10.5. Runtime Security Engine (RSE)
This document focuses on the relationship between the Runtime Security Engine (RSE) and the application processor (AP). According to the ARM reference design the RSE is an independent core next to the AP and the SCP on the same die. It provides fundamental security guarantees and runtime services for the rest of the system (e.g.: trusted boot, measured boot, platform attestation, key management, and key derivation).
At power up RSE boots first from its private ROM code. It validates and loads
its own images and the initial images of SCP and AP. When AP and SCP are
released from reset and their initial code is loaded then they continue their
own boot process, which is the same as on non-RSE systems. Please refer to the
RSE documentation
[1] for more details about the RSE boot flow.
The last stage of the RSE firmware is a persistent, runtime component. Much like AP_BL31, this is a passive entity which has no periodical task to do and just waits for external requests from other subsystems. RSE and other subsystems can communicate with each other over message exchange. RSE waits in idle for the incoming request, handles them, and sends a response then goes back to idle.
10.5.1. RSE communication layer
The communication between RSE and other subsystems are primarily relying on the Message Handling Unit (MHU) module. The number of MHU interfaces between RSE and other cores is IMPDEF. Besides MHU other modules also could take part in the communication. RSE is capable of mapping the AP memory to its address space. Thereby either RSE core itself or a DMA engine if it is present, can move the data between memory belonging to RSE or AP. In this way, a bigger amount of data can be transferred in a short time.
The MHU comes in pairs. There is a sender and receiver side. They are connected to each other. An MHU interface consists of two pairs of MHUs, one sender and one receiver on both sides. Bidirectional communication is possible over an interface. One pair provides message sending from AP to RSE and the other pair from RSE to AP. The sender and receiver are connected via channels. There is an IMPDEF number of channels (e.g: 4-16) between a sender and a receiver module.
The RSE communication layer provides two ways for message exchange:
Embedded messaging
: The full message, including header and payload, are exchanged over the MHU channels. A channel is capable of delivering a single word. The sender writes the data to the channel register on its side and the receiver can read the data from the channel on the other side. One dedicated channel is used for signalling. It does not deliver any payload it is just meant for signalling that the sender loaded the data to the channel registers so the receiver can read them. The receiver uses the same channel to signal that data was read. Signalling happens via IRQ. If the message is longer than the data fit to the channel registers then the message is sent over in multiple rounds. Both, sender and receiver allocate a local buffer for the messages. Data is copied from/to these buffers to/from the channel registers.Pointer-access messaging
: The message header and the payload are separated and they are conveyed in different ways. The header is sent over the channels, similar to the embedded messaging but the payload is copied over by RSE core (or by DMA) between the sender and the receiver. This could be useful in the case of long messages because transaction time is less compared to the embedded messaging mode. Small payloads are copied by the RSE core because setting up DMA would require more CPU cycles. The payload is either copied into an internal buffer or directly read-written by RSE. Actual behavior depends on RSE setup, whether the partition supports memory-mappediovec
. Therefore, the sender must handle both cases and prevent access to the memory, where payload data lives, while the RSE handles the request.
The RSE communication layer supports both ways of messaging in parallel. It is decided at runtime based on the message size which way to transfer the message.
+----------------------------------------------+ +-------------------+
| | | |
| AP | | |
| | +--->| SRAM |
+----------------------------------------------| | | |
| BL1 / BL2 / BL31 | | | |
+----------------------------------------------+ | +-------------------+
| ^ | ^ ^
| send IRQ | receive |direct | |
V | |access | |
+--------------------+ +--------------------+ | | |
| MHU sender | | MHU receiver | | | Copy data |
+--------------------+ +--------------------+ | | |
| | | | | | | | | | |
| | channels | | | | channels | | | | |
| | e.g: 4-16 | | | | e.g: 4-16 | | | V |
+--------------------+ +--------------------+ | +-------+ |
| MHU receiver | | MHU sender | | +->| DMA | |
+--------------------+ +--------------------+ | | +-------+ |
| ^ | | ^ |
IRQ | receive | send | | | Copy data |
V | | | V V
+----------------------------------------------+ | | +-------------------+
| |--+-+ | |
| RSE | | SRAM |
| | | |
+----------------------------------------------+ +-------------------+
Note
The RSE communication layer is not prepared for concurrent execution. The current use case only requires message exchange during the boot phase. In the boot phase, only a single core is running and the rest of the cores are in reset.
