a58982c8b6ebdc8cfd70814b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/59da207e2f2f028c9051c89bc5a05e95d996c18c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf89fd57ed3286d7842eef41cd72a3977eb6d317
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a599c80d063975cbeedbc86cfb619fca8545c487
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/854d1c103a9b73bbde7ef1b89b06b29e3cc053bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/447e699f70f1a1d1b85a8136b445eba689166c5d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4c26957be253a7ab3acb316f42bf3ee10c409ed2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/984e236e0dee46708534a23c637271a931ceb67e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c34b2a7a1a38dba88b6b668a81bd07c757525830
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/93a5b97ec9e97207769db18ae34886e6b8bf2ea4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52cf9c2cd4882534d02e8996e4ff1143ee59290e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77902fca8fe7449473b09198e1fe197f7b4765d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44eb782e15c9af532f2455b37bd53ca93830f6e2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb0fcc7e011ec4319a79734ba44353015860e39f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/11f4f03043ef05762f4d6337804c39dc8f9af54f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e954dfc2ba83262f7596dd0f17de75163e49e5e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/afa0b1a82a404c616da2da8f52cdcd587938955f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ae19fef33707700a91b0b672aa784e084a6ca500
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7f3044e8725d9af997999547630892cf9e2f0ad

Trusted Firmware-A, Release 2.10.4

∗ extend attestation service to Agilex family (581182c)

∗ implement timer init divider via cpu frequency. (#1) (f65bdf3)

∗ initial commit for attestation service (d174083)

∗ single certificate feature enablement (7facace)

∗ support AES Crypt Service (6726390)

∗ support crypto service key operation (342a061)

∗ support crypto service session (6dc00c2)

∗ support ECDH request (4944686)

∗ support ECDSA Get Public Key (d2fee94)

∗ support ECDSA HASH Signing (6925410)

∗ support ECDSA HASH Verification (7e25eb8)

∗ support ECDSA SHA-2 Data Signature Verification (5830506)

∗ support ECDSA SHA-2 Data Signing (07912da)

∗ support extended random number generation (24f9dc8)

∗ support HMAC SHA-2 MAC verify request (c05ea29)

∗ support session based SDOS encrypt and decrypt (537ff05)

∗ support SHA-2 hash digest generation on a blob (7e8249a)

∗ support SiP SVC version (f0c40b8)

∗ support version 2 SiP SVC SMC function ID for mailbox commands (c436707)

∗ support version 2 SiP SVC SMC function ID for non-mailbox commands (ad47f14)

∗ update to support maximum response data size (b703fac)

– Marvell

∗ Armada

· A3K

· add north and south bridge reset registers (a4d35ff)

– MediaTek

∗ introduce mtk makefile (500d40d)

∗ MT8195

· apply erratas of CA78 for MT8195 (c21a736)

· add EMI MPU surppot for SCP and DSP (690cb12)

· dump EMI MPU configurations (20ef588)

· improve SPM wakeup log (ab45305)

856 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/581182c1916df03860744d8e32941c72b2cc3fda
https://review.trustedfirmware.org:29418/TF-A/trusted-firmware-a/issues/1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f65bdf3a54eed8f7651761c25bf6cc7437f4474b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d17408316db10db611e23716e8a5b9b9f53ad509
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7facacec6328e505b243a4974d045d45fe068afd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6726390eb02e9659cfaf2d3598be9bf12fbc5901
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/342a0618c7ff89327ac5b34dc0713509ffae609b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6dc00c24ab0100a2aae0f416c72470f8ed17e149
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49446866a515c2db855d456f39df3d586b2084b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d2fee94afa6ba7e76508e6bead7eb2936c5eafb8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/692541051b8cb0f435ae46c5d7351231ee292319
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e25eb87016ba8355cf0a3a5f71fb8b8785de044
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/583050607e43cef8b544a5700386a019e54c422f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/07912da1b7663451493fb5e40e4c33deeb18a639
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24f9dc8a43fea350416ca9312a78ab4e786da8ad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c05ea2969070be90a7dbb2d0344c66d89401edf6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/537ff052579862a4865d36d06940feaa796d16da
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e8249a2dbacfa751990c47644f0403311c6e260
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0c40b897f8a25bc50c53239dcf750dd395ebabf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c436707bc6eed31ab61408ef40db6063d05f0912
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad47f1422f3f9aa4a622e08b71fc8f5caab98a98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b703facaaae1e3fe5afa4742b436bb07e065b5e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4d35ff381c625d61bcc22f9f9a1a45d8663b19d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/500d40d877617653d347fb6308144973d4297ab9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c21a736d6f3fa9fb0647bff404b0174ebf1acd91
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/690cb1265ea84851bd6405a0a6a57d2f1c9f03a3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/20ef588e86ad8f3cf13382c164463046db261feb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab45305062f50f81e5c3f800ef4c6cef5097cb04

Trusted Firmware-A, Release 2.10.4

∗ MT8186

· add DFD control in SiP service (e46e9df)

· add SPM suspend driver (7ac6a76)

· add Vcore DVFS driver (635e6b1)

· disable 26MHz clock while suspending (9457cec)

· initialize platform for MediaTek MT8186 (27132f1)

· add power-off function for PSCI (a68346a)

· add CPU hotplug (1da57e5)

· add DCM driver (95ea87f)

· add EMI MPU basic driver (1b17e34)

· add MCDI drivers (06cb65e)

· add pinctrl support (af5a0c4)

· add pwrap and pmic driver (5bc88ec)

· add reboot function for PSCI (24dd5a7)

· add RTC drivers (6e5d76b)

· add SiP service (5aab27d)

· add sys_cirq support (109b91e)

· apply erratas for MT8186 (572f8ad)

· initialize delay_timer (d73e15e)

· initialize GIC (206f125)

· initialize systimer (a6a0af5)

– NXP

∗ add SoC erratum a008850 (3d14a30)

∗ add ifc nor and nand as io devices (b759727)

∗ add RCPM2 registers definition (d374060)

∗ add CORTEX A53 helper functions (3ccc8ac)

∗ i.MX

· i.MX 8M

· add a simple csu driver for imx8m family (71c40d3)

· add imx csu/rdc enum type defines for imx8m (0c6dfc4)

· enable conditional build for SDEI (d2a339d)

· enable the coram_s tz by default on imx8mn/mp (d5ede92)

13.8. 2.7.0 (2022-05-20) 857

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e46e9df0d0e05f2aaee613fc4f697fcc8d79c0b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7ac6a76c47d429778723aa804b64c48220a10f11
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/635e6b108e773daf37c00f46e6fbb1cae4e78f96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9457cec8c02f78ba56fd9298dd795766c89281a2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/27132f13ca871dc3cf1aa6938995284cf5016e00
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a68346a772859ee6971ec14c6473d2a853e9c66f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1da57e54b2270b3b49710afa6fd947b01d61b261
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95ea87ffc2445c77f070e6a2f78ffa424810faed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1b17e34c5d7740a357b2027d88aef7760b346616
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/06cb65ef079941d0525dca75dd0e110e9330906d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af5a0c40aff21c4b8771365f19dcb01d6086b30d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5bc88ec61c75ed42b41d84817aa4d6ee68a2efc8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24dd5a7b71544c503446e58cb23c0cfd09245a3c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e5d76bac8786120d037953f5a6fd67aaff035c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5aab27dc4294110a6c0b69bf5ec5343e7df883a7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/109b91e38c8d4f73941c8574759560a1f1636d05
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/572f8adbb062c36835fbb82944dd2ed772134bfd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d73e15e66a33398c8fc51c83f975a3f35494faf5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/206f125cc177bc110eb87d40ffc7fa18b28c01ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a6a0af57c3369dfc6fc2f25877d812a24e9be311
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d14a30b88762e901e134acc89c6ac4fa9e3f321
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b759727f5936a687314168dd8912d30897a8c6be
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d374060abe9b63296f63f1e3c811aeeddb7a093c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3ccc8ac3e5da48819a2fc90ec48a175515de38cb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/71c40d3bb7c90a6c36d5c49d0830ca95aba65a2f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0c6dfc47847608b6ade0c00716e93afc6725362c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d2a339dfa1665edf87a30a4318af954e764c205c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5ede92d78c829d8a3adad0759219b79e0dc0707

Trusted Firmware-A, Release 2.10.4

· enable the csu init on imx8m (0a76495)

· do not release JR0 to NS if HAB is using it (77850c9)

· switch to xlat_tables_v2 (4f8d5b0)

· i.MX 8MMini

· enable optee fdt overlay support (9d0eed1)

· enable Trusty OS on imx8mm (ff3acfe)

· add support for measured boot (cb2c4f9)

· i.MX 8M Plus

· add trusty for imx8mp (8b9c21b)

· enable BL32 fdt overlay support on imx8mp (aeff146)

· i.MX 8M Nano

· enable optee fdt overlay support (2612891)

· enable Trusty OS for imx8mn (99349c8)

· i.MX 8M Q

· enable optee fdt overlay support (023750c)

· enable trusty for imx8mq (a18e393)

∗ Layerscape

· add CHASSIS 3 support for tbbr (9550ce9)

· add new soc errata a009660 support (785ee93)

· add new soc errata a010539 support (85bd092)

· add soc helper macro definition for chassis 3 (602cf53)

· define more chassis 3 hardware address (0d396d6)

· print DDR errata information (3412716)

· LS1043A

· add ls1043a soc support (3b0de91)

· LS1043ARDB

· add ls1043ardb board support (e4bd65f

· LX2

· enable DDR erratas for lx2 platforms (cd960f5)

· LS1046A

· add new SoC platform ls1046a (cc70859)

· LS1046ARDB

858 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0a76495bc2cb0c5291027020a3cd2d3adf31c8ed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77850c96f23bcdc76ecb0ecd27a982c00fde5d9d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4f8d5b018efc42d1ffa76fca8efb0d16a57f5edd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d0eed111cb1294605b6d82291fef16a51d35e46
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff3acfe3cc1658917376152913a9d1b5b9b8de34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cb2c4f93c18b948fbfde9d50ab7d30362be0e00a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8b9c21b480dd5c3265be1105a9462b3f5657a6b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aeff14640a91f6d33bfdbc0dc7b0e920f6d14b91
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/26128912884b26fab67bce9d87ba0e1c85a0be1e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99349c8ecba910dabbaa72b9be91f3ed762036f5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/023750c6a898e77c185839f5e56f8e23538f718a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a18e393339e1d481f4fdf0d621fe4f39ce93a4fe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9550ce9ddd7729a961f51ed61ea4b2030e284dcb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/785ee93cc3bd9b43d88fee5acefbd131bf6f2756
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85bd0929433875e0b84fdc2046d9ec2cf0164903
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/602cf53b6f507cea88f4af5c07bed9325bc7a9b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0d396d6455a659c4e679f02fae1f9043713474b0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3412716b30260958b30d1fa2e1c6d8cce195cd7d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3b0de9182501fae9de372efd1faaf35a7bf74f68
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e4bd65fed8a12d06181c1343cf786ac91badb6b0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd960f5009ee062bba9c479505caee6bbe644649
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc708597fa72094c5a01df60e6538e4a7429c2a0

Trusted Firmware-A, Release 2.10.4

· add ls1046ardb board support (bb52f75)

· LS1046AFRWY

· add ls1046afrwy board support (b51dc56)

· LS1046AQDS

· add board ls1046aqds support (16662dc)

· LS1088A

· add new SoC platform ls1088a (9df5ba0)

· LS1088ARDB

· add ls1088ardb board support (2771dd0)

· LS1088AQDS

· add ls1088aqds board support (0b0e676)

– QEMU

∗ add SPMD support with SPMC at S-EL1 (f58237c)

∗ add support for measured boot (5e69026)

– QTI

∗ MSM8916

· allow booting secondary CPU cores (a758c0b)

· initial platform port (dddba19)

· setup hardware for non-secure world (af64473)

– Renesas

∗ R-Car

· R-Car 3

· modify sequence for update value for WUPMSKCA57/53 (d9912cf)

· modify type for Internal function argument (ffb725b)

· update IPL and Secure Monitor Rev.3.0.3 (14d9727)

– ST

∗ add a function to configure console (53612f7)

∗ add STM32CubeProgrammer support on UART (fb3e798)

∗ add STM32MP_UART_PROGRAMMER target (9083fa1)

∗ add early console in BL2 (c768b2b)

∗ disable authentication based on part_number (49abdfd)

∗ get pin_count from the gpio-ranges property (d0f2cf3)

13.8. 2.7.0 (2022-05-20) 859

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb52f7560b62043ed08a753f399dc80e8c1582d3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b51dc56ab9ea79e4709f0d0ce965525d0d3da918
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/16662dc40dd2578d3000528ece090ed39ed18b9c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9df5ba05b4fe4cd44157363a897b73553ba6e2f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2771dd0293b6cda6811e8bed95f2354a3ee0124e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b0e67669814139c6818e61e03d0d0e3314fdc99
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f58237ccd9fd2350730d60ab7de59b5c376bfb35
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5e690269d579d9461be3c5f5e3f59d4c666863a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a758c0b65c6730fb07846899d6436ba257484d34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dddba19a6a3cb7a1039beaffc3169c4eb3291afd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af6447315c8534331513ca6b6556af661e0ba88b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d9912cf3d1022fc6d38a6059290040985de56e63
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ffb725be98ffd010c851629a6da75bf57f770c7f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14d9727e334300b3f5f57e76a9f6e21431e6c6b5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/53612f72938f37244a5f10ae7c57abe7358c221f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb3e7985c9b657c535c02b722ecc413f643e671e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9083fa11ead67272b94329e8f84257de6658620d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c768b2b22f4fb16cf8be8b4815a1984b29918c20
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49abdfd8cececb91a4bc7e7b29a30c09dce461c7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0f2cf3b148df75d5cbbd42dfa18012043e5d1f4

Trusted Firmware-A, Release 2.10.4

∗ map 2MB for ROM code (1697ad8)

∗ protect UART during platform init (acf28c2)

∗ update stm32image tool for header v2 (2d8886a)

∗ update the security based on new compatible (812daf9)

∗ use newly introduced clock framework (33667d2)

∗ ST32MP1

· adaptations for STM32MP13 image header (a530874)

· add “Boot mode” management for STM32MP13 (296ac80)

· add a second fixed regulator (225ce48)

· add GUID values for updatable images (8d6b476)

· add GUID’s for identifying firmware images to be booted (41bd8b9)

· add helper to enable high speed mode in low voltage (dea02f4)

· add logic to pass the boot index to the Update Agent (ba02add)

· add logic to select the images to be booted (8dd7553)

· add NVMEM layout compatibility definition (dfbdbd0)

· add part numbers for STM32MP13 (30eea11)

· add regulator framework compilation (bba9fde)

· add sdmmc compatible in platform define (3331d36)

· add sign-compare warning (c10f3a4)

· add stm32_get_boot_interface function (a6bfa75)

· add support for building the FWU feature (ad216c1)

· add support for reading the metadata partition (0ca180f)

· add timeout in IO compensation (de02e9b)

· allow configuration of DDR AXI ports number (88f4fb8)

· call pmic_voltages_init() in platform init (ffd1b88)

· chip rev. Z is 0x1001 on STM32MP13 (ef0b8a6)

· enable BL2_IN_XIP_MEM to remove relocation sections (d958d10)

· enable format-signedness warning (cff26c1)

· get CPU info from SYSCFG on STM32MP13 (6512c3a)

· introduce new flag for STM32MP13 (bdec516)

· manage HSLV on STM32MP13 (fca10a8)

· manage monotonic counter (f5a3688)

860 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1697ad8cc81307972d31cec3b27d58f589eeeb3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/acf28c267b3679a0770b2010f2ec3fb3c2d19975
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d8886aceed613b9be25f20900914cacc8bb0fb9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/812daf916c9c977a4f6d7d745d22b90c8492fc71
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33667d299bd5398ca549f542345e0f321b483d17
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a5308745ee3ab3b77ca942052e60968bcc01340d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/296ac8012b77ea84079b38cc60ee786a5f91857f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/225ce4822ccf2e7c7c1fca6cf3918d4399158613
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8d6b4764f3e54431c3d01342d39d1efa70c3dbf9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/41bd8b9e2ad3b755505684601f07d4f7f8ec04c4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dea02f4eaed855c2f05d8a1d7eefca313e98e5b4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ba02add9ea8fb9a8b0a533c1065a77c7dda4f2a6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8dd755314fdfa077465bd6cd5e248be392d90378
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dfbdbd0625990267c6742268118ea748e77c6123
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/30eea116cdd66b3fa1e1208e185eb7285a83d898
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bba9fdee589fb9a7aca5963f53b7ce67c30520b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3331d3637c295993a78f22afe7463cf1c334d329
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c10f3a4559ebf7a654a9719fec619e81e6ee1d69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a6bfa75cf25241a486ab371ae105ea7ebf2d34d8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ad216c106682f1d2565b2a08e11a601b418dc8a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ca180f6416160a523ff442f1ad0b768a9a3a948
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/de02e9b0ec29548b8ce5ef6ee9adcd9c5edb0518
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/88f4fb8fa759b1761954067346ee674b454bdfde
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ffd1b889225a8aec124df9e330f41dc638fd7180
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef0b8a6c1b1a0eab3626041f3168f82bdb410836
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d958d10eb360024e15f3c921dc3863a0cee98830
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cff26c19169dd94857e8180cc46b7aa4ccac574a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6512c3a62a4a7baaf32597284b242bc7172b7e26
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bdec516ee862bfadc25a4d0c02a3b8d859c1fa25
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fca10a8f1b47231ef92634a0adf1a26cbfc97c2a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f5a3688b8608df0f269a0b6df18632ebb9e26a01

Trusted Firmware-A, Release 2.10.4

· new way to access platform OTP (ae3ce8b)

· preserve the PLL4 settings for USB boot (bf1af15)

· register fixed regulator (967a8e6)

· remove unsupported features on STM32MP13 (111a384)

· retry 3 times FWU trial boot (f87de90)

· select platform compilation either by flag or DT (99a5d8d)

· skip TOS_FW_CONFIG if not in FIP (b706608)

· stm32mp_is_single_core() for STM32MP13 (7b48a9f)

· update BACKUP_BOOT_MODE for STM32MP13 (4b031ab)

· update boot API for header v2.0 (5f52eb1)

· update CFG0 OTP for STM32MP13 (1c37d0c)

· update console management for SP_min (aafff04)

· update IO compensation on STM32MP13 (8e07ab5)

· update IP addresses for STM32MP13 (52ac998)

· update memory mapping for STM32MP13 (48ede66)

· updates for STM32MP13 device tree compilation (d38eaf9)

· usb descriptor update for STM32MP13 (d59b9d5)

· use clk_enable/disable functions (c7a66e7)

· use only one filter for TZC400 on STM32MP13 (b7d0058)

· warn when debug enabled on secure chip (ac4b8b0)

– Texas Instruments

∗ add enter sleep method (cf5868b)

∗ add gic save and restore calls (b40a467)

∗ add PSCI handlers for system suspend (2393c27)

∗ allow build config of low power mode support (a9f46fa)

∗ increase SEC_SRAM_SIZE to 128k (38164e6)

– Xilinx

∗ Versal

· add SPP/EMU platform support for versal (be73459)

· add common interfaces to handle EEMI commands (1397967)

· add SMCCC call TF_A_PM_REGISTER_SGI (fcf6f46)

· add support to reset SGI (bf70449)

13.8. 2.7.0 (2022-05-20) 861

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ae3ce8b28eac73e9a41fdb28424d9f0f4b5f200e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bf1af154db2c89028a8a551c18885add35d38966
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/967a8e63c33822680e3a4631430dcd9a4a64becd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/111a384c90afc629e644e7a8284abbd4311cc6b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f87de907c87e5b2091592c131c4d3d2f737bef01
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99a5d8d01d38474b056766651bd746a4fe93ab20
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7066086424c2f6fd04880db852306d6f487962e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7b48a9f3286b8f174acf8821fec48fd2e4771514
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4b031ab4c50d0b9f7127daa7f4eec634f39de970
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f52eb15970e57d2777d114948fc1110e3dd3f6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1c37d0c1d378769249c797de5b13d73cf6f17a53
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aafff0435448c8409935132be41758e0031f0822
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8e07ab5f705b213af28831f7c3e9878154e07df0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52ac9983d67522b6b821391941c8b0d01fd68941
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/48ede6615168118c674288f2e4f8ee1b11d2fa02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d38eaf99d327bc1400f51c87b6d8a2f92cd828c6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d59b9d53b9cfb2443575c62c6716eb5508374a7b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c7a66e720ae1a1a5ef98eaf9ff327cd352549010
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7d0058a3a9153a3863cf76a6763ea751b3ab48d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ac4b8b06eb23134d2a9002834541d33f8d43661b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cf5868b8cd7239dee69bdf6ba3ab87bd06bf15f5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b40a467783e5911f97d6e92ebdeb34ca2f005552
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2393c27680a1ec636e413051e87e986df5a866fe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a9f46fad82b807a9f0a967245e3ac10ee8dd0ef1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/38164e64bd853a8329475e9168c5fcb94ecc528b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be73459a945d8fa781fcc864943ccd0a8d92421c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1397967490c9f0ebff0d20a566260d1475fe065e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fcf6f469318d693a024d42ae2d0f4afb26c1e85d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bf70449ba2d1ffd20b01741c491dc0f565009b3d

Trusted Firmware-A, Release 2.10.4

· add UART1 as console (2c79149)

· enhance PM_IOCTL EEMI API to support additional arg (d34a5db)

· get version for ATF related EEMI APIs (da6e654)

· remove the time stamp configuration (18e2a79)

∗ ZynqMP

· disable the -mbranch-protection flag (67abd47)

· fix section coherent_ram' will not fit in region RAM’ (9b4ed0a)

· add feature check support (223a628)

· add support to get info of xilfpga (cc077c2)

· add uart1 as console (ea66e4a)

· increase the max xlat tables when debug build is enabled (4c4b961)

· pass ioctl calls to firmware (76ff8c4)

· pm_api_clock_get_num_clocks cleanup (e682d38)

• Bootloader Images

– add XLAT tables symbols in linker script (bb5b942)

– BL2

∗ add support to separate no-loadable sections (96a8ed1)

– BL31

∗ aarch64: RESET_TO_BL31_WITH_PARAMS (25844ff)

• Services

– RME

∗ add dummy platform token to RMMD (0f9159b)

∗ add dummy realm attestation key to RMMD (a043510)

– SPM

∗ update ff-a boot protocol documentation (573ac37)

∗ EL3 SPMC

· allow BL32 specific defines to be used by SPMC_AT_EL3 (2d65ea1)

· add plat hook for memory transactions (a8be4cd)

· add EL3 SPMC #defines (44639ab)

· introduce accessor function to obtain datastore (6a0788b)

· add FF-A secure partition manager core (5096aeb)

· add FFA_FEATURES handler (55a2963)

862 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c791499c26b40c31ce7f68c3bf0dca777fc62de
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d34a5db8a76abdfc8fa68f43b24b971699086a06
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/da6e654bc8b03ee784d0e96a71c4e591e63930f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/18e2a79f8a5eaa72a2a7e641c2481beb9f827dce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67abd4762bd563be94e734bb0fe4087e88d5d446
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9b4ed0af02a8ff1fd9a81af5213fde16d3eb8d92
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/223a6284b8a0a3ead884a7f0cf333a464d32e319
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc077c22273075db328bd30fa12c28abf9eef052
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ea66e4af0baf5d5b905e72f824a672f16a6e0f98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4c4b9615b1d9512a4a89aa08e722547cc491a07b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/76ff8c459e9e6d105e614d68648bd6680806f93e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e682d38b56854e1586b25d929dbc83543b4c66e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb5b942e6f133198daedcca0b74ec598af260a54
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/96a8ed14b74cca33a8caf567d0f0a2d3b2483a3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25844ff728e4a0e5430ba2032457aba7b780a701
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0f9159b7ebb7e784a8ed998869ff21095fa105b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a0435105f229a65c7861b5997793f905cf90b823
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/573ac37373d3e8b2c31b3aaeed759e4656e060ec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d65ea1930d4ce26cc176a8c60e9401d0b4f862a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a8be4cd057bce5f0b4ac6af396c0c870474d1ef4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44639ab73e43e0b79da834dff8c85266d68e5066
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a0788bc0e704283e52c80990aa2bb6e047a0cc2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5096aeb2ba646548a7a6ab59e975b996e6c9026a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/55a296387b9720855df429a08c886f47a4a45057

Trusted Firmware-A, Release 2.10.4

· add FFA_PARTITION_INFO_GET handler (f74e277)

· add FFA_RUN handler (aad20c8)

· add FFA_RX_RELEASE handler (f0c25a0)

· add function to determine the return path from the SPMC (20fae0a)

· add helper function to obtain endpoint mailbox (f16b6ee)

· add helper function to obtain hyp structure (a7c0050)

· add helper to obtain a partitions FF-A version (c2b1434)

· add partition mailbox structs (e1df600)

· add support for direct req/resp (9741327)

· add support for FF-A power mgmt. messages in the EL3 SPMC (59bd2ad)

· add support for FFA_MSG_WAIT (c4db76f)

· add support for FFA_SPM_ID_GET (46872e0)

· add support for forwarding a secure interrupt to the SP (729d779)

· add support for handling FFA_ERROR ABI (d663fe7)

· add support for v1.1 FF-A boot protocol (2e21921)

· add support for v1.1 FF-A memory data structures (7e804f9)

· enable building of the SPMC at EL3 (1d63ae4)

· enable checking of execution ctx count (5b0219d)

· enable handling FF-A RX/TX Mapping ABIs (1a75224)

· enable handling FFA_VERSION ABI (0c7707f)

· enable handling of the NS bit (0560b53)

· enable parsing of messaging methods from manifest (3de378f)

· enable parsing of UUID from SP Manifest (857f579)

· enable the SPMC to pass the linear core ID in a register (f014300)

· prevent read only xlat tables with the EL3 SPMC (70d986d)

· support FFA_ID_GET ABI (d5fe923)

· allow forwarding of FFA_FRAG_RX/TX calls (642db98)

· enable handling of FF-A SMCs with the SPMC at EL3 (bb01a67)

· update SPMC init flow to use EL3 implementation (6da7607)

· add logical partition framework (7affa25)

· add FF-A memory management code (e0b1a6d)

· prevent duplicated sharing of memory regions (fef85e1)

13.8. 2.7.0 (2022-05-20) 863

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f74e27723bb54ad1318fa462fbcff70af555b2e6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aad20c85cb6f4bc91318d3c6488cf72a20fdbe96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0c25a082fc8b891d4d21518028118561caa4735
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/20fae0a7ce7fd407cd3efb7745017ee6ab605159
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f16b6ee3deac93706efe465f399c9542e12d5eeb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a7c00505f85684326a223535a319c170d14826f6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c2b1434369292081f907c548e496f59e197eb2f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e1df6008d9b4a00da25ec08fbdcbd3a5967fdb54
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9741327df577c3f43db42b26bda607429e62af0b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/59bd2ad83c13ed3c84bb9b841032c95927358890
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c4db76f066f236fe490ebc7a50833a04e08f5151
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/46872e01f5efb555fef8367595b59e5d2f75cec0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/729d7793f830781ff8ed44d144c3346c6e4251a3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d663fe7a3002ff028c190eb732278b878e78b7b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2e21921502b1317031cf2a2f69c5d47ac88a505d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e804f9695c48681c91e9e6fc6175eb6997df867
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d63ae4d0d8374a732113565be90d58861506e39
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b0219ddd5da42413f4c2be9302224b5b71295ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1a752245ecae6487844c57667e24b704e6df8079
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0c7707fdf21fc2a8658f5a4bdfd2f8883d02ada5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0560b53e71ab6daefa8e75665a718605478746a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3de378ff8c9430c964cbe9b0c58fa5afc4d237ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/857f5790da3770a9ca52416274eec4e545c9be53
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0143004e548582760aacd6f15f5499b18081a69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70d986ddbbf56a20c7550c079dd4dc9462332594
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5fe92350cb018ae7083ed26a6a16508ccd82a86
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/642db9840712044b9c496e04a7acd60580e54117
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb01a67306f47271adde051e541c760028c1a0f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6da76075bf4b953d621aa15c379e62a5f785de3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7affa25cad400101c016082be2d102be0f4fce80
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0b1a6d59e57c0dbe87f5b8f8166f1123664f058
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fef85e1e53fcf44e8d9ed50c89d8a764bf1b7738

Trusted Firmware-A, Release 2.10.4

· support multiple endpoints in memory transactions (f0244e5)

∗ SPMD

· forward FFA_VERSION from SPMD to SPMC (9944f55)

· enable SPMD to forward FFA_VERSION to EL3 SPMC (9576fa9)

· add FFA_MSG_SEND2 forwarding in SPMD (c2eba07)

· add FFA_RX_ACQUIRE forwarding in SPMD (d555233)

∗ SPMMM

· add support to save and restore fp regs (15dd6f1)

• Libraries

– CPU Support

∗ add library support for Poseidon CPU (1471475)

∗ add support for Cortex-X1 (6e8eca7)

∗ add L1PCTL macro definiton for CPUACTLR_EL1 (8bbb1d8)

– EL3 Runtime

∗ add arch-features detection mechanism (6a0da73)

∗ replace ARM_ARCH_AT_LEAST macro with FEAT flags (0ce220a)

– FCONF

∗ add a helper to get image index (9e3f409)

∗ add NS load address in configuration DTB nodes (ed4bf52)

– Standard C Library

∗ add support for length specifiers (701e94b)

– PSA

∗ add initial attestation API (0848565)

∗ add measured boot API (758c647)

∗ mock PSA APIs (0ce2072)

• Drivers

– Generic Clock

∗ add a minimal clock framework (847c6bc)

– FWU

∗ add a function to pass metadata structure to platforms (9adce87)

∗ add basic definitions for GUID handling (19d63df)

∗ add platform hook for getting the boot index (40c175e)

864 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f0244e5dd1b8cbab75ef00c1b9b56eed5b3cad4b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9944f55761c4d5cc1feefaf5e33bf7fb83d8f5f3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9576fa93a2effc23a533b80dce41d7104a8d200b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c2eba07c47f8d831629104eeffcec11ed7d3b0a5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d555233fe5a04dfd99fd6ac30bacc5284285c131
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15dd6f19da8ee4b20ba525e0a742d0df9e46e071
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1471475516cbf1b4a411d5ef853bd92d0edd542e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e8eca78e5db966e10e2fa2737e9be4d5af51fa9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8bbb1d80a58dbdf96fcabbdebbfbd21d2d5344a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a0da73647546aea1d10b4b2347bac9d532bcb43
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ce220afb24f0511332b251952019d7011ccc282
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9e3f409398af447b1d03001dd981007a9bb1617e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed4bf52c33b6860d58a2ffc946bd293ec76bbdaa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/701e94b08f382691b0deabd4df882abd87e17ab5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/084856513d6730a50a3d65ac9c3bdae465117c40
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/758c64715b691be92de623f81032494e38a43cc8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ce2072d9b9f419bb19595454395a33a5857ca2f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/847c6bc8e6d55b1c0f31a52407aa61515cd6c612
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9adce87efc8acc947b8b49d700c9773a7f071e02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/19d63df1af72b312109b827cca793625ba6fcd16
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40c175e75bc442674a5dc793c601b09681158ab9

Trusted Firmware-A, Release 2.10.4

∗ pass a const metadata structure to platform routines (6aaf257)

∗ simplify the assert to check for fwu init (40b085b)

– Measured Boot

∗ add RSS backend (0442ebd)

– GUID Partition Tables Support

∗ add a function to identify a partition by GUID (3cb1065)

∗ cleanup partition and gpt headers (2029f93)

∗ copy the partition GUID into the partition structure (7585ec4)

∗ make provision to store partition GUID value (938e8a5)

∗ verify crc while loading gpt header (a283d19)

– Arm

∗ GIC

· allow overriding GICD_PIDR2_GICV2 address (a7521bd)

· GIC-600AE

· disable SMID for unavailable blocks (3f0094c)

· enable all GICD, PPI, ITS SMs (6a1c17c)

· introduce support for RAS error handling (308dce4)

∗ SMMU

· add SMMU abort transaction function (6c5c532)

· configure SMMU Root interface (52a314a)

∗ MHU

· add MHU driver (af26d7d)

∗ RSS

· add RSS communication driver (ce0c40e)

∗ TZC

· TZC-380

· add sub-region register definition (fdafe2b)

– Marvell

∗ Armada

· A3K

· A3720

· preserve x1/x2 regs in console_a3700_core_init() (7c85a75)

13.8. 2.7.0 (2022-05-20) 865

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6aaf257de4a4070ebc233f35a09bce4c39ea038c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40b085bddf60cf8c533b379ccb41e6668c5080dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0442ebd2e9bcf5fa4344d8fa8ef4b69a3b249e33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3cb1065581f6d9a8507af8dbca3779d139aa0ca7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2029f930097b0c3b1b1faa660032d16ed01a5c86
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7585ec4d36ebb7e286cfec959b2de084eded8201
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/938e8a500a25a949cfd25f0cb79f6c1359c9b40c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a283d19f82ddb635d9d9fa061e7fd956167ebe60
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a7521bd5d887bfd69d99a55a81416e38ba9ebc97
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3f0094c15d433cd3de413a4633a4ac2b8e1d1f2e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a1c17c770139c00395783e7568220d61264c247
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/308dce40679f63db504cd3d746a0c37a2a05f473
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c5c5320511ab8202fb9eccce9e66b4e4e0d9a33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52a314af254966a604e192fcc3326737354f217a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af26d7d6f01068809f17cc2d49a9b3d573c640a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ce0c40edc93aa403cdd2eb6c630ad23e28b01c3e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fdafe2b5ead66a1b5175db77bcc7cedafa14a059
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7c85a7572960efbaabe20c9db037bcec66be3e98

Trusted Firmware-A, Release 2.10.4

– MediaTek

∗ APU

· add mt8195 APU clock and pll SiP call (296b590)

· add mt8195 APU iommap regions (339e492)

· add mt8195 APU mcu boot and stop SiP call (88906b4)

– NXP

∗ DCFG

· add Chassis 3 support (df02aee)

· add gic address align register definition (3a8c9d7)

· add some macro definition (1b29fe5)

∗ NXP Crypto

· add chassis 3 support (d60364d)

∗ DDR

· add rawcard 1F support (f2de48c)

· add workaround for errata A050958 (291adf5)

∗ GIC

· add some macros definition for gicv3 (9755fd2)

∗ CSU

· add bypass bit mask definition (ec5fc50)

∗ IFC NAND

· add IFC NAND flash driver (28279cf)

∗ IFC NOR

· add IFC nor flash driver (e2fdc77)

∗ TZC-380

· add tzc380 platform driver support (de9e57f)

– ST

∗ introduce fixed regulator driver (5d6a264)

∗ Clock

· add clock driver for STM32MP13 (9be88e7)

· assign clocks to the correct BL (7418cf3)

· check HSE configuration in serial boot (31e9750)

· define secure and non-secure gate clocks (aaa09b7)

866 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/296b590206aa6db51e5c82b1a97a4f9707b49c4d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/339e4924a7a3fd11bc176e0bf3e01d76133d364c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/88906b443734399be5c07a5bd690b63d3d82cefa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/df02aeeec640d2358301e903d9c8c473d455be9e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3a8c9d78d4c65544d789bd64bd005ac10b5b352d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1b29fe534b8732193850fced2da1dc449450bd3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d60364d48e31b33b57049d848b7462eb0e0de612
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f2de48cb143c20ccd7a9c141df3d34cae74049de
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/291adf521a54a365e54964bff4dae53d51c65936
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9755fd2ec2894323136715848910b13053cfe0ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ec5fc501f15922967bf5d8260072ba1f9aec9640
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28279cf2c141caf5e4e7156f874cde6f5a0d271b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e2fdc77ba4eee91f0d1490e34f0fff552fc55dc9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/de9e57ff1f3769e770eac44b94127eb7239a63f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d6a2646f7759a5a2b3daed0d8aef4588c552ba4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9be88e75c198b08c508d8e470964720a781294b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7418cf397916c97cb4ecf159b1f497a84299b695
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31e9750bc17bd472d4f2a3db297461efc301be51
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aaa09b713c6f539fb5b2ee7e2dfd75f2d46875f5

Trusted Firmware-A, Release 2.10.4

· do not refcount on non-secure clocks in bl32 (3d69149)

· manage disabled oscillator (bcccdac)

∗ DDR

· add read valid training support (5def13e)

∗ GPIO

· allow to set a gpio in output mode (53584e1)

· do not apply secure config in BL2 (fc0aa10)

· add a function to reset a pin (737ad29)

∗ SDMMC2

· allow compatible to be defined in platform code (6481a8f)

· manage cards power cycle (258bef9)

∗ ST PMIC

· add pmic_voltages_init() function (5278ec3)

· register the PMIC to regulator framework (85fb175)

∗ STPMIC1

· add new services (ea552bf)

· add USB OTG regulators (13fbfe0)

∗ Regulator

· add support for regulator-always-on (9b4ca70)

· add a regulator framework (d5b4a2c)

∗ UART

· manage oversampling by 8 (1f60d1b)

· add uart driver for STM32MP1 (165ad55)

• Miscellaneous

– Debug

∗ update print_memory_map.py (d16bfe0)

– DT Bindings

∗ add bindings for STM32MP13 (1b8898e)

∗ add TZC400 bindings for STM32MP13 (24d3da7)

– FDT Wrappers

∗ add function to find or add a sudnode (dea8ee0)

– FDTs

13.8. 2.7.0 (2022-05-20) 867

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d69149a7e9e9a899d57f48bee26f98614f88935
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bcccdacc7e7b7b985df942b3fae26cb9038a2574
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5def13eb01ebac5656031bdc388a215d012fdaf8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/53584e1d5b2b843ea3bb9e01e3f01ea7c364ee6a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fc0aa10a2cd3cab887a8baa602891d1f45db2537
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/737ad29bf992a7a79d538d1e0b47c7f38d9a4b9d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6481a8f1e045ac80f0325b8bfe7089ba23deaf7b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/258bef913aa76ead1b10c257d1695d9c0ef1c79d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5278ec3faf2010fd6aea1d8cd4294dd229c5c21d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85fb175b5ef854bc4607db98a4cfb5f35d822cee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ea552bf5a57b573a6b09e396e3466b3c4af727f0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/13fbfe046e71393961d2c70a4f748a15f9c15f77
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9b4ca70d97d9a2556752b511ff9fe52012faff02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5b4a2c4e7fd0bcb9f08584b242e69a2e591fb71
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1f60d1bd33d434b0c82a74e276699ee5a2f63833
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/165ad5561ef598ea6261ba082610eeff3f208df7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d16bfe0feffe6a20399fb91d86fd8f7282b941dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1b8898eb32c3872a34fc59f4216736f23af0c6ea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24d3da76d221390bb47d501c2ed77a1a7d2b42e7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dea8ee0d3f13f8d1638745b76e86bd7617bf92e7

Trusted Firmware-A, Release 2.10.4

∗ add the ability to supply idle state information (2b2b565)

∗ STM32MP1

· add DDR support for STM32MP13 (e6fddbc)

· add DT files for STM32MP13 (3b99ab6)

· add nvmem_layout node and OTP definitions (ff8767c)

· add st-io_policies node for STM32MP13 (2bea351)

· add support for STM32MP13 DK board (2b7f7b7)

· update NVMEM nodes (375b79b)

• Documentation

– context management refactor proposal (3274226)

– Threat Model

∗ Threat Model for TF-A v8-R64 Support (dc66922)

• Tools

– Secure Partition Tool

∗ add python SpSetupActions framework (b1e6a41)

∗ delete c version of the sptool (f4ec476)

∗ python version of the sptool (2e82874

∗ use python version of sptool (822c727)

13.8.2 Resolved Issues

• Architecture

– Activity Monitors Extension (FEAT_AMU)

∗ add default value for ENABLE_FEAT_FGT and ENABLE_FEAT_ECV flags (820371b)

∗ fault handling on EL2 context switch (f74cb0b)

∗ limit virtual offset register access to NS world (a4c3945)

– Scalable Vector Extension (FEAT_SVE)

∗ disable ENABLE_SVE_FOR_NS for AARCH32 (24ab2c0)

• Platforms

– Allwinner

∗ improve DTB patching error handling (79808f1)

– Arm

∗ fix fvp and juno build with USE_ROMLIB option (861250c)

868 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2b2b565717cc0299e75e8806004d1a3548e9fbf7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e6fddbc995947d4e5a5dc6607c76cd46fdd840e2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3b99ab6e370a01caec14bc5422a86001eaf291b8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff8767cbfc2bb851a2f6cc32fbe3693ddbfb7d12
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2bea35122d102492f18c427535ce6c9b7016e356
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2b7f7b751f4b0f7a8a0f4a35407af22cc269e529
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/375b79bb4a773fe6a5dd971272c72bf12155050e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/327422633bef112a10579d4daeca0f596cd02911
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dc669220d5666c2c808bc11ba81c86a9b071271a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b1e6a41572240839e62099aa00298174b18c696a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4ec47613fef8db8037195147dc2ac6fb6f154ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2e82874cc9b7922e000dd4d7718e3153e347b1d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/822c72791f791d26e233df0c15a655c3dbd8b117
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/820371b13028a6f620a62cf73a951883d051666b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f74cb0be8ac80eb3072555cb04eb09375d4cb31f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4c394561af31ae0417ed9ff3b3152adb7cd5355
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/24ab2c0af74be174acf755a36b3ebba867184e60
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/79808f10c32d441572666551b1545846079af15b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/861250c3b26d64f859f5f37686e453d5074fa976

Trusted Firmware-A, Release 2.10.4

∗ increase ARM_BL_REGIONS count (dcb1959)

∗ remove reclamation of functions starting with “init” (6c87abd)

∗ use PLAT instead of TARGET_PLATFORM (c5f3de8)

∗ fix SP count limit without dual root CoT (9ce15fe)

∗ FVP

· FCONF Trace Not Shown (0c55c10)

· disable reclaiming init code by default (fdb9166)

· extend memory map to include all DRAM memory regions (e803542)

· fix NULL pointer dereference issue (a42b426)

· op-tee sp manifest doesn’t map gicd (69cde5c)

∗ Morello

· change the AP runtime UART address (07302a2)

· fix SoC reference clock frequency (e8b7a80)

· include errata workaround for 1868343 (f94c84b)

∗ SGI

· disable SVE for NS to support SPM_MM builds (78d7e81)

∗ TC

· remove the bootargs node (68fe3ce)

∗ Corstone-1000

· change base address of FIP in the flash (1559450)

