7.2.2. Arm Fixed Virtual Platforms (FVP)

7.2.2.1. Fixed Virtual Platform (FVP) Support

This section lists the supported Arm FVP platforms. Please refer to the FVP documentation for a detailed description of the model parameter options.

The latest version of the AArch64 build of TF-A has been tested on the following Arm FVPs without shifted affinities, and that do not support threaded CPU cores (64-bit host machine only).

Note

The FVP models used are Version 11.22 Build 14, unless otherwise stated.

  • FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502 (Version 11.17/21)

  • FVP_Base_AEMv8A-GIC600AE (Version 11.17/21)

  • FVP_Base_AEMvA

  • FVP_Base_AEMvA-AEMvA

  • FVP_Base_Cortex-A32x4 (Version 11.12/38)

  • FVP_Base_Cortex-A35x4

  • FVP_Base_Cortex-A53x4

  • FVP_Base_Cortex-A55

  • FVP_Base_Cortex-A55x4+Cortex-A75x4

  • FVP_Base_Cortex-A55x4+Cortex-A76x2

  • FVP_Base_Cortex-A57x1-A53x1

  • FVP_Base_Cortex-A57x2-A53x4

  • FVP_Base_Cortex-A57x4

  • FVP_Base_Cortex-A57x4-A53x4

  • FVP_Base_Cortex-A65

  • FVP_Base_Cortex-A65AE

  • FVP_Base_Cortex-A710x4 (Version 11.17/21)

  • FVP_Base_Cortex-A72x4

  • FVP_Base_Cortex-A72x4-A53x4

  • FVP_Base_Cortex-A73x4

  • FVP_Base_Cortex-A73x4-A53x4

  • FVP_Base_Cortex-A75

  • FVP_Base_Cortex-A76

  • FVP_Base_Cortex-A76AE

  • FVP_Base_Cortex-A77

  • FVP_Base_Cortex-A78

  • FVP_Base_Cortex-A78AE

  • FVP_Base_Cortex-A78C

  • FVP_Base_Cortex-X2x4 (Version 11.17/21)

  • FVP_Base_Neoverse-E1

  • FVP_Base_Neoverse-N1

  • FVP_Base_Neoverse-V1

  • FVP_Base_RevC-2xAEMvA

  • FVP_BaseR_AEMv8R

  • FVP_Morello (Version 0.11/33)

  • FVP_RD_V1

  • FVP_TC1

  • FVP_TC2 (Version 11.23/17)

The latest version of the AArch32 build of TF-A has been tested on the following Arm FVPs without shifted affinities, and that do not support threaded CPU cores (64-bit host machine only).

  • FVP_Base_AEMvA

  • FVP_Base_AEMvA-AEMvA

  • FVP_Base_Cortex-A32x4

Note

The FVP_Base_RevC-2xAEMvA FVP only supports shifted affinities, which is not compatible with legacy GIC configurations. Therefore this FVP does not support these legacy GIC configurations.

The Foundation and Base FVPs can be downloaded free of charge. See the Arm FVP website. The Cortex-A models listed above are also available to download from Arm’s website.

Note

The build numbers quoted above are those reported by launching the FVP with the --version parameter.

Note

Linaro provides a ramdisk image in prebuilt FVP configurations and full file systems that can be downloaded separately. To run an FVP with a virtio file system image an additional FVP configuration option -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image> can be used.

Note

The software will not work on Version 1.0 of the Foundation FVP. The commands below would report an unhandled argument error in this case.

Note

FVPs can be launched with --cadi-server option such that a CADI-compliant debugger (for example, Arm DS-5) can connect to and control its execution.

Warning

Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202 the internal synchronisation timings changed compared to older versions of the models. The models can be launched with -Q 100 option if they are required to match the run time characteristics of the older versions.

All the above platforms have been tested with Linaro Release 20.01.

7.2.2.2. Arm FVP Platform Specific Build Options

  • FVP_CLUSTER_COUNT : Configures the cluster count to be used to build the topology tree within TF-A. By default TF-A is configured for dual cluster topology and this option can be used to override the default value.

  • FVP_INTERCONNECT_DRIVER: Selects the interconnect driver to be built. The default interconnect driver depends on the value of FVP_CLUSTER_COUNT as explained in the options below:

    • FVP_CCI : The CCI driver is selected. This is the default if 0 < FVP_CLUSTER_COUNT <= 2.

    • FVP_CCN : The CCN driver is selected. This is the default if FVP_CLUSTER_COUNT > 2.