10.5.1.1. Message structure
A description of the message format can be found in the RSE communication
design
[2] document.
10.5.1.2. Source files
RSE comms:
drivers/arm/rse
MHU driver:
drivers/arm/mhu
10.5.1.3. API for communication over MHU
The API is defined in these header files:
include/drivers/arm/rse_comms.h
include/drivers/arm/mhu.h
10.5.2. RSE provided runtime services
RSE provides the following runtime services:
Measured boot
: Securely store the firmware measurements which were computed during the boot process and the associated metadata (image description, measurement algorithm, etc.). More info on measured boot service in RSE can be found in themeasured_boot_integration_guide
[3] .Delegated attestation
: Query the platform attestation token and derive a delegated attestation key. More info on the delegated attestation service in RSE can be found in thedelegated_attestation_integration_guide
[4] .OTP assets management
: Public keys used by AP during the trusted boot process can be requested from RSE. Furthermore, AP can request RSE to increase a non-volatile counter. Please refer to theRSE key management
[5] document for more details.DICE Protection Environment
: Securely store the firmware measurements which were computed during the boot process and the associated metadata. It is also capable of representing the boot measurements in the form of a certificate chain, which is queriable. Please refer to theDICE Protection Environment (DPE)
[8] document for more details.
10.5.2.1. Runtime service API
The RSE provided runtime services implement a PSA aligned API. The parameter
encoding follows the PSA client protocol described in the
Firmware Framework for M
[6] document in chapter 4.4. The implementation is
restricted to the static handle use case therefore only the psa_call
API is
implemented.
10.5.2.2. Software and API layers
+----------------+ +---------------------+
| BL1 / BL2 | | BL31 |
+----------------+ +---------------------+
| |
| extend_measurement() | get_delegated_key()
| | get_platform_token()
V V
+----------------+ +---------------------+
| PSA protocol | | PSA protocol |
+----------------+ +---------------------+
| |
| psa_call() | psa_call()
| |
V V
+------------------------------------------------+
| RSE communication protocol |
+------------------------------------------------+
| ^
| mhu_send_data() | mhu_receive_data()
| |
V |
+------------------------------------------------+
| MHU driver |
+------------------------------------------------+
| ^
| Register access | IRQ
V |
+------------------------------------------------+
| MHU HW on AP side |
+------------------------------------------------+
^
| Physical wires
|
V
+------------------------------------------------+
| MHU HW on RSE side |
+------------------------------------------------+
| ^
| IRQ | Register access
V |
+------------------------------------------------+
| MHU driver |
+------------------------------------------------+
| |
V V
+---------------+ +------------------------+
| Measured boot | | Delegated attestation |
| service | | service |
+---------------+ +------------------------+
10.5.3. RSE based Measured Boot
Measured Boot is the process of cryptographically measuring (computing the hash value of a binary) the code and critical data used at boot time. The measurement must be stored in a tamper-resistant way, so the security state of the device can be attested later to an external party. RSE provides a runtime service which is meant to store measurements and associated metadata alongside.
Data is stored in internal SRAM which is only accessible by the secure runtime
firmware of RSE. Data is stored in so-called measurement slots. A platform has
IMPDEF number of measurement slots. The measurement storage follows extend
semantics. This means that measurements are not stored directly (as it was
taken) instead they contribute to the current value of the measurement slot.
The extension implements this logic, where ||
stands for concatenation:
new_value_of_measurement_slot = Hash(old_value_of_measurement_slot || measurement)
Supported hash algorithms: sha-256, sha-512
10.5.3.1. Measured Boot API
Defined here:
include/lib/psa/measured_boot.h
psa_status_t
rse_measured_boot_extend_measurement(uint8_t index,
const uint8_t *signer_id,
size_t signer_id_size,
const uint8_t *version,
size_t version_size,
uint32_t measurement_algo,
const uint8_t *sw_type,
size_t sw_type_size,
const uint8_t *measurement_value,
size_t measurement_value_size,
bool lock_measurement);
10.5.3.2. Measured Boot Metadata
The following metadata can be stored alongside the measurement:
Signer-id
: Mandatory. The hash of the firmware image signing public key.Measurement algorithm
: Optional. The hash algorithm which was used to compute the measurement (e.g.: sha-256, etc.).Version info
: Optional. The firmware version info (e.g.: 2.7).SW type
: Optional. Short text description (e.g.: BL1, BL2, BL31, etc.)