– Broadcom

∗ allow build to specify mbedTLS absolute path (903d574)

∗ fix the build failure with mbedTLS config (95b5c01)

– Intel

∗ add flash dcache after return response for INTEL_SIP_SMC_MBOX_SEND_CMD
(ac097fd)

∗ allow non-secure access to FPGA Crypto Services (FCS) (4837a64)

∗ always set doorbell to SDM after sending command (e93551b)

∗ assert if bl_mem_params is NULL pointer (35fe7f4)

∗ bit-wise configuration flag handling (276a436)

∗ change SMC return arguments for INTEL_SIP_SMC_MBOX_SEND_CMD (108514f)

∗ configuration status based on start request (e40910e)

13.8. 2.7.0 (2022-05-20) 869

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dcb1959161935aa58d2bb852f3cef0b96458a4e1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c87abdda400354ebf4f5351086c32a4620475c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c5f3de8dabc9b955b6051a6c6116d40b10a84f5d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ce15fe8910580efca46b9f102e117402ce769db
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0c55c10305df6217fd978d58ce203dbad3edd4d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fdb9166b9494402eb2da7e0b004c121b322725e0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e80354212f591c8813dec27353e8241e03155b4c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a42b426b8548e3304e995f1a49d2470d71072949
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/69cde5cd9563f0c665862f1e405ae8e8d2818c6e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/07302a23ec1af856b3d4de0439161a8c23414f84
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8b7a80436c2bc81c61fc4703d6580f2fe9226a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f94c84baa2a2bad75397b0ec6a0922fe8a475847
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/78d7e819798ace643b6e22025dc76aedb199bbd5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68fe3cec25bc9ea4e1bafdb1d9f5315e245d650b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1559450132c5e712f4d6896e53e4f1cb521fa465
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/903d5742953d9d4b224e71d8b1e62635e83f44a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95b5c0126b802b894ea0177d973978e06b6a254d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ac097fdf07ad63b567ca751dc518f8445a0baef6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4837a640934630f8034ceec1bb84cc40673d8a6b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e93551bb3bd8ac43779fa70c7363ee2568da45ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/35fe7f400a7f1d65ff2fee5531d20f6c2f3e6f39
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/276a43663e8e315fa1bf0aa4824051d88705858b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/108514ff7160a86efb791449a4635ffe0f9fdf2c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e40910e2dc3fa59bcce83ec1cf9a33b3e85012c4

Trusted Firmware-A, Release 2.10.4

∗ define macros to handle buffer entries (7db1895)

∗ enable HPS QSPI access by default (000267b)

∗ extend SDM command to return the SDM firmware version (c026dfe)

∗ extending to support large file size for AES encryption and decryption (dcb144f)

∗ extending to support large file size for SHA-2 ECDSA data signing and signature verifying
(1d97dd7)

∗ extending to support large file size for SHA2/HMAC get digest and verifying (70a7e6a)

∗ fix bit masking issue in intel_secure_reg_update (c9c0709)

∗ fix configuration status based on start request (673afd6)

∗ fix ddr address range checker (12d71ac)

∗ fix ECC Double Bit Error handling (c703d75)

∗ fix fpga config write return mechanism (ef51b09)

∗ flush dcache before sending certificate to mailbox (49d44ec)

∗ get config status OK status (07915a4)

∗ introduce a generic response error code (651841f)

∗ make FPGA memory configurations platform specific (f571183)

∗ modify how configuration type is handled (ec4f28e)

∗ null pointer handling for resp_len (a250c04)

∗ refactor NOC header (bc1a573)

∗ reject non 4-byte align request size for FPGA Crypto Service (FCS) (52ed157)

∗ remove redundant NOC header declarations (58690cd)

∗ remove unused printout (0d19eda)

∗ update certificate mask for FPGA Attestation (fe5637f)

∗ update encryption and decryption command logic (02d3ef3)

∗ use macro as return value (e0fc2d1)

– Marvell

∗ Armada

· A3K

· change fatal error to warning when CM3 reset is not implemented (30cdbe7)

· fix comment about BootROM address range (5a60efa)

– Mediatek

∗ MT8186

870 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7db1895f0be2f8c6710bf51d8441d5e53e3ef0fe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/000267be22d3c0077c0fd0a8377ceeed5aada4c3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c026dfe38cfae379457a6ef53130bd5ebc9d7808
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dcb144f1fbcef73ddcc448d5ed6134aa279069b6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d97dd74cd128edd7ad45b725603444333c7b262
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70a7e6af958f3541476a8de6baac8e376fcc67f9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c9c070994caedf123212aad23b6942122c5dd793
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/673afd6f8e7266900b00a7cbeb275fe1a3d69cce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12d71ac6627bb6822a0314e737794a8503df79dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c703d752cce4fd101599378e72db66ccf53644fa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef51b097bfa906bf1cee8ee641a1b7bcc8c5f3c0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49d44ec5f357b1bcf8eae9e91fbd72aef09e00dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/07915a4fd5848fbac69dcbf28f00353eed10a942
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/651841f20110ce6fac650e3ac47b0a9cce18e6f3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f571183b066b1a91b7fb178c3aad9d6360d1918c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ec4f28ecec8887a685d6119c096ad346da1ea53e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a250c04b0cc807f626df92a7091ff13b3a3aa9ed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc1a573d5519f121cb872fce1d88fe2e0db07b2c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52ed157fd66812debb13a792c21f763de01aef70
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/58690cd629b4ccdefe5313f805219598074a3501
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0d19eda0dd2ffae27d0551b1f0a06a2b8f96c853
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fe5637f27aebfdab42915c2ced2c34d8685ee2bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/02d3ef333d4a0a07a3e40defb12a8cde3a7cba03
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0fc2d1907b1c8a062c44a435be77a12ffeed84b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/30cdbe7043832f7bd96b40294ac062a8fc9c540f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5a60efa12a57cde98240f861e45609cb9b94d58d

Trusted Firmware-A, Release 2.10.4

· remove unused files in drivers/mcdi (bc714ba)

· extend MMU region size (0fe7ae9)

– NVIDIA

∗ Tegra

· Tegra 194

· remove incorrect erxctlr assert (e272c61)

– NXP

∗ fix total dram size checking (0259a3e)

∗ increase soc name maximum length (3ccd7e4)

∗ i.MX

· i.MX 8M

· check the validation of domain id (eb7fb93)

· i.MX 8M Plus

· change the BL31 physical load address (32d5042)

∗ Layerscape

· fix build issue of mmap_add_ddr_region_dynamically (e2818d0)

· fix coverity issue (5161cfd)

· update WA for Errata A-050426 (72feaad)

· LX2

· drop erratum A-009810 (e36b0e4)

– Renesas

∗ R-Car

· R-Car 3

· change stack size of BL31 (d544dfc)

· fix SYSTEM_OFF processing for R-Car D3 (1b49ba0)

· fix to bit operation for WUPMSKCA57/53 (82bb6c2)

– Socionext

∗ Synquacer

· initialise CNTFRQ in Non Secure CNTBaseN (4d4911d)

– ST

∗ add missing header include (b1391b2)

∗ don’t try to read boot partition on SD cards (9492b39)

13.8. 2.7.0 (2022-05-20) 871

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc714bafe7ae8ca29075ba9bf3985c0e15ae0f64
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0fe7ae9c64aa6f6d5b06a80de9c88081057d5dbe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e272c61ce8185deb397dcf168ec72bdaa5926a33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0259a3e8282ed17c1d378a27f820f44b3bebab07
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3ccd7e45a2c3ff9fa7794f0284c9d0298e7cb982
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eb7fb938c3ce34ccfb143ae8ba695df899098436
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/32d5042204e8b41caa4c0c1ed5b48bad9f1cb1b5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e2818d0afc20a60d302f85f4c915e4ae4cc3cb9c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5161cfde9bfaa3a715d160fcd4870f276adad332
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72feaad980cdc472868bc95914202bf57ed51b2d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e36b0e4910aea56f90a6ab9b8cf3dc4008220031
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d544dfcc4959d203b06dbfb85fb0ad895178b379
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1b49ba0fde5eb9e47fe50152c192579101feb718
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/82bb6c2e88314a5b3f2326c95095c3b20a389947
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d4911d77d4d59c7dd18d7fc3724ddb1fa3582b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b1391b294ca7803f46bc47048b4a02a15dda9a16
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9492b391a35c66e1e7630e95347259191b28314d

Trusted Firmware-A, Release 2.10.4

∗ fix NULL pointer dereference issues (2deff90)

∗ manage UART clock and reset only in BL2 (9e52d45)

∗ remove extra chars from dtc version (03d2077)

∗ ST32MP1

· add missing debug.h (356ed96)

· correct dtc version check (429f10e)

· correct include order (ff7675e)

· correct types in messages (43bbdca)

· deconfigure UART RX pins (d7176f0)

· do not reopen debug features (21cfa45)

· fix enum prints (ceab2fc)

· include assert.h to fix build failure (570c71b)

· remove interrupt_provider warning for dtc (ca88c76)

· restrict DEVICE2 mapping in BL2 (db3e0ec)

· rework switch/case for MISRA (f7130e8)

· set reset pulse duration to 31ms (9a73a56)

– Xilinx

∗ fix coding style violations (bb1768c)

∗ fix mismatching function prototype (81333ea)

∗ Versal

· resolve misra R10.1 in pm services (775bf1b)

· resolve misra R10.3 (b2bb3ef)

· resolve misra R10.3 in pm services (5d1c211)

· resolve misra R10.6 (93d4625)

· resolve misra R10.6 in pm services (fa98d7f)

· resolve misra R14.4 (a62c40d)

· resolve misra R15.6 (b9fa2d9)

· resolve misra R15.6 in pm services (4156719)

· resolve misra R15.7 (bc2637e)

· resolve misra R16.3 in pm services (27ae531)

· resolve misra R17.7 (526a1fd)

· resolve misra R20.7 in pm services (5dada62)

872 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2deff904a953c6a87331ab6830ab80e3889d9e23
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9e52d45fdf619561e0a7a833b77aaacc947a4dfd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/03d20776efc20a04a5191a4f39965079a4d60b3c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/356ed961184847dcd088cfcda44b71eeb0ef2377
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/429f10e3367748abd33b4f6f9ee362c0ba74dd95
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff7675ebf94999618dbde14bb59741cefb2b2edd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/43bbdca04f5a20bb4e648e18fc63061b6a6e4ecf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7176f0319cd399aae9a906e5d78e67b32e183f5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21cfa4531a76a7c3cad00e874400b97e2f68723c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ceab2fc3442dbda1c4beaff3c4fe708a04c02303
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/570c71b20a195ade510f5d584c69325d2634c50b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ca88c761d34854ed3e0b16b9c5f39b0790d320ab
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/db3e0ece7157181a3529d14172368003eb63dc30
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f7130e81cf9c3682232bb9319b1798184b44920f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9a73a56c353d32742e03b828647562bdbe2ddbb2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb1768c67ea06ac466e2cdc7e5338c3d23dac79d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81333eac716b25a9fd112cc4f5990e069f3bdb40
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/775bf1bbd32c2df47f4ff597eb8a452d2983e590
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b2bb3efb8f590f31b1205c51d56be1dd6f473fbb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d1c211e225d40d2926bf34483c90f907a6c5dc3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/93d462562727f4f428e6f975a972226dafbfd305
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fa98d7f2f8752e37f740b43f533547288552a393
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a62c40d42703d5f60a8d80938d2cff721ee131bd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b9fa2d9fc154feffe78e677ace54b0e34f011439
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4156719550ceddf5b1b4a47464fb32f7506e0dca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc2637e3799dbc9642447ddb719e0262347b1309
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/27ae5310883b0db7d4e2dd4fbc1fd58e675f75b5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/526a1fd1472874561988777f8ecd8b87734a0671
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5dada6227b949ef702bfab7986bc083689afdaf7

Trusted Firmware-A, Release 2.10.4

· resolve misra R7.2 (0623dce)

· fix coverity scan warnings (0b15187)

· fix the incorrect log message (ea04b3f)

∗ ZynqMP

· define and enable ARM_XLAT_TABLES_LIB_V1 (c884c9a)

· query node status to power up APU (b35b556)

· resolve misra 7.2 warnings (5bcbd2d)

· resolve misra 8.3 warnings (944e7ea)

· resolve misra R10.3 (2b57da6)

· resolve misra R14.4 warnings (dd1fe71)

· resolve misra R15.6 warnings (eb0d2b1)

· resolve misra R15.7 warnings (16de22d)

· resolve misra R16.3 warnings (e7e5d30)

· resolve misra R8.4 warnings (610eeac)

· update the log message to verbose (1277af9)

· use common interface for eemi apis (a469c1e)

• Bootloader Images

– BL1

∗ invalidate SP in data cache during secure SMC (f1cbbd6)

– BL2

∗ correct messages with image_id (e4c77db)

∗ define RAM_NOLOAD for XIP (cc562e7)

• Services

– RME

∗ enable/disable SVE/FPU for Realms (a4cc85c)

∗ align RMI and GTSI FIDs with SMCCC (b9fd2d3)

∗ preserve x4-x7 as per SMCCCv1.1 (1157830)

∗ TRP

· Distinguish between cold and warm boot (00e8113)

– SPM

∗ EL3 SPMC

· fix incorrect FF-A version usage (25eb2d4)

13.8. 2.7.0 (2022-05-20) 873

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0623dcea0f6e7a5c9d65413445df8a96a2b40d42
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b15187225a9134e3acbc7693646b21d43617b3b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ea04b3fe183b6661f656b4cc38cb93a73d9bc202
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c884c9a55b167383ff3d96d2d0a30ac6842bcc86
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b35b556718b60b78cb5d96b0c137e2fe82eb0086
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5bcbd2de127292f3ad076217e08468388c6844b0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/944e7ea94f2594e2b128c671cf7415265302596b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2b57da6c91ebe14588e63e5a24f31ef32711eca2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dd1fe7178b578916b1e133b7c65c183e1f994371
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/eb0d2b17722c01a22bf3ec1123f7bed2bf891b09
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/16de22d037644359ef2a04058134f9c326b36633
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e7e5d30308ccfb931f7b6d0afa6c5c23971e95c0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/610eeac89438d603435bde694eb4ddab07f46e45
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1277af9bacca36b46d7aa341187bb3abef84332f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a469c1e1f4c1cd69f98ce45d6e0709de091b8cb3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1cbbd6332bb85672dc72cbcc4ac7023323c6936
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e4c77db9c80d87009611a3079454877e6ce45a04
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc562e74101d800b0b0ee3422fb7f4f8321ae2b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4cc85c129d031d9c887cf59b1baeaef18a43010
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b9fd2d3ce3d4e543a2e04dc237cd4e7ff7765c7a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/11578303fd04a8da36fddb5e6de44f026bf4d24c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/00e8113145aa12d89db72068bdd3157f08575d14
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/25eb2d41a6d2ede1e945bbc67ae3f740b92a40bb

Trusted Firmware-A, Release 2.10.4

· fix FF-A memory transaction validation (3954bc3)

• Libraries

– CPU Support

∗ workaround for Cortex-A710 2282622 (ef934cd)

∗ workaround for Cortex-A710 erratum 2267065 (cfe1a8f)

∗ workaround for Cortex A78 AE erratum 2376748 (92e8708)

∗ workaround for Cortex A78 AE erratum 2395408 (3f4d81d)

∗ workaround for Cortex X2 erratum 2002765 (34ee76d)

∗ workaround for Cortex X2 erratum 2058056 (e16045d)

∗ workaround for Cortex X2 erratum 2083908 (1db6cd6)

∗ workaround for Cortex-A510 erratum 1922240 (8343563)

∗ workaround for Cortex-A510 erratum 2041909 (e72bbe4)

∗ workaround for Cortex-A510 erratum 2042739 (d48088a)

∗ workaround for Cortex-A510 erratum 2172148 (c0959d2)

∗ workaround for Cortex-A510 erratum 2218950 (cc79018)

∗ workaround for Cortex-A510 erratum 2250311 (7f304b0)

∗ workaround for Cortex-A510 erratum 2288014 (d5e2512)

∗ workaround for Cortex-A710 erratum 2008768 (af220eb)

∗ workaround for Cortex-A710 erratum 2136059 (8a855bd)

∗ workaround for Cortex-A78 erratum 2376745 (5d796b3)

∗ workaround for Cortex-A78 erratum 2395406 (3b577ed)

∗ workaround for Cortex-X2 errata 2017096 (e7ca443)

∗ workaround for Cortex-X2 errata 2081180 (c060b53)

∗ workaround for Cortex-X2 erratum 2147715 (63446c2)

∗ workaround for Cortex-X2 erratum 2216384 (4dff759)

∗ workaround for DSU-110 erratum 2313941 (7e3273e)

∗ workaround for Rainier erratum 1868343 (a72144f)

∗ workarounds for cortex-x1 errata (7b76c20)

∗ use CPU_NO_EXTRA3_FUNC for all variants (b2ed998)

– EL3 Runtime

∗ set unset pstate bits to default (7d33ffe)

∗ Context Management

874 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3954bc3c03439dbdc7029cf2418c79a037918ce4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef934cd17c30dcc39cd9022a1c4e9523ec8ba617
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cfe1a8f7123f0dc8376b2075cc6e8e32b13739b2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/92e870843e9bd654fd1041d66f284c19ca9c0d4f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3f4d81dfd26649fbcbbbe993a9f0236f5bb07c8a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34ee76dbdfeee85f123cb903ea95dbee5e9a44a5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e16045de50e8b430e6601ba0e1e47097d8310f3d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1db6cd60279e2d082876692a65cf9c532f506a69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/83435637bfafbf1ce642a5fabb52e8d7b2819e36
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e72bbe47ba7f2a0087654fd99ae24b5b7b444943
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d48088acbe400133037ae74acf1b722b059119bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c0959d2c460cbf7c14e7ba2a57d69ecddae80fd8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc79018b71e45acb524fc5d429d394497ad53646
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f304b02a802b7293d7a8b4f4030c5ff00158404
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5e2512c6b86409686f5d1282922ebdf72459fc2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af220ebbe467aa580e6b9ba554676f78ffec930f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8a855bd24329e081cf13a257c7d2dc3ab4e5dcca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d796b3a25150faff68013880f5a9350cbc53889
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3b577ed53d104cfb324390b7519da5e7744d1001
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e7ca4433fa591233e7e2912b689ab56e531f9775
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c060b5337a43cd42f55b99d83096bb44b51b5335
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/63446c27d11453faacfddecffa44d3880615d412
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4dff7594f94f1e788aef709cc5b3d079693b6242
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e3273e8e4dca44e7cb88a827b94e662fa8f83e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a72144fb7a30c2782a583a3b0064e741d1fe2c9f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7b76c20d8eb4271b381371ce0d510fbe6ad825bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b2ed99894d326993961680fb8e786c267a712400
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7d33ffe4c116506ed63e820d5b6edad81680cd11

Trusted Firmware-A, Release 2.10.4

· add barrier before el3 ns exit (0482503)

· remove registers accessible only from secure state from EL2 context (7f41bcc)

· refactor the cm_setup_context function (2bbad1d)

· remove initialization of EL2 registers when EL2 is used (fd5da7a)

· add cm_prepare_el3_exit_ns function (8b95e84)

· refactor initialization of EL1 context registers (b515f54)

– FCONF

∗ correct image_id type in messages (cec2fb2)

– PSCI

∗ correct parent_node type in messages (b9338ee)

– GPT

∗ rework delegating/undelegating sequence (6a00e9b)

– Translation Tables

∗ fix bug on VERBOSE trace (956d76f)

– Standard C Library

∗ correct some messages (a211fde)

∗ fix snprintf corner cases (c1f5a09)

∗ limit snprintf radix value (b30dd40)

∗ snprintf: include stdint.h (410c925)

– Locks

∗ add __unused for clang (5a030ce)

• Drivers

– FWU

∗ rename is_fwu_initialized (aae7c96)

– I/O

∗ MTD

· correct types in messages (6e86b46)

– Measured Boot

∗ add RMM entry to event_log_metadata (f4e3e1e)

– MTD

∗ correct types in messages (6e86b46)

– SCMI

13.8. 2.7.0 (2022-05-20) 875

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/04825031b2384a08504821f39e98e23bb6f93f11
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f41bcc76d8857b4678c90796ebd85794ff3ee5f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2bbad1d126248435e26f9d0d9f5920d8806148d7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fd5da7a84731e9687f56c263ff3aa8ebed75075a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8b95e8487006ff77a7d84fba5bd20ba7e68d8330
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b515f5414b00a8b7ca9b21363886ea976bd19914
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cec2fb2b1a8359bf1f349a5b8c8a91a1845f4ca1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b9338eee7fbcac7f4b55f27b064572e847810422
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6a00e9b0c8c37fc446f83ef63e95a75353e31e8b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/956d76f69d0c96829784c5a6d16aa79e4e0ecab1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a211fde940d4dbd8e95e4f352af2a066a4f89f30
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c1f5a0925ddf84981d9e176d146bfddb48eb45d1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b30dd4030dcef950eac05393013ee019c3cb3205
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/410c925ab31693dc74d654ff9167c8eed3ec5a62
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5a030ce4aed271344087bca723903e10fef59ac9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/aae7c96de63914c954f0fc64cd795844832483fc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e86b462490429fee6db877338a649b0e199b0ec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4e3e1e85f64d8930e89c1396bc9785512f656bd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6e86b462490429fee6db877338a649b0e199b0ec

Trusted Firmware-A, Release 2.10.4

∗ add missing \n in ERROR message (0dc9f52)

∗ make msg_header variable volatile (99477f0)

∗ use same type for message_id (2355ebf)

– UFS

∗ delete call to inv_dcache_range for utrd (c5ee858)

∗ disables controller if enabled (b3f03b2)

∗ don’t zero out buf before ufs read (2ef6b8d)

∗ don’t zero out the write buffer (cd3ea90)

∗ fix cache maintenance issues (38a5ecb)

∗ move nutrs assignment to ufs_init (0956319)

∗ read and write attribute based on spec (a475518)

– Arm

∗ GIC

· GICv3

· fix iroute value wrong issue (65bc2d2)

∗ TZC

· TZC-400

· correct message with filter (bdc88d2)

– Marvell

∗ COMPHY

· change reg_set() / reg_set16() to update semantics (95c26d6)

· Armada 3700

· drop MODE_REFDIV constant (9fdecc7)

· fix comment about COMPHY status register (4bcfd8c)

· fix comments about selector register values (71183ef)

· fix Generation Setting registers names (e5a2aac)

· fix PIN_PU_IVREF register name (c9f138e)

· fix reference clock selection value names (6ba97f8)

· fix SerDes frequency register value name (bdcf44f)

· use reg_set() according to update semantics (4d01bfe)

∗ Armada

· A3K

876 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0dc9f52a2a9f0b9686c65dd60c84e0bcca552144
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99477f051ef857a1e0600cb98858fc74c007e1ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2355ebff6f6312086868f44b8ad7f821f6385208
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c5ee8588bf9a36075723e5aacceefa93fd2de8c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b3f03b20135fc5fcd5e6ec7e5ca49f1e59b5602e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2ef6b8d378e7f7c1b1eb7abe176989c3f996f2dc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd3ea90b200534b8c9d81619731c9ce198478a3c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/38a5ecb756e217a80ed951747797ab150449ee9b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0956319b580726029ddc4e00cde6c5a348b99052
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a475518337e15935469543b1cce353e5b337ef52
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/65bc2d224b836c230888796c4eda455997dccd8b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bdc88d2154448957f452cb472ff95ccec5808ca1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/95c26d6489bd8b2fc8b8e14bc2da5d2918055acc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9fdecc72f0fce17ca2cd8e4c3b26c01262166d10
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4bcfd8c02e3e3aa27b55dedeed11fb16bac991a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/71183ef6654c2a485458307a84ce7c473524689a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e5a2aac5bbc6dedb20edcc8e7850be2813cb668b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c9f138ebfef90d5b7b5651f06efd81bcbc55366b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ba97f83dbb314b076588b97415a4078924e1903
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bdcf44f1af496e06b693b781fe16bbc2a05fa365
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d01bfe66522b13f0d9042206e986551c94fc01e

Trusted Firmware-A, Release 2.10.4

· A3720

· configure UART after TX FIFO reset (15546db)

· do external reset during initialization (0ee80f3)

– NXP

∗ ddr: corrects mapping of HNFs nodes (e3a2349)

∗ QSPI

· fix include path for QSPI driver (ae95b17)

∗ NXP Crypto

· refine code to avoid hang issue for some of toolchain (fa7fdfa)

∗ DDR

· fix coverity issue (f713e59)

– ST

∗ Clock

· check _clk_stm32_get_parent return (b8eab51)

· correct stm32_clk_parse_fdt_by_name (7417cda)

· correct types in error messages (44fb470)

· initialize pllcfg table (175758b)

· print enums as unsigned (9fa9a0c)

∗ DDR

· add missing debug.h (15ca2c5)

· correct DDR warnings (a078134)

∗ FMC

∗ fix type in message (afcdc9d)

∗ SDMMC2

· check regulator enable/disable return (d50e7a7)

· correct cmd_idx type in messages (bc1c98a)

∗ ST PMIC

· add static const to pmic_ops (57e6018)

· correct verbose message (47065ff)

∗ SPI

· always check SR_TCF flags in stm32_qspi_wait_cmd() (55de583)

· remove SR_BUSY bit check before sending command (5993b91)

13.8. 2.7.0 (2022-05-20) 877

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15546dbf40e5ea81a982a1e6d1e5ba729b06ae51
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ee80f35a28d651d243a6d56678800f9697d14c0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e3a234971abb2402cbf376eca6fcb657a7709fae
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ae95b1782b7a3ab9bbe46ae9ab31f48fb6ebe137
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fa7fdfabf07d91439b0869ffd8e805f0166294bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f713e5954e0906443cd20ae97e229ddbb9ab7005
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b8eab512bf9d253f96b0333ee0f1bffa1afc3170
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7417cda6aeaf6abf48dfbe22dc965b626f61c613
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/44fb470b7f298645ac31ada4491553824d77d934
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/175758b2777eb6df3c4aefd79448e97e76a15272
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9fa9a0c55cc830e609415d2cedd2d34fcbec1008
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15ca2c5e14abe415e70d08fb595973dd3e3b0af9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a078134e2305ca5695731bc275a5ca892cc38880
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/afcdc9d8d71e2b60071d3d34704f0e598e67a514
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d50e7a71cb5f8ecfbe2eb69c163d532bab82cbf0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc1c98a8c79b6f72395123ea8ed857a488746d4b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/57e6018305a97f4e3627d16d8b1886419f274b4a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/47065ffe44c701b231322ec7160c8624d50a9deb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/55de58323e458b38b455439a8846cb663deb5508
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5993b9157fd049d06194083032771ffcf73da086

Trusted Firmware-A, Release 2.10.4

∗ UART

· correctly fill BRR register (af7775a)

– USB

∗ correct type in message (bd9cd63)

• Miscellaneous

– AArch64

∗ fix encodings for MPAMVPM* registers (e926558)

– FDTs

∗ STM32MP1

· correct memory mapping for STM32MP13 (99605fb)

· remove mmc1 alias if not needed (a0e9724)

– PIE

∗ align fixup_gdt_reloc() for aarch64 (5ecde2a)

∗ do not skip RW_END address during relocation (4f1a658)

– Security

∗ apply SMCCC_ARCH_WORKAROUND_3 to A73/A75/A72/A57 (9b2510b)

∗ loop workaround for CVE-2022-23960 for Cortex-A76 (a10a5cb)

∗ report CVE 2022 23960 missing for aarch32 A57 and A72 (2e5d7a4)

∗ update Cortex-A15 CPU lib files for CVE-2022-23960 (187a617)

∗ workaround for CVE-2022-23960 (c2a1521)

∗ workaround for CVE-2022-23960 (1fe4a9d)

∗ workaround for CVE-2022-23960 for A76AE, A78AE, A78C (5f802c8)

∗ workaround for CVE-2022-23960 for Cortex-A57, Cortex-A72 (be9121f)

∗ workaround for CVE-2022-23960 for Cortex-X1 (e81e999)

• Tools

– NXP Tools

∗ fix create_pbl print log (31af441)

∗ fix tool location path for byte_swape (a89412a)

– Firmware Image Package Tool

∗ avoid packing the zero size images in the FIP (ab556c9)

∗ respect OPENSSL_DIR (0a956f8

– Secure Partition Tool

878 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/af7775ab535138ff49643f749110dca143d4122c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bd9cd63ba096cb16161efa4df40f957421660df1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e92655849d0a9e5893eb2d7e5f42cf8b931d4db6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99605fb1166794db1dedf1b7280cb184945c229c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a0e972438b99012da422411c8e504a19bdad44a2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5ecde2a271ac0f3762c16f5a277a70e55e172f0b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4f1a658f899a169e702b1c7146b59f7c04b0338b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9b2510b69de26cc7f571731b415f6dec82669b6c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a10a5cb609045de216c01111ec3fcf09a092da0b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2e5d7a4b6b26d9d8b6c8e580c33d877e591b1fb3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/187a61761ef5d59bed0c94cca725bd6f116f64d0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c2a15217c3053117f4d39233002cb1830fa96670
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1fe4a9d181ead0dcb2bc494e90552d3e7f0aaf4c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5f802c8832f3c5824ca6de17593205ebbf8bf585
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be9121fd311ff48c94f3d90fe7efcf84586119e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e81e999b9da33ab5d2d3e5185b1ad7c46046329c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/31af441a0445d4a5e88ddcc371c51b3701c25839
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a89412a649020367a3ed0f87658ee131cd3dcd18
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ab556c9c646f1b5f1b500449a5813a4eecdc0302
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0a956f81805b46b1530f30dd79d16950dc491a7b

Trusted Firmware-A, Release 2.10.4

∗ add leading zeroes in UUID conversion (b06344a)

∗ update Optee FF-A manifest (ca0fdbd)

– Certificate Creation Tool

∗ let distclean Makefile target remove the cert_create tool (e15591a)

• Dependencies

– commitlint

∗ change scope-case to lower-case (804e52e)

13.9 2.6.0 (2021-11-22)

13.9.1 � BREAKING CHANGES

• Architecture

– Activity Monitors Extension (FEAT_AMU)

∗ The public AMU API has been reduced to enablement only to facilitate refactoring work.
These APIs were not previously used.

See: privatize unused AMU APIs (b4b726e)

∗ The PLAT_AMU_GROUP1_COUNTERS_MASK platform definition has been removed. Plat-
forms should specify per-core AMU counter masks via FCONF or a platform-specific mech-
anism going forward.

See: remove PLAT_AMU_GROUP1_COUNTERS_MASK (6c8dda1)

• Libraries

– FCONF

∗ FCONF is no longer added to BL1 and BL2 automatically when the FCONF Make-
file (fconf.mk) is included. When including this Makefile, consider whether you need
to add ${FCONF_SOURCES} and ${FCONF_DYN_SOURCES} to BL1_SOURCES and
BL2_SOURCES.

See: clean up source collection (e04da4c)

• Drivers

– Arm

∗ Ethos-N

· multi-device support

See: multi-device support (1c65989)

13.9. 2.6.0 (2021-11-22) 879

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b06344a3f2c5a0fede3646627f37d1fce3d3d585
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ca0fdbd8e0d625ece0f87ca16eacabf13db70921
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e15591aaf47ab45941f0d7a03abf3e4a830ac1d9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/804e52e9a770de72913f27b5bc9e7dd965e114c5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b4b726ea868359cf683c07337b69fe91a2a6929a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c8dda19e5f484f8544365fd71d965f0afc39244
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e04da4c8e132f43218f18ad3b41479ca54bb9263
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1c65989e70c9734defc666e824628620b2060b92

Trusted Firmware-A, Release 2.10.4

13.9.2 New Features

• Architecture

– Activity Monitors Extension (FEAT_AMU)

∗ enable per-core AMU auxiliary counters (742ca23)

– Support for the HCRX_EL2 register (FEAT_HCX)

∗ add build option to enable FEAT_HCX (cb4ec47)

– Scalable Matrix Extension (FEAT_SME)

∗ enable SME functionality (dc78e62)

– Scalable Vector Extension (FEAT_SVE)

∗ enable SVE for the secure world (0c5e7d1)

– System Register Trace Extensions (FEAT_ETMv4, FEAT_ETE and FEAT_ETEv1.1)

∗ enable trace system registers access from lower NS ELs (d4582d3)

∗ initialize trap settings of trace system registers access (2031d61)

– Trace Buffer Extension (FEAT_TRBE)

∗ enable access to trace buffer control registers from lower NS EL (813524e)

∗ initialize trap settings of trace buffer control registers access (40ff907)

– Self-hosted Trace Extension (FEAT_TRF)

∗ enable trace filter control register access from lower NS EL (8fcd3d9)

∗ initialize trap settings of trace filter control registers access (5de20ec)

– RME

∗ add context management changes for FEAT_RME (c5ea4f8)

∗ add ENABLE_RME build option and support for RMM image (5b18de0)

∗ add GPT Library (1839012)

∗ add Realm security state definition (4693ff7)

∗ add register definitions and helper functions for FEAT_RME (81c272b)

∗ add RMM dispatcher (RMMD) (77c2775)

∗ add Test Realm Payload (TRP) (50a3056)

∗ add xlat table library changes for FEAT_RME (3621823)

∗ disable Watchdog for Arm platforms if FEAT_RME enabled (07e96d1)

∗ run BL2 in root world when FEAT_RME is enabled (6c09af9)

• Platforms

880 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/742ca2307f4e9f82cb2c21518819425e5bcc0f90
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cb4ec47b5c73e04472984acf821e6be41b98064f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dc78e62d80e64bf4fe5d5bf4844a7bd1696b7c92
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0c5e7d1ce376cabcebebc43dbf238fe4482ab2dc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d4582d30885673987240cf01fd4f5d2e6780e84c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2031d6166a58623ae59034bc2353fcd2fabe9c30
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/813524ea9d2e4138246b8f77a772299e52fb33bc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/40ff90747098ed9d2a09894d1a886c10ca76cee6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8fcd3d9600bb2cb6809c6fc68f945ce3ad89633d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5de20ece38f782c8459f546a08c6a97b9e0f5bc5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c5ea4f8a6679131010636eb524d2a15b709d0196
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b18de09e80f87963df9a2e451c47e2321b8643a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1839012d5b5d431f7ec307230eae9890a5fe7477
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4693ff7225faadc5ad1bcd1c2fb3fbbb8fe1aed0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/81c272b3b71af38bc5cfb10bbe5722e328a1578e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77c2775323a5ff8b77230f05c0cc57f830e9f153
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/50a3056a3cd33d395e8712e1d1e67a8840bf3db1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/362182386bafbda9e6671be921fa30cc20610d30
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/07e96d1d2958b6f121476fd391ac67bf8c2c4735
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c09af9f8b36cdfa1dc4d5052f7e4792f63fa88a

Trusted Firmware-A, Release 2.10.4

– Allwinner

∗ add R329 support (13bacd3)

– Arm

∗ add FWU support in Arm platforms (2f1177b)

∗ add GPT initialization code for Arm platforms (deb4b3a)

∗ add GPT parser support (ef1daa4)

∗ enable PIE when RESET_TO_SP_MIN=1 (7285fd5)

∗ FPGA

· add ITS autodetection (d7e39c4)

· add kernel trampoline (de9fdb9)

· determine GICR base by probing (93b785f)

· query PL011 to learn system frequency (d850169)

· support GICv4 images (c69f815)

· write UART baud base clock frequency into DTB (422b44f)

∗ FVP

· enable external SP images in BL2 config (33993a3)

· add memory map for FVP platform for FEAT_RME (c872072)

· add RMM image support for FVP platform (9d870b7)

· enable trace extension features by default (cd3f0ae)

· pass Event Log addr and size from BL1 to BL2 (0500f44)

∗ FVP-R

· support for TB-R has been added

· configure system registers to boot rich OS (28bbbf3)

∗ RD

· RD-N2

· add support for variant 1 of rd-n2 platform (fe5d5bb)

· add tzc master source ids for soc dma (3139270)

∗ SGI

· add CPU specific handler for Neoverse N2 (d932a58)

· add CPU specific handler for Neoverse V1 (cbee43e)

· increase max BL2 size (7186a29)

· enable AMU for RD-V1-MC (e8b119e)

13.9. 2.6.0 (2021-11-22) 881

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/13bacd3bc3e6b76009adf9183e5396b6457eb12c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2f1177b2b9ebec3b2fe92607cd771bda1dc9cbfc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/deb4b3a63e3a52f2e9823865a1932f6289ccb7ac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef1daa420f7b2920b2ee35379de2aefed6ab2605
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7285fd5f9aa6d9cc0e0f1dc9c71785b46a88d999
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d7e39c43f2f58aabb085ed7b8f461f9ece6002d0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/de9fdb9b5925ae08137d4212a85e9a1d319509c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/93b785f5ae66a6418581c304c83a346e8baa5aa3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d850169c9c233c4bc413d8319196557b54683688
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c69f815b09ab85d3ace8fd2979ffafb1184ec76c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/422b44fb56db7ca8b1a2f9f706733d7d4c2fdeb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/33993a3737737a03ee5a9d386d0a027bdc947c9c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c8720729726faffc39ec64f3a02440a48c8c305a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d870b79c16ef09b0c4a9db18e071c2fa235d1ad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd3f0ae6f855b2998bc09e5c3a458528c92acb90
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0500f4479eb1d0d5ab9e83dac42b633a5ff677dd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28bbbf3bf583e0c85004727e694455dfcabd50a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fe5d5bbfe6bd0f386f92bdc419a7e04d885d5b43
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3139270693ab0fc6d66fed4fe11e183829b47e2e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d932a5831e26620d61d171d0fd8bc2f14938e6f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cbee43ebd69377bce1c4fa8d40c6fd67f2be2ee4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7186a29bbfe3044d5e8001ddfe1d9238578e0944
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8b119e03ad9de5fc440e5929287c94c22fc3946

Trusted Firmware-A, Release 2.10.4

· enable use of PSCI extended state ID format (7bd64c7)

· introduce platform variant build option (cfe1506)

∗ TC

· enable MPMM (c19a82b)

· Enable SVE for both secure and non-secure world (10198ea)

· populate HW_CONFIG in BL31 (34a87d7)

· introduce TC1 platform (6ec0c65)

· add DRAM2 to TZC non-secure region (76b4a6b)

· add bootargs node (4a840f2)

· add cpu capacity to provide scheduling information (309f593)

· add Ivy partition (a19bd32)

· add support for trusted services (ca93248)

· update Matterhorn ELP DVFS clock index (a2f6294)

· update mhuv2 dts node to align with upstream driver (63067ce)

∗ Diphda

· adding the diphda platform (bf3ce99)

· disabling non volatile counters in diphda (7f70cd2)

· enabling stack protector for diphda (c7e4f1c)

– Marvell

∗ introduce t9130_cex7_eval (d01139f)

∗ Armada

· A8K

· allow overriding default paths (0b702af)

– MediaTek

∗ enable software reset for CIRQ (b3b162f)

∗ MT8192

· add DFD control in SiP service (5183e63)

∗ MT8195

· add DFD control in SiP service (3b994a7)

· add display port control in SiP service (7eb4223)

· remove adsp event from wakeup source (c260b32)

· add DCM driver (49d3bd8)

882 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7bd64c70e91f73a236b84fb51d5045e308479b5a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cfe1506ee8303d9e0714b3a5b2cd165f76ad5d11
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c19a82bef08df58350f1b6668e0604ff8a5bd46d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/10198eab3aa7b0eeba10d9667197816b052ba3e4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34a87d74d9fbbe8037431ea5101110a9f1cf30e1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6ec0c65b09745fd0f4cee44ee3aa99870303f448
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/76b4a6bb208c22b1c5971964a209ff7d54982348
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4a840f27cd7a05d8e3687aa325adcd019c0d22ee
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/309f5938e610c73cb51b3ba175fed971f49d0888
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a19bd32ed14c33571f3715198d47bac9d0f2808e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ca9324819ee308f9b3a4bb004f02a512c8f301f6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2f6294c98935895d4592ef7e30058ca6e995f4b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/63067ce87e4afa193b2c7f6a4917d1e54b61b000
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bf3ce9937182e5d8d91e058baabb8213acedacdb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f70cd29235cc5e96ff6b5f509c7e4260bec5610
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c7e4f1cfb84136a7521f26e403a6635ffdce4a2b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d01139f3b59a1bc6542e74f52ff3fb26eea23c69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0b702afc3aabc349a513a5b00397b58a62fea634
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b3b162f3b48e087f6656513862a6f9e1fa0757b1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5183e637a0496ad8dfbd8c892bc874ac6a1531bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3b994a75306cc487144dd8e2e15433799e62e6f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7eb42237575eb3f241c9b22efc5fe91368470aa6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c260b3246b6be27c7463d36ce7f76368c94a8540
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49d3bd8c4c80ecd19ecfd74812ff1eaa01478cdd

Trusted Firmware-A, Release 2.10.4

· add EMI MPU basic drivers (75edd34)

· add SPM suspend driver (859e346)

· add support for PTP3 (0481896)

· add vcore-dvfs support (d562130)

· support MCUSYS off when system suspend (d336e09)

– NXP

∗ add build macro for BOOT_MODE validation checking (cd1280e)

∗ add CCI and EPU address definition (6cad59c)

∗ add EESR register definition (8bfb168)

∗ add SecMon register definition for ch_3_2 (66f7884)

∗ define common macro for ARM registers (35efe7a)

∗ define default PSCI features if not defined (a204785)

∗ define default SD buffer (4225ce8)

∗ i.MX

· i.MX 8M

· add sdei support for i.MX8MN (ce2be32)

· add sdei support for i.MX8MP (6b63125)

· add SiP call for secondary boot (9ce232f)

· add system_reset2 implementation (60a0dde)

· i.MX 8MMini

· enlarge BL33 (U-boot) size in FIP (d53c9db)

· i.MX 8M Plus

· add imx8mp_private.h to the build (91566d6)

· add in BL2 with FIP (75fbf55)

· add initial definition to facilitate FIP layout (f696843)

· enable Trusted Boot (a16ecd2)

∗ Layerscape

· add ls1028a soc and board support (52a1e9f)

· LX2

· add SUPPORTED_BOOT_MODE definition (28b3221)

· LS1028A

· add ls1028a soc support (9d250f0)