  • FVP_MAX_CPUS_PER_CLUSTER: Sets the maximum number of CPUs implemented in a single cluster. This option defaults to 4.

  • FVP_MAX_PE_PER_CPU: Sets the maximum number of PEs implemented on any CPU in the system. This option defaults to 1. Note that the build option ARM_PLAT_MT doesn’t have any effect on FVP platforms.

  • FVP_USE_GIC_DRIVER : Selects the GIC driver to be built. Options:

    • FVP_GICV2 : The GICv2 only driver is selected

    • FVP_GICV3 : The GICv3 only driver is selected (default option)

  • FVP_HW_CONFIG_DTS : Specify the path to the DTS file to be compiled to DTB and packaged in FIP as the HW_CONFIG. See Firmware Design for details on HW_CONFIG. By default, this is initialized to a sensible DTS file in fdts/ folder depending on other build options. But some cases, like shifted affinity format for MPIDR, cannot be detected at build time and this option is needed to specify the appropriate DTS file.

  • FVP_HW_CONFIG : Specify the path to the HW_CONFIG blob to be packaged in FIP. See Firmware Design for details on HW_CONFIG. This option is similar to the FVP_HW_CONFIG_DTS option, but it directly specifies the HW_CONFIG blob instead of the DTS file. This option is useful to override the default HW_CONFIG selected by the build system.

  • FVP_GICR_REGION_PROTECTION: Mark the redistributor pages of inactive/fused CPU cores as read-only. The default value of this option is 0, which means the redistributor pages of all CPU cores are marked as read and write.

7.2.2.3. Booting Firmware Update images

When Firmware Update (FWU) is enabled there are at least 2 new images that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the FWU FIP.

The additional fip images must be loaded with:

--data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000     [ns_bl1u_base_address]
--data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000     [ns_bl2u_base_address]

The address ns_bl1u_base_address is the value of NS_BL1U_BASE. In the same way, the address ns_bl2u_base_address is the value of NS_BL2U_BASE.

7.2.2.4. Booting an EL3 payload

The EL3 payloads boot flow requires the CPU’s mailbox to be cleared at reset for the secondary CPUs holding pen to work properly. Unfortunately, its reset value is undefined on the FVP platform and the FVP platform code doesn’t clear it. Therefore, one must modify the way the model is normally invoked in order to clear the mailbox at start-up.

One way to do that is to create an 8-byte file containing all zero bytes using the following command:

dd if=/dev/zero of=mailbox.dat bs=1 count=8

and pre-load it into the FVP memory at the mailbox address (i.e. 0x04000000) using the following model parameters:

--data cluster0.cpu0=mailbox.dat@0x04000000   [Base FVPs]
--data=mailbox.dat@0x04000000                 [Foundation FVP]

To provide the model with the EL3 payload image, the following methods may be used:

  1. If the EL3 payload is able to execute in place, it may be programmed into flash memory. On Base Cortex and AEM FVPs, the following model parameter loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already used for the FIP):

    -C bp.flashloader1.fname="<path-to>/<el3-payload>"
    

    On Foundation FVP, there is no flash loader component and the EL3 payload may be programmed anywhere in flash using method 3 below.

  2. When using the SPIN_ON_BL1_EXIT=1 loading method, the following DS-5 command may be used to load the EL3 payload ELF image over JTAG:

    load <path-to>/el3-payload.elf
    
  3. The EL3 payload may be pre-loaded in volatile memory using the following model parameters:

    --data cluster0.cpu0="<path-to>/el3-payload>"@address   [Base FVPs]
    --data="<path-to>/<el3-payload>"@address                [Foundation FVP]
    

    The address provided to the FVP must match the EL3_PAYLOAD_BASE address used when building TF-A.

7.2.2.5. Booting a preloaded kernel image (Base FVP)

The following example uses a simplified boot flow by directly jumping from the TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be useful if both the kernel and the device tree blob (DTB) are already present in memory (like in FVP).

For example, if the kernel is loaded at 0x80080000 and the DTB is loaded at address 0x82000000, the firmware can be built like this:

CROSS_COMPILE=aarch64-none-elf-  \
make PLAT=fvp DEBUG=1             \
RESET_TO_BL31=1                   \
ARM_LINUX_KERNEL_AS_BL33=1        \
PRELOADED_BL33_BASE=0x80080000    \
ARM_PRELOADED_DTB_BASE=0x82000000 \
all fip

Now, it is needed to modify the DTB so that the kernel knows the address of the ramdisk. The following script generates a patched DTB from the provided one, assuming that the ramdisk is loaded at address 0x84000000. Note that this script assumes that the user is using a ramdisk image prepared for U-Boot, like the ones provided by Linaro. If using a ramdisk without this header,the 0x40 offset in INITRD_START has to be removed.