Note
Version info is not implemented in TF-A yet.
The caller must specify in which measurement slot to extend a certain measurement and metadata. A measurement slot can be extended by multiple measurements. The default value is IMPDEF. All measurement slot is cleared at reset, there is no other way to clear them. In the reference implementation, the measurement slots are initialized to 0. At the first call to extend the measurement in a slot, the extend operation uses the default value of the measurement slot. All upcoming extend operation on the same slot contributes to the previous value of that measurement slot.
The following rules are kept when a slot is extended multiple times:
Signer-id
must be the same as the previous call(s), otherwise a PSA_ERROR_NOT_PERMITTED error code is returned.Measurement algorithm
: must be the same as the previous call(s), otherwise, a PSA_ERROR_NOT_PERMITTED error code is returned.
In case of error no further action is taken (slot is not locked). If there is a valid data in a sub-sequent call then measurement slot will be extended. The rest of the metadata is handled as follows when a measurement slot is extended multiple times:
SW type
: Cleared.Version info
: Cleared.
Note
Extending multiple measurements in the same slot leads to some metadata information loss. Since RSE is not constrained on special HW resources to store the measurements and metadata, therefore it is worth considering to store all of them one by one in distinct slots. However, they are one-by-one included in the platform attestation token. So, the number of distinct firmware image measurements has an impact on the size of the attestation token.
The allocation of the measurement slot among RSE, Root and Realm worlds is
platform dependent. The platform must provide an allocation of the measurement
slot at build time. An example can be found in
tf-a/plat/arm/board/tc/tc_bl1_measured_boot.c
Furthermore, the memory, which holds the metadata is also statically allocated
in RSE memory. Some of the fields have a static value (measurement algorithm),
and some of the values have a dynamic value (measurement value) which is updated
by the bootloaders when the firmware image is loaded and measured. The metadata
structure is defined in
include/drivers/measured_boot/rse/rse_measured_boot.h
.
struct rse_mboot_metadata {
unsigned int id;
uint8_t slot;
uint8_t signer_id[SIGNER_ID_MAX_SIZE];
size_t signer_id_size;
uint8_t version[VERSION_MAX_SIZE];
size_t version_size;
uint8_t sw_type[SW_TYPE_MAX_SIZE];
size_t sw_type_size;
void *pk_oid;
bool lock_measurement;
};
10.5.3.3. Signer-ID API
This function calculates the hash of a public key (signer-ID) using the
Measurement algorithm
and stores it in the rse_mboot_metadata
field
named signer_id
.
Prior to calling this function, the caller must ensure that the signer_id
field points to the zero-filled buffer.
Defined here:
include/drivers/measured_boot/rse/rse_measured_boot.h
int rse_mboot_set_signer_id(struct rse_mboot_metadata *metadata_ptr,
const void *pk_oid,
const void *pk_ptr,
size_t pk_len)
First parameter is the pointer to the
rse_mboot_metadata
structure.Second parameter is the pointer to the key-OID of the public key.
Third parameter is the pointer to the public key buffer.
Fourth parameter is the size of public key buffer.
This function returns 0 on success, a signed integer error code otherwise.
10.5.3.4. Build time config options
MEASURED_BOOT
: Enable measured boot.MBOOT_RSE_HASH_ALG
: Determine the hash algorithm to measure the images. The default value is sha-256.