13.9. 2.6.0 (2021-11-22) 883

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/75edd34ade8efaa8a76c5fd59103454023632989
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/859e346b89461f31df17b76ef25ce9e8d2a7279d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/048189637ead887787bd5bc47b1dfab98f321705
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d562130ea9637b885135a5efe41cb98f2365754f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d336e093dd9ec917ce69484eae8914d98efa328d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cd1280ea2e5c8be6f28485a2d5054d06e54e74c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6cad59c429b4382ad62aee3a67fa1b3fd4ad38b7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8bfb16813aff9b3dcbeaa2f77027d44b97f04b6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66f7884b5229b1d2977d73d105af1c34cb55f95d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/35efe7a4cea4b3c55b661aac49ef1a85ca8feaa9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2047853224083328ef67cacbc17a2001ba14701
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4225ce8b87635287ecf5cd3baaf31ea703a2640b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ce2be321e8a5865871810b36c580181ea95a1a64
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b63125c415491417e1c389e4015be5ebdee2841
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ce232fe985a0bb308af459ede8a22629255d4e7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/60a0dde91bd03f4011c1d52d4d3aea8166e939a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d53c9dbf9ff9c435552b62f47fb95bfe86d025e3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/91566d663b26434813fa674412bb695be1965557
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/75fbf5546b7beca93e4782bc35906f9536392e04
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f696843eab5cf0547b6c6307eaccea25678654c4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a16ecd2cff36b3a8a76d223f4e272e165c941b31
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/52a1e9ff37251987b71b743951038cd8d1fa0ba4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/28b3221aebdd48577e2288a75cd2f7547da514e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d250f03d7a38cac86655495879b2151b877db0d

Trusted Firmware-A, Release 2.10.4

· LS1028ARDB

· add ls1028ardb board support (34e2112)

– QTI

∗ SC7280

· add support for pmk7325 (b8a0511)

· support for qti sc7280 plat (46ee50e)

– Renesas

∗ R-Car

· change process for Suspend To RAM (731aa26)

· R-Car 3

· add a DRAM size setting for M3N (f95d551)

· add new board revision for Salvator-XS/H3ULCB (4379a3e)

· add optional support for gzip-compressed BL33 (ddf2ca0)

· add process of SSCG setting for R-Car D3 (14f0a08)

· add process to back up X6 and X7 register’s value (7d58aed)

· add SYSCEXTMASK bit set/clear in scu_power_up (63a7a34)

· apply ERRATA_A53_1530924 and ERRATA_A57_1319537 (2892fed)

· change the memory map for OP-TEE (a4d821a)

· emit RPC status to DT fragment if RPC unlocked (12c75c8)

· keep RWDT enabled (8991086)

· modify LifeC register setting for R-Car D3 (5460f82)

· modify operation register from SYSCISR to SYSCISCR (d10f876)

· modify SWDT counter setting for R-Car D3 (053c134)

· remove access to RMSTPCRn registers in R-Car D3 (71f2239)

· update DDR setting for R-Car D3 (042d710)

· update IPL and Secure Monitor Rev.3.0.0 (c5f5bb1)

· use PRR cut to determine DRAM size on M3 (42ffd27)

– ST

∗ add a new DDR firewall management (4584e01)

∗ add a USB DFU stack (efbd65f)

∗ add helper to save boot interface (7e87ba2)

∗ add STM32CubeProgrammer support on USB (afad521)

884 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34e2112d1a3a8e4ea33a24bdc6505518266333a9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b8a05116ed2a87a9689c4f9be6218a4bce88034a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/46ee50e0b34e19d383a28bc3b3dadbfb4c07b270
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/731aa26f38d76645b6d50077c28dffb9b02dd08a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f95d551217a287bd909aa3c82f4ade4986ad7244
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4379a3e9744cf3b0844446335aca40357a889b9a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ddf2ca03979ea9fad305b1bc59beb6e27f0e1c02
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/14f0a0817297905c03ddf2c4c6040482ef71d744
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7d58aed3b05fa8c677a7c823c1ca5017a462a3d3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/63a7a34706eedba4d13ce6fc661a634801cf8909
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2892fedaf27d8bbc68780a4a2c506c768e81b9f1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4d821a5a625d941f95ec39fb51ac4fc07c46c5c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12c75c8886a0ee69d7e279a48cbeb8d1602826b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/899108601a0c3b08ead5e686d92ea0794700ff35
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5460f82806752e419fdd6862e8ca9c5fefbee3f2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d10f87674ecee54cffe1ab554cc05733fd16c7f0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/053c134683cf74fbf4efad311815b806821f1436
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/71f2239f53cd3137ad6abdaf0334dc53f2f21cb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/042d710d1d917357c5142b340c79978264d3afb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c5f5bb17abfcf6c0eeb3e6c3d70499de0bd6abc0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/42ffd279dd1a686b19e2f1b69d2e35413d5efeba
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4584e01dc643665038004f6c8a4f8bd64e14dacb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/efbd65fa7b5cf70f20d6b18152741ccdf8a65bb6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e87ba2598a07facdeb73237dcb350a261ac17b6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/afad5214a79259f56bc2003b00859abfe8a18d4d

Trusted Firmware-A, Release 2.10.4

∗ add STM32MP_EMMC_BOOT option (214c8a8)

∗ create new helper for DT access (ea97bbf)

∗ implement platform functions for SMCCC_ARCH_SOC_ID (3d20178)

∗ improve FIP image loading from MMC (18b415b)

∗ manage io_policies with FCONF (d5a84ee)

∗ use FCONF to configure platform (29332bc)

∗ use FIP to load images (1d204ee)

∗ ST32MP1

· add STM32MP_USB_PROGRAMMER target (fa92fef)

· add USB DFU support for STM32MP1 (942f6be)

– Xilinx

∗ Versal

· add support for SLS mitigation (302b4df)

∗ ZynqMP

· add support for runtime feature config (578f468)

· sync IOCTL IDs (38c0b25)

· add SDEI support (4143268)

· add support for XCK26 silicon (7a30e08)

· extend DT description by TF-A (0a8143d)

• Bootloader Images

– import BL_NOBITS_{BASE,END} when defined (9aedca0)

• Services

– FF-A

∗ adding notifications SMC IDs (fc3f480)

∗ change manifest messaging method (bb320db)

∗ feature retrieval through FFA_FEATURES call (96b71eb)

∗ update FF-A version to v1.1 (e1c732d)

∗ add Ivy partition to tb fw config (1bc02c2)

∗ add support for FFA_SPM_ID_GET (70c121a)

∗ route secure interrupts to SPMC (8cb99c3)

• Libraries

– CPU Support

13.9. 2.6.0 (2021-11-22) 885

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/214c8a8d08b2b3c24f12cbc69f497f44851ca524
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ea97bbf6a001b270fd0a25b4b0d0c382e277f3f8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3d201787e8246022b1f193283c12e7cb4bfc83ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/18b415be9d631b3e0c3a3caacc5f02edb9413f6b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d5a84eeaac2c8ce14d3f2662dc9523b4abf41516
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/29332bcd680ce7e5f864813d9a900360f5e35d41
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1d204ee4ab12893fceb12097bd4f0a074be253b2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fa92fef0a024cdb537fe56c84a0156cc48c1ac2d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/942f6be211d4816ad2568d30d807b8fd53d7f981
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/302b4dfb8fb0041959b8593a098ccae6c61e3238
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/578f468ac058bbb60b08f78e2aa2c20cdc601620
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/38c0b2521a0ea0951f4e1ee678ccdbce5fc07a98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4143268a5ca8f91f1014e0d83edf766946ffff76
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7a30e08b70e7fbb745554d500182bb6e258c5ab8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0a8143dd636d4234dd2e79d32cb49dc80675c68f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9aedca021d917c7435aa2a0405972aa9d44493a2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fc3f480023e3a52460add25f18dd550dde44d9ff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb320dbc4751f7ea0c37ffba07d14628e58081d0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/96b71eb9597efbf4857216cac1caeefc9e8bbf3e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e1c732d46fa91231b39209621ead1e5a5fb2c497
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1bc02c2e0f63b6a7863e10cf6189292d42e693db
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/70c121a258e43dc2462ed528b44d92594ffb27b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8cb99c3fc3539bb9926e73a1c33fd72f424fc453

Trusted Firmware-A, Release 2.10.4

∗ add support for Hayes CPU (7bd8dfb)

∗ add support for Hunter CPU (fb9e5f7)

∗ add support for Demeter CPU (f4616ef)

∗ workaround for Cortex A78 AE erratum 1941500 (47d6f5f)

∗ workaround for Cortex A78 AE erratum 1951502 (8913047)

– MPMM

∗ add support for MPMM (6812078)

– OP-TEE

∗ introduce optee_header_is_valid() (b84a850)

– PSCI

∗ require validate_power_state to expose CPU_SUSPEND (a1d5ac6)

– SMCCC

∗ add bit definition for SMCCC_ARCH_SOC_ID (96b0596)

• Drivers

– FWU

∗ add FWU metadata header and build options (5357f83)

∗ add FWU driver (0ec3ac6)

∗ avoid booting with an alternate boot source (4b48f7b)

∗ avoid NV counter upgrade in trial run state (c0bfc88)

∗ initialize FWU driver in BL2 (396b339)

∗ introduce FWU platform-specific functions declarations (efb2ced)

– I/O

∗ MTD

· offset management for FIP usage (9a9ea82)

– Measured Boot

∗ add documentation to build and run PoC (a125c55)

∗ move init and teardown functions to platform layer (47bf3ac)

∗ image hash measurement and recording in BL1 (48ba034)

∗ update tb_fw_config with event log properties (e742bcd)

– MMC

∗ boot partition read support (5014b52)

– MTD

886 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7bd8dfb85a8bf5c22d6a39f4538b89cc748090d1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb9e5f7bb76e9764b3ecd7973668c851015fa1b4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f4616efafbc1004f1330f515b898e7617e338875
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/47d6f5ff16d1f2ad009d630a381054b10fa0a06f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8913047a52e646877812617a2d98cff99494487b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68120783d6d6f99c605e9f746ee0e91e2908feb1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b84a850864c05fef587fcbb301f955428966de64
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a1d5ac6a5aa5d9d18a481de20d272f64a71391f7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/96b0596ea25e1f03b862a5bfaa92add6c3e51a33
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5357f83d4ee89fb831d7e4f6149ae2f652e1b9af
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0ec3ac60d86b75d132e7a63fc09ea47e67f90bbd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4b48f7b56577a78cdc9a2b47280cb62cbae0f7c3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c0bfc88f8e8e03974834cbcacbbfbd5f202a2857
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/396b339dc20b97ddd75146e03467a255e28f31b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/efb2ced256dacbab71ca11cbc87f70f413ca6729
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9a9ea82948fd2f1459b6351cb0641f3f77b4e6de
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a125c556230501ee0f5ec9f8b0b721625d484a41
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/47bf3ac31ec84d4b221fdef760c04b5f4416cba4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/48ba0345f7b42880ec4442d7e90e3e1af95feadd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e742bcdae0d28dc14a2aa0b4ca30f50420bb5ebe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5014b52dec0c2527ca85c0fbe9c9281a24cc7b10

Trusted Firmware-A, Release 2.10.4

∗ NAND

· count bad blocks before a given offset (bc3eebb)

– SCMI

∗ add power domain protocol (7e4833c)

– Arm

∗ Ethos-N

· multi-device support (1c65989)

∗ GIC

· GICv3

· detect GICv4 feature at runtime (858f40e)

· introduce GIC component identification (73a643e)

· multichip: detect GIC-700 at runtime (feb7081)

· GIC-600AE

· introduce support for Fault Management Unit (2c248ad)

∗ TZC

· TZC-400

· update filters by region (ce7ef9d)

– MediaTek

∗ APU

· add mt8192 APU device apc driver (f46e1f1)

· add mt8192 APU iommap regions (2671f31)

· add mt8192 APU SiP call support (ca4c0c2)

· setup mt8192 APU_S_S_4 and APU_S_S_5 permission (77b6801)

∗ EMI MPU

· add MPU support for DSP (6c4973b)

– NXP

∗ DCFG

· define RSTCR_RESET_REQ (6c5d140)

∗ FLEXSPI

· add MT35XU02G flash info (a4f5015)

– Renesas

∗ R-Car3

13.9. 2.6.0 (2021-11-22) 887

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc3eebb25d5ee340e56047d0e46b81d5af85ff17
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7e4833cdde8235d228f1f1c40f52b989ad5aa98a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1c65989e70c9734defc666e824628620b2060b92
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/858f40e379684fefc8b52c7b9e60576bc3794a69
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/73a643eed9d88910a09ca666bc7ab7f5e532324e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/feb7081863f454b9e465efc074ca669f7a4c783d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c248ade2e958eed33127b4ea767fbb7499f31a7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ce7ef9d146ce5ca6b9be5ef049377b3817d53d10
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f46e1f18539d6d992c82ae605c2cd2a1d0757fa4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2671f3187249d641c55929c812d6691aeeff502a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ca4c0c2e78eb19d442de4608d9096a755b540a37
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77b6801966d203e09ca118fad42543e934d73e6f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c4973b0a9a75aa83233b696c97d573426eebd98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6c5d140ed99cfec47b239acc242c0f3db1e3bf7c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4f5015a0080134251e9272719f5dad1ce2aa842

Trusted Firmware-A, Release 2.10.4

· add extra offset if booting B-side (993d809)

· add function to judge a DDR rank (726050b)

– ST

∗ manage boot part in io_mmc (f3d2750)

∗ USB

· add device driver for STM32MP1 (9a138eb)

– USB

∗ add a USB device stack (859bfd8)

• Miscellaneous

– Debug

∗ add new macro ERROR_NL() to print just a newline (fd1360a)

– CRC32

∗ Hardware CRC32

· add support for HW computed CRC (a1cedad)

∗ Software CRC32

· add software CRC32 support (f216937)

– DT Bindings

∗ add STM32MP1 TZC400 bindings (43de546)

– FDT Wrappers

∗ add CPU enumeration utility function (2d9ea36)

– FDTs

∗ add for_each_compatible_node macro (ff76614)

∗ introduce wrapper function to read DT UUIDs (d13dbb6)

∗ add firewall regions into STM32MP1 DT (86b43c5)

∗ add IO policies for STM32MP1 (21e002f)

∗ add STM32MP1 fw-config DT files (d9e0586)

∗ STM32MP1

· align DT with latest kernel (e8a953a)

· delete nodes for non-used boot devices (4357db5)

– NXP

∗ OCRAM

· add driver for OCRAM initialization (10b1e13)

888 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/993d809cc115ce23dd2df1df19dc8bb548cc19cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/726050b8e2d2ee2234e103e2df55f9c7f262c851
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f3d2750aa2293c0279bc447a85771827ca8b74c1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9a138eb5f29f6747e181a1b3b4199ad57721a3e0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/859bfd8d42341c6dea2b193db79dc4828e074ad7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fd1360a339e84ccd49f8a2d8a42e4c131a681b3c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a1cedadf73863ff103fecd64fa188334e1541337
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f21693704a7bac275e12b44ae30fd210bc317175
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/43de546b909947ab44f104aaee02b98fba70f44c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2d9ea360350303e37a8dd39f3599ac88aaef0ff9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ff766148b52bfecf09728a83fc3becc7941d943c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d13dbb6f1d5e28737a3319af035a6cb991bc6f8f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/86b43c58a4105c8cef13d860dd73fa9bd560526a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21e002fb777fad9d02a94dc961f077fb444517fa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d9e0586b619b331eb2db75911ca82f927e20bd1c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e8a953a9b85806f7324c8c7245435d5b9226c279
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4357db5b17ce6ba7357dd99276f34ab497ce60ef
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/10b1e13bd200849ff134dd8d2fde341a8526f563

Trusted Firmware-A, Release 2.10.4

∗ PSCI

· define CPUECTLR_TIMER_2TICKS (3a2cc2e)

• Dependencies

– libfdt

∗ also allow changing base address (4d585fe)

13.9.3 Resolved Issues

• Architecture

• Platforms

– print newline before fatal abort error message (a5fea81)

– Allwinner

∗ delay after enabling CPU power (86a7429)

– Arm

∗ correct UUID strings in FVP DT (748bdd1)

∗ fix a VERBOSE trace (5869ebd)

∗ remove unused memory node (be42c4b)

∗ FPGA

· allow build after MAKE_* changes (9d38a3e)

· avoid re-linking from executable ELF file (a67ac76)

· Change PL011 UART IRQ (195381a)

· limit BL31 memory usage (d457230)

· reserve BL31 memory (13e16fe)

· streamline generated axf file (9177e4f)

· enable AMU extension (d810e30)

· increase initrd size (c3ce73b)

∗ FVP

· fix fvp_cpu_standby() function (3202ce8)

· spmc optee manifest remove SMC allowlist (183725b)

· allow changing the kernel DTB load address (672d669)

· bump BL2 stack size (d22f1d3)

· provide boot files via semihosting (749d0fa)

· OP-TEE SP manifest per latest SPMC changes (b7bc51a)

13.9. 2.6.0 (2021-11-22) 889

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3a2cc2e262890cffee1fc46835e85be6055189e8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4d585fe52feb231d5e73ec50a505122d5e9bf450
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a5fea8105887d0dd15edf94aebd591b1b6b5ef05
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/86a7429e477786dad6fab002538aef825f4ca35a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/748bdd19aa27c15438d829bdba42fe4062a265a1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5869ebd0e87f1de987e51994103440fa8c77b26f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/be42c4b4bf3c44f2970b7a1658c46b8d5863cad1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9d38a3e698331e3c8192cc3e0cc8584e6ed987d9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a67ac7648cd814ed8f8d4ece1b265c6d48c6dc81
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/195381a91313bc0bce2cfa087f3c55136a9e8496
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d4572303ed45faceffed859955b0e71724fddfd2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/13e16fee86451e2f871c2aac757b32299fe5ead6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9177e4fd9356b0f249be8b6fe14f222e10f1e6cd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d810e30dd6b47e0725dccbcb42ca0a0c5215ee34
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c3ce73be0bfe31fa28805fe92b3e727232ffd37a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3202ce8bbb4af8580736d2a1634ad45c3f89d931
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/183725b39d75e362a32b3c5d0be110c255c56bdd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/672d669d6c72f92c6b81464d1d421e392bc1aa3e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d22f1d358731f0f55f2f392fa587f0fa8d315aa5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/749d0fa80d1c7ca30b4092a381a06deeeaf1747f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b7bc51a7a747bf40d219b2041e5b3ce56737a71b

Trusted Firmware-A, Release 2.10.4

∗ FVP-R

· fix compilation error in release mode (7d96e79)

∗ Morello

· initialise CNTFRQ in Non Secure CNTBaseN (7f2d23d)

∗ TC

· enable AMU extension (b5863ca)

· change UUID to string format (1c19536)

· remove “arm,psci” from psci node (814646b)

· remove ffa and optee device tree node (f1b44a9)

· set cactus-tertiary vcpu count to 1 (05f667f)

∗ SGI

· avoid redefinition of ‘efi_guid’ structure (f34322c)

– Marvell

∗ Check the required libraries before building doimage (dd47809)

∗ Armada

· select correct pcie reference clock source (371648e)

· fix MSS loader for A8K family (dceac43)

· A3K

· disable HANDLE_EA_EL3_FIRST by default (3017e93)

· enable workaround for erratum 1530924 (975563d)

· Fix building uart-images.tgz.bin archive (d3f8db0)

· Fix check for external dependences (2baf503)

· fix printing info messages on output (9f6d154)

· update information about PCIe abort hack (068fe91)

· Remove encryption password (076374c)

· A8K

· Add missing build dependency for BLE target (04738e6)

· Correctly set include directories for individual targets (559ab2d)

· Require that MV_DDR_PATH is correctly set (528dafc)

· fix number of CPU power switches. (5cf6faf)

– MediaTek

∗ MT8183

890 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7d96e79a1a2efdf85f1ed46cdd5c577b58054f53
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f2d23d9d790df90021de6c5165ef10fe5cc5590
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b5863cab9adb3fed0c1e4dfb92cf906794e7bdb4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1c1953653c20b4a8c61a7deb3fc493d496d8c478
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/814646b4cb792ab14df04e28360fefd168399b3c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f1b44a9050fbc12e8c260107bfff2930476df062
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/05f667f0c670ba9682050714561309f00210c282
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f34322c1cea1e355aeb4133df6aa601d719be5a3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dd47809e9ea75188060bf8b294efa8578d255c63
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/371648e1c76b5230bf8e153629064c02086365c9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dceac436f620e60cd0149194377871b225216079
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3017e932768c7357a1a41493c58323419e9a1ec9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/975563dbfc012b6e8a7765dd8e48220e1bc53dec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d3f8db07b618e79c05805a1598e5e834e42fea98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2baf50385ba2b460afef4a7919b13b3a350fd03a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9f6d15408340af07ed3c2500202b147189eaa7ef
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/068fe919613197bf221c00fb84a1d94c66a7a8ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/076374c9b97d47b10ba5c6034817866c08d66ed4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/04738e69917f8e8790bf4cf83ceb05f85e1f45bb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/559ab2df4a35cd82b2a67a0bebeb3028544a6766
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/528dafc367c4f49d4904c4335422502dacf469bf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5cf6fafe223da89c60e2323c242ea188b17e98c3

Trusted Firmware-A, Release 2.10.4

· fix out-of-bound access (420c26b)

∗ MT8195

· use correct print format for uint64_t (964ee4e)

· fix error setting for SPM (1f81ccc)

· extend MMU region size (9ff8b8c)

· fix coverity fail (85e4d14)

– NXP

∗ i.MX

· do not keep mmc_device_info in stack (99d37c8)

· i.MX 8M

· i.MX 8MMini

· fix FTBFS on SPD=opteed (10bfc77)

∗ Layerscape

· LX2

· LS1028A

· define endianness of scfg and gpio (2475f63)

· fix compile error when enable fuse provision (a0da9c4)

– QEMU

∗ (NS_DRAM0_BASE + NS_DRAM0_SIZE) ADDR overflow 32bit (325716c)

∗ reboot/shutdown with low to high gpio (bd2ad12)

– QTI

∗ SC1780

· qti smc addition (cc35a37)

– Raspberry Pi

∗ Raspberry Pi 4

· drop /memreserve/ region (5d2793a)

– Renesas

∗ R-Car

· change process that copy code to system ram (49593cc)

· fix cache maintenance process of reading cert header (c77ab18)

· fix to load image when option BL2_DCACHE_ENABLE is enabled (d2ece8d)

· R-Car 3

13.9. 2.6.0 (2021-11-22) 891

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/420c26b33a29c8328a1806ccb2f5a5885041fdfc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/964ee4e6be70ef638d6c875a761ab5ca359d84fe
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1f81cccedd40cb397813b0fa826ea1d793b02089
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ff8b8ca9393e31e790eb2c8e7ea5c5f41f45198
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/85e4d14df157b5641421ea2b844c146ddc230152
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99d37c8cb8196a7296311fb4f97f80f086021c74
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/10bfc77e7b3afce17185114ac66361a0914f7784
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2475f63bdec6c24c13f7d6ec7f70275b1bde5c15
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a0da9c4bd296ec1a47683a1ee05f5d1ed71828c7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/325716c97b7835b8d249f12c1461556bab8c53a0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bd2ad12ef10f558a5b15f5768b66e7b2606c6498
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cc35a3771d28a96906f8d0f393ff664924a2d4dc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5d2793a61aded9602af86e90a571f64ff07f93b3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49593cc1ce0d0471aeef7ca24a5415da2dd55bea
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c77ab18ec7c8e0f3d953177b835e004a9b53515f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d2ece8dba2f31091b1fa6c302d4255495bb15705

Trusted Firmware-A, Release 2.10.4

· fix disabling MFIS write protection for R-Car D3 (a8c0c3e)

· fix eMMC boot support for R-Car D3 (77ab366)

· fix source file to make about GICv2 (fb3406b)

· fix version judgment for R-Car D3 (c3d192b)

· generate two memory nodes for larger than 2 GiB channel 0 (21924f2)

– Rockchip

∗ RK3399

· correct LPDDR4 resume sequence (2c4b0c0)

· fix dram section placement (f943b7c)

– Socionext

∗ Synquacer

· update scmi power domain off handling (f7f5d2c)

– ST

∗ add STM32IMAGE_SRC (f223505)

∗ add UART reset in crash console init (b38e2ed)

∗ apply security at the end of BL2 (99080bd)

∗ correct BSEC error code management (72c7884)

∗ correct IO compensation disabling (c2d18ca)

∗ correct signedness comparison issue (5657dec)

∗ improve DDR get size function (91ffc1d)

∗ only check header major when booting (8ce8918)

∗ panic if boot interface is wrong (71693a6)

∗ remove double space (306dcd6)

∗ ST32MP1

· add bl prefix for internal linker script (7684ddd)

– Xilinx

∗ Versal

· correct IPI buffer offset (e1e5b13)

· use sync method for blocking calls (fa58171)

∗ ZynqMP

· use sync method for blocking calls (c063c5a)

• Services

892 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a8c0c3e9d0df2215ed3b9ef66f4596787d957566
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77ab3661e55c39694c7ee81de2d1615775711b64
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb3406b6b573cb0b35138ca3c89c5641d3d7b790
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c3d192b8e52823dcbc32e21e47c30693d38bb49f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21924f2466b9b5e1243c142932e6f498da5633e9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2c4b0c05c6546e24eb7209ffb3bb465d4feed164
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f943b7c8e292e3aad2fcbdd0a37505f62b3b4c87
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f7f5d2c4cd209c2d21244da4fa442050eb4531ab
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f22350583c2e26ea291eae3dc54db867fdf0d9af
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b38e2ed29ef791dad0cb61fed81b74d612f58b01
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/99080bd1273331007f0b2d6f64fed51ac6861bcd
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/72c7884092684af4cc3c49e08f913b3ffed783ba
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c2d18ca80f4bd32f58ba07f53d9bb2586df18fc0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5657decc7ffa1376c0a97b6d14ea1428877f5af4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/91ffc1deffa2c1c64efe4dfaf27b78f2621a8b0b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8ce89187459ec77dd9ffdffba3a2b77838d51b6d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/71693a66341e7d9d683ef32981243cb4c4439351
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/306dcd6b0d1981b75e103c560a4034bdaa6862d5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7684dddcfb14c45bad33b091410a0bf14a3a9830
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e1e5b1339b9f73f7f1893d8a6d4dfe4b19ba0ad1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fa58171534976f94b93a44184afd050d8225e404
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c063c5a4f92d5787536e595ca4906b458b0f26cb

Trusted Firmware-A, Release 2.10.4

– drop warning on unimplemented calls (67fad51)

– RME

∗ fixes a shift by 64 bits bug in the RME GPT library (322b344)

– SPM

∗ do not compile if SVE/SME is enabled (4333f95)

∗ error macro to use correct print format (0c23e6f)

∗ revert workaround hafnium as hypervisor (3221fce)

∗ fixing coverity issue for SPM Core. (f7fb0bf)

• Libraries

– LIBC

∗ use long for 64-bit types on aarch64 (4ce3e99)

– CPU Support

∗ correct Demeter CPU name (4cb576a)

∗ workaround for Cortex A78 erratum 2242635 (1ea9190)

∗ workaround for Cortex-A710 erratum 2058056 (744bdbf)

∗ workaround for Neoverse V1 erratum 2216392 (4c8fe6b)

∗ workaround for Neoverse-N2 erratum 2138953 (ef8f0c5)

∗ workaround for Neoverse-N2 erratum 2138958 (c948185)

∗ workaround for Neoverse-N2 erratum 2242400 (603806d)

∗ workaround for Neoverse-N2 erratum 2242415 (5819e23)

∗ workaround for Neoverse-N2 erratum 2280757 (0d2d999)

∗ rename Matterhorn, Matterhorn ELP, and Klein CPUs (c6ac4df)

– EL3 Runtime

∗ correct CASSERT for pauth (b4f8d44)

∗ fix SVE and AMU extension enablement flags (68ac5ed)

∗ random typos in tf-a code base (2e61d68)

∗ Remove save/restore of EL2 timer registers (a7cf274)

– OP-TEE

∗ correct signedness comparison (21d2be8)

– GPT

∗ add necessary barriers and remove cache clean (77612b9)

∗ use correct print format for uint64_t (2461bd3)

13.9. 2.6.0 (2021-11-22) 893

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/67fad514ee974dcf0252fa0e9219eb3c580eb714
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/322b344e30cb87b9293060d5946b3c17fe3b9133
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4333f95bedb5f2b53dcb62e0e9c563794ec33c07
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0c23e6f44d41593b6e7f97594c12b5791bd75189
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3221fce842c0b5aea984bb8dbc1393082bd88a58
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/f7fb0bf77f3434bfb67411cad65e704fdef27f76
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4ce3e99a336b74611349595ea7fd5ed0277c3eeb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4cb576a0c5bd2e7669606996a9f79602596df07c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ea9190c6a4d2299c6dc19adc0bbe93d4f051eff
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/744bdbf732ffd2abf84b2431624051e93bc29f7b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4c8fe6b17fa994a630b2a30f8666df103f2e370d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef8f0c52ddf83e815a029319971682d7a26b6a6f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c948185c973c13df36c62c4bcb50e22b14d6e06a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/603806d1376c4b18211fb1d4cc338153de026c32
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5819e23bc47c860872141caf42bddddb1b8679a5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0d2d99924e1be548e75c46cfd536f7503cf863e0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c6ac4df622befb5bb42ac136745094e1498c91d8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b4f8d44597faf641177134ee08db7c3fcef5aa14
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/68ac5ed0493b24e6a0a178171a47db75a31cc423
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2e61d6871cc310e9404fe5cfa10b9828f1c869a7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a7cf2743f3eb487912302aafc748c81bbd1fc603
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/21d2be83a2eabb328071e857e538ced3c8351874
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77612b90acaffc82cea712f4a431c727bbb968ec
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/2461bd3a89f7f2cdf4a7302536746733970cfe53

Trusted Firmware-A, Release 2.10.4

– Translation Tables

∗ remove always true check in assert (74d720a)

• Drivers

– Authentication

∗ avoid NV counter upgrade without certificate validation (a2a5a94)

∗ CryptoCell-713

· fix a build failure with CC-713 library (e5fbee5)

– MTD

∗ fix MISRA issues and logic improvement (5130ad1)

∗ macronix quad enable bit issue (c332740)

∗ NAND

· SPI NAND

· check correct manufacturer id (4490b79)

· check that parameters have been set (bc453ab)

– SCMI

∗ entry: add weak functions (b3c8fd5)

∗ smt: fix build for aarch64 (0e223c6)

∗ mention “SCMI” in driver initialisation message (e0baae7)

∗ relax requirement for exact protocol version (125868c)

– UFS

∗ add reset before DME_LINKSTARTUP (905635d)

– Arm

∗ GIC

· GICv3

· add dsb in both disable and enable function of gicv3_cpuif (5a5e0aa)

· GIC-600AE

∗ fix timeout calculation (7f322f2)

∗ TZC

· TZC-400

· never disable filter 0 (ef378d3)

– Marvell

∗ COMPHY

894 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/74d720a026735263d2f290fd05370dad0d4c7219
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a2a5a9456969266dc68d5845f31e05be0c3ff2e3
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e5fbee5085c682ac3438e6f66c8bdaffb6076fa2
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5130ad14d52a0196422fed8a7d08e25659890b15
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c3327408eb4b5852c0ed9d8933c35aaa6de34c21
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4490b7963303fbe59b07a66c8498a803eb5c239c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bc453ab1b2fd4267d34f2b9587f73b8940ee1538
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b3c8fd5d778144340d289ad4825123106aac4a96
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0e223c6a9e5a2d92cae00fdd16a02a3f8971b114
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/e0baae7316bfdf3e49e5e158f79eb80cd51fc700
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/125868c94150f52ff85cdb59aee623ab1f9f259d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/905635d5e74e3c7b7b2412a673009c8aaabb73e1
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5a5e0aac398989536dc4be790820af89da3d093a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7f322f228e76caa5480f827af0aa6751f00fc1c4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ef378d3ec1ef9d7c28baef32ed409688e962542b

Trusted Firmware-A, Release 2.10.4

· fix name of 3.125G SerDes mode (a669983)

· Armada 3700

· configure phy selector also for PCIe (0f3a122)

· fix address overflow (c074f70)

· handle failures in power functions (49b664e)

· CP110

· fix error code in pcie power on (c0a909c)

∗ Armada

· A3K

· A3720

· fix configuring UART clock (b9185c7)

· fix UART clock rate value and divisor calculation (66a7752)

· fix UART parent clock rate determination (5a91c43)

– MediaTek

∗ PMIC Wrapper

· update idle flow (9ed4e6f)

∗ MT8192

· SPM

· add missing bit define for debug purpose (310c3a2)

– NXP

∗ FLEXSPI

· fix warm boot wait time for MT35XU512A (1ff7e46)

∗ SCFG

· fix endianness checking (fb90cfd)

∗ SFP

· fix compile warning (3239a17)

– Renesas

∗ R-Car3

· console: fix a return value of console_rcar_init (bb273e3)

· ddr: update DDR setting for H3, M3, M3N (ec767c1)

· emmc: remove CPG_CPGWPR redefinition (36d5645)

· fix CPG registers redefinition (0dae56b)

13.9. 2.6.0 (2021-11-22) 895

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a669983c78828e3f4a4f14b9e5a6ee79dcfde20f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0f3a1221093256999af5f2a80e9b3d7231b9f5fb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c074f70ce5d85e1735b589b323fac99d7eb988b5
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49b664e75f43fda08dddef4f0510d346bdd25565
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c0a909cdcce2d9a2ceefe672ad2fc1cae7e39ec4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b9185c75f7ec2b600ebe0d49281e216a2456b764
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/66a7752834382595d26214783ae4698fd1f00bd6
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5a91c439cbeb1f64b8b9830de91efad5113d3c89
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/9ed4e6fb669b8fcafc4e8acfa6a36db305d27ac8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/310c3a26e17d99aafc73b3504d0b6dfbdb97fd4c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/1ff7e46b092b74891bc2dc7263e4dfae947b2223
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/fb90cfd4eee504f1d16aa143728af427dc6e0ed8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3239a17561c124df7095391c0d64e86910660cdc
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bb273e3be1c4f1cddeac9ceaac95fb56e41e6b98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ec767c1b99675fbb50ef1b2fdb2d38e881e4789d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/36d5645aec947ab00b925b21141e59e58e1efd8c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0dae56bb2f0aa1f89ec98ebe3931fb19751a5c72

Trusted Firmware-A, Release 2.10.4

· i2c_dvfs: fix I2C operation (b757d3a)

– ST

∗ Clock

· use correct return value (8f97c4f)

· correctly manage RTC clock source (1550909)

· fix MCU/AXI parent clock (b8fe48b)

· fix MPU clock rate (602ae2f)

· fix RTC clock rating (cbd2e8a)

· keep RTC clock always on (5b111c7)

· keep RTCAPB clock always on (373f06b)

· set other clocks as always on (bf39318)

∗ I/O

· STM32 Image

· invalidate cache on local buf (a5bcf82)

· uninitialized variable warning (c1d732d)

∗ ST PMIC

· initialize i2c_state (4282284)

· missing error check (a4bcfe9)

∗ STPMIC1

· fix power switches activation (0161991)

· update error cases return (ed6a852)

∗ UART

· STM32 Console

· do not skip init for crash console (49c7f0c)

– USB

∗ add a optional ops get_other_speed_config_desc (216c122)

∗ fix Null pointer dereferences in usb_core_set_config (0cb9870)

∗ remove deadcode when USBD_EP_NB = 1 (7ca4928)

∗ remove unnecessary cast (025f5ef)

• Miscellaneous

– use correct printf format for uint64_t (4ef449c)

– DT Bindings

896 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b757d3a1d901bee9b7ad430702575adba04889ba
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8f97c4fab1769b3f7f37a2a7a01ade36e5c94eaa
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/15509093f0ba9a10f97c6f92bc3bb9fcf79a48ce
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/b8fe48b6f2b07fce49363cb3c0f8dac9e286439b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/602ae2f23c2bc9d79a9ab2b7c5dde1932fffc984
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cbd2e8a6afdd05c4b404d7998134a3f60cc15518
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/5b111c74795ea5e9c8a12d0e6b18d77e431311ed
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/373f06be4ee1114369b96763481b58885623aea4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/bf39318d93c270ff72bda4b46e4771aba7aea313
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a5bcf82402ff415326b4dba42aae95c499821e94
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c1d732d0db2463998036c678619007da79a25b3f
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/42822844bfed2e9ffaeae850cc60f5c3d4d9d654
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a4bcfe94e73db89ce2ebbb23c8e33e51eea5026a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0161991184e5feacacc679bdb9c92681b85235eb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/ed6a85234653c5ee2520389b769ff47e321df8a4
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49c7f0cef4cc864185828750f1f61f3f33f284f7
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/216c1223c2c65bd1c119a28b9406f70a9ee7b063
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0cb9870ddfa1b2fec50debe6d6333cbcb3df1e7e
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7ca49284be083b03ae11aa348b40358876ee5d4b
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/025f5ef201a39ba7285f368139e690bbd7a44653
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4ef449c15a4055d92632cb7e72267f525a7e2fca

Trusted Firmware-A, Release 2.10.4

∗ fix static checks (0861fcd)

– FDTs

∗ avoid output on missing DT property (49e789e)

∗ fix OOB write in uuid parsing function (d0d6424)

∗ Morello

· fix scmi clock specifier to cluster mappings (387a906)

∗ STM32MP1

· correct copyright dates (8d26029)

· set ETH clock on PLL4P on ST boards (3e881a8)

· update PLL nodes for ED1/EV1 boards (cdbbb9f)

· use ‘kHz’ as kilohertz abbreviation (4955d08)

– PIE

∗ invalidate data cache in the entire image range if PIE is enabled (596d20d)

– Security

∗ Set MDCR_EL3.MCCD bit (12f6c06)

– SDEI

∗ fix assert while kdump issue (d39db26)

∗ print event number in hex format (6b94356)

∗ set SPSR for SDEI based on TakeException (37596fc)

• Documentation

– fix TF-A v2.6 release date in the release information page (c90fa47)

– fix FF-A substitution (a61940c)

– fix typos in v2.5 release documentation (481c7b6)

– remove “experimental” tag for stable features (700e768)

– Contribution Guidelines

∗ fix formatting for code snippet (d0bbe81)

• Build System

– use space in WARNINGS list (34b508b)

– Git Hooks

∗ downgrade package-lock.json version (7434b65)

• Tools

– STM32 Image

13.9. 2.6.0 (2021-11-22) 897

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/0861fcdd3e3f2625e133de3dae9c548de7c1ee48
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/49e789e353efaf97f84eca016c6a1b8a2b3e3d98
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0d642450f1f3a0f43e0e156ef57a0c460dd48cf
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/387a9065a271ecde0e47dc5a9f9d037637502beb
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8d26029168fe70a86de524ed68c56e8666823714
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/3e881a8834a955f1e552300bdbf1dafd02ea8f1c
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/cdbbb9f7ecd4687fa52e1c655b631377c24862b9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/4955d08de7aa664387d2e5f690e78b85ac23a402
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/596d20d9e4d50c02b5a0cce8cad2a1c205cd687a
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/12f6c0649732a35a7ed45ba350a963f09a5710ca
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d39db2695ba626b9c0ee38652fe160b4e84b15d9
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6b94356b577744d425476a029c47bd35eb13c148
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/37596fcb43e34ed4bcf1bd3e86d8dec1011edab8
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/c90fa47202b762fe8f54e9c0561e94d37907b6ad
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/a61940ca739eb89be7c1bb2408a9178c2da5cb70
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/481c7b6b9107a3f71ee750f89cacdd8f9c729838
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/700e7685dd4682a929645a79de39f503c9140b2d
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/d0bbe8150eb35fe2bac1567751bf84a8f073dd39
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/34b508be9f021831423a8a14f56dff547e24c743
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/7434b65208175bdf3f44e0e62aaaeabc9c494ee3

Trusted Firmware-A, Release 2.10.4

∗ improve the tool (8d0036d)

– SPTOOL

∗ SP UUID little to big endian in TF-A build (dcdbcdd)

– DOIMAGE

∗ Fix doimage syntax breaking secure mode build (6d55ef1)

• Dependencies

– checkpatch

∗ do not check merge commits (77a0a7f)

13.10 2.5.0 (2021-05-17)

13.10.1 New Features

• Architecture support

– Added support for speculation barrier(FEAT_SB) for non-Armv8.5 platforms starting from
Armv8.0

– Added support for Activity Monitors Extension version 1.1(FEAT_AMUv1p1)

– Added helper functions for Random number generator(FEAT_RNG) registers

– Added support for Armv8.6 Multi-threaded PMU extensions (FEAT_MTPMU)

– Added support for MTE Asymmetric Fault Handling extensions(FEAT_MTE3)

– Added support for Privileged Access Never extensions(FEAT_PANx)

• Bootloader images

– Added PIE support for AArch32 builds

– Enable Trusted Random Number Generator service for BL32(sp_min)

• Build System

– Added build option for Arm Feature Modifiers

• Drivers

– Added support for interrupts in TZC-400 driver

– Broadcom

∗ Added support for I2C, MDIO and USB drivers

– Marvell

∗ Added support for secure read/write of dfc register-set

∗ Added support for thermal sensor driver

898 Chapter 13. Change Log & Release Notes

https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/8d0036d3d8c8ac1524539ea90382acafb1e524c0
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/dcdbcddebdee8d4d2c6c8316f615b428758b22ac
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/6d55ef1a24dc92a3b737aaa02141f550caaace06
https://review.trustedfirmware.org/plugins/gitiles/TF-A/trusted-firmware-a/+/77a0a7f1d96b188849d1d8d8884b3c93857d3f69

Trusted Firmware-A, Release 2.10.4

∗ Implement a3700_core_getc API in console driver

∗ Added rx training on 10G port

– Marvell Mochi

∗ Added support for cn913x in PCIe mode

– Marvell Armada A8K

∗ Added support for TRNG-IP-76 driver and accessing RNG register

– Mediatek MT8192

∗ Added support for following drivers

· MPU configuration for SCP/PCIe

· SPM suspend

· Vcore DVFS

· LPM

· PTP3

· UART save and restore

· Power-off

· PMIC

· CPU hotplug and MCDI support

· SPMC

· MPU

– Mediatek MT8195

∗ Added support for following drivers

· GPIO, NCDI, SPMC drivers

· Power-off

· CPU hotplug, reboot and MCDI

· Delay timer and sys timer

· GIC

– NXP

∗ Added support for

· non-volatile storage API

· chain of trust and trusted board boot using two modes: MBEDTLS and CSF

· fip-handler necessary for DDR initialization

· SMMU and console drivers

13.10. 2.5.0 (2021-05-17) 899

Trusted Firmware-A, Release 2.10.4

· crypto hardware accelerator driver

· following drivers: SD, EMMC, QSPI, FLEXSPI, GPIO, GIC, CSU, PMU, DDR

· NXP Security Monitor and SFP driver

· interconnect config APIs using ARM CCN-CCI driver

· TZC APIs to configure DDR region

· generic timer driver

· Device configuration driver

– IMX

∗ Added support for image loading and io-storage driver for TBBR fip booting

– Renesas

∗ Added support for PFC and EMMC driver

∗ RZ Family:

· G2N, G2E and G2H SoCs

· Added support for watchdog, QoS, PFC and DRAM initialization

∗ RZG Family:

· G2M

· Added support for QoS and DRAM initialization

– Xilinx

∗ Added JTAG DCC support for Versal and ZynqMP SoC family.