#!/bin/bash

# Path to the input DTB
KERNEL_DTB=<path-to>/<fdt>
# Path to the output DTB
PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
# Base address of the ramdisk
INITRD_BASE=0x84000000
# Path to the ramdisk
INITRD=<path-to>/<ramdisk.img>

# Skip uboot header (64 bytes)
INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
INITRD_SIZE=$(stat -Lc %s ${INITRD})
INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )

CHOSEN_NODE=$(echo                                        \
"/ {                                                      \
        chosen {                                          \
                linux,initrd-start = <${INITRD_START}>;   \
                linux,initrd-end = <${INITRD_END}>;       \
        };                                                \
};")

echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} |  \
        dtc -O dtb -o ${PATCHED_KERNEL_DTB} -

And the FVP binary can be run with the following command:

<path-to>/FVP_Base_AEMv8A-AEMv8A                            \
-C pctl.startup=0.0.0.0                                     \
-C bp.secure_memory=1                                       \
-C cluster0.NUM_CORES=4                                     \
-C cluster1.NUM_CORES=4                                     \
-C cache_state_modelled=1                                   \
-C cluster0.cpu0.RVBAR=0x04001000                           \
-C cluster0.cpu1.RVBAR=0x04001000                           \
-C cluster0.cpu2.RVBAR=0x04001000                           \
-C cluster0.cpu3.RVBAR=0x04001000                           \
-C cluster1.cpu0.RVBAR=0x04001000                           \
-C cluster1.cpu1.RVBAR=0x04001000                           \
-C cluster1.cpu2.RVBAR=0x04001000                           \
-C cluster1.cpu3.RVBAR=0x04001000                           \
--data cluster0.cpu0="<path-to>/bl31.bin"@0x04001000        \
--data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000   \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000

7.2.2.5.1. Obtaining the Flattened Device Trees

Depending on the FVP configuration and Linux configuration used, different FDT files are required. FDT source files for the Foundation and Base FVPs can be found in the TF-A source directory under fdts/. The Foundation FVP has a subset of the Base FVP components. For example, the Foundation FVP lacks CLCD and MMC support, and has only one CPU cluster.

Note

It is not recommended to use the FDTs built along the kernel because not all FDTs are available from there.

The dynamic configuration capability is enabled in the firmware for FVPs. This means that the firmware can authenticate and load the FDT if present in FIP. A default FDT is packaged into FIP during the build based on the build configuration. This can be overridden by using the FVP_HW_CONFIG or FVP_HW_CONFIG_DTS build options (refer to Arm FVP Platform Specific Build Options for details on the options).

  • fvp-base-gicv2-psci.dts

    For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs without shifted affinities and with Base memory map configuration.

  • fvp-base-gicv3-psci.dts

    For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs without shifted affinities and with Base memory map configuration and Linux GICv3 support.

  • fvp-base-gicv3-psci-1t.dts

    For use with models such as the AEMv8-RevC Base FVP with shifted affinities, single threaded CPUs, Base memory map configuration and Linux GICv3 support.

  • fvp-base-gicv3-psci-dynamiq.dts

    For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities, single cluster, single threaded CPUs, Base memory map configuration and Linux GICv3 support.

  • fvp-foundation-gicv2-psci.dts

    For use with Foundation FVP with Base memory map configuration.

  • fvp-foundation-gicv3-psci.dts

    (Default) For use with Foundation FVP with Base memory map configuration and Linux GICv3 support.

7.2.2.5.2. Running on the Foundation FVP with reset to BL1 entrypoint

The following Foundation_Platform parameters should be used to boot Linux with 4 CPUs using the AArch64 build of TF-A.

<path-to>/Foundation_Platform                   \
--cores=4                                       \
--arm-v8.0                                      \
--secure-memory                                 \
--visualization                                 \
--gicv3                                         \
--data="<path-to>/<bl1-binary>"@0x0             \
--data="<path-to>/<FIP-binary>"@0x08000000      \
--data="<path-to>/<kernel-binary>"@0x80080000   \
--data="<path-to>/<ramdisk-binary>"@0x84000000

Notes:

  • BL1 is loaded at the start of the Trusted ROM.

  • The Firmware Image Package is loaded at the start of NOR FLASH0.