10.5.3.5. Measured boot flow
10.5.3.6. Sample console log
INFO: Measured boot extend measurement:
INFO: - slot : 6
INFO: - signer_id : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : FW_CONFIG
INFO: - sw_type_size: 10
INFO: - algorithm : 2000009
INFO: - measurement : aa ea d3 a7 a8 e2 ab 7d 13 a6 cb 34 99 10 b9 a1
INFO: : 1b 9f a0 52 c5 a8 b1 d7 76 f2 c1 c1 ef ca 1a df
INFO: - locking : true
INFO: FCONF: Config file with image ID:31 loaded at address = 0x4001010
INFO: Loading image id=24 at address 0x4001300
INFO: Image id=24 loaded: 0x4001300 - 0x400153a
INFO: Measured boot extend measurement:
INFO: - slot : 7
INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : TB_FW_CONFIG
INFO: - sw_type_size: 13
INFO: - algorithm : 2000009
INFO: - measurement : 05 b9 dc 98 62 26 a7 1c 2d e5 bb af f0 90 52 28
INFO: : f2 24 15 8a 3a 56 60 95 d6 51 3a 7a 1a 50 9b b7
INFO: - locking : true
INFO: FCONF: Config file with image ID:24 loaded at address = 0x4001300
INFO: BL1: Loading BL2
INFO: Loading image id=1 at address 0x404d000
INFO: Image id=1 loaded: 0x404d000 - 0x406412a
INFO: Measured boot extend measurement:
INFO: - slot : 8
INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : BL_2
INFO: - sw_type_size: 5
INFO: - algorithm : 2000009
INFO: - measurement : 53 a1 51 75 25 90 fb a1 d9 b8 c8 34 32 3a 01 16
INFO: : c9 9e 74 91 7d 28 02 56 3f 5c 40 94 37 58 50 68
INFO: - locking : true
10.5.4. Delegated Attestation
Delegated Attestation Service was mainly developed to support the attestation
flow on the ARM Confidential Compute Architecture
(ARM CCA) [7].
The detailed description of the delegated attestation service can be found in
the Delegated Attestation Service Integration Guide
[4] document.
In the CCA use case, the Realm Management Monitor (RMM) relies on the delegated attestation service of the RSE to get a realm attestation key and the CCA platform token. BL31 does not use the service for its own purpose, only calls it on behalf of RMM. The access to MHU interface and thereby to RSE is restricted to BL31 only. Therefore, RMM does not have direct access, all calls need to go through BL31. The RMM dispatcher module of the BL31 is responsible for delivering the calls between the two parties.
10.5.4.1. Delegated Attestation API
Defined here:
include/lib/psa/delegated_attestation.h
psa_status_t
rse_delegated_attest_get_delegated_key(uint8_t ecc_curve,
uint32_t key_bits,
uint8_t *key_buf,
size_t key_buf_size,
size_t *key_size,
uint32_t hash_algo);
psa_status_t
rse_delegated_attest_get_token(const uint8_t *dak_pub_hash,
size_t dak_pub_hash_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);
10.5.4.2. Attestation flow
10.5.4.3. Sample attestation token
Binary format:
INFO: DELEGATED ATTEST TEST START
INFO: Get delegated attestation key start
INFO: Get delegated attest key succeeds, len: 48
INFO: Delegated attest key:
INFO: 0d 2a 66 61 d4 89 17 e1 70 c6 73 56 df f4 11 fd
INFO: 7d 1f 3b 8a a3 30 3d 70 4c d9 06 c3 c7 ef 29 43
INFO: 0f ee b5 e7 56 e0 71 74 1b c4 39 39 fd 85 f6 7b
INFO: Get platform token start
INFO: Get platform token succeeds, len: 1086
INFO: Platform attestation token:
INFO: d2 84 44 a1 01 38 22 a0 59 05 81 a9 19 01 09 78
INFO: 23 74 61 67 3a 61 72 6d 2e 63 6f 6d 2c 32 30 32
INFO: 33 3a 63 63 61 5f 70 6c 61 74 66 6f 72 6d 23 31
INFO: 2e 30 2e 30 0a 58 20 0d 22 e0 8a 98 46 90 58 48
INFO: 63 18 28 34 89 bd b3 6f 09 db ef eb 18 64 df 43
INFO: 3f a6 e5 4e a2 d7 11 19 09 5c 58 20 7f 45 4c 46