• Libraries

– C standard library

∗ Added support to print % in snprintf() and printf() APIs

∗ Added support for strtoull, strtoll, strtoul, strtol APIs from FreeBSD project

– CPU support

∗ Added support for

· Cortex_A78C CPU

· Makalu ELP CPU

· Makalu CPU

· Matterhorn ELP CPU

· Neoverse-N2 CPU

– CPU Errata

∗ Arm Cortex-A76: Added workaround for erratum 1946160

900 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Arm Cortex-A77: Added workaround for erratum 1946167

∗ Arm Cortex-A78: Added workaround for erratum 1941498 and 1951500

∗ Arm Neoverse-N1: Added workaround for erratum 1946160

– Flattened device tree(libfdt)

∗ Added support for wrapper function to read UUIDs in string format from dtb

• Platforms

– Added support for MediaTek MT8195

– Added support for Arm RD-N2 board

– Allwinner

∗ Added support for H616 SoC

– Arm

∗ Added support for GPT parser

∗ Protect GICR frames for fused/unused cores

– Arm Morello

∗ Added VirtIO network device to Morello FVP fdts

– Arm RD-N2

∗ Added support for variant 1 of RD-N2 platform

∗ Enable AMU support

– Arm RD-V1

∗ Enable AMU support

– Arm SGI

∗ Added support for platform variant build option

– Arm TC0

∗ Added Matterhorn ELP CPU support

∗ Added support for opteed

– Arm Juno

∗ Added support to use hw_config in BL31

∗ Use TRNG entropy source for SMCCC TRNG interface

∗ Condition Juno entropy source with CRC instructions

– Marvell Mochi

∗ Added support for detection of secure mode

– Marvell ARMADA

13.10. 2.5.0 (2021-05-17) 901

Trusted Firmware-A, Release 2.10.4

∗ Added support for new compile option A3720_DB_PM_WAKEUP_SRC

∗ Added support doing system reset via CM3 secure coprocessor

∗ Made several makefile enhancements required to build WTMI_MULTI_IMG and TIMDDR-
TOOL

∗ Added support for building DOIMAGETOOL tool

∗ Added new target mrvl_bootimage

– Mediatek MT8192

∗ Added support for rtc power off sequence

– Mediatek MT8195

∗ Added support for SiP service

– STM32MP1

∗ Added support for

· Seeed ODYSSEY SoM and board

· SDMMC2 and I2C2 pins in pinctrl

· I2C2 peripheral in DTS

· PIE for BL32

· TZC-400 interrupt managament

· Linux Automation MC-1 board

– Renesas RZG

∗ Added support for identifying EK874 RZ/G2E board

∗ Added support for identifying HopeRun HiHope RZ/G2H and RZ/G2H boards

– Rockchip

∗ Added support for stack protector

– QEMU

∗ Added support for max CPU

∗ Added Cortex-A72 support to virt platform

∗ Enabled trigger reboot from secure pl061

– QEMU SBSA

∗ Added support for sbsa-ref Embedded Controller

– NXP

∗ Added support for warm reset to retain ddr content

∗ Added support for image loader necessary for loading fip image

902 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ lx2160a SoC Family

· Added support for

· new platform lx2160a-aqds

· new platform lx2160a-rdb

· new platform lx2162a-aqds

· errata handling

– IMX imx8mm

∗ Added support for trusted board boot

– TI K3

∗ Added support for lite device board

∗ Enabled Cortex-A72 erratum 1319367

∗ Enabled Cortex-A53 erratum 1530924

– Xilinx ZynqMP

∗ Added support for PS and system reset on WDT restart

∗ Added support for error management

∗ Enable support for log messages necessary for debug

∗ Added support for PM API SMC call for efuse and register access

• Processes

– Introduced process for platform deprecation

– Added documentation for TF-A threat model

– Provided a copy of theMIT license to comply with the license requirements of the arm-gic.h source
file (originating from the Linux kernel project and re-distributed in TF-A).

• Services

– Added support for TRNG firmware interface service

– Arm

∗ Added SiP service to configure Ethos-N NPU

– SPMC

∗ Added documentation for SPM(Hafnium) SMMUv3 driver

– SPMD

∗ Added support for

· FFA_INTERRUPT forwading ABI

· FFA_SECONDARY_EP_REGISTER ABI

13.10. 2.5.0 (2021-05-17) 903

Trusted Firmware-A, Release 2.10.4

· FF-A v1.0 boot time power management, SPMC secondary core boot and early run-time
power management

• Tools

– FIPTool

∗ Added mechanism to allow platform specific image UUID

– git hooks

∗ Added support for conventional commits through commitlint hook, commitizen hook and
husky configuration files.

– NXP tool

∗ Added support for a tool that creates pbl file from BL2

– Renesas RZ/G2

∗ Added tool support for creating bootparam and cert_header images

– CertCreate

∗ Added support for platform-defined certificates, keys, and extensions using the platform’s
makefile

– shared tools

∗ Added EFI_GUID representation to uuid helper data structure

13.10.2 Changed

• Common components

– Print newline after hex address in aarch64 el3_panic function

– Use proper #address-cells and #size-cells for reserved-memory in dtbs

• Drivers

– Move SCMI driver from ST platform directory and make it common to all platforms

– Arm GICv3

∗ Shift eSPI register offset in GICD_OFFSET_64()

∗ Use mpidr to probe GICR for current CPU

– Arm TZC-400

∗ Adjust filter tag if it set to FILTER_BIT_ALL

– Cadence

∗ Enhance UART driver APIs to put characters to fifo

– Mediatek MT8192

∗ Move timer driver to common folder

904 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Enhanced sys_cirq driver to add more IC services

– Renesas

∗ Move ddr and delay driver to common directory

– Renesas rcar

∗ Treat log as device memory in console driver

– Renesas RZ Family:

∗ G2N and G2H SoCs

· Select MMC_CH1 for eMMC channel

– Marvell

∗ Added support for checking if TRNG unit is present

– Marvell A3K

∗ Set TXDCLK_2X_SEL bit during PCIe initialization

∗ Set mask parameter for every reg_set call

– Marvell Mochi

∗ Added missing stream IDs configurations

– MbedTLS

∗ Migrated to Mbed TLS v2.26.0

– IMX imx8mp

∗ Change the bl31 physical load address

– QEMU SBSA

∗ Enable secure variable storage

– SCMI

∗ Update power domain protocol version to 2.0

– STM32

∗ Remove dead code from nand FMC driver

• Libraries

– C Standard Library

∗ Use macros to reduce duplicated code between snprintf and printf

– CPU support

∗ Sanity check pointers before use in AArch32 builds

∗ Arm Cortex-A78

· Remove rainier cpu workaround for errata 1542319

13.10. 2.5.0 (2021-05-17) 905

Trusted Firmware-A, Release 2.10.4

∗ Arm Makalu ELP

· Added “_arm” suffix to Makalu ELP CPU lib

• Miscellaneous

– Editorconfig

∗ set max line length to 100

• Platforms

– Allwinner

∗ Added reserved-memory node to DT

∗ Express memmap more dynamically

∗ Move SEPARATE_NOBITS_REGION to platforms

∗ Limit FDT checks to reduce code size

∗ Use CPUIDLE hardware when available

∗ Allow conditional compilation of SCPI and native PSCI ops

∗ Always use a 3MHz RSB bus clock

∗ Enable workaround for Cortex-A53 erratum 1530924

∗ Fixed non-default PRELOADED_BL33_BASE

∗ Leave CPU power alone during BL31 setup

∗ Added several psci hooks enhancements to improve system shutdown/reset sequence

∗ Return the PMIC to I2C mode after use

∗ Separate code to power off self and other CPUs

∗ Split native and SCPI-based PSCI implementations

– Allwinner H6

∗ Added R_PRCM security setup for H6 board

∗ Added SPC security setup for H6 board

∗ Use RSB for the PMIC connection on H6

– Arm

∗ Store UUID as a string, rather than ints

∗ Replace FIP base and size macro with a generic name

∗ Move compile time switch from source to dt file

∗ Don’t provide NT_FW_CONFIG when booting hafnium

∗ Do not setup ‘disabled’ regulator

∗ Increase SP max size

906 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Remove false dependency of ARM_LINUX_KERNEL_AS_BL33 on RESET_TO_BL31
and allow it to be enabled independently

– Arm FVP

∗ Do not map GIC region in BL1 and BL2

– Arm Juno

∗ Refactor juno_getentropy() to return 64 bits on each call

– Arm Morello

∗ Remove “virtio-rng” from Morello FVP

∗ Enable virtIO P9 device for Morello fvp

– Arm RDV1

∗ Allow all PSCI callbacks on RD-V1

∗ Rename rddaniel to rdv1

– Arm RDV1MC

∗ Rename rddanielxlr to rdv1mc

∗ Initialize TZC-400 controllers

– Arm TC0

∗ Updated GICR base address

∗ Use scmi_dvfs clock index 1 for cores 4-7 through fdt

∗ Added reserved-memory node for OP-TEE fdts

∗ Enabled Theodul DSU in TC platform

∗ OP-TEE as S-EL1 SP with SPMC at S-EL2

∗ Update Matterhorm ELP DVFS clock index

– Arm SGI

∗ Allow access to TZC controller on all chips

∗ Define memory regions for multi-chip platforms

∗ Allow access to nor2 flash and system registers from S-EL0

∗ Define default list of memory regions for DMC-620 TZC

∗ Improve macros defining cper buffer memory region

∗ Refactor DMC-620 error handling SMC function id

∗ Refactor SDEI specific macros

∗ Added platform id value for RDN2 platform

∗ Refactored header file inclusions and inclusion of memory mapping

13.10. 2.5.0 (2021-05-17) 907

Trusted Firmware-A, Release 2.10.4

– Arm RDN2

∗ Allow usage of secure partitions on RDN2 platform

∗ Update GIC redistributor and TZC base address

– Arm SGM775

∗ Deprecate Arm sgm775 FVP platform

– Marvell

∗ Increase TX FIFO EMPTY timeout from 2ms to 3ms

∗ Update delay code to be compatible with 1200 MHz CPU

– Marvell ARMADA

∗ Postpone MSS CPU startup to BL31 stage

∗ Allow builds without MSS support

∗ Use MSS SRAM in secure mode

∗ Added missing FORCE, .PHONY and clean targets

∗ Cleanup MSS SRAM if used for copy

∗ Move definition of mrvl_flash target to common marvell_common.mk file

∗ Show informative build messages and blank lines

– Marvell ARMADA A3K

∗ Added a new target mrvl_uart which builds UART image

∗ Added checks that WTP, MV_DDR_PATH and CRYPTOPP_PATH are correctly defined

∗ Allow use of the system Crypto++ library

∗ Build $(WTMI_ENC_IMG) in $(BUILD_PLAT) directory

∗ Build intermediate files in $(BUILD_PLAT) directory

∗ Build UART image files directly in $(BUILD_UART) subdirectory

∗ Correctly set DDR_TOPOLOGY and CLOCKSPRESET for WTMI

∗ Do not use ‘echo -e’ in Makefile

∗ Improve 4GB DRAM usage from 3.375 GB to 3.75 GB

∗ Remove unused variable WTMI_SYSINIT_IMG from Makefile

∗ Simplify check if WTP variable is defined

∗ Split building $(WTMI_MULTI_IMG) and $(TIMDDRTOOL)

– Marvell ARMADA A8K

∗ Allow CP1/CP2 mapping at BLE stage

– Mediatek MT8183

908 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Added timer V20 compensation

– Nvidia Tegra

∗ Rename SMC API

– TI K3

∗ Make plat_get_syscnt_freq2 helper check CNT_FID0 register

∗ Fill non-message data fields in sec_proxy with 0x0

∗ Update ti_sci_msg_req_reboot ABI to include domain

∗ Enable USE_COHERENT_MEM only for the generic board

∗ Explicitly map SEC_SRAM_BASE to 0x0

∗ Use BL31_SIZE instead of computing

∗ Define the correct number of max table entries and increase SRAM size to account for addi-
tional table

– Raspberry Pi4

∗ Switch to gicv2.mk and GICV2_SOURCES

– Renesas

∗ Move headers and assembly files to common folder

– Renesas rzg

∗ Added device tree memory node enhancements

– Rockchip

∗ Switch to using common gicv3.mk

– STM32MP1

∗ Set BL sizes regardless of flags

– QEMU

∗ Include gicv2.mk for compiling GICv2 source files

∗ Change DEVICE2 definition for MMU

∗ Added helper to calculate the position shift from MPIDR

– QEMU SBSA

∗ Include libraries for Cortex-A72

∗ Increase SHARED_RAM_SIZE

∗ Addes support in spm_mm for upto 512 cores

∗ Added support for topology handling

– QTI

13.10. 2.5.0 (2021-05-17) 909

Trusted Firmware-A, Release 2.10.4

∗ Mandate SMC implementation

– Xilinx

∗ Rename the IPI CRC checksum macro

∗ Use fno-jump-tables flag in CPPFLAGS

– Xilinx versal

∗ Added the IPI CRC checksum macro support

∗ Mark IPI calls secure/non-secure

∗ Enable sgi to communicate with linux using IPI

∗ Remove Cortex-A53 compilation

– Xilinx ZynqMP

∗ Configure counter frequency during initialization

∗ Filter errors related to clock gate permissions

∗ Implement pinctrl request/release EEMI API

∗ Reimplement pinctrl get/set config parameter EEMI API calls

∗ Reimplement pinctrl set/get function EEMI API

∗ Update error codes to match Linux and PMU Firmware

∗ Update PM version and support PM version check

∗ Update return type in query functions

∗ Added missing ids for 43/46/47dr devices

∗ Checked for DLL status before doing reset

∗ Disable ITAPDLYENA bit for zero ITAP delay

∗ Include GICv2 makefile

∗ Remove the custom crash implementation

• Services

– SPMD

∗ Lock the g_spmd_pm structure

∗ Declare third cactus instance as UP SP

∗ Provide number of vCPUs and VM size for first SP

∗ Remove chosen node from SPMC manifests

∗ Move OP-TEE SP manifest DTS to FVP platform

∗ Update OP-TEE SP manifest with device-regions node

∗ Remove device-memory node from SPMC manifests

910 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– SPM_MM

∗ Use sp_boot_info to set SP context

– SDEI

∗ Updata the affinity of shared event

• Tools

– FIPtool

∗ Do not print duplicate verbose lines about building fiptool

– CertCreate

∗ Updated tool for platform defined certs, keys & extensions

∗ Create only requested certificates

∗ Avoid duplicates in extension stack

13.10.3 Resolved Issues

• Several fixes for typos and mis-spellings in documentation

• Build system

– Fixed ${FIP_NAME} to be rebuilt only when needed in Makefile

– Do not mark file targets as .PHONY target in Makefile

• Drivers

– Authorization

∗ Avoid NV counter upgrade without certificate validation

– Arm GICv3

∗ Fixed logical issue for num_eints

∗ Limit SPI ID to avoid misjudgement in GICD_OFFSET()

∗ Fixed potential GICD context override with ESPI enabled

– Marvell A3700

∗ Fixed configuring polarity invert bits

– Arm TZC-400

∗ Correct FAIL_CONTROL Privileged bit

∗ Fixed logical error in FILTER_BIT definitions

– Renesas rcar

∗ Fixed several coding style violations reported by checkpatch

• Libraries

13.10. 2.5.0 (2021-05-17) 911

Trusted Firmware-A, Release 2.10.4

– Arch helpers

∗ Fixed assertions in processing dynamic relocations for AArch64 builds

– C standard library

∗ Fixed MISRA issues in memset() ABI

– RAS

∗ Fixed bug of binary search in RAS interrupt handler

• Platforms

– Arm

∗ Fixed missing copyrights in Arm-gic.h file

∗ Fixed the order of header files in several dts files

∗ Fixed error message printing in board makefile

∗ Fixed bug of overriding the last node in image load helper API

∗ Fixed stdout-path in fdts files of TC0 and N1SDP platforms

∗ Turn ON/OFF redistributor in sync with GIC CPU interface ON/OFF for css platforms

– Arm FVP

∗ Fixed Generic Timer interrupt types in platform dts files

– Arm Juno

∗ Fixed parallel build issue for romlib config

– Arm SGI

∗ Fixed bug in SDEI receive event of RAS handler

– Intel Agilex

∗ Fixed PLAT_MAX_PWR_LVL value

– Marvell

∗ Fixed SPD handling in dram port

– Marvell ARMADA

∗ Fixed TRNG return SMC handling

∗ Fixed the logic used for LD selector mask

∗ Fixed MSS firmware loader for A8K family

– ST

∗ Fixed few violations reported by coverity static checks

– STM32MP1

∗ Fixed SELFREF_TO_X32 mask in ddr driver

912 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Do not keep mmc_device_info in stack

∗ Correct plat_crash_console_flush()

– QEMU SBSA

∗ Fixed memory type of secure NOR flash

– QTI

∗ Fixed NUM_APID and REG_APID_MAP() argument in SPMI driver

– Intel

∗ Do not keep mmc_device_info in stack

– Hisilicon

∗ Do not keep mmc_device_info in stack

• Services

– EL3 runtime

∗ Fixed the EL2 context save/restore routine by removing EL2 generic timer system registers

∗ Added fix for exception handler in BL31 by synchronizing pending EA using DSB barrier

– SPMD

∗ Fixed error codes to use int32_t type

– TSPD

∗ Added bug fix in tspd interrupt handling when TSP_NS_INTR_ASYNC_PREEMPT is en-
abled

– TRNG

∗ Fixed compilation errors with -O0 compile option

– DebugFS

∗ Checked channel index before calling clone function

– PSCI

∗ Fixed limit of 256 CPUs caused by cast to unsigned char

– TSP

∗ Fixed compilation erros when built with GCC 11.0.0 toolchain

• Tools

– FIPtool

∗ Do not call make clean for all target

– CertCreate

∗ Fixed bug to avoid cleaning when building the binary

13.10. 2.5.0 (2021-05-17) 913

Trusted Firmware-A, Release 2.10.4

∗ Used preallocated parts of the HASH struct to avoid leaking HASH struct fields

∗ Free arguments copied with strdup

∗ Free keys after use

∗ Free X509_EXTENSION structures on stack to avoid leaking them

∗ Optimized the code to avoid unnecessary attempts to create non-requested certificates

13.11 2.4.0 (2020-11-17)

13.11.1 New Features

• Architecture support

– Armv8.6-A

∗ Added support for Armv8.6 Enhanced Counter Virtualization (ECV)

∗ Added support for Armv8.6 Fine Grained Traps (FGT)

∗ Added support for Armv8.6 WFE trap delays

• Bootloader images

– Added support for Measured Boot

• Build System

– Added build option COT_DESC_IN_DTB to create Chain of Trust at runtime

– Added build option OPENSSL_DIR to direct tools to OpenSSL libraries

– Added build option RAS_TRAP_LOWER_EL_ERR_ACCESS to enable trapping RAS register
accesses from EL1/EL2 to EL3

– Extended build option BRANCH_PROTECTION to support branch target identification

• Common components

– Added support for exporting CPU nodes to the device tree

– Added support for single and dual-root Chains of Trust in secure partitions

• Drivers

– Added Broadcom RNG driver

– Added Marvell mg_conf_cm3 driver

– Added System Control and Management Interface (SCMI) driver

– Added STMicroelectronics ETZPC driver

– Arm GICv3

∗ Added support for detecting topology at runtime

914 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– Dual Root

∗ Added support for platform certificates

– Marvell Cache LLC

∗ Added support for mapping the entire LLC into SRAM

– Marvell CCU

∗ Added workaround for erratum 3033912

– Marvell CP110 COMPHY

∗ Added support for SATA COMPHY polarity inversion

∗ Added support for USB COMPHY polarity inversion

∗ Added workaround for erratum IPCE_COMPHY-1353

– STM32MP1 Clocks

∗ Added RTC as a gateable clock

∗ Added support for shifted clock selector bit masks

∗ Added support for using additional clocks as parents

• Libraries

– C standard library

∗ Added support for hexadecimal and pointer format specifiers in snprint()

∗ Added assembly alternatives for various library functions

– CPU support

∗ Arm Cortex-A53

· Added workaround for erratum 1530924

∗ Arm Cortex-A55

· Added workaround for erratum 1530923

∗ Arm Cortex-A57

· Added workaround for erratum 1319537

∗ Arm Cortex-A76

· Added workaround for erratum 1165522

· Added workaround for erratum 1791580

· Added workaround for erratum 1868343

∗ Arm Cortex-A72

· Added workaround for erratum 1319367

∗ Arm Cortex-A77

13.11. 2.4.0 (2020-11-17) 915

Trusted Firmware-A, Release 2.10.4

· Added workaround for erratum 1508412

· Added workaround for erratum 1800714

· Added workaround for erratum 1925769

∗ Arm Neoverse-N1

· Added workaround for erratum 1868343

– EL3 Runtime

∗ Added support for saving/restoring registers related to nested virtualization in EL2 context
switches if the architecture supports it

– FCONF

∗ Added support for Measured Boot

∗ Added support for populating Chain of Trust properties

∗ Added support for loading the fw_config image

– Measured Boot

∗ Added support for event logging

• Platforms

– Added support for Arm Morello

– Added support for Arm TC0

– Added support for iEi PUZZLE-M801

– Added support for Marvell OCTEON TX2 T9130

– Added support for MediaTek MT8192

– Added support for NXP i.MX 8M Nano

– Added support for NXP i.MX 8M Plus

– Added support for QTI CHIP SC7180

– Added support for STM32MP151F

– Added support for STM32MP153F

– Added support for STM32MP157F

– Added support for STM32MP151D

– Added support for STM32MP153D

– Added support for STM32MP157D

– Arm

∗ Added support for platform-owned SPs

∗ Added support for resetting to BL31

916 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– Arm FPGA

∗ Added support for Klein

∗ Added support for Matterhorn

∗ Added support for additional CPU clusters

– Arm FVP

∗ Added support for performing SDEI platform setup at runtime

∗ Added support for SMCCC’s SMCCC_ARCH_SOC_ID command

∗ Added an id field under the NV-counter node in the device tree to differentiate between
trusted and non-trusted NV-counters

∗ Added support for extracting the clock frequency from the timer node in the device tree

– Arm Juno

∗ Added support for SMCCC’s SMCCC_ARCH_SOC_ID command

– Arm N1SDP

∗ Added support for cross-chip PCI-e

– Marvell

∗ Added support for AVS reduction

– Marvell ARMADA

∗ Added support for twin-die combined memory device

– Marvell ARMADA A8K

∗ Added support for DDR with 32-bit bus width (both ECC and non-ECC)

– Marvell AP806

∗ Added workaround for erratum FE-4265711

– Marvell AP807

∗ Added workaround for erratum 3033912

– Nvidia Tegra

∗ Added debug printouts indicating SC7 entry sequence completion

∗ Added support for SDEI

∗ Added support for stack protection

∗ Added support for GICv3

∗ Added support for SMCCC’s SMCCC_ARCH_SOC_ID command

– Nvidia Tegra194

∗ Added support for RAS exception handling

13.11. 2.4.0 (2020-11-17) 917

Trusted Firmware-A, Release 2.10.4

∗ Added support for SPM

– NXP i.MX

∗ Added support for SDEI

– QEMU SBSA

∗ Added support for the Secure Partition Manager

– QTI

∗ Added RNG driver

∗ Added SPMI PMIC arbitrator driver

∗ Added support for SMCCC’s SMCCC_ARCH_SOC_ID command

– STM32MP1

∗ Added support for exposing peripheral interfaces to the non-secure world at runtime

∗ Added support for SCMI clock and reset services

∗ Added support for STM32MP15x CPU revision Z

∗ Added support for SMCCC services in SP_MIN

• Services

– Secure Payload Dispatcher

∗ Added a provision to allow clients to retrieve the service UUID

– SPMC

∗ Added secondary core endpoint information to the SPMC context structure

– SPMD

∗ Added support for booting OP-TEE as a guest S-EL1 Secure Partition on top of Hafnium in
S-EL2

∗ Added a provision for handling SPMC messages to register secondary core entry points

∗ Added support for power management operations

• Tools

– CertCreate

∗ Added support for secure partitions

– CertTool

∗ Added support for the fw_config image

– FIPTool

∗ Added support for the fw_config image

918 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.11.2 Changed

• Architecture support

• Bootloader images

• Build System

– The top-level Makefile now supports building FipTool on Windows

– The default value of KEY_SIZE has been changed to to 2048 when RSA is in use

– The previously-deprecated macro __ASSEMBLY__ has now been removed

• Common components

– Certain functions that flush the console will no longer return error information

• Drivers

– Arm GIC

∗ Usage of drivers/arm/gic/common/gic_common.c has now been deprecated in
favour of drivers/arm/gic/vX/gicvX.mk

∗ Added support for detecting the presence of a GIC600-AE

∗ Added support for detecting the presence of a GIC-Clayton

– Marvell MCI

∗ Now performs link tuning for all MCI interfaces to improve performance

– Marvell MoChi

∗ PIDI masters are no longer forced into a non-secure access level when LLC_SRAM is enabled

∗ The SD/MMC controllers are now accessible from guest virtual machines

– Mbed TLS

∗ Migrated to Mbed TLS v2.24.0

– STM32 FMC2 NAND

∗ Adjusted FMC node bindings to include an EBI controller node

– STM32 Reset

∗ Added an optional timeout argument to assertion functions

– STM32MP1 Clocks

∗ Enabled several additional system clocks during initialization

• Libraries

– C Standard Library

∗ Improved memset performance by avoiding single-byte writes

∗ Added optimized assembly variants of memset

13.11. 2.4.0 (2020-11-17) 919

Trusted Firmware-A, Release 2.10.4

– CPU support

∗ Renamed Cortex-Hercules to Cortex-A78

∗ Renamed Cortex-Hercules AE to Cortex-A78 AE

∗ Renamed Neoverse Zeus to Neoverse V1

– Coreboot

∗ Updated ‘coreboot_get_memory_type’ API to take an extra argument as a ’memory size’ that
used to return a valid memory type.

– libfdt

∗ Updated to latest upstream version

• Platforms

– Allwinner

∗ Disabled non-secure access to PRCM power control registers

– Arm

∗ BL32_BASE is now platform-dependent when SPD_spmd is enabled

∗ Added support for loading the Chain of Trust from the device tree

∗ The firmware update check is now executed only once

∗ NV-counter base addresses are now loaded from the device tree when COT_DESC_IN_DTB
is enabled

∗ Now loads and populates fw_config and tb_fw_config

∗ FCONF population now occurs after caches have been enabled in order to reduce boot times

– Arm Corstone-700

∗ Platform support has been split into both an FVP and an FPGA variant

– Arm FPGA

∗ DTB and BL33 load addresses have been given sensible default values

∗ Now reads generic timer counter frequency, GICD and GICR base addresses, and UART
address from DT

∗ Now treats the primary PL011 UART as an SBSA Generic UART

– Arm FVP

∗ Secure interrupt descriptions, UART parameters, clock frequencies and GICv3 parameters
are now queried through FCONF

∗ UART parameters are now queried through the device tree

∗ Added an owner field to Cactus secure partitions

∗ Increased the maximum size of BL2 when the Chain of Trust is loaded from the device tree

920 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Reduces the maximum size of BL31

∗ The FVP_USE_SP804_TIMER and FVP_VE_USE_SP804_TIMER build options have
been removed in favour of a common USE_SP804_TIMER option

∗ Added a third Cactus partition to manifests

∗ Device tree nodes now store UUIDs in big-endian

– Arm Juno

∗ Increased the maximum size of BL2 when optimizations have not been applied

∗ Reduced the maximum size of BL31 and BL32

– Marvell AP807

∗ Enabled snoop filters

– Marvell ARMADA A3K

∗ UART recovery images are now suffixed with .bin

– Marvell ARMADA A8K

∗ Option BL31_CACHE_DISABLE is now disabled (0) by default

– Nvidia Tegra

∗ Added VPR resize supported check when processing video memory resize requests

∗ Added SMMU verification to prevent potential issues caused by undetected corruption of the
SMMU configuration during boot

∗ The GIC CPU interface is now properly disabled after CPU off

∗ The GICv2 sources list and the BL31_SIZE definition have been made platform-specific

∗ The SPE driver will no longer flush the console when writing individual characters

– Nvidia Tegra194

∗ TZDRAM setup has been moved to platform-specific early boot handlers

∗ Increased verbosity of debug prints for RAS SErrors

∗ Support for powering down CPUs during CPU suspend has been removed

∗ Now verifies firewall settings before using resources

– TI K3

∗ The UART number has been made configurable through K3_USART

– Rockchip RK3368

∗ The maximum number of memory map regions has been increased to 20

– Socionext Uniphier

∗ The maximum size of BL33 has been increased to support larger bootloaders

– STM32

13.11. 2.4.0 (2020-11-17) 921

Trusted Firmware-A, Release 2.10.4

∗ Removed platform-specific DT functions in favour of using existing generic alternatives

– STM32MP1

∗ Increased verbosity of exception reports in debug builds

∗ Device trees have been updated to align with the Linux kernel

∗ Now uses the ETZPC driver to configure secure-aware interfaces for assignment to the non-
secure world

∗ Finished good variants have been added to the board identifier enumerations

∗ Non-secure access to clocks and reset domains now depends on their state of registration

∗ NEON is now disabled in SP_MIN

∗ The last page of SYSRAM is now used as SCMI shared memory

∗ Checks to verify platform compatibility have been added to verify that an image is compatible
with the chip ID of the running platform

– QEMU SBSA

∗ Removed support for Arm’s Cortex-A53

• Services

– Renamed SPCI to FF-A

– SPMD

∗ No longer forwards requests to the non-secure world when retrieving partition information

∗ SPMC manifest size is now retrieved directly from SPMD instead of the device tree

∗ The FF-A version handler now returns SPMD’s version when the origin of the call is secure,
and SPMC’s version when the origin of the call is non-secure

– SPMC

∗ Updated the manifest to declare CPU nodes in descending order as per the SPM (Hafnium)
multicore requirement

∗ Updated the device tree to mark 2GB as device memory for the first partition excluding trusted
DRAM region (which is reserved for SPMC)

∗ Increased the number of EC contexts to the maximum number of PEs as per the FF-A spec-
ification

• Tools

– FIPTool

∗ Now returns 0 on help and help <command>

– Marvell DoImage

∗ Updated Mbed TLS support to v2.8

– SPTool

922 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Now appends CertTool arguments

13.11.3 Resolved Issues

• Bootloader images

– Fixed compilation errors for dual-root Chains of Trust caused by symbol collision

– BL31

∗ Fixed compilation errors on platforms with fewer than 4 cores caused by initialization code
exceeding the end of the stacks

∗ Fixed compilation errors when building a position-independent image

• Build System

– Fixed invalid empty version strings

– Fixed compilation errors on Windows caused by a non-portable architecture revision comparison

• Drivers

– Arm GIC

∗ Fixed spurious interrupts caused by a missing barrier

– STM32 Flexible Memory Controller 2 (FMC2) NAND driver

∗ Fixed runtime instability caused by incorrect error detection logic

– STM32MP1 Clock driver

∗ Fixed incorrectly-formatted log messages

∗ Fixed runtime instability caused by improper clock gating procedures

– STMicroelectronics Raw NAND driver

∗ Fixed runtime instability caused by incorrect unit conversion when waiting for NAND readi-
ness

• Libraries

– AMU

∗ Fixed timeout errors caused by excess error logging

– EL3 Runtime

∗ Fixed runtime instability caused by improper register save/restore routine in EL2

– FCONF

∗ Fixed failure to initialize GICv3 caused by overly-strict device tree requirements

– Measured Boot

∗ Fixed driver errors caused by a missing default value for the HASH_ALG build option

13.11. 2.4.0 (2020-11-17) 923

Trusted Firmware-A, Release 2.10.4

– SPE

∗ Fixed feature detection check that prevented CPUs supporting SVE from detecting support
for SPE in the non-secure world

– Translation Tables

∗ Fixed various MISRA-C 2012 static analysis violations

• Platforms

– Allwinner A64

∗ Fixed USB issues on certain battery-powered device caused by improperly activated USB
power rail

– Arm

∗ Fixed compilation errors caused by increase in BL2 size

∗ Fixed compilation errors caused by missing Makefile dependencies to generated files when
building the FIP

∗ Fixed MISRA-C 2012 static analysis violations caused by unused structures in include direc-
tives intended to be feature-gated

– Arm FPGA

∗ Fixed initialization issues caused by incorrect MPIDR topology mapping logic

– Arm RD-N1-edge

∗ Fixed compilation errors caused by mismatched parentheses in Makefile

– Arm SGI

∗ Fixed crashes due to the flash memory used for cold reboot attack protection not being mapped

– Intel Agilex

∗ Fixed initialization issues caused by several compounding bugs

– Marvell

∗ Fixed compilation warnings caused by multiple Makefile inclusions

– Marvell ARMADA A3K

∗ Fixed boot issue in debug builds caused by checks on the BL33 load address that are not
appropriate for this platform

– Nvidia Tegra

∗ Fixed incorrect delay timer reads

∗ Fixed spurious interrupts in the non-secure world during cold boot caused by the arbitration
bit in the memory controller not being cleared

∗ Fixed faulty video memory resize sequence

– Nvidia Tegra194

924 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

∗ Fixed incorrect alignment of TZDRAM base address

– NXP iMX8M

∗ Fixed CPU hot-plug issues caused by race condition

– STM32MP1

∗ Fixed compilation errors in highly-parallel builds caused by incorrect Makefile dependencies

– STM32MP157C-ED1

∗ Fixed initialization issues caused by missing device tree hash node

– Raspberry Pi 3

∗ Fixed compilation errors caused by incorrect dependency ordering in Makefile

– Rockchip

∗ Fixed initialization issues caused by non-critical errors when parsing FDT being treated as
critical

– Rockchip RK3368

∗ Fixed runtime instability caused by incorrect CPUID shift value

– QEMU

∗ Fixed compilation errors caused by incorrect dependency ordering in Makefile

– QEMU SBSA

∗ Fixed initialization issues caused by FDT exceeding reserved memory size

– QTI

∗ Fixed compilation errors caused by inclusion of a non-existent file

• Services

– FF-A (previously SPCI)

∗ Fixed SPMD aborts caused by incorrect behaviour when the manifest is page-aligned

• Tools

– Fixed compilation issues when compiling tools from within their respective directories

– FIPTool

∗ Fixed command line parsing issues on Windows when using arguments whose names also
happen to be a subset of another’s

– Marvell DoImage

∗ Fixed PKCS signature verification errors at boot on some platforms caused by generation of
misaligned images

13.11. 2.4.0 (2020-11-17) 925

Trusted Firmware-A, Release 2.10.4

13.11.4 Known Issues

• Platforms

– NVIDIA Tegra

∗ Signed comparison compiler warnings occurring in libfdt are currently being worked around
by disabling the warning for the platform until the underlying issue is resolved in libfdt

13.12 2.3.0 (2020-04-20)

13.12.1 New Features

• Arm Architecture

– Add support for Armv8.4-SecEL2 extension through the SPCI defined SPMD/SPMC components.

– Build option to support EL2 context save and restore in the secure world
(CTX_INCLUDE_EL2_REGS).

– Add support for SMCCC v1.2 (introducing the new SMCCC_ARCH_SOC_ID SMC). Note that
the support is compliant, but the SVE registers save/restore will be done as part of future S-
EL2/SPM development.

• BL-specific

– Enhanced BL2 bootloader flow to load secure partitions based on firmware configuration data
(fconf).

– Changes necessary to support SEPARATE_NOBITS_REGION feature

– TSP and BL2_AT_EL3: Add Position Independent Execution PIE support

• Build System

– Add support for documentation build as a target in Makefile

– Add COT build option to select the Chain of Trust to use when the Trusted Boot feature is enabled
(default: tbbr).

– Added creation and injection of secure partition packages into the FIP.

– Build option to support SPMC component loading and run at S-EL1 or S-EL2
(SPMD_SPM_AT_SEL2).

– Enable MTE support

– Enable Link Time Optimization in GCC

– Enable -Wredundant-decls warning check

– Makefile: Add support to optionally encrypt BL31 and BL32

– Add support to pass the nt_fw_config DTB to OP-TEE.

– Introduce per-BL CPPFLAGS, ASFLAGS, and LDFLAGS

926 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– build_macros: Add CREATE_SEQ function to generate sequence of numbers

• CPU Support

– cortex-a57: Enable higher performance non-cacheable load forwarding

– Hercules: Workaround for Errata 1688305

– Klein: Support added for Klein CPU

– Matterhorn: Support added for Matterhorn CPU

• Drivers

– auth: Add calc_hash function for hash calculation. Used for authentication of images when
measured boot is enabled.

– cryptocell: Add authenticated decryption framework, and support for CryptoCell-713 and
CryptoCell-712 RSA 3K

– gic600: Add support for multichip configuration and Clayton

– gicv3: Introduce makefile, Add extended PPI and SPI range, Add support for probing multiple GIC
Redistributor frames

– gicv4: Add GICv4 extension for GIC driver

– io: Add an IO abstraction layer to load encrypted firmwares

– mhu: Derive doorbell base address

– mtd: Add SPI-NOR, SPI-NAND, SPI-MEM, and raw NAND framework

– scmi: Allow use of multiple SCMI channels

– scu: Add a driver for snoop control unit

• Libraries

– coreboot: Add memory range parsing and use generic base address

– compiler_rt: Import popcountdi2.c and popcountsi2.c files, aeabi_ldivmode.S file and dependen-
cies

– debugFS: Add DebugFS functionality

– el3_runtime: Add support for enabling S-EL2

– fconf: Add Firmware Configuration Framework (fconf) (experimental).

– libc: Add memrchr function

– locks: bakery: Use is_dcache_enabled() helper and add a DMB to the ‘read_cache_op’ macro

– psci: Add support to enable different personality of the same soc.

– xlat_tables_v2: Add support to pass shareability attribute for normal memory region, use
get_current_el_maybe_constant() in is_dcache_enabled(), read-only xlat tables for BL31 memory,
and add enable_mmu()

• New Platforms Support

13.12. 2.3.0 (2020-04-20) 927

Trusted Firmware-A, Release 2.10.4

– arm/arm_fpga: New platform support added for FPGA

– arm/rddaniel: New platform support added for rd-daniel platform

– brcm/stingray: New platform support added for Broadcom stingray platform

– nvidia/tegra194: New platform support for Nvidia Tegra194 platform

• Platforms

– allwinner: Implement PSCI system suspend using SCPI, add a msgbox driver for use with SCPI,
and reserve and map space for the SCP firmware

– allwinner: axp: Add AXP805 support

– allwinner: power: Add DLDO4 power rail

– amlogic: axg: Add a build flag when using ATOS as BL32 and support for the A113D (AXG)
platform

– arm/a5ds: Add ethernet node and L2 cache node in devicetree

– arm/common: Add support for the new dualroot chain of trust

– arm/common: Add support for SEPARATE_NOBITS_REGION

– arm/common: Re-enable PIE when RESET_TO_BL31=1

– arm/common: Allow boards to specify second DRAM Base address and to define
PLAT_ARM_TZC_FILTERS

– arm/corstone700: Add support for mhuv2 and stack protector

– arm/fvp: Add support for fconf in BL31 and SP_MIN. Populate power domain descriptor dynam-
ically by leveraging fconf APIs.

– arm/fvp: Add Cactus/Ivy Secure Partition information and use two instances of Cactus at S-EL1

– arm/fvp: Add support to run BL32 in TDRAM and BL31 in secure DRAM

– arm/fvp: Add support for GICv4 extension and BL2 hash calculation in BL1

– arm/n1sdp: Setup multichip gic routing table, update platform macros for dual-chip setup, in-
troduce platform information SDS region, add support to update presence of External LLC, and
enable the NEOVERSE_N1_EXTERNAL_LLC flag

– arm/rdn1edge: Add support for dual-chip configuration and use CREATE_SEQ helper macro to
compare chip count

– arm/sgm: Always use SCMI for SGM platforms

– arm/sgm775: Add support for dynamic config using fconf

– arm/sgi: Add multi-chip mode parameter in HW_CONFIG dts, macros for remote chip device
region, chip_id and multi_chip_mode to platform variant info, and introduce number of chips
macro

– brcm: Add BL2 and BL31 support common across Broadcom platforms

928 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– brcm: Add iproc SPI Nor flash support, spi driver, emmc driver, and support to retrieve
plat_toc_flags

– hisilicon: hikey960: Enable system power off callback

– intel: Enable bridge access, SiP SMC secure register access, and uboot entrypoint support

– intel: Implement platform specific system reset 2

– intel: Introduce mailbox response length handling

– imx: console: Use CONSOLE_T_BASE for UART base address and generic console_t data struc-
ture

– imx8mm: Provide uart base as build option and add the support for opteed spd on
imx8mq/imx8mm

– imx8qx: Provide debug uart num as build

– imx8qm: Apply clk/pinmux configuration for DEBUG_CONSOLE and provide debug uart num
as build param

– marvell: a8k: Implement platform specific power off and add support for loading MGCM3 images

– mediatek: mt8183: Add Vmodem/Vcore DVS init level

– qemu: Support optional encryption of BL31 and BL32 images and
ARM_LINUX_KERNEL_AS_BL33 to pass FDT address

– qemu: Define ARMV7_SUPPORTS_VFP

– qemu: Implement PSCI_CPU_OFF and qemu_system_off via semihosting

– renesas: rcar_gen3: Add new board revision for M3ULCB

– rockchip: Enable workaround for erratum 855873, claim a macro to enable hdcp feature for DP,
enable power domains of rk3399 before reset, add support for UART3 as serial output, and initialize
reset and poweroff GPIOs with known invalid value

– rpi: Implement PSCI CPU_OFF, use MMIO accessor, autodetect Mini-UART vs. PL011 config-
uration, and allow using PL011 UART for RPi3/RPi4

– rpi3: Include GPIO driver in all BL stages and use same “clock-less” setup scheme as RPi4

– rpi3/4: Add support for offlining CPUs

– st: stm32mp1: platform.mk: Support generating multiple images in one build, migrate to implicit
rules, derive map file name from target name, generate linker script with fixed name, and use
PHONY for the appropriate targets

– st: stm32mp1: Add support for SPI-NOR, raw NAND, and SPI-NAND boot device, QSPI, FMC2
driver

– st: stm32mp1: Use stm32mp_get_ddr_ns_size() function, set XN attribute for some areas in BL2,
dynamically map DDR later and non-cacheable during its test, add a function to get non-secure
DDR size, add DT helper for reg by name, and add compilation flags for boot devices

– socionext: uniphier: Turn on ENABLE_PIE

13.12. 2.3.0 (2020-04-20) 929

Trusted Firmware-A, Release 2.10.4

– ti: k3: Add PIE support

– xilinx: versal: Add set wakeup source, client wakeup, query data, request wakeup,
PM_INIT_FINALIZE, PM_GET_TRUSTZONE_VERSION, PM IOCTL, support for suspend
related, and Get_ChipID APIs

– xilinx: versal: Implement power down/restart related EEMI, SMC handler for EEMI, PLL related
PM, clock related PM, pin control related PM, reset related PM, device related PM , APIs

– xilinx: versal: Enable ipi mailbox service

– xilinx: versal: Add get_api_version support and support to send PM API to PMC using IPI

– xilinx: zynqmp: Add checksum support for IPI data, GET_CALLBACK_DATA function, support
to query max divisor, CLK_SET_RATE_PARENT in gem clock node, support for custom type
flags, LPD WDT clock to the pm_clock structure, idcodes for new RFSoC silicons ZU48DR and
ZU49DR, and id for new RFSoC device ZU39DR

• Security

– Use Speculation Barrier instruction for v8.5+ cores

– Add support for optional firmware encryption feature (experimental).