  • The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address is specified via the load-address property in the hw-config node of FW_CONFIG for FVP.

  • The default use-case for the Foundation FVP is to use the --gicv3 option and enable the GICv3 device in the model. Note that without this option, the Foundation FVP defaults to legacy (Versatile Express) memory map which is not supported by TF-A.

  • In order for TF-A to run correctly on the Foundation FVP, the architecture versions must match. The Foundation FVP defaults to the highest v8.x version it supports but the default build for TF-A is for v8.0. To avoid issues either start the Foundation FVP to use v8.0 architecture using the --arm-v8.0 option, or build TF-A with an appropriate value for ARM_ARCH_MINOR.

7.2.2.5.3. Running on the AEMv8 Base FVP with reset to BL1 entrypoint

The following FVP_Base_RevC-2xAEMv8A parameters should be used to boot Linux with 8 CPUs using the AArch64 build of TF-A.

<path-to>/FVP_Base_RevC-2xAEMv8A                            \
-C pctl.startup=0.0.0.0                                     \
-C bp.secure_memory=1                                       \
-C bp.tzc_400.diagnostics=1                                 \
-C cluster0.NUM_CORES=4                                     \
-C cluster1.NUM_CORES=4                                     \
-C cache_state_modelled=1                                   \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Note

The FVP_Base_RevC-2xAEMv8A has shifted affinities and requires a specific DTS for all the CPUs to be loaded.

7.2.2.5.4. Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint

The following FVP_Base_AEMv8A-AEMv8A parameters should be used to boot Linux with 8 CPUs using the AArch32 build of TF-A.

<path-to>/FVP_Base_AEMv8A-AEMv8A                            \
-C pctl.startup=0.0.0.0                                     \
-C bp.secure_memory=1                                       \
-C bp.tzc_400.diagnostics=1                                 \
-C cluster0.NUM_CORES=4                                     \
-C cluster1.NUM_CORES=4                                     \
-C cache_state_modelled=1                                   \
-C cluster0.cpu0.CONFIG64=0                                 \
-C cluster0.cpu1.CONFIG64=0                                 \
-C cluster0.cpu2.CONFIG64=0                                 \
-C cluster0.cpu3.CONFIG64=0                                 \
-C cluster1.cpu0.CONFIG64=0                                 \
-C cluster1.cpu1.CONFIG64=0                                 \
-C cluster1.cpu2.CONFIG64=0                                 \
-C cluster1.cpu3.CONFIG64=0                                 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

7.2.2.5.5. Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

The following FVP_Base_Cortex-A57x4-A53x4 model parameters should be used to boot Linux with 8 CPUs using the AArch64 build of TF-A.

<path-to>/FVP_Base_Cortex-A57x4-A53x4                       \
-C pctl.startup=0.0.0.0                                     \
-C bp.secure_memory=1                                       \
-C bp.tzc_400.diagnostics=1                                 \
-C cache_state_modelled=1                                   \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

7.2.2.5.6. Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint

The following FVP_Base_Cortex-A32x4 model parameters should be used to boot Linux with 4 CPUs using the AArch32 build of TF-A.

<path-to>/FVP_Base_Cortex-A32x4                             \
-C pctl.startup=0.0.0.0                                     \
-C bp.secure_memory=1                                       \
-C bp.tzc_400.diagnostics=1                                 \
-C cache_state_modelled=1                                   \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

7.2.2.5.7. Running on the AEMv8 Base FVP with reset to BL31 entrypoint

The following FVP_Base_RevC-2xAEMv8A parameters should be used to boot Linux with 8 CPUs using the AArch64 build of TF-A.

<path-to>/FVP_Base_RevC-2xAEMv8A                             \
-C pctl.startup=0.0.0.0                                      \
-C bp.secure_memory=1                                        \
-C bp.tzc_400.diagnostics=1                                  \
-C cluster0.NUM_CORES=4                                      \
-C cluster1.NUM_CORES=4                                      \
-C cache_state_modelled=1                                    \
-C cluster0.cpu0.RVBAR=0x04010000                            \
-C cluster0.cpu1.RVBAR=0x04010000                            \
-C cluster0.cpu2.RVBAR=0x04010000                            \
-C cluster0.cpu3.RVBAR=0x04010000                            \
-C cluster1.cpu0.RVBAR=0x04010000                            \
-C cluster1.cpu1.RVBAR=0x04010000                            \
-C cluster1.cpu2.RVBAR=0x04010000                            \
-C cluster1.cpu3.RVBAR=0x04010000                            \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000    \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000    \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000            \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Notes:

  • Position Independent Executable (PIE) support is enabled in this config allowing BL31 to be loaded at any valid address for execution.