INFO: 02 01 01 00 00 00 00 00 00 00 00 00 03 00 3e 00
INFO: 01 00 00 00 50 58 00 00 00 00 00 00 19 01 00 58
INFO: 21 01 07 06 05 04 03 02 01 00 0f 0e 0d 0c 0b 0a
INFO: 09 08 17 16 15 14 13 12 11 10 1f 1e 1d 1c 1b 1a
INFO: 19 18 19 09 61 44 cf cf cf cf 19 09 5b 19 30 03
INFO: 19 09 62 67 73 68 61 2d 32 35 36 19 09 60 78 3a
INFO: 68 74 74 70 73 3a 2f 2f 76 65 72 61 69 73 6f 6e
INFO: 2e 65 78 61 6d 70 6c 65 2f 2e 77 65 6c 6c 2d 6b
INFO: 6e 6f 77 6e 2f 76 65 72 61 69 73 6f 6e 2f 76 65
INFO: 72 69 66 69 63 61 74 69 6f 6e 19 09 5f 8d a4 01
INFO: 69 52 53 45 5f 42 4c 31 5f 32 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: 9a 27 1f 2a 91 6b 0b 6e e6 ce cb 24 26 f0 b3 20
INFO: 6e f0 74 57 8b e5 5d 9b c9 4f 6f 3f e3 ab 86 aa
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 67 52 53 45 5f
INFO: 42 4c 32 05 58 20 53 78 79 63 07 53 5d f3 ec 8d
INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38
INFO: c0 fa 97 3f 7a a3 02 58 20 53 c2 34 e5 e8 47 2b
INFO: 6a c5 1c 1a e1 ca b3 fe 06 fa d0 53 be b8 eb fd
INFO: 89 77 b0 10 65 5b fd d3 c3 06 67 73 68 61 2d 32
INFO: 35 36 a4 01 65 52 53 45 5f 53 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: 11 21 cf cc d5 91 3f 0a 63 fe c4 0a 6f fd 44 ea
INFO: 64 f9 dc 13 5c 66 63 4b a0 01 d1 0b cf 43 02 a2
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 66 41 50 5f 42
INFO: 4c 31 05 58 20 53 78 79 63 07 53 5d f3 ec 8d 8b
INFO: 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 c0
INFO: fa 97 3f 7a a3 02 58 20 15 71 b5 ec 78 bd 68 51
INFO: 2b f7 83 0b b6 a2 a4 4b 20 47 c7 df 57 bc e7 9e
INFO: b8 a1 c0 e5 be a0 a5 01 06 67 73 68 61 2d 32 35
INFO: 36 a4 01 66 41 50 5f 42 4c 32 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: 10 15 9b af 26 2b 43 a9 2d 95 db 59 da e1 f7 2c
INFO: 64 51 27 30 16 61 e0 a3 ce 4e 38 b2 95 a9 7c 58
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 67 53 43 50 5f
INFO: 42 4c 31 05 58 20 53 78 79 63 07 53 5d f3 ec 8d
INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38
INFO: c0 fa 97 3f 7a a3 02 58 20 10 12 2e 85 6b 3f cd
INFO: 49 f0 63 63 63 17 47 61 49 cb 73 0a 1a a1 cf aa
INFO: d8 18 55 2b 72 f5 6d 6f 68 06 67 73 68 61 2d 32
INFO: 35 36 a4 01 67 53 43 50 5f 42 4c 32 05 58 20 f1
INFO: 4b 49 87 90 4b cb 58 14 e4 45 9a 05 7e d4 d2 0f
INFO: 58 a6 33 15 22 88 a7 61 21 4d cd 28 78 0b 56 02
INFO: 58 20 aa 67 a1 69 b0 bb a2 17 aa 0a a8 8a 65 34
INFO: 69 20 c8 4c 42 44 7c 36 ba 5f 7e a6 5f 42 2c 1f
INFO: e5 d8 06 67 73 68 61 2d 32 35 36 a4 01 67 41 50
INFO: 5f 42 4c 33 31 05 58 20 53 78 79 63 07 53 5d f3
INFO: ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3
INFO: 22 38 c0 fa 97 3f 7a a3 02 58 20 2e 6d 31 a5 98
INFO: 3a 91 25 1b fa e5 ae fa 1c 0a 19 d8 ba 3c f6 01
INFO: d0 e8 a7 06 b4 cf a9 66 1a 6b 8a 06 67 73 68 61
INFO: 2d 32 35 36 a4 01 63 52 4d 4d 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: a1 fb 50 e6 c8 6f ae 16 79 ef 33 51 29 6f d6 71
INFO: 34 11 a0 8c f8 dd 17 90 a4 fd 05 fa e8 68 81 64
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 69 48 57 5f 43
INFO: 4f 4e 46 49 47 05 58 20 53 78 79 63 07 53 5d f3
INFO: ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3
INFO: 22 38 c0 fa 97 3f 7a a3 02 58 20 1a 25 24 02 97
INFO: 2f 60 57 fa 53 cc 17 2b 52 b9 ff ca 69 8e 18 31
INFO: 1f ac d0 f3 b0 6e ca ae f7 9e 17 06 67 73 68 61
INFO: 2d 32 35 36 a4 01 69 46 57 5f 43 4f 4e 46 49 47
INFO: 05 58 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2
INFO: e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97