– Introduce a new dualroot chain of trust.

– aarch64: Prevent speculative execution past ERET

– aarch32: Stop speculative execution past exception returns.

• SPCI

– Introduced the Secure PartitionManager Dispatcher (SPMD) component as a new standard service.

• Tools

– cert_create: Introduce CoT build option and TBBR CoT makefile, and define the dualroot CoT

– encrypt_fw: Add firmware authenticated encryption tool

– memory: Add show_memory script that prints a representation of the memory layout for the latest
build

13.12.2 Changed

• Arm Architecture

– PIE: Make call to GDT relocation fixup generalized

• BL-Specific

– Increase maximum size of BL2 image

– BL31: Discard .dynsym .dynstr .hash sections to make ENABLE_PIE work

– BL31: Split into two separate memory regions

– Unify BL linker scripts and reduce code duplication.

930 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Build System

– Changes to drive cert_create for dualroot CoT

– Enable -Wlogical-op always

– Enable -Wshadow always

– Refactor the warning flags

– PIE: Pass PIE options only to BL31

– Reduce space lost to object alignment

– Set lld as the default linker for Clang builds

– Remove -Wunused-const-variable and -Wpadded warning

– Remove -Wmissing-declarations warning from WARNING1 level

• Drivers

– authentication: Necessary fix in drivers to upgrade to mbedtls-2.18.0

– console: Integrate UART base address in generic console_t

– gicv3: Change API for GICR_IPRIORITYR accessors and separate GICD and GICR accessor
functions

– io: Change seek offset to signed long long and panic in case of io setup failure

– smmu: SMMUv3: Changed retry loop to delay timer

– tbbr: Reduce size of hash and ECDSA key buffers when possible

• Library Code

– libc: Consolidate the size_t, unified, and NULL definitions, and unify intmax_t and uintmax_t on
AArch32/64

– ROMLIB: Optimize memory layout when ROMLIB is used

– xlat_tables_v2: Use ARRAY_SIZE in REGISTER_XLAT_CONTEXT_FULL_SPEC, merge
REGISTER_XLAT_CONTEXT_{FULL_SPEC,RO_BASE_TABLE}, and simplify end address
checks in mmap_add_region_check()

• Platforms

– allwinner: Adjust SRAM A2 base to include the ARISC vectors, clean up MMU setup, reenable
USE_COHERENT_MEM, remove unused include path, move the NOBITS region to SRAM A1,
convert AXP803 regulator setup code into a driver, enable clock before resetting I2C/RSB

– allwinner: h6: power: Switch to using the AXP driver

– allwinner: a64: power: Use fdt_for_each_subnode, remove obsolete register check, remove dupli-
cate DT check, and make sunxi_turn_off_soc static

– allwinner: Build PMIC bus drivers only in BL31, clean up PMIC-related error handling, and syn-
chronize PMIC enumerations

– arm/a5ds: Change boot address to point to DDR address

13.12. 2.3.0 (2020-04-20) 931

Trusted Firmware-A, Release 2.10.4

– arm/common: Check for out-of-bound accesses in the platform io policies

– arm/corstone700: Updating the kernel arguments to support initramfs, use fdts DDR memory and
XIP rootfs, and set UART clocks to 32MHz

– arm/fvp: Modify multithreaded dts file of DynamIQ FVPs, slightly bump the stack size for bl1 and
bl2, remove re-definition of topology related build options, stop reclaiming init code with Clang
builds, and map only the needed DRAM region statically in BL31/SP_MIN

– arm/juno: Maximize space allocated to SCP_BL2

– arm/sgi: Bump bl1 RW limit, mark remote chip shared ram as non-cacheable, move GIC
related constants to board files, include AFF3 affinity in core position calculation, move
bl31_platform_setup to board file, and move topology information to board folder

– common: Refactor load_auth_image_internal().

– hisilicon: Remove uefi-tools in hikey and hikey960 documentation

– intel: Modify non secure access function, BL31 address mapping, mailbox’s get_config_status, and
stratix10 BL31 parameter handling

– intel: Remove un-needed checks for qspi driver r/w and s10 unused source code

– intel: Change all global sip function to static

– intel: Refactor common platform code

– intel: Create SiP service header file

– marvell: armada: scp_bl2: Allow loading up to 8 images

– marvell: comphy-a3700: Support SGMII COMPHY power off and fix USB3 powering on when
on lane 2

– marvell: Consolidate console register calls

– mediatek: mt8183: Protect 4GB~8GB dram memory, refine GIC driver for low power scenarios,
and switch PLL/CLKSQ/ck_off/axi_26m control to SPM

– qemu: Update flash address map to keep FIP in secure FLASH0

– renesas: rcar_gen3: Update IPL and Secure Monitor Rev.2.0.6, update DDR setting for H3, M3,
M3N, change fixed destination address of BL31 and BL32, add missing #{address,size}-cells into
generated DT, pass DT to OpTee OS, and move DDR drivers out of staging

– rockchip: Make miniloader ddr_parameter handling optional, cleanup securing of ddr regions,
move secure init to separate file, use base+size for secure ddr regions, bring TZRAM_SIZE values
in lined, and prevent macro expansion in paths

– rpi: Move plat_helpers.S to common

– rpi3: gpio: Simplify GPIO setup

– rpi4: Skip UART initialisation

– st: stm32m1: Use generic console_t data structure, remove second QSPI flash instance, update for
FMC2 pin muxing, and reduce MAX_XLAT_TABLES to 4

932 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– socionext: uniphier: Make on-chip SRAM and I/O register regions configurable

– socionext: uniphier: Make PSCI related, counter control, UART, pinmon, NAND controller, and
eMMC controller base addresses configurable

– socionext: uniphier: Change block_addressing flag and the return value type of .is_usb_boot() to
bool

– socionext: uniphier: Run BL33 at EL2, call uniphier_scp_is_running() only when on-chip STM
is supported, define PLAT_XLAT_TABLES_DYNAMIC only for BL2, support read-only xlat
tables, use enable_mmu() in common function, shrink UNIPHIER_ROM_REGION_SIZE, pre-
pare uniphier_soc_info() for next SoC, extend boot device detection for future SoCs, make all BL
images completely position-independent, make uniphier_mmap_setup() work with PIE, pass SCP
base address as a function parameter, set buffer offset and length for io_block dynamically, and
use more mmap_add_dynamic_region() for loading images

– spd/trusty: Disable error messages seen during boot, allow gic base to be specified
with GICD_BASE, and allow getting trusty memsize from BL32_MEM_SIZE instead of
TSP_SEC_MEM_SIZE

– ti: k3: common: Enable ARM cluster power down and rename device IDs to be more consistent

– ti: k3: drivers: ti_sci: Put sequence number in coherent memory and remove indirect structure of
const data

– xilinx: Move ipi mailbox svc to xilinx common

– xilinx: zynqmp: Use GIC framework for warm restart

– xilinx: zynqmp: pm: Move custom clock flags to typeflags, remove CLK_TOPSW_LSBUS from
invalid clock list and rename FPD WDT clock ID

– xilinx: versal: Increase OCM memory size for DEBUG builds and adjust cpu clock, Move ver-
sal_def.h and versal_private to include directory

• Tools

– sptool: Updated sptool to accommodate building secure partition packages.

13.12.3 Resolved Issues

• Arm Architecture

– Fix crash dump for lower EL

• BL-Specific

– Bug fix: Protect TSP prints with lock

– Fix boot failures on some builds linked with ld.lld.

• Build System

– Fix clang build if CC is not in the path.

– Fix ‘BL stage’ comment for build macros

13.12. 2.3.0 (2020-04-20) 933

Trusted Firmware-A, Release 2.10.4

• Code Quality

– coverity: Fix various MISRA violations including null pointer violations, C issues in
BL1/BL2/BL31 and FDT helper functions, using boolean essential, type, and removing unnec-
essary header file and comparisons to LONG_MAX in debugfs devfip

– Based on coding guidelines, replace all unsigned long depending on if fixed based on
AArch32 or AArch64.

– Unify type of “cpu_idx” and Platform specific defines across PSCI module.

• Drivers

– auth: Necessary fix in drivers to upgrade to mbedtls-2.18.0

– delay_timer: Fix non-standard frequency issue in udelay

– gicv3: Fix compiler dependent behavior

– gic600: Fix include ordering according to the coding style and power up sequence

• Library Code

– el3_runtime: Fix stack pointer maintenance on EA handling path, fixup ‘cm_setup_context’ pro-
totype, and adds TPIDR_EL2 register to the context save restore routines

– libc: Fix SIZE_MAX on AArch32

– locks: T589: Fix insufficient ordering guarantees in bakery lock

– pmf: Fix ‘tautological-constant-compare’ error, Make the runtime instrumentation work on
AArch32, and Simplify PMF helper macro definitions across header files

– xlat_tables_v2: Fix assembler warning of PLAT_RO_XLAT_TABLES

• Platforms

– allwinner: Fix H6 GPIO and CCU memory map addresses and incorrect ARISC code patch offset
check

– arm/a5ds: Correct system freq and Cache Writeback Granule, and cleanup enable-method in de-
vicetree

– arm/fvp: Fix incorrect GICmapping, BL31 load address and image size for RESET_TO_BL31=1,
topology description of cpus for DynamIQ based FVP, and multithreaded FVP power domain tree

– arm/fvp: spm-mm: Correcting instructions to build SPM for FVP

– arm/common: Fix ROTPK hash generation for ECDSA encryption, BL2 bug in dynamic configu-
ration initialisation, and current RECLAIM_INIT_CODE behavior

– arm/rde1edge: Fix incorrect topology tree description

– arm/sgi: Fix the incorrect check for SCMI channel ID

– common: Flush dcache when storing timestamp

– intel: Fix UEFI decompression issue, memory calibration, SMC SIP service, mailbox config return
status, mailbox driver logic, FPGA manager on reconfiguration, and mailbox send_cmd issue

934 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– imx: Fix shift-overflow errors, the rdc memory region slot’s offset, multiple definition of
ipc_handle, missing inclusion of cdefs.h, and correct the SGIs that used for secure interrupt

– mediatek: mt8183: Fix AARCH64 init fail on CPU0

– rockchip: Fix definition of struct param_ddr_usage

– rpi4: Fix documentation of armstub config entry

– st: Correct io possible NULL pointer dereference and device_size type, nand xor_ecc.val assigned
value, static analysis tool issues, and fix incorrect return value and correctly check pwr-regulators
node

– xilinx: zynqmp: Correct syscnt freq for QEMU and fix clock models and IDs of GEM-related
clocks

13.12.4 Known Issues

• Build System

– dtb: DTB creation not supported when building on a Windows host.

This step in the build process is skipped when running on a Windows host. A known issue from
the 1.6 release.

– Intermittent assertion firing ASSERT: services/spd/tspd/tspd_main.c:105

• Coverity

– Intermittent Race condition in Coverity Jenkins Build Job

• Platforms

– arm/juno: System suspend from Linux does not function as documented in the user guide

Following the instructions provided in the user guide document does not result in the platform
entering system suspend state as expected. A message relating to the hdlcd driver failing to suspend
will be emitted on the Linux terminal.

– mediatek/mt6795: This platform does not build in this release

13.13 2.2.0 (2019-10-22)

13.13.1 New Features

• Architecture

– Enable Pointer Authentication (PAuth) support for Secure World

∗ Adds support for ARMv8.3-PAuth in BL1 SMC calls and BL2U image for firmware updates.

– Enable Memory Tagging Extension (MTE) support in both secure and non-secure worlds

13.13. 2.2.0 (2019-10-22) 935

Trusted Firmware-A, Release 2.10.4

∗ Adds support for the new Memory Tagging Extension arriving in ARMv8.5. MTE support is
now enabled by default on systems that support it at EL0.

∗ To enable it at ELx for both the non-secure and the secure world, the compiler flag
CTX_INCLUDE_MTE_REGS includes register saving and restoring when necessary in or-
der to prevent information leakage between the worlds.

– Add support for Branch Target Identification (BTI)

• Build System

– Modify FVP makefile for CPUs that support both AArch64/32

– AArch32: Allow compiling with soft-float toolchain

– Makefile: Add default warning flags

– Add Makefile check for PAuth and AArch64

– Add compile-time errors for HW_ASSISTED_COHERENCY flag

– Apply compile-time check for AArch64-only CPUs

– build_macros: Add mechanism to prevent bin generation.

– Add support for default stack-protector flag

– spd: opteed: Enable NS_TIMER_SWITCH

– plat/arm: Skip BL2U if RESET_TO_SP_MIN flag is set

– Add new build option to let each platform select which implementation of spinlocks it wants to use

• CPU Support

– DSU: Workaround for erratum 798953 and 936184

– Neoverse N1: Force cacheable atomic to near atomic

– Neoverse N1: Workaround for erratum 1073348, 1130799, 1165347, 1207823, 1220197,
1257314, 1262606, 1262888, 1275112, 1315703, 1542419

– Neoverse Zeus: Apply the MSR SSBS instruction

– cortex-Hercules/HerculesAE: Support added for Cortex-Hercules and Cortex-HerculesAE CPUs

– cortex-Hercules/HerculesAE: Enable AMU for Cortex-Hercules and Cortex-HerculesAE

– cortex-a76AE: Support added for Cortex-A76AE CPU

– cortex-a76: Workaround for erratum 1257314, 1262606, 1262888, 1275112, 1286807

– cortex-a65/a65AE: Support added for Cortex-A65 and Cortex-A65AE CPUs

– cortex-a65: Enable AMU for Cortex-A65

– cortex-a55: Workaround for erratum 1221012

– cortex-a35: Workaround for erratum 855472

– cortex-a9: Workaround for erratum 794073

936 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Drivers

– console: Allow the console to register multiple times

– delay: Timeout detection support

– gicv3: Enabled multi-socket GIC redistributor frame discovery and migrated ARM platforms to
the new API

∗ Adds gicv3_rdistif_probe function that delegates the responsibility of discovering the
corresponding redistributor base frame to each CPU itself.

– sbsa: Add SBSA watchdog driver

– st/stm32_hash: Add HASH driver

– ti/uart: Add an AArch32 variant

• Library at ROM (romlib)

– Introduce BTI support in Library at ROM (romlib)

• New Platforms Support

– amlogic: g12a: New platform support added for the S905X2 (G12A) platform

– amlogic: meson/gxl: New platform support added for Amlogic Meson S905x (GXL)

– arm/a5ds: New platform support added for A5 DesignStart

– arm/corstone: New platform support added for Corstone-700

– intel: New platform support added for Agilex

– mediatek: New platform support added for MediaTek mt8183

– qemu/qemu_sbsa: New platform support added for QEMU SBSA platform

– renesas/rcar_gen3: plat: New platform support added for D3

– rockchip: New platform support added for px30

– rockchip: New platform support added for rk3288

– rpi: New platform support added for Raspberry Pi 4

• Platforms

– arm/common: Introduce wrapper functions to setup secure watchdog

– arm/fvp: Add Delay Timer driver to BL1 and BL31 and option for defining platform DRAM2 base

– arm/fvp: Add Linux DTS files for 32 bit threaded FVPs

– arm/n1sdp: Add code for DDR ECC enablement and BL33 copy to DDR, Initialise CNTFRQ in
Non Secure CNTBaseN

– arm/juno: Use shared mbedtls heap between BL1 and BL2 and add basic support for dynamic
config

– imx: Basic support for PicoPi iMX7D, rdc module init, caam module init, aipstz init,
IMX_SIP_GET_SOC_INFO, IMX_SIP_BUILDINFO added

13.13. 2.2.0 (2019-10-22) 937

Trusted Firmware-A, Release 2.10.4

– intel: Add ncore ccu driver

– mediatek/mt81*: Use new bl31_params_parse() helper

– nvidia: tegra: Add support for multi console interface

– qemu/qemu_sbsa: Adding memory mapping for both FLASH0/FLASH1

– qemu: Added gicv3 support, new console interface in AArch32, and sub-platforms

– renesas/rcar_gen3: plat: Add R-Car V3M support, new board revision for H3ULCB, DBSC4 set-
ting before self-refresh mode

– socionext/uniphier: Support console based on multi-console

– st: stm32mp1: Add OP-TEE, Avenger96, watchdog, LpDDR3, authentication support and general
SYSCFG management

– ti/k3: common: Add support for J721E, Use coherent memory for shared data, Trap all asyn-
chronous bus errors to EL3

– xilinx/zynqmp: Add support for multi console interface, Initialize IPI table from zyn-
qmp_config_setup()

• PSCI

– Adding new optional PSCI hook pwr_domain_on_finish_late

∗ This PSCI hook pwr_domain_on_finish_late is similar to
pwr_domain_on_finish but is guaranteed to be invoked when the respective
core and cluster are participating in coherency.

• Security

– Speculative Store Bypass Safe (SSBS): Further enhance protection against Spectre variant 4 by
disabling speculative loads/stores (SPSR.SSBS bit) by default.

– UBSAN support and handlers

∗ Adds support for the Undefined Behaviour sanitizer. There are two types of support offered -
minimalistic trapping support which essentially immediately crashes on undefined behaviour
and full support with full debug messages.

• Tools

– cert_create: Add support for bigger RSA key sizes (3KB and 4KB), previously the maximum size
was 2KB.

– fiptool: Add support to build fiptool on Windows.

938 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.13.2 Changed

• Architecture

– Refactor ARMv8.3 Pointer Authentication support code

– backtrace: Strip PAC field when PAUTH is enabled

– Prettify crash reporting output on AArch64.

– Rework smc_unknown return code path in smc_handler

∗ Leverage the existing el3_exit() return routine for smc_unknown return path rather than
a custom set of instructions.

• BL-Specific

– Invalidate dcache build option for BL2 entry at EL3

– Add missing support for BL2_AT_EL3 in XIP memory

• Boot Flow

– Add helper to parse BL31 parameters (both versions)

– Factor out cross-BL API into export headers suitable for 3rd party code

– Introduce lightweight BL platform parameter library

• Drivers

– auth: Memory optimization for Chain of Trust (CoT) description

– bsec: Move bsec_mode_is_closed_device() service to platform

– cryptocell: Move Cryptocell specific API into driver

– gicv3: Prevent pending G1S interrupt from becoming G0 interrupt

– mbedtls: Remove weak heap implementation

– mmc: Increase delay between ACMD41 retries

– mmc: stm32_sdmmc2: Correctly manage block size

– mmc: stm32_sdmmc2: Manage max-frequency property from DT

– synopsys/emmc: Do not change FIFO TH as this breaks some platforms

– synopsys: Update synopsys drivers to not rely on undefined overflow behaviour

– ufs: Extend the delay after reset to wait for some slower chips

• Platforms

– amlogic/meson/gxl: Remove BL2 dependency from BL31

– arm/common: Shorten the Firmware Update (FWU) process

– arm/fvp: Remove GIC initialisation from secondary core cold boot

– arm/sgm: Temporarily disable shared Mbed TLS heap for SGM

13.13. 2.2.0 (2019-10-22) 939

Trusted Firmware-A, Release 2.10.4

– hisilicon: Update hisilicon drivers to not rely on undefined overflow behaviour

– imx: imx8: Replace PLAT_IMX8* with PLAT_imx8*, remove duplicated linker symbols and
deprecated code include, keep only IRQ 32 unmasked, enable all power domain by default

– marvell: Prevent SError accessing PCIe link, Switch to xlat_tables_v2, do not rely on argument
passed via smc, make sure that comphy init will use correct address

– mediatek: mt8173: Refactor RTC and PMIC drivers

– mediatek: mt8173: Apply MULTI_CONSOLE framework

– nvidia: Tegra: memctrl_v2: fix “overflow before widen” coverity issue

– qemu: Simplify the image size calculation, Move and generalise FDT PSCI fixup, move gicv2
codes to separate file

– renesas/rcar_gen3: Convert to multi-console API, update QoS setting, Update IPL and Secure
Monitor Rev2.0.4, Change to restore timer counter value at resume, Update DDR setting rev.0.35,
qos: change subslot cycle, Change periodic write DQ training option.

– rockchip: Allow SOCs with undefined wfe check bits, Streamline and complete UARTn_BASE
macros, drop rockchip-specific imported linker symbols for bl31, Disable binary generation for all
SOCs, Allow console device to be set by DTB, Use new bl31_params_parse functions

– rpi/rpi3: Move shared rpi3 files into common directory

– socionext/uniphier: Set CONSOLE_FLAG_TRANSLATE_CRLF and clean up console driver

– socionext/uniphier: Replace DIV_ROUND_UP() with div_round_up() from utils_def.h

– st/stm32mp: Split stm32mp_io_setup function, move stm32_get_gpio_bank_clock() to private file,
correctly handle Clock SpreadingGenerator, move oscillator functions to generic file, realign device
tree files with internal devs, enable RTCAPB clock for dual-core chips, use a common function to
check spinlock is available, move check_header() to common code

– ti/k3: Enable SEPARATE_CODE_AND_RODATA by default, Remove shared RAM space,
Drop _ADDRESS from K3_USART_BASE to match other defines, Remove MSMC port defi-
nitions, Allow USE_COHERENT_MEM for K3, Set L2 latency on A72 cores

• PSCI

– PSCI: Lookup list of parent nodes to lock only once

• Secure Partition Manager (SPM): SPCI Prototype

– Fix service UUID lookup

– Adjust size of virtual address space per partition

– Refactor xlat context creation

– Move shim layer to TTBR1_EL1

– Ignore empty regions in resource description

• Security

– Refactor SPSR initialisation code

940 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– SMMUv3: Abort DMA transactions

∗ For security DMA should be blocked at the SMMU by default unless explicitly enabled for a
device. SMMU is disabled after reset with all streams bypassing the SMMU, and abortion of
all incoming transactions implements a default deny policy on reset.

∗ Moves bl1_platform_setup() function from arm_bl1_setup.c to FVP platforms’
fvp_bl1_setup.c and fvp_ve_bl1_setup.c files.

• Tools

– cert_create: Remove RSA PKCS#1 v1.5 support

13.13.3 Resolved Issues

• Architecture

– Fix the CAS spinlock implementation by adding a missing DSB in spin_unlock()

– AArch64: Fix SCTLR bit definitions

∗ Removes incorrect SCTLR_V_BIT definition and adds definitions for ARMv8.3-Pauth
EnIB, EnDA and EnDB bits.

– Fix restoration of PAuth context

∗ Replace call to pauth_context_save() with pauth_context_restore() in
case of unknown SMC call.

• BL-Specific Issues

– Fix BL31 crash reporting on AArch64 only platforms

• Build System

– Remove several warnings reported with W=2 and W=1

• Code Quality Issues

– SCTLR and ACTLR are 32-bit for AArch32 and 64-bit for AArch64

– Unify type of “cpu_idx” across PSCI module.

– Assert if power level value greater then PSCI_INVALID_PWR_LVL

– Unsigned long should not be used as per coding guidelines

– Reduce the number of memory leaks in cert_create

– Fix type of cot_desc_ptr

– Use explicit-width data types in AAPCS parameter structs

– Add python configuration for editorconfig

– BL1: Fix type consistency

– Enable -Wshift-overflow=2 to check for undefined shift behavior

13.13. 2.2.0 (2019-10-22) 941

Trusted Firmware-A, Release 2.10.4

– Updated upstream platforms to not rely on undefined overflow behaviour

• Coverity Quality Issues

– Remove GGC ignore -Warray-bounds

– Fix Coverity #261967, Infinite loop

– Fix Coverity #343017, Missing unlock

– Fix Coverity #343008, Side affect in assertion

– Fix Coverity #342970, Uninitialized scalar variable

• CPU Support

– cortex-a12: Fix MIDR mask

• Drivers

– console: Remove Arm console unregister on suspend

– gicv3: Fix support for full SPI range

– scmi: Fix wrong payload length

• Library Code

– libc: Fix sparse warning for __assert()

– libc: Fix memchr implementation

• Platforms

– rpi: rpi3: Fix compilation error when stack protector is enabled

– socionext/uniphier: Fix compilation fail for SPM support build config

– st/stm32mp1: Fix TZC400 configuration against non-secure DDR

– ti/k3: common: Fix RO data area size calculation

• Security

– AArch32: Disable Secure Cycle Counter

∗ Changes the implementation for disabling Secure Cycle Counter. For ARMv8.5 the counter
gets disabled by settingSDCR.SCCD bit on CPU cold/warm boot. For the earlier architectures
PMCR register is saved/restored on secure world entry/exit from/to Non-secure state, and
cycle counting gets disabled by setting PMCR.DP bit.

– AArch64: Disable Secure Cycle Counter

∗ For ARMv8.5 the counter gets disabled by setting MDCR_El3.SCCD bit on CPU cold/warm
boot. For the earlier architectures PMCR_EL0 register is saved/restored on secure world en-
try/exit from/to Non-secure state, and cycle counting gets disabled by setting PMCR_EL0.DP
bit.

942 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.13.4 Deprecations

• Common Code

– Remove MULTI_CONSOLE_API flag and references to it

– Remove deprecated plat_crash_console_*

– Remove deprecated interfaces get_afflvl_shift, mpidr_mask_lower_afflvls,
eret

– AARCH32/AARCH64 macros are now deprecated in favor of __aarch64__

– __ASSEMBLY__ macro is now deprecated in favor of __ASSEMBLER__

• Drivers

– console: Removed legacy console API

– console: Remove deprecated finish_console_register

– tzc: Remove deprecated types tzc_action_t and tzc_region_attributes_t

• Secure Partition Manager (SPM):

– Prototype SPCI-based SPM (services/std_svc/spm) will be replaced with alternative methods of
secure partitioning support.

13.13.5 Known Issues

• Build System Issues

– dtb: DTB creation not supported when building on a Windows host.

This step in the build process is skipped when running on a Windows host. A known issue from
the 1.6 release.

• Platform Issues

– arm/juno: System suspend from Linux does not function as documented in the user guide

Following the instructions provided in the user guide document does not result in the platform
entering system suspend state as expected. A message relating to the hdlcd driver failing to suspend
will be emitted on the Linux terminal.

– mediatek/mt6795: This platform does not build in this release

13.13. 2.2.0 (2019-10-22) 943

Trusted Firmware-A, Release 2.10.4

13.14 2.1.0 (2019-03-29)

13.14.1 New Features

• Architecture

– Support for ARMv8.3 pointer authentication in the normal and secure worlds

The use of pointer authentication in the normal world is enabled whenever architectural support is
available, without the need for additional build flags.

Use of pointer authentication in the secure world remains an experimental configuration at this
time. Using both the ENABLE_PAUTH and CTX_INCLUDE_PAUTH_REGS build flags, pointer
authentication can be enabled in EL3 and S-EL1/0.

See the Firmware Design document for additional details on the use of pointer authentication.

– Enable Data Independent Timing (DIT) in EL3, where supported

• Build System

– Support for BL-specific build flags

– Support setting compiler target architecture based on ARM_ARCH_MINOR build option.

– New RECLAIM_INIT_CODE build flag:

A significant amount of the code used for the initialization of BL31 is not needed again after boot
time. In order to reduce the runtime memory footprint, the memory used for this code can be
reclaimed after initialization.

Certain boot-time functions were marked with the __init attribute to enable this reclamation.

• CPU Support

– cortex-a76: Workaround for erratum 1073348

– cortex-a76: Workaround for erratum 1220197

– cortex-a76: Workaround for erratum 1130799

– cortex-a75: Workaround for erratum 790748

– cortex-a75: Workaround for erratum 764081

– cortex-a73: Workaround for erratum 852427

– cortex-a73: Workaround for erratum 855423

– cortex-a57: Workaround for erratum 817169

– cortex-a57: Workaround for erratum 814670

– cortex-a55: Workaround for erratum 903758

– cortex-a55: Workaround for erratum 846532

– cortex-a55: Workaround for erratum 798797

944 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– cortex-a55: Workaround for erratum 778703

– cortex-a55: Workaround for erratum 768277

– cortex-a53: Workaround for erratum 819472

– cortex-a53: Workaround for erratum 824069

– cortex-a53: Workaround for erratum 827319

– cortex-a17: Workaround for erratum 852423

– cortex-a17: Workaround for erratum 852421

– cortex-a15: Workaround for erratum 816470

– cortex-a15: Workaround for erratum 827671

• Documentation

– Exception Handling Framework documentation

– Library at ROM (romlib) documentation

– RAS framework documentation

– Coding Guidelines document

• Drivers

– ccn: Add API for setting and reading node registers

∗ Adds ccn_read_node_reg function

∗ Adds ccn_write_node_reg function

– partition: Support MBR partition entries

– scmi: Add plat_css_get_scmi_info function

Adds a new API plat_css_get_scmi_info which lets the platform register a platform-
specific instance of scmi_channel_plat_info_t and remove the default values

– tzc380: Add TZC-380 TrustZone Controller driver

– tzc-dmc620: Add driver to manage the TrustZone Controller within the DMC-620 DynamicMem-
ory Controller

• Library at ROM (romlib)

– Add platform-specific jump table list

– Allow patching of romlib functions

This change allows patching of functions in the romlib. This can be done by adding “patch” at the
end of the jump table entry for the function that needs to be patched in the file jmptbl.i.

• Library Code

– Support non-LPAE-enabled MMU tables in AArch32

– mmio: Add mmio_clrsetbits_16 function

13.14. 2.1.0 (2019-03-29) 945

Trusted Firmware-A, Release 2.10.4

∗ 16-bit variant of mmio_clrsetbits

– object_pool: Add Object Pool Allocator

∗ Manages object allocation using a fixed-size static array

∗ Adds pool_alloc and pool_alloc_n functions

∗ Does not provide any functions to free allocated objects (by design)

– libc: Added strlcpy function

– libc: Import strrchr function from FreeBSD

– xlat_tables: Add support for ARMv8.4-TTST

– xlat_tables: Support mapping regions without an explicitly specified VA

• Math

– Added softudiv macro to support software division

• Memory Partitioning And Monitoring (MPAM)

– Enabled MPAM EL2 traps (MPAMHCR_EL2 and MPAM_EL2)

• Platforms

– amlogic: Add support for Meson S905 (GXBB)

– arm/fvp_ve: Add support for FVP Versatile Express platform

– arm/n1sdp: Add support for Neoverse N1 System Development platform

– arm/rde1edge: Add support for Neoverse E1 platform

– arm/rdn1edge: Add support for Neoverse N1 platform

– arm: Add support for booting directly to Linux without an intermediate loader (AArch32)

– arm/juno: Enable new CPU errata workarounds for A53 and A57

– arm/juno: Add romlib support

Building a combined BL1 and ROMLIB binary file with the correct page alignment is now sup-
ported on the Juno platform. When USE_ROMLIB is set for Juno, it generates the combined file
bl1_romlib.bin which needs to be used instead of bl1.bin.

– intel/stratix: Add support for Intel Stratix 10 SoC FPGA platform

– marvell: Add support for Armada-37xx SoC platform

– nxp: Add support for i.MX8M and i.MX7 Warp7 platforms

– renesas: Add support for R-Car Gen3 platform

– xilinx: Add support for Versal ACAP platforms

• Position-Independent Executable (PIE)

PIE support has initially been added to BL31. The ENABLE_PIE build flag is used to enable or disable
this functionality as required.

946 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Secure Partition Manager

– New SPM implementation based on SPCI Alpha 1 draft specification

A new version of SPMhas been implemented, based on the SPCI (Secure Partition Client Interface)
and SPRT (Secure Partition Runtime) draft specifications.

The new implementation is a prototype that is expected to undergo intensive rework as the speci-
fications change. It has basic support for multiple Secure Partitions and Resource Descriptions.

The older version of SPM, based on MM (ARM Management Mode Interface Specification), is
still present in the codebase. A new build flag, SPM_MM has been added to allow selection of the
desired implementation. This flag defaults to 1, selecting the MM-based implementation.

• Security

– Spectre Variant-1 mitigations (CVE-2017-5753)

– Use Speculation Store Bypass Safe (SSBS) functionality where available

Provides mitigation against CVE-2018-19440 (Not saving x0 to x3 registers can leak informa-
tion from one Normal World SMC client to another)

13.14.2 Changed

• Build System

– Warning levels are now selectable with W=<1,2,3>

– Removed unneeded include paths in PLAT_INCLUDES

– “Warnings as errors” (Werror) can be disabled using E=0

– Support totally quiet output with -s flag

– Support passing options to checkpatch using CHECKPATCH_OPTS=<opts>

– Invoke host compiler with HOSTCC / HOSTCCFLAGS instead of CC / CFLAGS

– Make device tree pre-processing similar to U-boot/Linux by:

∗ Creating separate CPPFLAGS for DT preprocessing so that compiler options specific to it can
be accommodated.

∗ Replacing CPP with PP for DT pre-processing

• CPU Support

– Errata report function definition is now mandatory for CPU support files

CPU operation filesmust now define a<name>_errata_report function to print errata status.
This is no longer a weak reference.

• Documentation

– Migrated some content from GitHub wiki to docs/ directory

– Security advisories now have CVE links

13.14. 2.1.0 (2019-03-29) 947

Trusted Firmware-A, Release 2.10.4

– Updated copyright guidelines

• Drivers

– console: The MULTI_CONSOLE_API framework has been rewritten in C

– console: Ported multi-console driver to AArch32

– gic: Remove ‘lowest priority’ constants

Removed GIC_LOWEST_SEC_PRIORITY and GIC_LOWEST_NS_PRIORITY. Platforms
should define these if required, or instead determine the correct priority values at runtime.

– delay_timer: Check that the Generic Timer extension is present

– mmc: Increase command reply timeout to 10 milliseconds

– mmc: Poll eMMC device status to ensure EXT_CSD command completion

– mmc: Correctly check return code from mmc_fill_device_info

• External Libraries

– libfdt: Upgraded from 1.4.2 to 1.4.6-9

– mbed TLS: Upgraded from 2.12 to 2.16

This change incorporates fixes for security issues that should be reviewed to determine if they are relevant
for software implementations using Trusted Firmware-A. See the mbed TLS releases page for details on
changes from the 2.12 to the 2.16 release.

• Library Code

– compiler-rt: Updated lshrdi3.c and int_lib.h with changes from LLVM master branch
(r345645)

– cpu: Updated macro that checks need for CVE-2017-5715 mitigation

– libc: Made setjmp and longjmp C standard compliant

– libc: Allowed overriding the default libc (use OVERRIDE_LIBC)

– libc: Moved setjmp and longjmp to the libc/ directory

• Platforms

– Removed Mbed TLS dependency from plat_bl_common.c

– arm: Removed unused ARM_MAP_BL_ROMLIB macro

– arm: Removed ARM_BOARD_OPTIMISE_MEM feature and build flag

– arm: Moved several components into drivers/ directory

This affects the SDS, SCP, SCPI, MHU and SCMI components

– arm/juno: Increased maximum BL2 image size to 0xF000

This change was required to accommodate a larger libfdt library

• SCMI

948 Chapter 13. Change Log & Release Notes

https://tls.mbed.org/tech-updates/releases

Trusted Firmware-A, Release 2.10.4

– Optimized bakery locks when hardware-assisted coherency is enabled using the
HW_ASSISTED_COHERENCY build flag

• SDEI

– Added support for unconditionally resuming secure world execution after {{ SDEI }} event pro-
cessing completes

{{ SDEI }} interrupts, although targeting EL3, occur on behalf of the non-secure world, and may
have higher priority than secure world interrupts. Therefore they might preempt secure execution
and yield execution to the non-secure {{ SDEI }} handler. Upon completion of {{ SDEI }} event
handling, resume secure execution if it was preempted.

• Translation Tables (XLAT)

– Dynamically detect need for Common not Private (TTBRn_ELx.CnP) bit

Properly handle the case where ARMv8.2-TTCNP is implemented in a CPU that does not imple-
ment all mandatory v8.2 features (and so must claim to implement a lower architecture version).

13.14.3 Resolved Issues

• Architecture

– Incorrect check for SSBS feature detection

– Unintentional register clobber in AArch32 reset_handler function

• Build System

– Dependency issue during DTB image build

– Incorrect variable expansion in Arm platform makefiles

– Building on Windows with verbose mode (V=1) enabled is broken

– AArch32 compilation flags is missing $(march32-directive)

• BL-Specific Issues

– bl2: uintptr_t is not defined error when BL2_IN_XIP_MEM is defined

– bl2: Missing prototype warning in bl2_arch_setup

– bl31: Omission of Global Offset Table (GOT) section

• Code Quality Issues

– Multiple MISRA compliance issues

– Potential NULL pointer dereference (Coverity-detected)

• Drivers

– mmc: Local declaration of scr variable causes a cache issue when invalidating after the read DMA
transfer completes

13.14. 2.1.0 (2019-03-29) 949

Trusted Firmware-A, Release 2.10.4

– mmc: ACMD41 does not send voltage information during initialization, resulting in the command
being treated as a query. This prevents the command from initializing the controller.

– mmc: When checking device state using mmc_device_state() there are no retries attempted
in the event of an error

– ccn: Incorrect Region ID calculation for RN-I nodes

– console: Fix MULTI_CONSOLE_API when used as a crash console

– partition: Improper NULL checking in gpt.c

– partition: Compilation failure in VERBOSE mode (V=1)

• Library Code

– common: Incorrect check for Address Authentication support

– xlat: Fix XLAT_V1 / XLAT_V2 incompatibility

The file arm_xlat_tables.h has been renamed to xlat_tables_compat.h and has
been moved to a common folder. This header can be used to guarantee compatibility, as it includes
the correct header based on XLAT_TABLES_LIB_V2.

– xlat: armclang unused-function warning on xlat_clean_dcache_range

– xlat: Invalid mm_cursor checks in mmap_add and mmap_add_ctx

– sdei: Missing context.h header

• Platforms

– common: Missing prototype warning for plat_log_get_prefix

– arm: Insufficient maximum BL33 image size

– arm: Potential memory corruption during BL2-BL31 transition

On Arm platforms, the BL2 memory can be overlaid by BL31/BL32. The memory descriptors
describing the list of executable images are created in BL2 R/W memory, which could be possibly
corrupted later on by BL31/BL32 due to overlay. This patch creates a reserved location in SRAM
for these descriptors and are copied over by BL2 before handing over to next BL image.

– juno: Invalid behaviour when CSS_USE_SCMI_SDS_DRIVER is not set

In juno_pm.c the css_scmi_override_pm_ops function was used regardless of whether
the build flag was set. The original behaviour has been restored in the case where the build flag is
not set.

• Tools

– fiptool: Incorrect UUID parsing of blob parameters

– doimage: Incorrect object rules in Makefile

950 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.14.4 Deprecations

• Common Code

– plat_crash_console_init function

– plat_crash_console_putc function

– plat_crash_console_flush function

– finish_console_register macro

• AArch64-specific Code

– helpers: get_afflvl_shift

– helpers: mpidr_mask_lower_afflvls

– helpers: eret

• Secure Partition Manager (SPM)

– Boot-info structure

13.14.5 Known Issues

• Build System Issues

– dtb: DTB creation not supported when building on a Windows host.

This step in the build process is skipped when running on a Windows host. A known issue from
the 1.6 release.

• Platform Issues

– arm/juno: System suspend from Linux does not function as documented in the user guide

Following the instructions provided in the user guide document does not result in the platform
entering system suspend state as expected. A message relating to the hdlcd driver failing to suspend
will be emitted on the Linux terminal.

– arm/juno: The firmware update use-cases do not work with motherboard firmware version < v1.5.0
(the reset reason is not preserved). The Linaro 18.04 release has MB v1.4.9. The MB v1.5.0 is
available in Linaro 18.10 release.

– mediatek/mt6795: This platform does not build in this release

13.14. 2.1.0 (2019-03-29) 951

Trusted Firmware-A, Release 2.10.4

13.15 2.0.0 (2018-10-02)

13.15.1 New Features

• Removal of a number of deprecated APIs

– A new Platform Compatibility Policy document has been created which references a wiki page that
maintains a listing of deprecated interfaces and the release after which they will be removed.

– All deprecated interfaces except the MULTI_CONSOLE_API have been removed from the code
base.

– Various Arm and partner platforms have been updated to remove the use of removed APIs in this
release.

– This release is otherwise unchanged from 1.6 release

13.15.2 Issues resolved since last release

• No issues known at 1.6 release resolved in 2.0 release

13.15.3 Known Issues

• DTB creation not supported when building on a Windows host. This step in the build process is skipped
when running on a Windows host. Known issue from 1.6 version.

• As a result of removal of deprecated interfaces the Nvidia Tegra, Marvell Armada 8K and MediaTek
MT6795 platforms do not build in this release. Also MediaTek MT8173, NXP QorIQ LS1043A, NXP
i.MX8QX, NXP i.MX8QMa, Rockchip RK3328, Rockchip RK3368 and Rockchip RK3399 platforms
have not been confirmed to be working after the removal of the deprecated interfaces although they do
build.