  • Since a FIP is not loaded when using BL31 as reset entrypoint, the --data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary> parameter is needed to load the individual bootloader images in memory. BL32 image is only needed if BL31 has been built to expect a Secure-EL1 Payload. For the same reason, the FDT needs to be compiled from the DT source and loaded via the --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 parameter.

  • The FVP_Base_RevC-2xAEMv8A has shifted affinities and requires a specific DTS for all the CPUs to be loaded.

  • The -C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31> parameter, where X and Y are the cluster and CPU numbers respectively, is used to set the reset vector for each core.

  • Changing the default value of ARM_TSP_RAM_LOCATION will also require changing the value of --data="<path-to><bl32-binary>"@<base-address-of-bl32> to the new value of BL32_BASE.

7.2.2.5.8. Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint

The following FVP_Base_AEMv8A-AEMv8A parameters should be used to boot Linux with 8 CPUs using the AArch32 build of TF-A.

<path-to>/FVP_Base_AEMv8A-AEMv8A                             \
-C pctl.startup=0.0.0.0                                      \
-C bp.secure_memory=1                                        \
-C bp.tzc_400.diagnostics=1                                  \
-C cluster0.NUM_CORES=4                                      \
-C cluster1.NUM_CORES=4                                      \
-C cache_state_modelled=1                                    \
-C cluster0.cpu0.CONFIG64=0                                  \
-C cluster0.cpu1.CONFIG64=0                                  \
-C cluster0.cpu2.CONFIG64=0                                  \
-C cluster0.cpu3.CONFIG64=0                                  \
-C cluster1.cpu0.CONFIG64=0                                  \
-C cluster1.cpu1.CONFIG64=0                                  \
-C cluster1.cpu2.CONFIG64=0                                  \
-C cluster1.cpu3.CONFIG64=0                                  \
-C cluster0.cpu0.RVBAR=0x04002000                            \
-C cluster0.cpu1.RVBAR=0x04002000                            \
-C cluster0.cpu2.RVBAR=0x04002000                            \
-C cluster0.cpu3.RVBAR=0x04002000                            \
-C cluster1.cpu0.RVBAR=0x04002000                            \
-C cluster1.cpu1.RVBAR=0x04002000                            \
-C cluster1.cpu2.RVBAR=0x04002000                            \
-C cluster1.cpu3.RVBAR=0x04002000                            \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000    \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000            \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Note

Position Independent Executable (PIE) support is enabled in this config allowing SP_MIN to be loaded at any valid address for execution.

7.2.2.5.9. Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint

The following FVP_Base_Cortex-A57x4-A53x4 model parameters should be used to boot Linux with 8 CPUs using the AArch64 build of TF-A.

<path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
-C pctl.startup=0.0.0.0                                      \
-C bp.secure_memory=1                                        \
-C bp.tzc_400.diagnostics=1                                  \
-C cache_state_modelled=1                                    \
-C cluster0.cpu0.RVBARADDR=0x04010000                        \
-C cluster0.cpu1.RVBARADDR=0x04010000                        \
-C cluster0.cpu2.RVBARADDR=0x04010000                        \
-C cluster0.cpu3.RVBARADDR=0x04010000                        \
-C cluster1.cpu0.RVBARADDR=0x04010000                        \
-C cluster1.cpu1.RVBARADDR=0x04010000                        \
-C cluster1.cpu2.RVBARADDR=0x04010000                        \
-C cluster1.cpu3.RVBARADDR=0x04010000                        \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000    \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000    \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000            \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

7.2.2.5.10. Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint

The following FVP_Base_Cortex-A32x4 model parameters should be used to boot Linux with 4 CPUs using the AArch32 build of TF-A.

<path-to>/FVP_Base_Cortex-A32x4                             \
-C pctl.startup=0.0.0.0                                     \
-C bp.secure_memory=1                                       \
-C bp.tzc_400.diagnostics=1                                 \
-C cache_state_modelled=1                                   \
-C cluster0.cpu0.RVBARADDR=0x04002000                       \
-C cluster0.cpu1.RVBARADDR=0x04002000                       \
-C cluster0.cpu2.RVBARADDR=0x04002000                       \
-C cluster0.cpu3.RVBARADDR=0x04002000                       \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000   \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000   \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000           \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000

Copyright (c) 2019-2024, Arm Limited. All rights reserved.