INFO: 3f 7a a3 02 58 20 9a 92 ad bc 0c ee 38 ef 65 8c
INFO: 71 ce 1b 1b f8 c6 56 68 f1 66 bf b2 13 64 4c 89
INFO: 5c cb 1a d0 7a 25 06 67 73 68 61 2d 32 35 36 a4
INFO: 01 6c 54 42 5f 46 57 5f 43 4f 4e 46 49 47 05 58
INFO: 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc
INFO: 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a
INFO: a3 02 58 20 23 89 03 18 0c c1 04 ec 2c 5d 8b 3f
INFO: 20 c5 bc 61 b3 89 ec 0a 96 7d f8 cc 20 8c dc 7c
INFO: d4 54 17 4f 06 67 73 68 61 2d 32 35 36 a4 01 6d
INFO: 53 4f 43 5f 46 57 5f 43 4f 4e 46 49 47 05 58 20
INFO: 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56
INFO: 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3
INFO: 02 58 20 e6 c2 1e 8d 26 0f e7 18 82 de bd b3 39
INFO: d2 40 2a 2c a7 64 85 29 bc 23 03 f4 86 49 bc e0
INFO: 38 00 17 06 67 73 68 61 2d 32 35 36 58 60 31 d0
INFO: 4d 52 cc de 95 2c 1e 32 cb a1 81 88 5a 40 b8 cc
INFO: 38 e0 52 8c 1e 89 58 98 07 64 2a a5 e3 f2 bc 37
INFO: f9 53 74 50 6b ff 4d 2e 4b e7 06 3c 4d 72 41 92
INFO: 70 c7 22 e8 d4 d9 3e e8 b6 c9 fa ce 3b 43 c9 76
INFO: 1a 49 94 1a b6 f3 8f fd ff 49 6a d4 63 b4 cb fa
INFO: 11 d8 3e 23 e3 1f 7f 62 32 9d e3 0c 1c c8
INFO: DELEGATED ATTEST TEST END
JSON format:
{
"CCA_ATTESTATION_PROFILE": "tag:arm.com,2023:cca_platform#1.0.0",
"CCA_PLATFORM_CHALLENGE": "b'0D22E08A98469058486318283489BDB36F09DBEFEB1864DF433FA6E54EA2D711'",
"CCA_PLATFORM_IMPLEMENTATION_ID": "b'7F454C4602010100000000000000000003003E00010000005058000000000000'",
"CCA_PLATFORM_INSTANCE_ID": "b'0107060504030201000F0E0D0C0B0A090817161514131211101F1E1D1C1B1A1918'",
"CCA_PLATFORM_CONFIG": "b'CFCFCFCF'",
"CCA_PLATFORM_LIFECYCLE": "secured_3003",
"CCA_PLATFORM_HASH_ALGO_ID": "sha-256",
"CCA_PLATFORM_VERIFICATION_SERVICE": "https://veraison.example/.well-known/veraison/verification",
"CCA_PLATFORM_SW_COMPONENTS": [
{
"SW_COMPONENT_TYPE": "RSE_BL1_2",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'9A271F2A916B0B6EE6CECB2426F0B3206EF074578BE55D9BC94F6F3FE3AB86AA'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "RSE_BL2",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'53C234E5E8472B6AC51C1AE1CAB3FE06FAD053BEB8EBFD8977B010655BFDD3C3'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "RSE_S",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'1121CFCCD5913F0A63FEC40A6FFD44EA64F9DC135C66634BA001D10BCF4302A2'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "AP_BL1",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'1571B5EC78BD68512BF7830BB6A2A44B2047C7DF57BCE79EB8A1C0E5BEA0A501'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "AP_BL2",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'10159BAF262B43A92D95DB59DAE1F72C645127301661E0A3CE4E38B295A97C58'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "SCP_BL1",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'10122E856B3FCD49F063636317476149CB730A1AA1CFAAD818552B72F56D6F68'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "SCP_BL2",
"SIGNER_ID": "b'F14B4987904BCB5814E4459A057ED4D20F58A633152288A761214DCD28780B56'",