13.16 1.6.0 (2018-09-21)

13.16.1 New Features

• Addressing Speculation Security Vulnerabilities

– Implement static workaround for CVE-2018-3639 for AArch32 and AArch64

– Add support for dynamic mitigation for CVE-2018-3639

– Implement dynamic mitigation for CVE-2018-3639 on Cortex-A76

– Ensure {{ SDEI }} handler executes with CVE-2018-3639 mitigation enabled

• Introduce RAS handling on AArch64

952 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– Some RAS extensions are mandatory for Armv8.2 CPUs, with others mandatory for Armv8.4
CPUs however, all extensions are also optional extensions to the base Armv8.0 architecture.

– The Armv8 RAS Extensions introduced Standard Error Records which are a set of standard reg-
isters to configure RAS node policy and allow RAS Nodes to record and expose error information
for error handling agents.

– Capabilities are provided to support RAS Node enumeration and iteration along with individual
interrupt registrations and fault injections support.

– Introduce handlers for Uncontainable errors, Double Faults and EL3 External Aborts

• Enable Memory Partitioning And Monitoring (MPAM) for lower EL’s

– Memory Partitioning And Monitoring is an Armv8.4 feature that enables various memory system
components and resources to define partitions. Software running at various ELs can then assign
themselves to the desired partition to control their performance aspects.

– When ENABLE_MPAM_FOR_LOWER_ELS is set to 1, EL3 allows lower ELs to access their
own MPAM registers without trapping to EL3. This patch however, doesn’t make use of partition-
ing in EL3; platform initialisation code should configure and use partitions in EL3 if required.

• Introduce ROM Lib Feature

– Support combining several libraries into a self-called “romlib” image, that may be shared across
images to reduce memory footprint. The romlib image is stored in ROM but is accessed through a
jump-table that may be stored in read-write memory, allowing for the library code to be patched.

• Introduce Backtrace Feature

– This function displays the backtrace, the current EL and security state to allow a post-processing
tool to choose the right binary to interpret the dump.

– Print backtrace in assert() and panic() to the console.

• Code hygiene changes and alignment with MISRA C-2012 guideline with fixes addressing issues com-
plying to the following rules:

– MISRA rules 4.9, 5.1, 5.3, 5.7, 8.2-8.5, 8.8, 8.13, 9.3, 10.1, 10.3-10.4, 10.8, 11.3, 11.6, 12.1,
14.4, 15.7, 16.1-16.7, 17.7-17.8, 20.7, 20.10, 20.12, 21.1, 21.15, 22.7

– Clean up the usage of void pointers to access symbols

– Increase usage of static qualifier to locally used functions and data

– Migrated to use of u_register_t for register read/write to better match AArch32 and AArch64 type
sizes

– Use int-ll64 for both AArch32 and AArch64 to assist in consistent format strings between archi-
tectures

– Clean up TF-A libc by removing non arm copyrighted implementations and replacing them with
modified FreeBSD and SCC implementations

• Various changes to support Clang linker and assembler

13.16. 1.6.0 (2018-09-21) 953

Trusted Firmware-A, Release 2.10.4

– The clang assembler/preprocessor is used when Clang is selected. However, the clang linker is not
used because it is unable to link TF-A objects due to immaturity of clang linker functionality at
this time.

• Refactor support APIs into Libraries

– Evolve libfdt, mbed TLS library and standard C library sources as proper libraries that TF-A may
be linked against.

• CPU Enhancements

– Add CPU support for Cortex-Ares and Cortex-A76

– Add AMU support for Cortex-Ares

– Add initial CPU support for Cortex-Deimos

– Add initial CPU support for Cortex-Helios

– Implement dynamic mitigation for CVE-2018-3639 on Cortex-A76

– Implement Cortex-Ares erratum 1043202 workaround

– Implement DSU erratum 936184 workaround

– Check presence of fix for errata 843419 in Cortex-A53

– Check presence of fix for errata 835769 in Cortex-A53

• Translation Tables Enhancements

– The xlat v2 library has been refactored in order to be reused by different TF components at different
EL’s including the addition of EL2. Some refactoring to make the code more generic and less
specific to TF, in order to reuse the library outside of this project.

• SPM Enhancements

– General cleanups and refactoring to pave the way to multiple partitions support

• SDEI Enhancements

– Allow platforms to define explicit events

– Determine client EL from NS context’s SCR_EL3

– Make dispatches synchronous

– Introduce jump primitives for BL31

– Mask events after CPU wakeup in {{ SDEI }} dispatcher to conform to the specification

• Misc TF-A Core Common Code Enhancements

– Add support for eXecute In Place (XIP) memory in BL2

– Add support for the SMC Calling Convention 2.0

– Introduce External Abort handling on AArch64 External Abort routed to EL3 was reported as
an unhandled exception and caused a panic. This change enables Trusted Firmware-A to handle
External Aborts routed to EL3.

954 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– Save value of ACTLR_EL1 implementation-defined register in the CPU context structure rather
than forcing it to 0.

– Introduce ARM_LINUX_KERNEL_AS_BL33 build option, which allows BL31 to directly jump
to a Linux kernel. This makes for a quicker and simpler boot flow, which might be useful in some
test environments.

– Add dynamic configurations for BL31, BL32 and BL33 enabling support for Chain of Trust (COT).

– Make TF UUID RFC 4122 compliant

• New Platform Support

– Arm SGI-575

– Arm SGM-775

– Allwinner sun50i_64

– Allwinner sun50i_h6

– NXP QorIQ LS1043A

– NXP i.MX8QX

– NXP i.MX8QM

– NXP i.MX7Solo WaRP7

– TI K3

– Socionext Synquacer SC2A11

– Marvell Armada 8K

– STMicroelectronics STM32MP1

• Misc Generic Platform Common Code Enhancements

– Add MMC framework that supports both eMMC and SD card devices

• Misc Arm Platform Common Code Enhancements

– Demonstrate PSCI MEM_PROTECT from el3_runtime

– Provide RAS support

– Migrate AArch64 port to the multi console driver. The old API is deprecated and will eventually
be removed.

– Move BL31 below BL2 to enable BL2 overlay resulting in changes in the layout of BL images in
memory to enable more efficient use of available space.

– Add cpp build processing for dtb that allows processing device tree with external includes.

– Extend FIP io driver to support multiple FIP devices

– Add support for SCMI AP core configuration protocol v1.0

– Use SCMI AP core protocol to set the warm boot entrypoint

13.16. 1.6.0 (2018-09-21) 955

Trusted Firmware-A, Release 2.10.4

– Add support to Mbed TLS drivers for shared heap among different BL images to help optimise
memory usage

– Enable non-secure access to UART1 through a build option to support a serial debug port for
debugger connection

• Enhancements for Arm Juno Platform

– Add support for TrustZone Media Protection 1 (TZMP1)

• Enhancements for Arm FVP Platform

– Dynamic_config: remove the FVP dtb files

– Set DYNAMIC_WORKAROUND_CVE_2018_3639=1 on FVP by default

– Set the ability to dynamically disable Trusted Boot Board authentication to be off by default with
DYN_DISABLE_AUTH

– Add librom enhancement support in FVP

– Support shared Mbed TLS heap between BL1 and BL2 that allow a reduction in BL2 size for FVP

• Enhancements for Arm SGI/SGM Platform

– Enable ARM_PLAT_MT flag for SGI-575

– Add dts files to enable support for dynamic config

– Add RAS support

– Support shared Mbed TLS heap for SGI and SGM between BL1 and BL2

• Enhancements for Non Arm Platforms

– Raspberry Pi Platform

– Hikey Platforms

– Xilinx Platforms

– QEMU Platform

– Rockchip rk3399 Platform

– TI Platforms

– Socionext Platforms

– Allwinner Platforms

– NXP Platforms

– NVIDIA Tegra Platform

– Marvell Platforms

– STMicroelectronics STM32MP1 Platform

956 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.16.2 Issues resolved since last release

• No issues known at 1.5 release resolved in 1.6 release

13.16.3 Known Issues

• DTB creation not supported when building on a Windows host. This step in the build process is skipped
when running on a Windows host. Known issue from 1.5 version.

13.17 1.5.0 (2018-03-20)

13.17.1 New features

• Added new firmware support to enable RAS (Reliability, Availability, and Serviceability) functionality.

– Secure Partition Manager (SPM): A Secure Partition is a software execution environment instanti-
ated in S-EL0 that can be used to implement simple management and security services. The SPM
is the firmware component that is responsible for managing a Secure Partition.

– SDEI dispatcher: Support for interrupt-based {{ SDEI }} events and all interfaces as defined by
the {{ SDEI }} specification v1.0, see SDEI Specification

– Exception Handling Framework (EHF): Framework that allows dispatching of EL3 interrupts to
their registered handlers which are registered based on their priorities. Facilitates firmware-first
error handling policy where asynchronous exceptions may be routed to EL3.

Integrated the TSPD with EHF.

• Updated PSCI support:

– Implemented PSCI v1.1 optional features MEM_PROTECT and SYSTEM_RESET2. The sup-
ported PSCI version was updated to v1.1.

– Improved PSCI STAT timestamp collection, including moving accounting for retention states to
be inside the locks and fixing handling of wrap-around when calculating residency in AArch32
execution state.

– Added optional handler for early suspend that executes when suspending to a power-down state and
with data caches enabled.

This may provide a performance improvement on platforms where it is safe to perform some or all
of the platform actions from pwr_domain_suspend with the data caches enabled.

• Enabled build option, BL2_AT_EL3, for BL2 to allow execution at EL3 without any dependency on TF
BL1.

This allows platforms which already have a non-TF Boot ROM to directly load and execute BL2 and
subsequent BL stages without need for BL1. This was not previously possible because BL2 executes at
S-EL1 and cannot jump straight to EL3.

13.17. 1.5.0 (2018-03-20) 957

http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf

Trusted Firmware-A, Release 2.10.4

• Implemented support for SMCCC v1.1, including SMCCC_VERSION and SM-
CCC_ARCH_FEATURES.

Additionally, added support for SMCCC_VERSION in PSCI features to enable discovery of the SMCCC
version via PSCI feature call.

• AddedDynamic Configuration framework which enables each of the boot loader stages to be dynamically
configured at runtime if required by the platform. The boot loader stagemay optionally specify a firmware
configuration file and/or hardware configuration file that can then be shared with the next boot loader
stage.

Introduced a new BL handover interface that essentially allows passing of 4 arguments between the
different BL stages.

Updated cert_create and fip_tool to support the dynamic configuration files. The COT also updated to
support these new files.

• Code hygiene changes and alignment with MISRA guideline:

– Fix use of undefined macros.

– Achieved compliance with Mandatory MISRA coding rules.

– Achieved compliance for following Required MISRA rules for the default build configurations on
FVP and Juno platforms : 7.3, 8.3, 8.4, 8.5 and 8.8.

• Added support for Armv8.2-A architectural features:

– Updated translation table set-up to set the CnP (Common not Private) bit for secure page tables so
that multiple PEs in the same Inner Shareable domain can use the same translation table entries for
a given stage of translation in a particular translation regime.

– Extended the supported values of ID_AA64MMFR0_EL1.PARange to include the 52-bit Physical
Address range.

– Added support for the Scalable Vector Extension to allow Normal world software to access SVE
functionality but disable access to SVE, SIMD and floating point functionality from the Secure
world in order to prevent corruption of the Z-registers.

• Added support for Armv8.4-A architectural feature Activity Monitor Unit (AMU)

extensions.

In addition to the v8.4 architectural extension, AMU support on Cortex-A75 was implemented.

• Enhanced OP-TEE support to enable use of pageable OP-TEE image. The Arm standard platforms are
updated to load up to 3 images for OP-TEE; header, pager image and paged image.

The chain of trust is extended to support the additional images.

• Enhancements to the translation table library:

– Introduced APIs to get and set the memory attributes of a region.

– Added support to manage both privilege levels in translation regimes that describe translations for 2
Exception levels, specifically the EL1&0 translation regime, and extended the memory map region
attributes to include specifying Non-privileged access.

958 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– Added support to specify the granularity of the mappings of each region, for instance a 2MB region
can be specified to be mapped with 4KB page tables instead of a 2MB block.

– Disabled the higher VA range to avoid unpredictable behaviour if there is an attempt to access
addresses in the higher VA range.

– Added helpers for Device and Normal memory MAIR encodings that align with the Arm Archi-
tecture Reference Manual for Armv8-A (Arm DDI0487B.b).

– Code hygiene including fixing type length and signedness of constants, refactoring of function to
enable the MMU, removing all instances where the virtual address space is hardcoded and added
comments that document alignment needed between memory attributes and attributes specified in
TCR_ELx.

• Updated GIC support:

– Introduce newAPIs for GICv2 and GICv3 that provide the capability to specify interrupt properties
rather than list of interrupt numbers alone. The Arm platforms and other upstream platforms are
migrated to use interrupt properties.

– Added helpers to save / restore the GICv3 context, specifically the Distributor and Redistributor
contexts and architectural parts of the ITS power management. The Distributor and Redistributor
helpers also support the implementation-defined part of GIC-500 and GIC-600.

Updated the Arm FVP platform to save / restore the GICv3 context on system suspend / resume
as an example of how to use the helpers.

Introduced a new TZC secured DDR carve-out for use by Arm platforms for storing EL3 runtime
data such as the GICv3 register context.

• Added support for Armv7-A architecture via build option ARM_ARCH_MAJOR=7. This includes
following features:

– Updates GICv2 driver to manage GICv1 with security extensions.

– Software implementation for 32bit division.

– Enabled use of generic timer for platforms that do not set ARM_CORTEX_Ax=yes.

– Support for Armv7-A Virtualization extensions [DDI0406C_C].

– Support for both Armv7-A platforms that only have 32-bit addressing and Armv7-A platforms that
support large page addressing.

– Included support for following Armv7 CPUs: Cortex-A12, Cortex-A17, Cortex-A7, Cortex-A5,
Cortex-A9, Cortex-A15.

– Added support in QEMU for Armv7-A/Cortex-A15.

• Enhancements to Firmware Update feature:

– Updated the FWU documentation to describe the additional images needed for Firmware update,
and how they are used for both the Juno platform and the Arm FVP platforms.

• Enhancements to Trusted Board Boot feature:

– Added support to cert_create tool for RSA PKCS1# v1.5 and SHA384, SHA512 and SHA256.

13.17. 1.5.0 (2018-03-20) 959

Trusted Firmware-A, Release 2.10.4

– For Arm platforms added support to use ECDSA keys.

– Enhanced the mbed TLS wrapper layer to include support for both RSA and ECDSA to enable
runtime selection between RSA and ECDSA keys.

• Added support for secure interrupt handling in AArch32 sp_min, hardcoded to only handle FIQs.

• Added support to allow a platform to load images frommultiple boot sources, for example from a second
flash drive.

• Added a logging framework that allows platforms to reduce the logging level at runtime and additionally
the prefix string can be defined by the platform.

• Further improvements to register initialisation:

– Control register PMCR_EL0 / PMCR is set to prohibit cycle counting in the secure world. This
register is added to the list of registers that are saved and restored during world switch.

– When EL3 is running in AArch32 execution state, the Non-secure version of SCTLR is explicitly
initialised during the warmboot flow rather than relying on the hardware to set the correct reset
values.

• Enhanced support for Arm platforms:

– Introduced driver for Shared-Data-Structure (SDS) framework which is used for communication
between SCP and the AP CPU, replacing Boot-Over_MHU (BOM) protocol.

The Juno platform is migrated to use SDSwith the SCMI support added in v1.3 and is set as default.

The driver can be found in the plat/arm/css/drivers folder.

– Improved memory usage by only mapping TSP memory region when the TSPD has been included
in the build. This reduces the memory footprint and avoids unnecessary memory being mapped.

– Updated support for multi-threading CPUs for FVP platforms - always check the MT field in
MPDIR and access the bit fields accordingly.

– Support building for platforms that model DynamIQ configuration by implementing all CPUs in a
single cluster.

– Improved nor flash driver, for instance clearing status registers before sending commands. Driver
can be found plat/arm/board/common folder.

• Enhancements to QEMU platform:

– Added support for TBB.

– Added support for using OP-TEE pageable image.

– Added support for LOAD_IMAGE_V2.

– Migrated to use translation table library v2 by default.

– Added support for SEPARATE_CODE_AND_RODATA.

• Applied workarounds CVE-2017-5715 on Arm Cortex-A57, -A72, -A73 and -A75, and for Armv7-A
CPUs Cortex-A9, -A15 and -A17.

• Applied errata workaround for Arm Cortex-A57: 859972.

960 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Applied errata workaround for Arm Cortex-A72: 859971.

• Added support for Poplar 96Board platform.

• Added support for Raspberry Pi 3 platform.

• Added Call Frame Information (CFI) assembler directives to the vector entries which enables debuggers
to display the backtrace of functions that triggered a synchronous abort.

• Added ability to build dtb.

• Added support for pre-tool (cert_create and fiptool) image processing enabling compression of the image
files before processing by cert_create and fiptool.

This can reduce fip size and may also speed up loading of images. The image verification will also get
faster because certificates are generated based on compressed images.

Imported zlib 1.2.11 to implement gunzip() for data compression.

• Enhancements to fiptool:

– Enabled the fiptool to be built using Visual Studio.

– Added padding bytes at the end of the last image in the fip to be facilitate transfer by DMA.

13.17.2 Issues resolved since last release

• TF-A can be built with optimisations disabled (-O0).

• Memory layout updated to enable Trusted Board Boot on Juno platform when running TF-A in AArch32
execution mode (resolving tf-issue#501).

13.17.3 Known Issues

• DTB creation not supported when building on a Windows host. This step in the build process is skipped
when running on a Windows host.

13.18 1.4.0 (2017-07-07)

13.18.1 New features

• Enabled support for platforms with hardware assisted coherency.

A new build option HW_ASSISTED_COHERENCY allows platforms to take advantage of the following
optimisations:

– Skip performing cache maintenance during power-up and power-down.

– Use spin-locks instead of bakery locks.

– Enable data caches early on warm-booted CPUs.

13.18. 1.4.0 (2017-07-07) 961

https://github.com/ARM-software/tf-issues/issues/501

Trusted Firmware-A, Release 2.10.4

• Added support for Cortex-A75 and Cortex-A55 processors.

Both Cortex-A75 and Cortex-A55 processors use the Arm DynamIQ Shared Unit (DSU). The power-
down and power-up sequences are therefore mostly managed in hardware, reducing complexity of the
software operations.

• Introduced Arm GIC-600 driver.

Arm GIC-600 IP complies with Arm GICv3 architecture. For FVP platforms, the GIC-600 driver is
chosen when FVP_USE_GIC_DRIVER is set to FVP_GIC600.

• Updated GICv3 support:

– Introduced power management APIs for GICv3 Redistributor. These APIs allow platforms to
power down the Redistributor during CPU power on/off. Requires the GICv3 implementations to
have power management operations.

Implemented the power management APIs for FVP.

– GIC driver data is flushed by the primary CPU so that secondary CPU do not read stale GIC data.

• Added support for Arm System Control and Management Interface v1.0 (SCMI).

The SCMI driver implements the power domain management and system power management proto-
col of the SCMI specification (Arm DEN 0056ASCMI) for communicating with any compliant power
controller.

Support is added for the Juno platform. The driver can be found in the plat/arm/css/drivers folder.

• Added support to enable pre-integration of TBB with the Arm TrustZone CryptoCell product, to take
advantage of its hardware Root of Trust and crypto acceleration services.

• Enabled Statistical Profiling Extensions for lower ELs.

The firmware support is limited to the use of SPE in the Non-secure state and accesses to the SPE specific
registers from S-EL1 will trap to EL3.

The SPE are architecturally specified for AArch64 only.

• Code hygiene changes aligned with MISRA guidelines:

– Fixed signed / unsigned comparison warnings in the translation table library.

– Added U(_x) macro and together with the existing ULL(_x) macro fixed some of the signed-ness
defects flagged by the MISRA scanner.

• Enhancements to Firmware Update feature:

– The FWU logic now checks for overlapping images to prevent execution of unauthenticated arbi-
trary code.

– Introduced new FWU_SMC_IMAGE_RESET SMC that changes the image loading state machine
to go from COPYING, COPIED or AUTHENTICATED states to RESET state. Previously, this
was only possible when the authentication of an image failed or when the execution of the image
finished.

– Fixed integer overflow which addressed TFV-1: Malformed Firmware Update SMC can result in
copy of unexpectedly large data into secure memory.

962 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Introduced support for Arm Compiler 6 and LLVM (clang).

TF-A can now also be built with the Arm Compiler 6 or the clang compilers. The assembler and linker
must be provided by the GNU toolchain.

Tested with Arm CC 6.7 and clang 3.9.x and 4.0.x.

• Memory footprint improvements:

– Introduced tf_snprintf, a reduced version of snprintf which has support for a limited set
of formats.

The mbedtls driver is updated to optionally use tf_snprintf instead of snprintf.

– The assert() is updated to no longer print the function name, and additional logging options
are supported via an optional platform define PLAT_LOG_LEVEL_ASSERT, which controls how
verbose the assert output is.

• Enhancements to TF-A support when running in AArch32 execution state:

– Support booting SP_MIN and BL33 in AArch32 execution mode on Juno. Due to hardware limi-
tations, BL1 and BL2 boot in AArch64 state and there is additional trampoline code to warm reset
into SP_MIN in AArch32 execution state.

– Added support for Arm Cortex-A53/57/72 MPCore processors including the errata workarounds
that are already implemented for AArch64 execution state.

– For FVP platforms, added AArch32 Trusted Board Boot support, including the Firmware Update
feature.

• Introduced Arm SiP service for use by Arm standard platforms.

– Added new Arm SiP Service SMCs to enable the Non-secure world to read PMF timestamps.

Added PMF instrumentation points in TF-A in order to quantify the overall time spent in the PSCI
software implementation.

– Added new Arm SiP service SMC to switch execution state.

This allows the lower exception level to change its execution state from AArch64 to AArch32, or
vice verse, via a request to EL3.

• Migrated to use SPDX[0] license identifiers to make software license auditing simpler.

:::{note} Files that have been imported by FreeBSD have not been modified. :::

[0]: https://spdx.org/

• Enhancements to the translation table library:

– Added version 2 of translation table library that allows different translation tables to be modified
by using different ‘contexts’. Version 1 of the translation table library only allows the current EL’s
translation tables to be modified.

Version 2 of the translation table also added support for dynamic regions; regions that can be added
and removed dynamically whilst the MMU is enabled. Static regions can only be added or removed
before the MMU is enabled.

13.18. 1.4.0 (2017-07-07) 963

https://spdx.org/

Trusted Firmware-A, Release 2.10.4

The dynamic mapping functionality is enabled or disabled when compiling by setting the build
option PLAT_XLAT_TABLES_DYNAMIC to 1 or 0. This can be done per-image.

– Added support for translation regimes with two virtual address spaces such as the one shared by
EL1 and EL0.

The library does not support initializing translation tables for EL0 software.

– Added support to mark the translation tables as non-cacheable using an additional build option
XLAT_TABLE_NC.

• Added support for GCC stack protection. A new build option ENABLE_STACK_PROTECTOR was
introduced that enables compilation of all BL images with one of the GCC -fstack-protector-* options.

A new platform function plat_get_stack_protector_canary() was introduced that returns a value used to
initialize the canary for stack corruption detection. For increased effectiveness of protection platforms
must provide an implementation that returns a random value.

• Enhanced support for Arm platforms:

– Added support for multi-threading CPUs, indicated by MT field in MPDIR. A new build flag
ARM_PLAT_MT is added, and when enabled, the functions accessing MPIDR assume that the
MT bit is set for the platform and access the bit fields accordingly.

Also, a newAPI plat_arm_get_cpu_pe_count is added when ARM_PLAT_MT is enabled,
returning the Processing Element count within the physical CPU corresponding to mpidr.

– The Arm platforms migrated to use version 2 of the translation tables.

– Introduced a new Arm platform layer API plat_arm_psci_override_pm_ops which al-
lows Arm platforms to modify plat_arm_psci_pm_ops and therefore dynamically define
PSCI capability.

– The Arm platforms migrated to use IMAGE_LOAD_V2 by default.

• Enhanced reporting of errata workaround status with the following policy:

– If an errata workaround is enabled:

∗ If it applies (i.e. the CPU is affected by the errata), an INFO message is printed, confirming
that the errata workaround has been applied.

∗ If it does not apply, a VERBOSE message is printed, confirming that the errata workaround
has been skipped.

– If an errata workaround is not enabled, but would have applied had it been, a WARN message is
printed, alerting that errata workaround is missing.

• Added build options ARM_ARCH_MAJOR and ARM_ARM_MINOR to choose the architecture ver-
sion to target TF-A.

• Updated the spin lock implementation to use the more efficient CAS (Compare And Swap) instruction
when available. This instruction was introduced in Armv8.1-A.

• Applied errata workaround for Arm Cortex-A53: 855873.

• Applied errata workaround for Arm-Cortex-A57: 813419.

964 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Enabled all A53 and A57 errata workarounds for Juno, both in AArch64 and AArch32 execution states.

• Added support for Socionext UniPhier SoC platform.

• Added support for Hikey960 and Hikey platforms.

• Added support for Rockchip RK3328 platform.

• Added support for NVidia Tegra T186 platform.

• Added support for Designware emmc driver.

• Imported libfdt v1.4.2 that addresses buffer overflow in fdt_offset_ptr().

• Enhanced the CPU operations framework to allow power handlers to be registered on per-level basis.
This enables support for future CPUs that have multiple threads which might need powering down indi-
vidually.

• Updated register initialisation to prevent unexpected behaviour:

– Debug registers MDCR-EL3/SDCR and MDCR_EL2/HDCR are initialised to avoid unexpected
traps into the higher exception levels and disable secure self-hosted debug. Additionally, secure
privileged external debug on Juno is disabled by programming the appropriate Juno SoC registers.

– EL2 and EL3 configurable controls are initialised to avoid unexpected traps in the higher exception
levels.

– Essential control registers are fully initialised on EL3 start-up, when initialising the non-secure
and secure context structures and when preparing to leave EL3 for a lower EL. This gives better
alignment with the ArmARMwhich states that software must initialise RES0 and RES1 fields with
0 / 1.

• Enhanced PSCI support:

– Introduced new platform interfaces that decouple PSCI stat residency calculation from PMF, en-
abling platforms to use alternative methods of capturing timestamps.

– PSCI stat accounting performed for retention/standby states when requested at multiple power
levels.

• Simplified fiptool to have a single linked list of image descriptors.

• For the TSP, resolved corruption of pre-empted secure context by aborting any pre-empted SMC during
PSCI power management requests.

13.18.2 Issues resolved since last release

• TF-A can be built with the latest mbed TLS version (v2.4.2). The earlier version 2.3.0 cannot be used
due to build warnings that the TF-A build system interprets as errors.

• TBBR, including the Firmware Update feature is now supported on FVP platforms when running TF-A
in AArch32 state.

• The version of the AEMv8 Base FVP used in this release has resolved the issue of the model executing
a reset instead of terminating in response to a shutdown request using the PSCI SYSTEM_OFF API.

13.18. 1.4.0 (2017-07-07) 965

Trusted Firmware-A, Release 2.10.4

13.18.3 Known Issues

• Building TF-A with compiler optimisations disabled (-O0) fails.

• Trusted Board Boot currently does not work on Juno when running Trusted Firmware in AArch32 ex-
ecution state due to error when loading the sp_min to memory because of lack of free space available.
See tf-issue#501 for more details.

• The errata workaround for A53 errata 843419 is only available from binutils 2.26 and is not present in
GCC4.9. If this errata is applicable to the platform, please use GCC compiler version of at least 5.0.
See PR#1002 for more details.

13.19 1.3.0 (2016-10-13)

13.19.1 New features

• Added support for running TF-A in AArch32 execution state.

The PSCI library has been refactored to allow integration withEL3Runtime Software. This is software
that is executing at the highest secure privilege which is EL3 in AArch64 or Secure SVC/Monitor mode
in AArch32. See {ref}PSCI Library Integration guide for Armv8-A AArch32
systems.

Included is a minimal AArch32 Secure Payload, SP-MIN, that illustrates the usage and integration of
the PSCI library with EL3 Runtime Software running in AArch32 state.

Booting to the BL1/BL2 images as well as booting straight to the Secure Payload is supported.

• Improvements to the initialization framework for the PSCI service and Arm Standard Services in general.

The PSCI service is now initialized as part of Arm Standard Service initialization. This consolidates the
initializations of any Arm Standard Service that may be added in the future.

A new function get_arm_std_svc_args() is introduced to get arguments corresponding to each
standard service and must be implemented by the EL3 Runtime Software.

For PSCI, a new versioned structure psci_lib_args_t is introduced to initialize the PSCI Library.
Note this is a compatibility break due to the change in the prototype of psci_setup().

• To support AArch32 builds of BL1 and BL2, implemented a new, alternative firmware image loading
mechanism that adds flexibility.

The current mechanism has a hard-coded set of images and execution order (BL31, BL32, etc). The
new mechanism is data-driven by a list of image descriptors provided by the platform code.

Arm platforms have been updated to support the new loading mechanism.

The new mechanism is enabled by a build flag (LOAD_IMAGE_V2) which is currently off by default for
the AArch64 build.

Note TRUSTED_BOARD_BOOT is currently not supported when LOAD_IMAGE_V2 is enabled.

966 Chapter 13. Change Log & Release Notes

https://github.com/ARM-software/tf-issues/issues/501
https://github.com/ARM-software/arm-trusted-firmware/pull/1002#issuecomment-312650193

Trusted Firmware-A, Release 2.10.4

• Updated requirements for making contributions to TF-A.

Commits now must have a ‘Signed-off-by:’ field to certify that the contribution has been made under the
terms of the Developer Certificate of Origin.

A signed CLA is no longer required.

The Contributor’s Guide has been updated to reflect this change.

• Introduced PerformanceMeasurement Framework (PMF) which provides support for capturing, storing,
dumping and retrieving time-stamps to measure the execution time of critical paths in the firmware. This
relies on defining fixed sample points at key places in the code.

• To support the QEMU platform port, imported libfdt v1.4.1 from https://git.kernel.org/pub/scm/utils/
dtc/dtc.git

• Updated PSCI support:

– Added support for PSCI NODE_HW_STATE API for Arm platforms.

– New optional platform hook, pwr_domain_pwr_down_wfi(), in plat_psci_ops to en-
able platforms to perform platform-specific actions needed to enter powerdown, including the ‘wfi’
invocation.

– PSCI STAT residency and count functions have been added on Arm platforms by using PMF.

• Enhancements to the translation table library:

– Limited memory mapping support for region overlaps to only allow regions to overlap that are
identity mapped or have the same virtual to physical address offset, and overlap completely but
must not cover the same area.

This limitation will enable future enhancements without having to support complex edge cases that
may not be necessary.

– The initial translation lookup level is now inferred from the virtual address space size. Previously,
it was hard-coded.

– Added support for mapping Normal, Inner Non-cacheable, Outer Non-cacheable memory in the
translation table library.

This can be useful to map a non-cacheable memory region, such as a DMA buffer.

– Introduced the MT_EXECUTE/MT_EXECUTE_NEVER memory mapping attributes to specify
the access permissions for instruction execution of a memory region.

• Enabled support to isolate code and read-only data on separate memory pages, allowing independent
access control to be applied to each.

• Enabled SCR_EL3.SIF (Secure Instruction Fetch) bit in BL1 and BL31 common architectural setup
code, preventing fetching instructions from non-secure memory when in secure state.

• Enhancements to FIP support:

– Replaced fip_create with fiptool which provides a more consistent and intuitive interface
as well as additional support to remove an image from a FIP file.

13.19. 1.3.0 (2016-10-13) 967

https://git.kernel.org/pub/scm/utils/dtc/dtc.git
https://git.kernel.org/pub/scm/utils/dtc/dtc.git

Trusted Firmware-A, Release 2.10.4

– Enabled printing the SHA256 digest with info command, allowing quick verification of an image
within a FIP without having to extract the image and running sha256sum on it.

– Added support for unpacking the contents of an existing FIP file into the working directory.

– Aligned command line options for specifying images to use same naming convention as specified
by TBBR and already used in cert_create tool.

• Refactored the TZC-400 driver to also support memory controllers that integrate TZC functionality, for
example Arm CoreLink DMC-500. Also added DMC-500 specific support.

• Implemented generic delay timer based on the system generic counter and migrated all platforms to use
it.

• Enhanced support for Arm platforms:

– Updated image loading support to make SCP images (SCP_BL2 and SCP_BL2U) optional.

– Enhanced topology description support to allow multi-cluster topology definitions.

– Added interconnect abstraction layer to help platform ports select the right interconnect driver, CCI
or CCN, for the platform.

– Added support to allow loading BL31 in the TZC-secured DRAM instead of the default secure
SRAM.

– Added support to use a System Security Control (SSC) Registers Unit enabling TF-A to be com-
piled to support multiple Arm platforms and then select one at runtime.

– Restricted mapping of Trusted ROM in BL1 to what is actually needed by BL1 rather than entire
Trusted ROM region.

– Flash is now mapped as execute-never by default. This increases security by restricting the exe-
cutable region to what is strictly needed.

• Applied following erratum workarounds for Cortex-A57: 833471, 826977, 829520, 828024 and
826974.

• Added support for Mediatek MT6795 platform.

• Added support for QEMU virtualization Armv8-A target.

• Added support for Rockchip RK3368 and RK3399 platforms.

• Added support for Xilinx Zynq UltraScale+ MPSoC platform.

• Added support for Arm Cortex-A73 MPCore Processor.

• Added support for Arm Cortex-A72 processor.

• Added support for Arm Cortex-A35 processor.

• Added support for Arm Cortex-A32 MPCore Processor.

• Enabled preloaded BL33 alternative boot flow, in which BL2 does not load BL33 from non-volatile
storage and BL31 hands execution over to a preloaded BL33. The User Guide has been updated with an
example of how to use this option with a bootwrapped kernel.

• Added support to build TF-A on a Windows-based host machine.

968 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Updated Trusted Board Boot prototype implementation:

– Enabled the ability for a production ROM with TBBR enabled to boot test software before a real
ROTPK is deployed (e.g. manufacturing mode). Added support to use ROTPK in certificate
without verifying against the platform value when ROTPK_NOT_DEPLOYED bit is set.

– Added support for non-volatile counter authentication to the Authentication Module to protect
against roll-back.

• Updated GICv3 support:

– Enabled processor power-down and automatic power-on using GICv3.

– Enabled G1S or G0 interrupts to be configured independently.

– Changed FVP default interrupt driver to be the GICv3-only driver. Note the default build of TF-A
will not be able to boot Linux kernel with GICv2 FDT blob.

– Enabled wake-up from CPU_SUSPEND to stand-by by temporarily re-routing interrupts and then
restoring after resume.

13.19.2 Issues resolved since last release

13.19.3 Known issues

• The version of the AEMv8 Base FVP used in this release resets the model instead of terminating its
execution in response to a shutdown request using the PSCI SYSTEM_OFF API. This issue will be fixed
in a future version of the model.

• Building TF-A with compiler optimisations disabled (-O0) fails.

• TF-A cannot be built with mbed TLS version v2.3.0 due to build warnings that the TF-A build system
interprets as errors.

• TBBR is not currently supported when running TF-A in AArch32 state.

13.20 1.2.0 (2015-12-22)

13.20.1 New features

• The Trusted Board Boot implementation onArm platforms now conforms to themandatory requirements
of the TBBR specification.

In particular, the boot process is now guarded by a Trusted Watchdog, which will reset the system in
case of an authentication or loading error. On Arm platforms, a secure instance of Arm SP805 is used
as the Trusted Watchdog.

Also, a firmware update process has been implemented. It enables authenticated firmware to update
firmware images from external interfaces to SoC Non-Volatile memories. This feature functions even
when the current firmware in the system is corrupt or missing; it therefore may be used as a recovery
mode.

13.20. 1.2.0 (2015-12-22) 969

Trusted Firmware-A, Release 2.10.4

• Improvements have been made to the Certificate Generation Tool (cert_create) as follows.

– Added support for the Firmware Update process by extending the Chain of Trust definition in the
tool to include the Firmware Update certificate and the required extensions.

– Introduced a new API that allows one to specify command line options in the Chain of Trust
description. This makes the declaration of the tool’s arguments more flexible and easier to extend.

– The tool has been reworked to follow a data driven approach, which makes it easier to maintain
and extend.

• Extended the FIP tool (fip_create) to support the new set of images involved in the FirmwareUpdate
process.

• Various memory footprint improvements. In particular:

– The bakery lock structure for coherent memory has been optimised.

– The mbed TLS SHA1 functions are not needed, as SHA256 is used to generate the certificate
signature. Therefore, they have been compiled out, reducing the memory footprint of BL1 and
BL2 by approximately 6 KB.

– On Arm development platforms, each BL stage now individually defines the number of regions that
it needs to map in the MMU.

• Added the following new design documents:

– Authentication Framework & Chain of Trust

– Firmware Update (FWU)

– CPU Reset

– PSCI Power Domain Tree Structure

• Applied the new image terminology to the code base and documentation, as described in the Image
Terminology document.

• The build system has been reworked to improve readability and facilitate adding future extensions.

• On Arm standard platforms, BL31 uses the boot console during cold boot but switches to the runtime
console for any later logs at runtime. The TSP uses the runtime console for all output.

• Implemented a basic NOR flash driver for Arm platforms. It programs the device using CFI (Common
Flash Interface) standard commands.

• Implemented support for booting EL3 payloads on Arm platforms, which reduces the complexity of
developing EL3 baremetal code by doing essential baremetal initialization.

• Provided separate drivers for GICv3 and GICv2. These expect the entire software stack to use either
GICv2 or GICv3; hybrid GIC software systems are no longer supported and the legacy Arm GIC driver
has been deprecated.

• Added support for Juno r1 and r2. A single set of Juno TF-A binaries can run on Juno r0, r1 and r2
boards. Note that this TF-A version depends on a Linaro release that does not contain Juno r2 support.

• Added support for MediaTek mt8173 platform.

• Implemented a generic driver for Arm CCN IP.

970 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Major rework of the PSCI implementation.

– Added framework to handle composite power states.

– Decoupled the notions of affinity instances (which describes the hierarchical arrangement of cores)
and of power domain topology, instead of assuming a one-to-one mapping.

– Better alignment with version 1.0 of the PSCI specification.

• Added support for the SYSTEM_SUSPEND PSCI API on Arm platforms. When invoked on the last
running core on a supported platform, this puts the system into a low power mode with memory retention.

• Unified the reset handling code as much as possible across BL stages. Also introduced some build options
to enable optimization of the reset path on platforms that support it.

• Added a simple delay timer API, as well as an SP804 timer driver, which is enabled on FVP.

• Added support for NVidia Tegra T210 and T132 SoCs.

• Reorganised Arm platforms ports to greatly improve code shareability and facilitate the reuse of some
of this code by other platforms.

• Added support for Arm Cortex-A72 processor in the CPU specific framework.

• Provided better error handling. Platform ports can now define their own error handling, for example to
perform platform specific bookkeeping or post-error actions.

• Implemented a unified driver for Arm Cache Coherent Interconnects used for both CCI-400 & CCI-500
IPs. Arm platforms ports have been migrated to this common driver. The standalone CCI-400 driver
has been deprecated.

13.20.2 Issues resolved since last release

• The Trusted Board Boot implementation has been redesigned to provide greater modularity and scalabil-
ity. See the {ref}Authentication Framework & Chain of Trust document. All missing
mandatory features are now implemented.

• The FVP and Juno ports may now use the hash of the ROTPK stored in the Trusted Key Storage reg-
isters to verify the ROTPK. Alternatively, a development public key hash embedded in the BL1 and
BL2 binaries might be used instead. The location of the ROTPK is chosen at build-time using the
ARM_ROTPK_LOCATION build option.

• GICv3 is now fully supported and stable.

13.20. 1.2.0 (2015-12-22) 971

Trusted Firmware-A, Release 2.10.4

13.20.3 Known issues

• The version of the AEMv8 Base FVP used in this release resets the model instead of terminating its
execution in response to a shutdown request using the PSCI SYSTEM_OFF API. This issue will be fixed
in a future version of the model.

• While this version has low on-chip RAM requirements, there are further RAM usage enhancements that
could be made.

• The upstream documentation could be improved for structural consistency, clarity and completeness. In
particular, the design documentation is incomplete for PSCI, the TSP(D) and the Juno platform.

• Building TF-A with compiler optimisations disabled (-O0) fails.

13.21 1.1.0 (2015-02-04)

13.21.1 New features

• A prototype implementation of Trusted Board Boot has been added. Boot loader images are verified by
BL1 and BL2 during the cold boot path. BL1 and BL2 use the PolarSSL SSL library to verify certificates
and images. The OpenSSL library is used to create the X.509 certificates. Support has been added to
fip_create tool to package the certificates in a FIP.

• Support for calling CPU and platform specific reset handlers upon entry into BL3-1 during the cold and
warm boot paths has been added. This happens after another Boot ROM reset_handler() has
already run. This enables a developer to perform additional actions or undo actions already performed
during the first call of the reset handlers e.g. apply additional errata workarounds.

• Support has been added to demonstrate routing of IRQs to EL3 instead of S-EL1 when execution is in
secure world.

• The PSCI implementation now conforms to version 1.0 of the PSCI specification. All the mandatory
APIs and selected optional APIs are supported. In particular, support for thePSCI_FEATURESAPI has
been added. A capability variable is constructed during initialization by examining the plat_pm_ops
and spd_pm_ops exported by the platform and the Secure Payload Dispatcher. This is used by the
PSCI FEATURES function to determine which PSCI APIs are supported by the platform.

• Improvements have been made to the PSCI code as follows.

– The code has been refactored to remove redundant parameters from internal functions.

– Changes have been made to the code for PSCI CPU_SUSPEND, CPU_ON and CPU_OFF calls to
facilitate an early return to the caller in case a failure condition is detected. For example, a PSCI
CPU_SUSPEND call returns SUCCESS to the caller if a pending interrupt is detected early in the
code path.

– Optional platform APIs have been added to validate the power_state and entrypoint pa-
rameters early in PSCI CPU_ON and CPU_SUSPEND code paths.

972 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– PSCI migrate APIs have been reworked to invoke the SPD hook to determine the type of Trusted
OS and the CPU it is resident on (if applicable). Also, during a PSCI MIGRATE call, the SPD
hook to migrate the Trusted OS is invoked.

• It is now possible to build TF-A without marking at least an extra page of memory as coherent. The
build flag USE_COHERENT_MEM can be used to choose between the two implementations. This has
been made possible through these changes.

– An implementation of Bakery locks, where the locks are not allocated in coherent memory has
been added.

– Memory which was previously marked as coherent is now kept coherent through the use of software
cache maintenance operations.

Approximately, 4K worth of memory is saved for each boot loader stage when
USE_COHERENT_MEM=0. Enabling this option increases the latencies associated with acquire
and release of locks. It also requires changes to the platform ports.

• It is now possible to specify the name of the FIP at build time by defining the FIP_NAME variable.

• Issues with dependencies on the ‘fiptool’ makefile target have been rectified. The fip_create tool is
now rebuilt whenever its source files change.

• The BL3-1 runtime console is now also used as the crash console. The crash console is changed to SoC
UART0 (UART2) from the previous FPGA UART0 (UART0) on Juno. In FVP, it is changed from
UART0 to UART1.

• CPU errata workarounds are applied only when the revision and part number match. This behaviour has
been made consistent across the debug and release builds. The debug build additionally prints a warning
if a mismatch is detected.

• It is now possible to issue cache maintenance operations by set/way for a particular level of data cache.
Levels 1-3 are currently supported.

• The following improvements have been made to the FVP port.

– The build option FVP_SHARED_DATA_LOCATIONwhich allowed relocation of shared data into
the Trusted DRAM has been deprecated. Shared data is now always located at the base of Trusted
SRAM.

– BL2 Translation tables have been updated to map only the region of DRAM which is accessible to
normal world. This is the region of the 2GB DDR-DRAM memory at 0x80000000 excluding the
top 16MB. The top 16MB is accessible to only the secure world.

– BL3-2 can now reside in the top 16MB of DRAM which is accessible only to the secure world.
This can be done by setting the build flag FVP_TSP_RAM_LOCATION to the value dram.

• Separate translation tables are created for each boot loader image. The IMAGE_BLx build options are
used to do this. This allows each stage to create mappings only for areas in the memory map that it needs.

• A Secure Payload Dispatcher (OPTEED) for the OP-TEE Trusted OS has been added. Details of using
it with TF-A can be found in OP-TEE Dispatcher

13.21. 1.1.0 (2015-02-04) 973

Trusted Firmware-A, Release 2.10.4

13.21.2 Issues resolved since last release

• The Juno port has been aligned with the FVP port as follows.

– Support for reclaiming all BL1 RW memory and BL2 memory by overlaying the BL3-1/BL3-2
NOBITS sections on top of them has been added to the Juno port.

– The top 16MB of the 2GB DDR-DRAMmemory at 0x80000000 is configured using the TZC-400
controller to be accessible only to the secure world.

– The Arm GIC driver is used to configure the GIC-400 instead of using a GIC driver private to the
Juno port.

– PSCI CPU_SUSPEND calls that target a standby state are now supported.

– The TZC-400 driver is used to configure the controller instead of direct accesses to the registers.

• The Linux kernel version referred to in the user guide has DVFS and HMP support enabled.

• DS-5 v5.19 did not detect Version 5.8 of the Cortex-A57-A53 Base FVPs in CADI server mode. This
issue is not seen with DS-5 v5.20 and Version 6.2 of the Cortex-A57-A53 Base FVPs.

13.21.3 Known issues

• The Trusted Board Boot implementation is a prototype. There are issues with the modularity and scala-
bility of the design. Support for a Trusted Watchdog, firmware update mechanism, recovery images and
Trusted debug is absent. These issues will be addressed in future releases.

• The FVP and Juno ports do not use the hash of the ROTPK stored in the Trusted Key Storage registers to
verify the ROTPK in the plat_match_rotpk() function. This prevents the correct establishment
of the Chain of Trust at the first step in the Trusted Board Boot process.

• The version of the AEMv8 Base FVP used in this release resets the model instead of terminating its
execution in response to a shutdown request using the PSCI SYSTEM_OFF API. This issue will be fixed
in a future version of the model.

• GICv3 support is experimental. There are known issues with GICv3 initialization in the TF-A.

• While this version greatly reduces the on-chip RAM requirements, there are further RAM usage en-
hancements that could be made.

• The firmware design documentation for the Test Secure-EL1 Payload (TSP) and its dispatcher (TSPD)
is incomplete. Similarly for the PSCI section.

• The Juno-specific firmware design documentation is incomplete.

974 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.22 1.0.0 (2014-08-28)

13.22.1 New features

• It is now possible to map higher physical addresses using non-flat virtual to physical address mappings in
the MMU setup.

• Wider use is now made of the per-CPU data cache in BL3-1 to store:

– Pointers to the non-secure and secure security state contexts.

– A pointer to the CPU-specific operations.

– A pointer to PSCI specific information (for example the current power state).

– A crash reporting buffer.

• The following RAM usage improvements result in a BL3-1 RAM usage reduction from 96KB to 56KB
(for FVP with TSPD), and a total RAM usage reduction across all images from 208KB to 88KB, com-
pared to the previous release.

– Removed the separate early_exception vectors from BL3-1 (2KB code size saving).

– Removed NSRAM from the FVP memory map, allowing the removal of one (4KB) translation
table.

– Eliminated the internal psci_suspend_context array, saving 2KB.

– Correctly dimensioned the PSCI aff_map_node array, saving 1.5KB in the FVP port.

– Removed calling CPU mpidr from the bakery lock API, saving 160 bytes.

– Removed current CPU mpidr from PSCI common code, saving 160 bytes.

– Inlined the mmio accessor functions, saving 360 bytes.

– Fully reclaimed all BL1 RW memory and BL2 memory on the FVP port by overlaying the BL3-
1/BL3-2 NOBITS sections on top of these at runtime.

– Made storing the FP register context optional, saving 0.5KB per context (8KB on the FVP port,
with TSPD enabled and running on 8 CPUs).

– Implemented a leaner tf_printf() function, allowing the stack to be greatly reduced.

– Removed coherent stacks from the codebase. Stacks allocated in normal memory are now used
before and after the MMU is enabled. This saves 768 bytes per CPU in BL3-1.

– Reworked the crash reporting in BL3-1 to use less stack.

– Optimized the EL3 register state stored in the cpu_context structure so that registers that do
not change during normal execution are re-initialized each time during cold/warm boot, rather than
restored from memory. This saves about 1.2KB.

– As a result of some of the above, reduced the runtime stack size in all BL images. For BL3-1, this
saves 1KB per CPU.

• PSCI SMC handler improvements to correctly handle calls from secure states and from AArch32.

13.22. 1.0.0 (2014-08-28) 975

Trusted Firmware-A, Release 2.10.4

• CPU contexts are now initialized from the entry_point_info. BL3-1 fully determines the excep-
tion level to use for the non-trusted firmware (BL3-3) based on the SPSR value provided by the BL2
platform code (or otherwise provided to BL3-1). This allows platform code to directly run non-trusted
firmware payloads at either EL2 or EL1 without requiring an EL2 stub or OS loader.

• Code refactoring improvements:

– Refactored fvp_config into a common platform header.

– Refactored the fvp gic code to be a generic driver that no longer has an explicit dependency on
platform code.

– Refactored the CCI-400 driver to not have dependency on platform code.

– Simplified the IO driver so it’s no longer necessary to call io_init() and moved all the IO
storage framework code to one place.

– Simplified the interface the the TZC-400 driver.

– Clarified the platform porting interface to the TSP.

– Reworked the TSPD setup code to support the alternate BL3-2 initialization flow where BL3-1
generic code hands control to BL3-2, rather than expecting the TSPD to hand control directly to
BL3-2.

– Considerable rework to PSCI generic code to support CPU specific operations.

• Improved console log output, by:

– Adding the concept of debug log levels.

– Rationalizing the existing debug messages and adding new ones.

– Printing out the version of each BL stage at runtime.

– Adding support for printing console output from assembler code, including when a crash occurs
before the C runtime is initialized.

• Moved up to the latest versions of the FVPs, toolchain, EDK2, kernel, Linaro file system and DS-5.

• On the FVP port, made the use of the Trusted DRAM region optional at build time (off by default).
Normal platforms will not have such a “ready-to-use” DRAM area so it is not a good example to use it.

• Added support for PSCI SYSTEM_OFF and SYSTEM_RESET APIs.

• Added support for CPU specific reset sequences, power down sequences and register dumping during
crash reporting. The CPU specific reset sequences include support for errata workarounds.

• Merged the Juno port into the master branch. Added support for CPU hotplug and CPU idle. Updated
the user guide to describe how to build and run on the Juno platform.

976 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

13.22.2 Issues resolved since last release

• Removed the concept of top/bottom image loading. The image loader now automatically detects the
position of the image inside the current memory layout and updates the layout to minimize fragmentation.
This resolves the image loader limitations of previously releases. There are currently no plans to support
dynamic image loading.

• CPU idle now works on the publicized version of the Foundation FVP.

• All known issues relating to the compiler version used have now been resolved. This TF-A version uses
Linaro toolchain 14.07 (based on GCC 4.9).

13.22.3 Known issues

• GICv3 support is experimental. The Linux kernel patches to support this are not widely available. There
are known issues with GICv3 initialization in the TF-A.

• While this version greatly reduces the on-chip RAM requirements, there are further RAM usage en-
hancements that could be made.

• The firmware design documentation for the Test Secure-EL1 Payload (TSP) and its dispatcher (TSPD)
is incomplete. Similarly for the PSCI section.

• The Juno-specific firmware design documentation is incomplete.

• Some recent enhancements to the FVP port have not yet been translated into the Juno port. These will
be tracked via the tf-issues project.

• The Linux kernel version referred to in the user guide has DVFS and HMP support disabled due to some
known instabilities at the time of this release. A future kernel version will re-enable these features.

• DS-5 v5.19 does not detect Version 5.8 of the Cortex-A57-A53 Base FVPs in CADI server
mode. This is because the <SimName> reported by the FVP in this version has changed.
For example, for the Cortex-A57x4-A53x4 Base FVP, the <SimName> reported by the FVP is
FVP_Base_Cortex_A57x4_A53x4, while DS-5 expects it to be FVP_Base_A57x4_A53x4.

The temporary fix to this problem is to change the name of the FVP in sw/debugger/configdb/
Boards/ARM FVP/Base_A57x4_A53x4/cadi_config.xml. Change the following line:

<SimName>System Generator:FVP_Base_A57x4_A53x4</SimName>

to System Generator:FVP_Base_Cortex-A57x4_A53x4

A similar change can be made to the other Cortex-A57-A53 Base FVP variants.

13.22. 1.0.0 (2014-08-28) 977

Trusted Firmware-A, Release 2.10.4

13.23 0.4.0 (2014-06-03)

13.23.1 New features

• Makefile improvements:

– Improved dependency checking when building.

– Removed dump target (build now always produces dump files).

– Enabled platform ports to optionally make use of parts of the Trusted Firmware (e.g. BL3-1 only),
rather than being forced to use all parts. Also made the fip target optional.

– Specified the full path to source files and removed use of the vpath keyword.

• Provided translation table library code for potential re-use by platforms other than the FVPs.

• Moved architectural timer setup to platform-specific code.

• Added standby state support to PSCI cpu_suspend implementation.

• SRAM usage improvements:

– Started using the -ffunction-sections, -fdata-sections and --gc-sections
compiler/linker options to remove unused code and data from the images. Previously, all common
functions were being built into all binary images, whether or not they were actually used.

– Placed all assembler functions in their own section to allow more unused functions to be removed
from images.

– Updated BL1 and BL2 to use a single coherent stack each, rather than one per CPU.

– Changed variables that were unnecessarily declared and initialized as non-const (i.e. in the .data
section) so they are either uninitialized (zero init) or const.

• Moved the Test Secure-EL1 Payload (BL3-2) to execute in Trusted SRAM by default. The option for it
to run in Trusted DRAM remains.

• Implemented a TrustZone Address Space Controller (TZC-400) driver. A default configuration is pro-
vided for the Base FVPs. This means the model parameter -C bp.secure_memory=1 is now
supported.

• Started saving the PSCI cpu_suspend ‘power_state’ parameter prior to suspending a CPU. This allows
platforms that implement multiple power-down states at the same affinity level to identify a specific state.

• Refactored the entire codebase to reduce the amount of nesting in header files and to make the use of
system/user includes more consistent. Also split platform.h to separate out the platform porting dec-
larations from the required platform porting definitions and the definitions/declarations specific to the
platform port.

• Optimized the data cache clean/invalidate operations.

• Improved the BL3-1 unhandled exception handling and reporting. Unhandled exceptions now result in
a dump of registers to the console.

978 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• Major rework to the handover interface between BL stages, in particular the interface to BL3-1. The
interface now conforms to a specification and is more future proof.

• Added support for optionally making the BL3-1 entrypoint a reset handler (instead of BL1). This allows
platforms with an alternative image loading architecture to re-use BL3-1 with fewer modifications to
generic code.

• Reserved some DDR DRAM for secure use on FVP platforms to avoid future compatibility problems
with non-secure software.

• Added support for secure interrupts targeting the Secure-EL1 Payload (SP) (using GICv2 routing only).
Demonstrated this working by adding an interrupt target and supporting test code to the TSP. Also
demonstrated non-secure interrupt handling during TSP processing.

13.23.2 Issues resolved since last release

• Now support use of the model parameter -C bp.secure_memory=1 in the Base FVPs (see New
features).

• Support for secure world interrupt handling now available (see New features).

• Made enough SRAM savings (see New features) to enable the Test Secure-EL1 Payload (BL3-2) to
execute in Trusted SRAM by default.

• The tested filesystem used for this release (LinaroAArch64OpenEmbedded 14.04) now correctly reports
progress in the console.

• Improved the Makefile structure to make it easier to separate out parts of the TF-A for re-use in platform
ports. Also, improved target dependency checking.

13.23.3 Known issues

• GICv3 support is experimental. The Linux kernel patches to support this are not widely available. There
are known issues with GICv3 initialization in the TF-A.

• Dynamic image loading is not available yet. The current image loader implementation (used to load BL2
and all subsequent images) has some limitations. Changing BL2 or BL3-1 load addresses in certain ways
can lead to loading errors, even if the images should theoretically fit in memory.

• TF-A still uses too much on-chip Trusted SRAM. A number of RAM usage enhancements have been
identified to rectify this situation.

• CPU idle does not work on the advertised version of the Foundation FVP. Some FVP fixes are required
that are not available externally at the time of writing. This can be worked around by disabling CPU idle
in the Linux kernel.

• Various bugs in TF-A, UEFI and the Linux kernel have been observed when using Linaro toolchain
versions later than 13.11. Although most of these have been fixed, some remain at the time of writing.
These mainly seem to relate to a subtle change in the way the compiler converts between 64-bit and
32-bit values (e.g. during casting operations), which reveals previously hidden bugs in client code.

13.23. 0.4.0 (2014-06-03) 979

Trusted Firmware-A, Release 2.10.4

• The firmware design documentation for the Test Secure-EL1 Payload (TSP) and its dispatcher (TSPD)
is incomplete. Similarly for the PSCI section.

13.24 0.3.0 (2014-02-28)

13.24.1 New features

• Support for Foundation FVP Version 2.0 added. The documented UEFI configuration disables some
devices that are unavailable in the Foundation FVP, including MMC and CLCD. The resultant UEFI
binary can be used on the AEMv8 and Cortex-A57-A53 Base FVPs, as well as the Foundation FVP.

:::{note} The software will not work on Version 1.0 of the Foundation FVP. :::

• Enabled third party contributions. Added a new contributing.md containing instructions for how to
contribute and updated copyright text in all files to acknowledge contributors.

• The PSCI CPU_SUSPEND API has been stabilised to the extent where it can be used for entry into
power down states with the following restrictions:

– Entry into standby states is not supported.

– The API is only supported on the AEMv8 and Cortex-A57-A53 Base FVPs.

• The PSCI AFFINITY_INFO api has undergone limited testing on the Base FVPs to allow experimental
use.

• Required C library and runtime header files are now included locally in TF-A instead of depending on the
toolchain standard include paths. The local implementation has been cleaned up and reduced in scope.

• Added I/O abstraction framework, primarily to allow generic code to load images in a platform-
independent way. The existing image loading code has been reworked to use the new framework. Semi-
hosting and NOR flash I/O drivers are provided.

• Introduced Firmware Image Package (FIP) handling code and tools. A FIP combines multiple firmware
images with a Table of Contents (ToC) into a single binary image. The new FIP driver is another type of
I/O driver. The Makefile builds a FIP by default and the FVP platform code expect to load a FIP from
NOR flash, although some support for image loading using semi- hosting is retained.

:::{note} Building a FIP by default is a non-backwards-compatible change. :::

:::{note} Generic BL2 code now loads a BL3-3 (non-trusted firmware) image into DRAM instead of
expecting this to be pre-loaded at known location. This is also a non-backwards-compatible change. :::

:::{note} Some non-trusted firmware (e.g. UEFI) will need to be rebuilt so that it knows the new location
to execute from and no longer needs to copy particular code modules to DRAM itself. :::

• Reworked BL2 to BL3-1 handover interface. A new composite structure (bl31_args) holds the superset
of information that needs to be passed from BL2 to BL3-1, including information on how handover
execution control to BL3-2 (if present) and BL3-3 (non-trusted firmware).

• Added library support for CPU context management, allowing the saving and restoring of

– Shared system registers between Secure-EL1 and EL1.

980 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

– VFP registers.

– Essential EL3 system registers.

• Added a framework for implementing EL3 runtime services. Reworked the PSCI implementation to be
one such runtime service.

• Reworked the exception handling logic, making use of both SP_EL0 and SP_EL3 stack pointers for
determining the type of exception, managing general purpose and system register context on exception
entry/exit, and handling SMCs. SMCs are directed to the correct EL3 runtime service.

• Added support for a Test Secure-EL1 Payload (TSP) and a corresponding Dispatcher (TSPD), which is
loaded as an EL3 runtime service. The TSPD implements Secure Monitor functionality such as world
switching and EL1 context management, and is responsible for communication with the TSP.

:::{note} The TSPD does not yet contain support for secure world interrupts. :::

:::{note} The TSP/TSPD is not built by default. :::

13.24.2 Issues resolved since last release

• Support has been added for switching context between secure and normal worlds in EL3.

• PSCI API calls AFFINITY_INFO & PSCI_VERSION have now been tested (to a limited extent).

• The TF-A build artifacts are now placed in the ./build directory and sub-directories instead of being
placed in the root of the project.

• TF-A is now free from build warnings. Build warnings are now treated as errors.

• TF-A now provides C library support locally within the project to maintain compatibility between
toolchains/systems.

• The PSCI locking code has been reworked so it no longer takes locks in an incorrect sequence.

• The RAM-disk method of loading a Linux file-system has been confirmed to work with the TF-A and
Linux kernel version (based on version 3.13) used in this release, for both Foundation and Base FVPs.

13.24.3 Known issues

The following is a list of issues which are expected to be fixed in the future releases of TF-A.

• The TrustZone Address Space Controller (TZC-400) is not being programmed yet. Use of model pa-
rameter -C bp.secure_memory=1 is not supported.

• No support yet for secure world interrupt handling.

• GICv3 support is experimental. The Linux kernel patches to support this are not widely available. There
are known issues with GICv3 initialization in TF-A.

• Dynamic image loading is not available yet. The current image loader implementation (used to load BL2
and all subsequent images) has some limitations. Changing BL2 or BL3-1 load addresses in certain ways
can lead to loading errors, even if the images should theoretically fit in memory.

13.24. 0.3.0 (2014-02-28) 981

Trusted Firmware-A, Release 2.10.4

• TF-A uses too much on-chip Trusted SRAM. Currently the Test Secure-EL1 Payload (BL3-2) executes
in Trusted DRAM since there is not enough SRAM. A number of RAM usage enhancements have been
identified to rectify this situation.

• CPU idle does not work on the advertised version of the Foundation FVP. Some FVP fixes are required
that are not available externally at the time of writing.

• Various bugs in TF-A, UEFI and the Linux kernel have been observed when using Linaro toolchain
versions later than 13.11. Although most of these have been fixed, some remain at the time of writing.
These mainly seem to relate to a subtle change in the way the compiler converts between 64-bit and
32-bit values (e.g. during casting operations), which reveals previously hidden bugs in client code.

• The tested filesystem used for this release (Linaro AArch64 OpenEmbedded 14.01) does not report
progress correctly in the console. It only seems to produce error output, not standard output. It otherwise
appears to function correctly. Other filesystem versions on the same software stack do not exhibit the
problem.

• TheMakefile structure doesn’t make it easy to separate out parts of the TF-A for re-use in platform ports,
for example if only BL3-1 is required in a platform port. Also, dependency checking in the Makefile is
flawed.

• The firmware design documentation for the Test Secure-EL1 Payload (TSP) and its dispatcher (TSPD)
is incomplete. Similarly for the PSCI section.

13.25 0.2.0 (2013-10-25)

13.25.1 New features

• First source release.

• Code for the PSCI suspend feature is supplied, although this is not enabled by default since there are
known issues (see below).

13.25.2 Issues resolved since last release

• The “psci” nodes in the FDTs provided in this release now fully comply with the recommendations made
in the PSCI specification.

13.25.3 Known issues

The following is a list of issues which are expected to be fixed in the future releases of TF-A.

• The TrustZone Address Space Controller (TZC-400) is not being programmed yet. Use of model pa-
rameter -C bp.secure_memory=1 is not supported.

• No support yet for secure world interrupt handling or for switching context between secure and normal
worlds in EL3.

982 Chapter 13. Change Log & Release Notes

Trusted Firmware-A, Release 2.10.4

• GICv3 support is experimental. The Linux kernel patches to support this are not widely available. There
are known issues with GICv3 initialization in TF-A.

• Dynamic image loading is not available yet. The current image loader implementation (used to load BL2
and all subsequent images) has some limitations. Changing BL2 or BL3-1 load addresses in certain ways
can lead to loading errors, even if the images should theoretically fit in memory.

• Although support for PSCI CPU_SUSPEND is present, it is not yet stable and ready for use.

• PSCI API calls AFFINITY_INFO & PSCI_VERSION are implemented but have not been tested.

• The TF-A make files result in all build artifacts being placed in the root of the project. These should be
placed in appropriate sub-directories.

• The compilation of TF-A is not free from compilation warnings. Some of these warnings have not been
investigated yet so they could mask real bugs.

• TF-A currently uses toolchain/system include files like stdio.h. It should provide versions of these within
the project to maintain compatibility between toolchains/systems.

• The PSCI code takes some locks in an incorrect sequence. This may cause problems with suspend and
hotplug in certain conditions.

• The Linux kernel used in this release is based on version 3.12-rc4. Using this kernel with the TF-A fails
to start the file-system as a RAM-disk. It fails to execute user-space init from the RAM-disk. As an
alternative, the VirtioBlock mechanism can be used to provide a file-system to the kernel.

Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.

13.25. 0.2.0 (2013-10-25) 983

CHAPTER

FOURTEEN

GLOSSARY

This glossary provides definitions for terms and abbreviations used in the TF-A documentation.

You can find additional definitions in the Arm Glossary.

AArch32
32-bit execution state of the ARMv8 ISA

AArch64
64-bit execution state of the ARMv8 ISA

AMU
Activity Monitor Unit, a hardware monitoring unit introduced by FEAT_AMUv1 that exposes CPU core
runtime metrics as a set of counter registers.

API
Application Programming Interface

AT
Address Translation

BTI
Branch Target Identification. An Armv8.5 extension providing additional control flow integrity around
indirect branches and their targets.

CoT
COT

Chain of Trust

CSS
Compute Sub-System

CVE
Common Vulnerabilities and Exposures. A CVE document is commonly used to describe a publicly-
known security vulnerability.

D-CRTM
Dynamic Code Root of Trust for Measurement

DCE
DRTM Configuration Environment

984

https://developer.arm.com/support/arm-glossary

Trusted Firmware-A, Release 2.10.4

DLME
Dynamically Launched Measured Environment

DRTM
Dynamic Root of Trust for Measurement

DS-5
Arm Development Studio 5

DSU
DynamIQ Shared Unit

DT
Device Tree

DTB
Device Tree Blob

EHF
Exception Handling Framework

EL
Exception Level

ERRATA_ABI
Errata management firmware interface

FCONF
Firmware Configuration Framework

FDT
Flattened Device Tree

FF-A
Firmware Framework for Arm A-profile

FIP
Firmware Image Package

FVP
Fixed Virtual Platform

FWU
FirmWare Update

GIC
Generic Interrupt Controller

ISA
Instruction Set Architecture

Linaro
A collaborative engineering organization consolidating and optimizing open source software and tools
for the Arm architecture.

LSP
A logical secure partition managed by SPM

985

Trusted Firmware-A, Release 2.10.4

MMU
Memory Management Unit

MPAM
Memory Partitioning And Monitoring. An optional Armv8.4 extension.

MPIDR
Multiprocessor Affinity Register

MPMM
Maximum PowerMitigationMechanism, an optional power management mechanism supported by some
Arm Armv9-A cores.

MTE
Memory Tagging Extension. An optional Armv8.5 extension that enables hardware-assisted memory
tagging.

OEN
Owning Entity Number

OP-TEE
Open Portable Trusted Execution Environment. An example of a TEE

OTE
Open-source Trusted Execution Environment

PAUTH
Pointer Authentication. An optional extension introduced in Armv8.3.

PDD
Platform Design Document

PMF
Performance Measurement Framework

PSA
Platform Security Architecture

PSCI
Power State Coordination Interface

RAS
Reliability, Availability, and Serviceability extensions. A mandatory extension for the Armv8.2 archi-
tecture and later. An optional extension to the base Armv8 architecture.

ROT
Root of Trust

SCMI
System Control and Management Interface

SCP
System Control Processor

SDEI
Software Delegated Exception Interface

986 Chapter 14. Glossary

Trusted Firmware-A, Release 2.10.4

SDS
Shared Data Storage

SEA
Synchronous External Abort

SiP
SIP

Silicon Provider

SMC
Secure Monitor Call

SMCCC
SMC Calling Convention

SoC
System on Chip

SP
Secure Partition

SPD
Secure Payload Dispatcher

SPM
Secure Partition Manager

SRTM
Static Root of Trust for Measurement

SSBS
Speculative Store Bypass Safe. Introduced in Armv8.5, this configuration bit can be set by software to
allow or prevent the hardware from performing speculative operations.

SVE
Scalable Vector Extension

TBB
Trusted Board Boot

TBBR
Trusted Board Boot Requirements

TCB
Trusted Compute Base

TCG
Trusted Computing Group

TEE
Trusted Execution Environment

TF-A
Trusted Firmware-A

987

Trusted Firmware-A, Release 2.10.4

TF-M
Trusted Firmware-M

TLB
Translation Lookaside Buffer

TLK
Trusted Little Kernel. A Trusted OS from NVIDIA.

TPM
Trusted Platform Module

TRNG
True Random Number Generator (hardware based)

TSP
Test Secure Payload

TZC
TrustZone Controller

UBSAN
Undefined Behavior Sanitizer

UEFI
Unified Extensible Firmware Interface

WDOG
Watchdog

XLAT
Translation (abbr.). For example, “XLAT table”.

988 Chapter 14. Glossary

CHAPTER

FIFTEEN

LICENSE

The software is provided under a BSD-3-Clause license (below). Contributions to this project are accepted
under the same license with developer sign-off as described in the Contributor’s Guide.

Copyright (c) [XXXX-]YYYY, <OWNER>. All rights reserved.

Redistribution and use in source and binary forms, with or without␣
↪→modification,
are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

- Neither the name of Arm nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"␣
↪→AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE␣
↪→FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

989

Trusted Firmware-A, Release 2.10.4

15.1 SPDX Identifiers

Individual files contain the following tag instead of the full license text.

SPDX-License-Identifier: BSD-3-Clause

This enables machine processing of license information based on the SPDX License Identifiers that are here
available: http://spdx.org/licenses/

15.2 Other Projects

This project contains code from other projects as listed below. The original license text is included in those
source files.

• The libc source code is derived from FreeBSD and SCC. FreeBSD uses various BSD licenses, including
BSD-3-Clause and BSD-2-Clause. The SCC code is used under the BSD-3-Clause license with the
author’s permission.

• The libfdt source code is disjunctively dual licensed (GPL-2.0+ OR BSD-2-Clause). It is used by this
project under the terms of the BSD-2-Clause license. Any contributions to this code must be made under
the terms of both licenses.

• The LLVM compiler-rt source code is disjunctively dual licensed (NCSA OR MIT). It is used by this
project under the terms of theNCSA license (also known as theUniversity of Illinois/NCSAOpen Source
License), which is a permissive license compatible with BSD-3-Clause. Any contributions to this code
must be made under the terms of both licenses.

• The zlib source code is licensed under the Zlib license, which is a permissive license compatible with
BSD-3-Clause.

• Some STMicroelectronics platform source code is disjunctively dual licensed (GPL-2.0+ OR BSD-3-
Clause). It is used by this project under the terms of the BSD-3-Clause license. Any contributions to
this code must be made under the terms of both licenses.

• Some source files originating from the Linux source tree, which are disjunctively dual licensed (GPL-2.0
OR MIT), are redistributed under the terms of the MIT license. These files are:

– include/dt-bindings/interrupt-controller/arm-gic.h

– include/dt-bindings/interrupt-controller/irq.h

See the original Linux MIT license.

Trusted Firmware-A (TF-A) provides a reference implementation of secure world software for Armv7-A and
Armv8-A, including a Secure Monitor executing at Exception Level 3 (EL3). It implements various Arm
interface standards, such as:

• The Power State Coordination Interface (PSCI)

• Trusted Board Boot Requirements CLIENT (TBBR-CLIENT)

• SMC Calling Convention

990 Chapter 15. License

http://spdx.org/licenses/
http://www.freebsd.org
http://www.simple-cc.org/
https://raw.githubusercontent.com/torvalds/linux/master/LICENSES/preferred/MIT
https://developer.arm.com/products/architecture/a-profile
https://developer.arm.com/products/architecture/a-profile
http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0028/latest

Trusted Firmware-A, Release 2.10.4

• System Control and Management Interface (SCMI)

• Software Delegated Exception Interface (SDEI)

• PSA FW update specification

Where possible, the code is designed for reuse or porting to other Armv7-A and Armv8-A model and hardware
platforms.

This release provides a suitable starting point for productization of secure world boot and runtime firmware, in
either the AArch32 or AArch64 execution states.

Users are encouraged to do their own security validation, including penetration testing, on any secure world
code derived from TF-A.

In collaboration with interested parties, we will continue to enhance TF-A with reference implementations of
Arm standards to benefit developers working with Armv7-A and Armv8-A TrustZone technology.

15.2. Other Projects 991

http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/DEN0056A_System_Control_and_Management_Interface.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
https://developer.arm.com/documentation/den0118/a/

CHAPTER

SIXTEEN

GETTING STARTED

The TF-A documentation contains guidance for obtaining and building the software for existing, supported
platforms, as well as supporting information for porting the software to a new platform.

TheAbout chapter gives a high-level overview of TF-A features as well as some information on the project and
how it is organized.

Refer to the documents in theGetting Started chapter for information about the prerequisites and requirements
for building TF-A.

The Processes & Policies chapter explains the project’s release schedule and process, how security disclosures
are handled, and the guidelines for contributing to the project (including the coding style).

The Components chapter holds documents that explain specific components that make up the TF-A software,
the Exception Handling Framework, for example.

In the System Design chapter you will find documents that explain the design of portions of the software that
involve more than one component, such as the Trusted Board Boot process.

Platform Ports provides a list of the supported hardware and software-model platforms that are supported
upstream in TF-A. Most of these platforms also have additional documentation that has been provided by the
maintainers of the platform.

The results of any performance evaluations are added to the Performance & Testing chapter.

Security Advisories holds a list of documents relating to CVE entries that have previously been raised against
the software.

Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.

992

INDEX

A
AArch32, 984
AArch64, 984
AMU, 984
API, 984
AT, 984

B
BTI, 984

C
Cache Flush Latency, 653
COT, 984
CoT, 984
CPU_SUSPEND (C macro), 716
CSS, 984
CVE, 984

D
D-CRTM, 984
DCE, 984
DLME, 985
DRTM, 985
DS-5, 985
DSU, 985
DT, 985
DTB, 985

E
EHF, 985
EL, 985
ERRATA_ABI, 985

F
FCONF, 985
FDT, 985
FF-A, 985
FIP, 985

FVP, 985
FWU, 985

G
GIC, 985

I
ISA, 985

L
Linaro, 985
LSP, 985

M
MMU, 986
MPAM, 986
MPIDR, 986
MPMM, 986
MTE, 986

O
OEN, 986
OP-TEE, 986
OTE, 986

P
PAUTH, 986
PDD, 986
PMF, 986
Powerdown Latency, 653
PSA, 986
PSCI, 986
PSCI_FEATURES (C macro), 715
PSCI_SET_SUSPEND_MODE (C macro), 716
PSCI_STAT_COUNT (C macro), 639
PSCI_STAT_RESIDENCY (C macro), 639

R
RAS, 986

993

Trusted Firmware-A, Release 2.10.4

ROT, 986

S
SCMI, 986
SCP, 986
SDEI, 986
SDS, 987
SEA, 987
SIP, 987
SiP, 987
SMC, 987
SMCCC, 987
SoC, 987
SP, 987
SPD, 987
SPM, 987
SRTM, 987
SSBS, 987
SVE, 987

T
TBB, 987
TBBR, 987
TCB, 987
TCG, 987
TEE, 987
TF-A, 987
TF-M, 988
TLB, 988
TLK, 988
TPM, 988
TRNG, 988
TSP, 988
TZC, 988

U
UBSAN, 988
UEFI, 988

W
Wakeup Latency, 653
WDOG, 988

X
XLAT, 988

994 Index

	About
	Feature Overview
	Current features
	Experimental features
	Still to come

	Release Processes
	Project Release Cadence
	Version numbering
	Upcoming Releases

	Removal of Deprecated Interfaces
	Removal of Deprecated Drivers

	Project Maintenance
	Maintainers
	LTS Maintainers
	Code owners
	Common Code
	Armv7-A architecture port
	Build Definitions for CMake Build System
	Software Delegated Exception Interface (SDEI)
	Trusted Boot
	Secure Partition Manager Core (EL3 FF-A SPMC)
	Secure Partition Manager Dispatcher (SPMD)
	Exception Handling Framework (EHF)
	Realm Management Monitor Dispatcher (RMMD)
	Realm Management Extension (RME)

	Drivers, Libraries and Framework Code
	Console API framework
	coreboot support libraries
	eMMC/UFS drivers
	Arm® Ethos™-N NPU driver
	JTAG DCC console driver
	Power State Coordination Interface (PSCI)
	DebugFS
	Firmware Configuration Framework (FCONF)
	Performance Measurement Framework (PMF)
	Errata Management
	Arm CPU libraries
	Reliability Availability Serviceabilty (RAS) framework
	Activity Monitors Unit (AMU) extensions
	Memory Partitioning And Monitoring (MPAM) extensions
	Pointer Authentication (PAuth) and Branch Target Identification (BTI) extensions
	Statistical Profiling Extension (SPE)
	Standard C library
	Library At ROM (ROMlib)
	Translation tables (xlat_tables) library
	IO abstraction layer
	GIC driver
	Message Handling Unit (MHU) driver
	Runtime Security Subsystem (RSS) comms driver
	Libfdt wrappers
	Firmware Encryption Framework
	Measured Boot
	DRTM
	PSA Firmware Update
	Platform Security Architecture (PSA) APIs
	System Control and Management Interface (SCMI) Server
	Max Power Mitigation Mechanism (MPMM)
	Granule Protection Tables Library (GPT-RME)
	Firmware Handoff Library (Transfer List)

	Platform Ports
	Allwinner ARMv8 platform port
	Amlogic Meson S905 (GXBB) platform port
	Amlogic Meson S905x (GXL) platform port
	Amlogic Meson S905X2 (G12A) platform port
	Amlogic Meson A113D (AXG) platform port
	Arm FPGA platform port
	Arm FVP Platform port
	Arm Juno Platform port
	Arm Morello and N1SDP Platform ports
	Arm Rich IoT Platform ports
	Arm Reference Design platform ports
	Arm Total Compute platform port
	Aspeed platform port
	HiSilicon HiKey and HiKey960 platform ports
	HiSilicon Poplar platform port
	Intel SocFPGA platform ports
	MediaTek platform ports
	Marvell platform ports and SoC drivers
	Nuvoton npcm845x platform port
	NVidia platform ports
	NXP i.MX 7 WaRP7 platform port and SoC drivers
	NXP i.MX 8 platform port
	NXP i.MX8M platform port
	NXP i.MX9 platform port
	NXP QorIQ Layerscape common code for platform ports
	NXP SoC Part LX2160A and its platform port
	NXP SoC Part LS1028A and its platform port
	NXP SoC Part LS1043A and its platform port
	NXP SoC Part LS1046A and its platform port
	NXP SoC Part LS1088A and its platform port
	QEMU platform port
	QTI platform port
	QTI MSM8916 platform port
	Raspberry Pi 3 platform port
	Raspberry Pi 4 platform port
	Renesas rcar-gen3 platform port
	Renesas RZ/G2 platform port
	RockChip platform port
	STM32MP1 platform port
	Synquacer platform port
	Texas Instruments platform port
	UniPhier platform port
	Xilinx platform port

	Secure Payloads and Dispatchers
	OP-TEE dispatcher
	TLK
	Trusty secure payloads
	Test Secure Payload (TSP)
	ProvenCore Secure Payload Dispatcher

	Tools
	Fiptool
	Cert_create tool
	Encrypt_fw tool
	Sptool
	Build system

	Threat Model
	Conventional Changelog Extensions

	Support & Contact
	Mailing Lists
	Open Tech Forum Call
	Issue Tracker
	Arm Licensees

	Contributor Acknowledgements

	Getting Started
	Prerequisites
	Build Host
	Toolchain
	Software and Libraries
	Package Installation (Linux)

	Supporting Files
	Getting the TF-A Source
	Additional Steps for Contributors

	Building Documentation
	Prerequisites
	Building rendered documentation
	Other Output Formats
	Building rendered documentation from Poetry’s virtual environment

	Building rendered documentation from a container

	Performing an Initial Build
	Building Supporting Tools
	Building and using the FIP tool
	Building the Certificate Generation Tool
	Building the Firmware Encryption Tool

	Build Options
	Common build options
	GICv3 driver options
	Debugging options
	Experimental build options
	Common build options
	Firmware update options

	Internal Build Options
	Image Terminology
	Common Image Features
	Trusted Firmware Images
	Firmware Image Package: FIP
	AP Boot ROM: AP_BL1
	AP RAM Firmware: AP_BL2
	EL3 Runtime Firmware: AP_BL31
	Secure-EL1 Payload (SP): AP_BL32
	AP Normal World Firmware: AP_BL33
	Other AP 3rd level images: AP_BL3_XXX
	Realm Monitor Management Firmware: RMM
	SCP Boot ROM: SCP_BL1 (previously BL0)
	SCP RAM Firmware: SCP_BL2 (previously BL3-0)

	Firmware Update (FWU) Images
	AP Firmware Update Boot ROM: AP_NS_BL1U
	AP Firmware Update Config: AP_BL2U
	SCP Firmware Update Config: SCP_BL2U (previously BL2-U0)
	AP Firmware Updater: AP_NS_BL2U (previously BL3-U)

	Other Processor Firmware Images
	MCP Boot ROM: MCP_BL1
	MCP RAM Firmware: MCP_BL2

	PSCI Library Integration guide for Armv8-A AArch32 systems
	Generic call sequence for PSCI Library interface (AArch32)
	PSCI CPU context management
	PSCI Library Interface
	Interface : psci_setup()
	Interface : psci_prepare_next_non_secure_ctx()
	Interface : psci_register_spd_pm_hook()
	Interface : psci_smc_handler()
	Interface : psci_warmboot_entrypoint()

	EL3 Runtime Software dependencies
	General dependencies
	CPU Context management API
	Platform API
	Secure payload power management callback
	CPU operations

	EL3 Runtime Service Writer’s Guide
	Introduction
	Owning Entities, Call Types and Function IDs
	Getting started
	Registering a runtime service
	Initializing a runtime service
	Handling runtime service requests
	Services that contain multiple sub-services
	Secure-EL1 Payload Dispatcher service (SPD)

	Processes & Policies
	Security Handling
	Security Disclosures
	Found a Security Issue?
	Attribution
	Security Advisories

	Platform Ports Policy
	Platform compatibility policy
	Deprecation policy

	Commit Style
	Adding Scopes
	Mandated Trailers

	Coding Style
	File Encoding
	Language
	C Language Standard
	MISRA Compliance
	Indentation
	Spacing
	Line Length
	Blank Lines
	Braces
	Opening Brace Placement
	Conditional Statement Bodies

	Naming
	Functions
	Local Variables and Parameters
	Preprocessor Macros

	Function Attributes
	Alignment
	Switch Statement Alignment
	Pointer Alignment

	Comments
	Headers and inclusion
	Header guards
	Include statement ordering
	Include statement variants

	Typedefs
	Avoid anonymous typedefs of structs/enums in headers

	Coding Guidelines
	Automatic Editor Configuration
	Automatic Compliance Checking
	Ignored Checkpatch Warnings

	Performance considerations
	Avoid printf and use logging macros
	Use const data where possible

	Libc functions that are banned or to be used with caution
	Error handling and robustness
	Using CASSERT to check for compile time data errors
	Using assert() to check for programming errors
	Handling integration errors
	Handling recoverable errors
	Handling unrecoverable errors
	Handling critical unresponsiveness

	Use of built-in C and libc data types
	Favor C language over assembly language
	Do not use weak functions

	Contributor’s Guide
	Getting Started
	Making Changes
	Submitting Changes
	Add CI Configurations
	Coverity Scan
	Test Build Configuration (tf-l1-build-plat)

	Binary Components

	Code Review Guidelines
	Why do we do code reviews?
	Overview of the code review process
	Good practices for all reviewers
	Guidelines for patch contributors
	Guidelines for all reviewers
	Guidelines for code owners
	Guidelines for maintainers

	Frequently-Asked Questions (FAQ)
	How do I update my changes?
	How long will my changes take to merge into integration?
	How long will it take for my changes to go from integration to master?
	What are these strange comments in my changes?

	Project Maintenance Processes
	How to become a maintainer?
	Qualifying Criteria
	Election Process

	Secure Development Guidelines
	Security considerations
	Do not leak secrets to the normal world
	Handling Denial of Service attacks
	Preventing Secure-world timing information leakage via PMU counters
	Timing leakage attacks from the Non-secure world
	Secure world mitigation strategies

	Build options

	Components
	Secure Payload Dispatcher (SPD)
	OP-TEE Dispatcher
	Trusted Little Kernel (TLK) Dispatcher
	Trusted Little Kernel (TLK)
	Build TLK
	Input parameters to TLK
	Example

	Trusty Dispatcher
	Boot parameters
	Supported platforms

	ProvenCore Dispatcher

	Activity Monitors
	Auxiliary counters

	Arm SiP Services
	Performance Measurement Framework (PMF)
	Execution State Switching service
	ARM_SIP_SVC_EXE_STATE_SWITCH

	DebugFS interface
	MOUNT
	Description
	Parameters
	Return values

	OPEN
	Description
	Parameters
	Return values

	CLOSE
	Description
	Parameters
	Return values

	READ
	Description
	Parameters
	Return values

	SEEK
	Description
	Parameters
	Return values

	BIND
	Description
	Parameters
	Return values

	STAT
	Description
	Parameters
	Return values

	INIT
	Description
	Parameters
	Return values

	VERSION
	Description
	Parameters
	Return values

	Debug FS
	Overview
	Virtual filesystem
	Namespace
	9p interface

	SMC interface
	Security considerations
	Limitations
	Applications

	Exception Handling Framework
	Introduction
	The role of Exception Handling Framework
	Interrupt handling
	Partitioning priority levels
	Programming priority

	Registering handler
	Interrupt handling example
	Activating and Deactivating priorities
	Transition of priority levels
	Effect on SMC calls
	Build-time flow
	Run-time flow
	Interrupt Prioritisation Considerations
	Limitations

	Firmware Configuration Framework
	Introduction
	Accessing properties
	Defining properties
	Loading the property device tree
	Populating the properties
	Namespace guidance
	Properties binding information
	DTB binding for FCONF properties
	Dynamic configuration

	Activity Monitor Unit (AMU) Bindings
	Bindings
	/cpus/cpus/cpu* node properties
	/cpus/amus node properties
	/cpus/amus/amu* node properties
	/cpus/amus/amu*/counter* node properties

	Example

	Maximum Power Mitigation Mechanism (MPMM) Bindings
	Bindings
	/cpus/cpus/cpu* node properties

	Example

	Firmware Update (FWU)
	PSA Firmware Update (PSA FWU)
	Introduction
	Scope
	Overview

	TBBR Firmware Update (TBBR FWU)
	Introduction
	Scope
	Overview
	Image Identification
	FWU State Machine
	BL1 SMC Interface
	BL1_SMC_CALL_COUNT
	BL1_SMC_UID
	BL1_SMC_VERSION
	BL1_SMC_RUN_IMAGE
	FWU_SMC_IMAGE_COPY
	FWU_SMC_IMAGE_AUTH
	FWU_SMC_IMAGE_EXECUTE
	FWU_SMC_IMAGE_RESUME
	FWU_SMC_SEC_IMAGE_DONE
	FWU_SMC_UPDATE_DONE
	FWU_SMC_IMAGE_RESET

	Measured Boot Driver (MBD)
	Properties binding information
	DTB binding for Event Log properties
	Dynamic configuration for Event Log

	Maximum Power Mitigation Mechanism (MPMM)
	Platform Interrupt Controller API
	Function: unsigned int plat_ic_get_running_priority(void); [optional]
	Function: int plat_ic_is_spi(unsigned int id); [optional]
	Function: int plat_ic_is_ppi(unsigned int id); [optional]
	Function: int plat_ic_is_sgi(unsigned int id); [optional]
	Function: unsigned int plat_ic_get_interrupt_active(unsigned int id); [optional]
	Function: void plat_ic_enable_interrupt(unsigned int id); [optional]
	Function: void plat_ic_disable_interrupt(unsigned int id); [optional]
	Function: void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority); [optional]
	Function: bool plat_ic_has_interrupt_type(unsigned int type); [optional]
	Function: void plat_ic_set_interrupt_type(unsigned int id, unsigned int type); [optional]
	Function: void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target); [optional]
	Function: void plat_ic_set_spi_routing(unsigned int id, unsigned int routing_mode, u_register_t mpidr); [optional]
	Function: void plat_ic_set_interrupt_pending(unsigned int id); [optional]
	Function: void plat_ic_clear_interrupt_pending(unsigned int id); [optional]
	Function: unsigned int plat_ic_set_priority_mask(unsigned int id); [optional]
	Function: unsigned int plat_ic_deactivate_priority(unsigned int id); [optional]
	Function: unsigned int plat_ic_get_interrupt_id(unsigned int raw); [optional]

	Reliability, Availability, and Serviceability (RAS) Extensions
	Firmware First Handling (FFH)
	Introduction
	Overview

	Kernel First Handling (KFH)
	Introduction

	Error Syncronization at EL3 entry
	TF-A build options
	TF-A Tests
	RAS Framework
	Platform APIs
	Registering RAS error records
	Standard Error Record helpers

	Registering RAS interrupts
	Double-fault handling
	Engaging the RAS framework
	Interaction with Exception Handling Framework

	Library at ROM
	Introduction
	Index file
	Wrapper functions
	Script
	Patching of functions in library at ROM
	Memory impact
	Build library at ROM

	SDEI: Software Delegated Exception Interface
	Introduction
	Defining events
	Event flags

	Event definition example
	Configuration within Exception Handling Framework
	Determining client EL
	Explicit dispatch of events
	Conditions for event dispatch

	Porting requirements
	Note on writing SDEI event handlers
	Security Considerations
	Bound events
	Recurring events
	Dispatched events

	Secure Partition Manager
	FF-A manifest binding to device tree
	Partition Properties
	Memory Regions
	Device Regions

	Acronyms
	Foreword
	Terminology
	Support for legacy platforms

	Sample reference stack
	TF-A build options
	FVP model invocation
	Boot process
	Loading Hafnium and secure partitions in the secure world
	Booting through TF-A
	SP manifests
	Secure Partition packages
	Describing secure partitions
	SPMC manifest
	SPMC boot
	Loading of SPs
	Secure boot

	Hafnium in the secure world
	General considerations
	Build platform for the secure world
	Secure partitions scheduling
	Platform topology

	Parsing SP partition manifests
	Passing boot data to the SP
	SP Boot order
	Boot phases
	Primary core boot-up
	Secondary cores boot-up

	Notifications
	Mandatory interfaces
	FFA_VERSION
	FFA_FEATURES
	FFA_RXTX_MAP/FFA_RXTX_UNMAP
	FFA_PARTITION_INFO_GET
	FFA_ID_GET
	FFA_MSG_SEND_DIRECT_REQ/FFA_MSG_SEND_DIRECT_RESP
	FFA_NOTIFICATION_BITMAP_CREATE/FFA_NOTIFICATION_BITMAP_DESTROY
	FFA_NOTIFICATION_BIND/FFA_NOTIFICATION_UNBIND
	FFA_NOTIFICATION_SET/FFA_NOTIFICATION_GET
	FFA_NOTIFICATION_INFO_GET
	FFA_SPM_ID_GET
	FFA_SECONDARY_EP_REGISTER
	FFA_RX_ACQUIRE/FFA_RX_RELEASE
	FFA_MSG_SEND2

	SPMC-SPMD direct requests/responses
	Memory Sharing
	PE MMU configuration
	Schedule modes and SP Call chains
	Partition runtime models
	Interrupt management
	GIC ownership
	Non-secure interrupt handling
	Secure interrupt handling
	Secure interrupt signaling mechanisms
	Secure interrupt completion mechanisms
	Actions for a secure interrupt triggered while execution is in normal world
	Actions for a secure interrupt triggered while execution is in secure world
	EL3 interrupt handling

	Power management

	Arm architecture extensions for security hardening
	SMMUv3 support in Hafnium
	SMMUv3 features
	SMMUv3 Programming Interfaces
	Peripheral device manifest
	SMMUv3 driver limitations

	S-EL0 Partition support
	References

	EL3 Secure Partition Manager
	Foreword
	Sample reference stack
	TF-A build options
	FVP model invocation
	Platform Guide
	Logical Secure Partition (LSP)
	SPMC boot
	Parsing SP partition manifests
	Passing boot data to the SP

	Supported interfaces
	FFA_VERSION
	FFA_FEATURES
	FFA_RXTX_MAP
	FFA_RXTX_UNMAP
	FFA_PARTITION_INFO_GET
	FFA_ID_GET
	FFA_MSG_SEND_DIRECT_REQ
	FFA_MSG_SEND_DIRECT_RESP
	FFA_SPM_ID_GET
	FFA_ID_GET
	FFA_MEM_SHARE
	FFA_MEM_LEND
	FFA_MEM_RETRIEVE_REQ
	FFA_MEM_RETRIEVE_RESP
	FFA_MEM_FRAG_RX
	FFA_MEM_FRAG_TX
	FFA_SECONDARY_EP_REGISTER

	Power management
	Secure partitions scheduling
	Partition Runtime State and Model
	Platform topology
	Interrupt handling
	Secure Interrupt handling
	Non-Secure Interrupt handling

	Test Secure Payload (TSP)
	TSP Tests in CI

	References

	Secure Partition Manager (MM)
	Foreword
	Background
	Introduction
	Description
	Building TF-A with Secure Partition support
	Describing Secure Partition resources
	Accessing Secure Partition services
	Exchanging data with the Secure Partition

	Runtime model of the Secure Partition
	Interface with SPM
	Conduit
	Calling conventions
	Communication initiated by SPM
	Communication initiated by Secure Partition
	Interfaces
	Secure Partition Event Management

	Miscellaneous interfaces
	SPM_MM_VERSION_AARCH32

	Secure Partition Initialisation
	Entry point invocation
	Architectural Setup
	MMU setup
	System Register Setup
	General Purpose Register Setup

	Runtime Event Delegation
	MM_SP_EVENT_COMPLETE_AARCH64

	Secure Partition Memory Management
	MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64
	MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64

	Error Codes

	Translation (XLAT) Tables Library
	About version 1, version 2 and MPU libraries
	Design concepts and interfaces
	mmap regions
	Translation Context
	Static and dynamic memory regions

	Library APIs
	Library limitations
	Implementation details
	Code structure
	From mmap regions to translation tables
	The memory mapping algorithm
	TLB maintenance operations

	Chain of trust bindings
	cot
	Manifests and Certificate node bindings definition
	Images and Image node bindings definition
	non-volatile counter node binding definition
	Future update to chain of trust binding

	Realm Management Extension (RME)
	RME support in TF-A
	Changes to translation tables library
	Changes to context management
	Boot flow changes
	Granule Protection Tables (GPT) library
	RMM Dispatcher (RMMD)
	Test Realm Payload (TRP)

	Building and running TF-A with RME
	Three-world execution
	Four-world execution

	RMM-EL3 Communication interface
	RMM-EL3 Interface versioning
	RMM Boot Interface
	Cold Boot Interface
	Warm Boot Interface
	Boot error handling and return values
	Boot Manifest

	RMM-EL3 Runtime Interface
	RMM-EL3 runtime service return codes
	RMM-EL3 runtime services
	RMM_RMI_REQ_COMPLETE command
	FID
	Input values
	Output values
	Failure conditions

	RMM_GTSI_DELEGATE command
	FID
	Input values
	Output values
	Failure conditions

	RMM_GTSI_UNDELEGATE command
	FID
	Input values
	Output values
	Failure conditions

	RMM_ATTEST_GET_REALM_KEY command
	FID
	Input values
	Output values
	Failure conditions
	Supported ECC Curves

	RMM_ATTEST_GET_PLAT_TOKEN command
	FID
	Input values
	Output values
	Failure conditions

	RMM-EL3 world switch register save restore convention
	Types
	RMM-EL3 Boot Manifest structure
	NS DRAM Layout Info structure
	NS DRAM Bank structure

	Granule Protection Tables Library
	Design Concepts and Interfaces
	Defining PAS regions
	Level 0 and Level 1 Tables
	Granule Transition Service

	Library APIs
	API Constraints
	Sample Calculation for L0 memory size and alignment
	Sample calculation for L1 table size and alignment

	System Design
	Alternative Boot Flows
	EL3 payloads alternative boot flow
	Booting an EL3 payload

	Preloaded BL33 alternative boot flow

	Authentication Framework & Chain of Trust
	Framework design
	Chain of Trust
	Image types
	Component responsibilities
	TF-A Generic code and IO framework (GEN/IO)
	TF-A Platform Port (PP)
	Authentication Module (AM)
	Cryptographic Module (CM)
	Image Parser Module (IPM)

	Authentication methods

	Specifying a Chain of Trust
	Describing the image parsing methods
	Describing the authentication method(s)
	Storing Authentication parameters
	Describing an image in a CoT

	Implementation example
	The TBBR CoT
	Example: the BL31 Chain of Trust

	The image parser library
	The cryptographic library

	Arm CPU Specific Build Macros
	Security Vulnerability Workarounds
	CPU Errata Workarounds
	DSU Errata Workarounds
	CPU Specific optimizations
	GIC Errata Workarounds

	Firmware Design
	Cold boot
	Dynamic Configuration during cold boot
	BL1
	Determination of boot path
	Architectural initialization
	Platform initialization
	Firmware Update detection and execution
	BL2 image load and execution

	BL2
	Architectural initialization
	Platform initialization
	Image loading in BL2
	SCP_BL2 (System Control Processor Firmware) image load
	EL3 Runtime Software image load
	AArch64 BL32 (Secure-EL1 Payload) image load
	BL33 (Non-trusted Firmware) image load
	AArch64 BL31 (EL3 Runtime Software) execution

	Running BL2 at EL3 execution level
	AArch64 BL31
	Architectural initialization
	Platform initialization
	Runtime services initialization
	AArch64 BL32 (Secure-EL1 Payload) image initialization
	BL33 (Non-trusted Firmware) execution

	Using alternative Trusted Boot Firmware in place of BL1 & BL2 (AArch64 only)
	Required CPU state when calling bl31_entrypoint() during cold boot
	Use of the X0 and X1 parameters
	MMU, Data caches & Coherency
	Data structures used in the BL31 cold boot interface

	Required CPU state for BL31 Warm boot initialization

	AArch32 EL3 Runtime Software entrypoint interface
	Required CPU state when entering during cold boot
	Use of the R0 and R1 parameters
	MMU, Data caches & Coherency
	Data structures used in cold boot interface

	Required CPU state for warm boot initialization

	EL3 runtime services framework
	Registration
	Initialization
	Handling an SMC

	Exception Handling Framework
	Power State Coordination Interface
	Secure-EL1 Payloads and Dispatchers
	Initializing a BL32 Image

	Exception handling in BL31
	Current EL with SP_EL0
	Current EL with SP_ELx
	Lower EL Exceptions

	Crash Reporting in BL31
	Guidelines for Reset Handlers
	Configuring secure interrupts
	CPU specific operations framework
	CPU PCS
	CPU specific Reset Handling
	CPU specific power down sequence
	CPU specific register reporting during crash
	CPU errata implementation
	Errata framework
	Errata framework helpers
	Status reporting

	Memory layout of BL images
	Linker scripts and symbols
	Common linker symbols
	BL1’s linker symbols

	How to choose the right base addresses for each bootloader stage image
	Memory layout on Arm development platforms

	Firmware Image Package (FIP)
	Firmware Image Package layout
	Firmware Image Package creation tool
	Loading from a Firmware Image Package (FIP)

	Use of coherent memory in TF-A
	Disabling the use of coherent memory in TF-A
	Coherent memory usage in PSCI implementation
	Bakery lock data
	Non Functional Impact of removing coherent memory

	Isolating code and read-only data on separate memory pages
	Publish and Subscribe Framework
	Publish and Subscribe Example
	Reclaiming the BL31 initialization code

	Performance Measurement Framework
	Timestamp identifier format
	Registering a PMF service
	Capturing a timestamp
	Retrieving a timestamp
	PMF code structure

	Armv8-A Architecture Extensions
	Build options
	Armv8.1-A
	Armv8.2-A
	Armv8.3-A
	Armv8.5-A
	Armv7-A

	Code Structure

	Interrupt Management Framework
	Concepts
	Interrupt types
	Routing model
	Valid routing models
	Secure-EL1 interrupts
	Non-secure interrupts
	EL3 interrupts

	Mapping of interrupt type to signal
	Effect of mapping of several interrupt types to one signal

	Assumptions in Interrupt Management Framework
	Software components
	Interrupt registration
	EL3 runtime firmware
	Secure payload dispatcher
	Test secure payload dispatcher behavior
	Secure payload
	Secure payload IHF design w.r.t secure-EL1 interrupts
	Secure payload IHF design w.r.t non-secure interrupts

	Test secure payload behavior

	Interrupt handling
	EL3 runtime firmware
	Secure payload dispatcher
	Interrupt entry
	Interrupt exit
	Test secure payload dispatcher Secure-EL1 interrupt handling
	Test secure payload dispatcher non-secure interrupt handling

	Secure payload interrupt handling
	Test secure payload behavior

	Other considerations
	Implication of preempted SMC on Non-Secure Software

	PSCI Power Domain Tree Structure
	Requirements
	Design
	Describing a power domain tree
	Removing assumptions about MPIDRs used in a platform
	Dealing with holes in MPIDR allocation

	Traversing through and distinguishing between core and non-core power domains
	Populating the power domain tree

	CPU Reset
	General reset code flow
	Programmable CPU reset address
	Cold boot on a single CPU
	Programmable CPU reset address, Cold boot on a single CPU
	Using BL31 entrypoint as the reset address
	Determination of boot path
	Platform initialization

	Trusted Board Boot
	Chain of Trust
	Trusted Board Boot Sequence
	Authentication Framework
	Certificate Generation Tool
	Authenticated Encryption Framework
	Firmware Encryption Tool

	Building FIP images with support for Trusted Board Boot

	Porting Guide
	Introduction
	Common modifications
	Common mandatory modifications
	File : platform_def.h [mandatory]
	File : plat_macros.S [mandatory]

	Handling Reset
	Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
	Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
	Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
	Function : platform_mem_init() [mandatory]
	Function: plat_get_rotpk_info()
	Function: plat_get_nv_ctr()
	Function: plat_set_nv_ctr()
	Function: plat_set_nv_ctr2()

	Dynamic Root of Trust for Measurement support (in BL31)
	Function : plat_get_addr_mmap()
	Function : plat_has_non_host_platforms()
	Function : plat_has_unmanaged_dma_peripherals()
	Function : plat_get_total_num_smmus()
	Function : plat_enumerate_smmus()
	Function : plat_drtm_get_dma_prot_features()
	Function : plat_drtm_dma_prot_get_max_table_bytes()
	Function : plat_drtm_get_tpm_features()
	Function : plat_drtm_get_min_size_normal_world_dce()
	Function : plat_drtm_get_imp_def_dlme_region_size()
	Function : plat_drtm_get_tcb_hash_table_size()
	Function : plat_drtm_get_tcb_hash_features()
	Function : plat_drtm_validate_ns_region()
	Function : plat_set_drtm_error()
	Function : plat_get_drtm_error()

	Common mandatory function modifications
	Function : plat_my_core_pos()
	Function : plat_core_pos_by_mpidr()
	Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
	Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
	Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
	Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
	Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]

	Common optional modifications
	Function : plat_set_my_stack()
	Function : plat_get_my_stack()
	Function : plat_report_exception()
	Function : plat_reset_handler()
	Function : plat_disable_acp()
	Function : plat_error_handler()
	Function : plat_panic_handler()
	Function : plat_system_reset()
	Function : plat_get_bl_image_load_info()
	Function : plat_get_next_bl_params()
	Function : plat_get_stack_protector_canary()
	Function : plat_flush_next_bl_params()
	Function : plat_log_get_prefix()
	Function : plat_get_soc_version()
	Function : plat_get_soc_revision()
	Function : plat_is_smccc_feature_available()
	Function : plat_can_cmo()

	Modifications specific to a Boot Loader stage
	Boot Loader Stage 1 (BL1)
	Function : bl1_early_platform_setup() [mandatory]
	Function : bl1_plat_arch_setup() [mandatory]
	Function : bl1_platform_setup() [mandatory]
	Function : bl1_plat_sec_mem_layout() [mandatory]
	Function : bl1_plat_prepare_exit() [optional]
	Function : bl1_plat_set_ep_info() [optional]
	Function : bl1_plat_get_next_image_id() [optional]
	Function : bl1_plat_get_image_desc() [optional]
	Function : bl1_plat_handle_pre_image_load() [optional]
	Function : bl1_plat_handle_post_image_load() [optional]
	Function : bl1_plat_fwu_done() [optional]
	Function : bl1_plat_mem_check() [mandatory]

	Boot Loader Stage 2 (BL2)
	Function : bl2_early_platform_setup2() [mandatory]
	Function : bl2_plat_arch_setup() [mandatory]
	Function : bl2_platform_setup() [mandatory]
	Function : bl2_plat_handle_pre_image_load() [optional]
	Function : bl2_plat_handle_post_image_load() [optional]
	Function : bl2_plat_preload_setup [optional]
	Function : plat_try_next_boot_source() [optional]

	Boot Loader Stage 2 (BL2) at EL3
	Function : bl2_el3_early_platform_setup() [mandatory]
	Function : bl2_el3_plat_arch_setup() [mandatory]
	Function : bl2_el3_plat_prepare_exit() [optional]

	FWU Boot Loader Stage 2 (BL2U)
	Function : bl2u_early_platform_setup() [mandatory]
	Function : bl2u_plat_arch_setup() [mandatory]
	Function : bl2u_platform_setup() [mandatory]
	Function : bl2u_plat_handle_scp_bl2u() [optional]

	Boot Loader Stage 3-1 (BL31)
	Function : bl31_early_platform_setup2() [mandatory]
	Function : bl31_plat_arch_setup() [mandatory]
	Function : bl31_platform_setup() [mandatory]
	Function : bl31_plat_runtime_setup() [optional]
	Function : bl31_plat_get_next_image_ep_info() [mandatory]
	Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
	Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
	Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
	Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
	Function : bl31_plat_enable_mmu [optional]
	Function : plat_init_apkey [optional]
	Function : plat_get_syscnt_freq2() [mandatory]
	#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
	SDEI porting requirements
	Macros
	Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
	Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]

	Functions
	Function: int plat_sdei_validate_entry_point() [optional]
	Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]

	TRNG porting requirements
	Values
	value: uuid_t plat_trng_uuid [mandatory]

	Functions
	Function: void plat_entropy_setup(void) [mandatory]
	Function: bool plat_get_entropy(uint64_t *out) [mandatory]

	Power State Coordination Interface (in BL31)
	Function : plat_psci_stat_accounting_start() [optional]
	Function : plat_psci_stat_accounting_stop() [optional]
	Function : plat_psci_stat_get_residency() [optional]
	Function : plat_get_target_pwr_state() [optional]
	Function : plat_get_power_domain_tree_desc() [mandatory]
	Function : plat_setup_psci_ops() [mandatory]
	plat_psci_ops.cpu_standby()
	plat_psci_ops.pwr_domain_on()
	plat_psci_ops.pwr_domain_off_early() [optional]
	plat_psci_ops.pwr_domain_off()
	plat_psci_ops.pwr_domain_validate_suspend() [optional]
	plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
	plat_psci_ops.pwr_domain_suspend()
	plat_psci_ops.pwr_domain_pwr_down_wfi()
	plat_psci_ops.pwr_domain_on_finish()
	plat_psci_ops.pwr_domain_on_finish_late() [optional]
	plat_psci_ops.pwr_domain_suspend_finish()
	plat_psci_ops.system_off()
	plat_psci_ops.system_reset()
	plat_psci_ops.validate_power_state()
	plat_psci_ops.validate_ns_entrypoint()
	plat_psci_ops.get_sys_suspend_power_state()
	plat_psci_ops.get_pwr_lvl_state_idx()
	plat_psci_ops.translate_power_state_by_mpidr()
	plat_psci_ops.get_node_hw_state()
	plat_psci_ops.system_reset2()
	plat_psci_ops.write_mem_protect()
	plat_psci_ops.read_mem_protect()
	plat_psci_ops.mem_protect_chk()

	Interrupt Management framework (in BL31)
	Function : plat_interrupt_type_to_line() [mandatory]
	Function : plat_ic_get_pending_interrupt_type() [mandatory]
	Function : plat_ic_get_pending_interrupt_id() [mandatory]
	Function : plat_ic_acknowledge_interrupt() [mandatory]
	Function : plat_ic_end_of_interrupt() [mandatory]
	Function : plat_ic_get_interrupt_type() [mandatory]

	Common helper functions
	Function : elx_panic()
	Function : el3_panic()
	Function : panic()

	Crash Reporting mechanism (in BL31)
	Function : plat_crash_console_init [mandatory]
	Function : plat_crash_console_putc [mandatory]
	Function : plat_crash_console_flush [mandatory]

	External Abort handling and RAS Support
	Function : plat_ea_handler
	Function : plat_handle_uncontainable_ea
	Function : plat_handle_double_fault
	Function : plat_handle_el3_ea
	Function : plat_handle_rng_trap
	Function : plat_handle_impdef_trap

	Build flags
	Platform include paths
	C Library
	Storage abstraction layer
	Measured Boot Platform Interface

	Platform Ports
	Allwinner ARMv8 SoCs
	Building TF-A
	Platform-specific build options

	Installation
	Memory layout
	A64, H5 and H6 SoCs
	H616 SoC

	Trusted OS dispatcher

	Arm Development Platforms
	Arm Juno Development Platform
	Platform-specific build options
	Running software on Juno
	Preparing TF-A images
	Booting Firmware Update images
	Booting an EL3 payload
	Booting a preloaded kernel image
	Testing System Suspend
	Additional Resources

	Arm Fixed Virtual Platforms (FVP)
	Fixed Virtual Platform (FVP) Support
	Arm FVP Platform Specific Build Options
	Booting Firmware Update images
	Booting an EL3 payload
	Booting a preloaded kernel image (Base FVP)
	Obtaining the Flattened Device Trees
	Running on the Foundation FVP with reset to BL1 entrypoint
	Running on the AEMv8 Base FVP with reset to BL1 entrypoint
	Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
	Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
	Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
	Running on the AEMv8 Base FVP with reset to BL31 entrypoint
	Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
	Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
	Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint

	ARM V8-R64 Fixed Virtual Platform (FVP)
	Boot Sequence
	Build Procedure

	Arm Versatile Express
	Boot Sequence
	How to build
	Code Locations
	Build Procedure
	Run Procedure

	TC Total Compute Platform
	Boot Sequence
	Build Procedure (TF-A only)

	Arm FPGA Platform
	Platform-specific build options
	Building the TF-A image
	Running the TF-A image

	Arm Development Platform Build Options
	Arm Platform Build Options
	Arm CSS Platform-Specific Build Options
	Arm FVP Build Options
	Arm Juno Build Options

	Morello Platform
	Boot Sequence
	Build Procedure (TF-A only)

	Corstone1000 Platform
	Boot Sequence
	Build Procedure (TF-A only)

	Aspeed AST2700
	Boot Flow
	How to build

	Amlogic Meson A113D (AXG)
	Amlogic Meson S905 (GXBB)
	Amlogic Meson S905x (GXL)
	Amlogic Meson S905X2 (G12A)
	HiKey
	How to build
	Code Locations
	Build Procedure

	Setup Console
	Flash images in recovery mode
	Boot UEFI in normal mode

	HiKey960
	How to build
	Code Locations
	Build Procedure

	Setup Console
	Boot UEFI in recovery mode
	Boot UEFI in normal mode

	Intel Agilex SoCFPGA
	How to build
	Code Locations
	Build Procedure
	Install Procedure

	Boot trace

	Intel Stratix 10 SoCFPGA
	How to build
	Code Locations
	Build Procedure
	Install Procedure

	Boot trace

	Marvell
	TF-A Build Instructions for Marvell Platforms
	Build Instructions
	Special Build Flags
	Build output
	Tools and external components installation
	Armada37x0 Builds require installation of additional components
	Armada70x0, Armada80x0 and CN913x Builds require installation of additional components

	TF-A UART Booting Instructions for Marvell Platforms
	Armada37x0 UART image downloading
	Marvell Wtpdownloader
	CZ.NIC mox-imager

	A7K/A8K/CN913x UART image downloading

	TF-A Porting Guide for Marvell Platforms
	Source Code Structure
	Armada-70x0/Armada-80x0 Porting
	SoC Physical Address Map (marvell_plat_config.c)
	boot loader recovery (marvell_plat_config.c)
	DDR Porting (dram_port.c)
	Comphy Porting (phy-porting-layer.h or phy-default-porting-layer.h)

	Address decoding flow and address translation units of Marvell Armada 8K SoC family
	AMB - AXI MBUS address decoding
	Mandatory functions
	Mandatory structures
	Examples

	Marvell CCU address decoding bindings
	Mandatory functions
	Mandatory structures
	Example

	Marvell IO WIN address decoding bindings
	Mandatory functions
	Mandatory structures
	Example

	Marvell IOB address decoding bindings
	Mandatory functions
	Mandatory structures
	Target ID options
	Example

	MediaTek 8183
	Boot Sequence
	How to Build

	MediaTek 8186
	Boot Sequence
	How to Build

	MediaTek 8188
	Boot Sequence

	MediaTek 8192
	Boot Sequence
	How to Build

	MediaTek 8195
	Boot Sequence
	How to Build

	NVIDIA Tegra
	Directory structure
	Trusted OS dispatcher
	Scatter files
	Preparing the BL31 image to run on Tegra SoCs
	Power Management
	Tegra configs

	NXP i.MX7 WaRP7
	Boot Flow
	Build Instructions
	U-Boot
	OP-TEE
	TF-A
	FIP

	Deploy Images
	Signing BL2

	NXP i.MX 8 Series
	Boot Sequence
	How to build
	Build Procedure
	Deploy TF-A Images

	NXP i.MX 8M Series
	Boot Sequence
	How to build
	Build Procedure
	Deploy TF-A Images

	TBBR Boot Sequence
	Measured Boot
	High Assurance Boot (HABv4)
	Note on DRAM Memory Mapping
	Reference Documentation

	NXP i.MX 9 Series
	Boot Sequence
	How to build
	Build Procedure
	Deploy TF-A Images
	Reference Documentation

	Nuvoton NPCM845X
	How to Build

	NXP Reference Development Platforms
	1. NXP SoCs - Overview
	1.1. Table of supported boot-modes by each platform & platform that needs FIP-DDR:
	1.2. Boot Sequence
	1.3. Boot Sequence with FIP-DDR
	1.4. DDR Memory Layout

	2. How to build
	2.1. Code Locations
	2.2. Build Procedure
	2.2.1. Compilation steps without BL32
	2.2.2. Compilation steps with BL32
	2.2.3. BUILD fip-ddr (Mandatory for certain platforms, refer table above):

	3. Deploy ATF Images
	4. Trusted Board Boot:
	Steps to blow fuses on NXP LS SoC:
	Second method to do the fuse provsioning:
	NXP Platforms:
	Bare-Minimum Preparation to run TBBR on NXP Platforms:
	Two options are provided for TRUSTED_BOARD_BOOT:

	Option 1: CoT using X 509 certificates
	Option 2: CoT using NXP CSF headers.
	Deploy ATF Images
	Verification to check if Secure state is achieved:

	Poplar
	How to build
	Code Locations
	Build Procedure

	Install Procedure
	Boot trace

	QEMU virt Armv8-A
	Getting non-TF images
	Booting via semi-hosting option
	Booting via flash based firmware
	Running QEMU in OpenCI

	QEMU SBSA Target
	Qualcomm Technologies, Inc.
	Boot Trace
	How to build
	Code Locations
	Build Procedure

	Qualcomm MSM8916
	Functionality
	Boot Flow
	Build
	AArch64 (BL31)
	AArch32 (BL32/SP_MIN)

	Build Options
	Installation
	Boot Trace
	AArch64 (BL31)
	AArch32 (BL32/SP_MIN)

	Raspberry Pi 3
	Design
	Placement of images
	Boot sequence
	Secondary cores

	Build Instructions
	Building the firmware for kernels that don’t support PSCI
	Building the firmware for kernels that support PSCI

	AArch64 kernel build instructions
	Setup SD card

	Raspberry Pi 4
	Build Instructions
	TF-A port design

	Renesas R-Car
	Renesas R-Car Gen3 evaluation boards:
	Overview
	How to build
	Build Tested:
	System Tested:
	TF-A Build Procedure
	Install Procedure

	Boot trace

	Renesas RZ/G
	Renesas RZ/G2 reference platforms:
	Overview
	How to build
	Build Tested:
	System Tested:
	TF-A Build Procedure
	Install Procedure

	Boot trace

	Rockchip SoCs
	Boot Sequence
	How to build
	How to deploy

	Socionext UniPhier
	Boot Flow
	Basic Build
	Optional features

	Socionext Synquacer
	How to build
	Code Locations
	Boot Flow
	Build Procedure
	Install the System Firmware

	STMicroelectronics STM32 MPUs
	STM32 MPUs
	Design
	Boot
	Boot sequence

	Build Instructions
	Populate SD-card
	Boot with FIP

	STM32MP1
	STM32MP1 Versions
	STM32MP13 Versions
	STM32MP15 Versions

	Memory mapping
	Build Instructions
	STM32MP1x specific flags
	Boot with FIP
	U-Boot
	OP-TEE (optional)
	TF-A BL32 (SP_min)
	TF-A BL2
	FIP
	Trusted Boot Board

	STM32MP2
	STM32MP2 Versions
	Memory mapping
	Build Instructions
	STM32MP2x specific flags
	Boot with FIP
	U-Boot
	OP-TEE
	TF-A BL2 & BL31
	FIP

	Texas Instruments K3
	Boot Flow
	Build Instructions
	Deploy Images

	Xilinx Versal NET
	Xilinx Versal NET platform specific build options

	Xilinx Versal
	Xilinx Versal platform specific build options
	# PLM->TF-A Parameter Passing

	Xilinx Zynq UltraScale+ MPSoC
	ZynqMP platform specific build options
	ZynqMP Debug behavior
	DDR Address Range Usage
	Configurable Stack Size
	FSBL->TF-A Parameter Passing
	Power Domain Tree
	CUSTOM SIP service support
	Custom package makefile fragment inclusion in TF-A build

	Broadcom Stingray
	Description
	Boot Sequence
	Code Locations

	How to build
	Build Procedure
	Deploy TF-A Images

	Deprecated platforms

	Performance & Testing
	PSCI Performance Measurement
	Performance Measurement Framework
	PSCI Statistics
	Runtime Instrumentation
	PSCI SMC Handler Instrumentation

	PSCI Performance Measurements on Arm Juno Development Platform
	Method
	Procedure
	Results
	CPU_SUSPEND to deepest power level
	CPU_SUSPEND to power level 0
	CPU_OFF on all non-lead CPUs
	CPU_VERSION in parallel

	Annotated Historic Results
	CPU_SUSPEND to deepest power level on all CPUs in parallel
	CPU_SUSPEND to power level 0 on all CPUs in parallel
	CPU_SUSPEND to deepest power level on all CPUs in sequence
	CPU_SUSPEND to power level 0 on all CPUs in sequence
	CPU_OFF on all non-lead CPUs in sequence then CPU_SUSPEND on lead CPU to deepest power level
	PSCI_VERSION on all CPUs in parallel

	Runtime Instrumentation Testing - N1SDP
	Procedure
	Results
	CPU_SUSPEND to deepest power level
	CPU_SUSPEND to power level 0
	CPU_OFF on all non-lead CPUs
	CPU_VERSION in parallel

	Runtime Instrumentation Methodology
	Framework
	Metrics

	Test Secure Payload (TSP) and Dispatcher (TSPD)
	Building the Test Secure Payload

	Performance Monitoring Unit
	PMU Counters
	Architectural mappings

	Configuring the PMU for counting events
	Architectural mappings
	Relevant register fields

	Security Advisories
	Advisory TFV-1 (CVE-2016-10319)
	Advisory TFV-2 (CVE-2017-7564)
	Advisory TFV-3 (CVE-2017-7563)
	Advisory TFV-4 (CVE-2017-9607)
	Advisory TFV-5 (CVE-2017-15031)
	Advisory TFV-6 (CVE-2017-5753, CVE-2017-5715, CVE-2017-5754)
	Variant 1 (CVE-2017-5753)
	Variant 2 (CVE-2017-5715)
	Variant 3 (CVE-2017-5754)

	Advisory TFV-7 (CVE-2018-3639)
	Static mitigation
	Dynamic mitigation

	Advisory TFV-8 (CVE-2018-19440)
	Advisory TFV-9 (CVE-2022-23960)
	CVE-2022-23960

	Advisory TFV-10 (CVE-2022-47630)
	Bug 1: Insufficient certificate validation
	Bug 2: Missing bounds check in auth_nvctr()
	Exploitability Analysis
	Upstream TF-A Code
	Custom Image Parsers

	Advisory TFV-11 (CVE-2023-49100)

	Design Documents
	TF-A CMake buildsystem
	Abstract
	Introduction
	Main features
	Structured configuration description
	Target description
	Compiler abstraction
	External tools

	Workflow
	Example

	Enhance Context Management library for EL3 firmware
	Introduction
	Design Principles
	Context Allocation and Initialization
	Introducing Root Context
	Conclusion

	Interaction between Measured Boot and an fTPM (PoC)
	Components
	Building the PoC for the Arm FVP platform
	Running and using the PoC on the Armv8-A Foundation AEM FVP
	Fine-tuning the fTPM TA

	DRTM Proof of Concept
	Components
	Building the PoC for the Arm FVP platform
	Running DRTM UEFI application on the Armv8-A AEM FVP

	Runtime Security Subsystem (RSS)
	RSS communication layer
	Message structure
	Source files
	API for communication over MHU

	RSS provided runtime services
	Runtime service API
	Software and API layers

	RSS based Measured Boot
	Measured Boot API
	Measured Boot Metadata
	Signer-ID API
	Build time config options
	Measured boot flow
	Sample console log

	Delegated Attestation
	Delegated Attestation API
	Attestation flow
	Sample attestation token

	RSS OTP Assets Management
	Non-Volatile Counter API
	Public Key API

	References

	PSCI OS-initiated mode
	Introduction
	Power state coordination
	Platform-coordinated
	OS-initiated

	Motivation
	Scalability
	Simplicity
	Current vendor implementations and workarounds

	Requirements
	PSCI_FEATURES
	CPU_SUSPEND feature flags

	PSCI_SET_SUSPEND_MODE
	CPU_SUSPEND
	Power state formats
	Races in OS-initiated mode

	Caveats
	CPU_OFF

	Implementation
	Current implementation of platform-coordinated mode
	Proposed implementation of OS-initiated mode

	Testing
	Testing on FVP and Google platforms
	Testing on STM32MP15
	Testing on Qualcomm SC7280
	Comparisons on Qualcomm SC7280
	CPUIdle states
	Results

	Measured Boot Design
	Introduction
	Critical data
	Measurement slot
	Measured Boot Backends
	Platform Interface

	Threat Model
	Generic Threat Model
	Introduction
	Target of Evaluation
	Data Flow Diagram

	Threat Analysis
	Assets
	Threat Agents
	Threat Types
	Threat Risk Ratings
	Threat Assessment
	General Threats for All Firmware Images
	Threats to be Mitigated by the Boot Firmware
	Threats to be Mitigated by the Runtime EL3 Firmware
	Threats to be Mitigated by an External Agent Outside of TF-A

	EL3 SPMC Threat Model
	Introduction
	Target of Evaluation
	Data Flow Diagram

	Threat Analysis
	Trust boundaries
	Assets
	Threat Agents
	Threat types
	Threat Assessment

	fvp_r-Platform Threat Model
	Introduction
	Target of Evaluation
	BL1 Only
	EL3 is Unsupported and All Secure
	MPU instead of MMU
	No AArch32 Support
	Threat Assessment

	Threat Model for RSS - AP interface
	Introduction
	Target of Evaluation
	Data Flow Diagram
	Threat Assessment

	Threat Model for TF-A with Arm CCA support
	Introduction
	Target of Evaluation
	Assumptions
	Data Flow Diagram

	Threat Analysis
	Threat Assessment
	General Threats for All Firmware Images
	Threats to be Mitigated by the Boot Firmware
	Threats to be Mitigated by the Runtime EL3 Firmware

	Tools
	TF-A Memory Layout Tool
	Prerequisites
	Getting Started
	Symbol Virtual Map
	Memory Footprint
	Memory Tree

	Change Log & Release Notes
	lts-2.10.4 (2024-04-26)
	Documentation
	Resolved Issues

	lts-2.10.3 (2024-04-05)
	Code Refactoring
	New Features
	Miscellaneous
	Documentation
	Resolved Issues

	lts-2.10.2 (2024-02-08)
	Resolved Issues

	lts-2.10.1 (2024-02-07)
	New Features
	Resolved Issues

	2.10.0 (2023-11-21)
	⚠ BREAKING CHANGES
	New Features
	Resolved Issues

	2.9.0 (2023-05-16)
	⚠ BREAKING CHANGES
	Resolved Issues
	New Features

	2.8.0 (2022-11-15)
	⚠ BREAKING CHANGES
	New Features
	Resolved Issues

	2.7.0 (2022-05-20)
	New Features
	Resolved Issues

	2.6.0 (2021-11-22)
	⚠ BREAKING CHANGES
	New Features
	Resolved Issues

	2.5.0 (2021-05-17)
	New Features
	Changed
	Resolved Issues

	2.4.0 (2020-11-17)
	New Features
	Changed
	Resolved Issues
	Known Issues

	2.3.0 (2020-04-20)
	New Features
	Changed
	Resolved Issues
	Known Issues

	2.2.0 (2019-10-22)
	New Features
	Changed
	Resolved Issues
	Deprecations
	Known Issues

	2.1.0 (2019-03-29)
	New Features
	Changed
	Resolved Issues
	Deprecations
	Known Issues

	2.0.0 (2018-10-02)
	New Features
	Issues resolved since last release
	Known Issues

	1.6.0 (2018-09-21)
	New Features
	Issues resolved since last release
	Known Issues

	1.5.0 (2018-03-20)
	New features
	Issues resolved since last release
	Known Issues

	1.4.0 (2017-07-07)
	New features
	Issues resolved since last release
	Known Issues

	1.3.0 (2016-10-13)
	New features
	Issues resolved since last release
	Known issues

	1.2.0 (2015-12-22)
	New features
	Issues resolved since last release
	Known issues

	1.1.0 (2015-02-04)
	New features
	Issues resolved since last release
	Known issues

	1.0.0 (2014-08-28)
	New features
	Issues resolved since last release
	Known issues

	0.4.0 (2014-06-03)
	New features
	Issues resolved since last release
	Known issues

	0.3.0 (2014-02-28)
	New features
	Issues resolved since last release
	Known issues

	0.2.0 (2013-10-25)
	New features
	Issues resolved since last release
	Known issues

	Glossary
	License
	SPDX Identifiers
	Other Projects

	Getting Started
	Index