"MEASUREMENT_VALUE": "b'AA67A169B0BBA217AA0AA88A65346920C84C42447C36BA5F7EA65F422C1FE5D8'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "AP_BL31",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'2E6D31A5983A91251BFAE5AEFA1C0A19D8BA3CF601D0E8A706B4CFA9661A6B8A'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "RMM",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'A1FB50E6C86FAE1679EF3351296FD6713411A08CF8DD1790A4FD05FAE8688164'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "HW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'1A252402972F6057FA53CC172B52B9FFCA698E18311FACD0F3B06ECAAEF79E17'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "FW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'9A92ADBC0CEE38EF658C71CE1B1BF8C65668F166BFB213644C895CCB1AD07A25'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "TB_FW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'238903180CC104EC2C5D8B3F20C5BC61B389EC0A967DF8CC208CDC7CD454174F'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "SOC_FW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'E6C21E8D260FE71882DEBDB339D2402A2CA7648529BC2303F48649BCE0380017'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
}
]
}
10.5.5. RSE based DICE Protection Environment
The DICE Protection Environment (DPE)
[8] service makes it possible to
execute DICE commands within an isolated execution environment. It provides
clients with an interface to send DICE commands, encoded as CBOR objects,
that act on opaque context handles. The DPE service performs DICE
derivations and certification on its internal contexts, without exposing the
DICE secrets (private keys and CDIs) outside of the isolated execution
environment.
10.5.5.1. DPE API
Defined here:
include/lib/psa/dice_protection_environment.h
dpe_error_t
dpe_derive_context(int context_handle,
uint32_t cert_id,
bool retain_parent_context,
bool allow_new_context_to_derive,
bool create_certificate,
const DiceInputValues *dice_inputs,
int32_t target_locality,
bool return_certificate,
bool allow_new_context_to_export,
bool export_cdi,
int *new_context_handle,
int *new_parent_context_handle,
uint8_t *new_certificate_buf,
size_t new_certificate_buf_size,
size_t *new_certificate_actual_size,
uint8_t *exported_cdi_buf,
size_t exported_cdi_buf_size,
size_t *exported_cdi_actual_size);
10.5.5.2. Build time config options
MEASURED_BOOT
: Enable measured boot.DICE_PROTECTION_ENVIRONMENT
: Boolean flag to specify the measured boot backend when RSE basedMEASURED_BOOT
is enabled. The default value is0
. When set to1
then measurements and additional metadata collected during the measured boot process are sent to the DPE for storage and processing.DPE_ALG_ID
: Determine the hash algorithm to measure the images. The default value is sha-256.
10.5.5.3. Example certificate chain
plat/arm/board/tc/tc_dpe.h
10.5.6. RSE OTP Assets Management
RSE provides access for AP to assets in OTP, which include keys for image signature verification and non-volatile counters for anti-rollback protection.
10.5.6.1. Non-Volatile Counter API
AP/RSE interface for retrieving and incrementing non-volatile counters API is as follows.
Defined here:
include/lib/psa/rse_platform_api.h
psa_status_t rse_platform_nv_counter_increment(uint32_t counter_id)
psa_status_t rse_platform_nv_counter_read(uint32_t counter_id,
uint32_t size, uint8_t *val)
Through this service, we can read/increment any of the 3 non-volatile counters used on an Arm CCA platform:
Non-volatile counter for CCA firmware (BL2, BL31, RMM).
Non-volatile counter for secure firmware.
Non-volatile counter for non-secure firmware.
10.5.6.2. Public Key API
AP/RSE interface for reading the ROTPK is as follows.
Defined here:
include/lib/psa/rse_platform_api.h
psa_status_t rse_platform_key_read(enum rse_key_id_builtin_t key,
uint8_t *data, size_t data_size, size_t *data_length)
Through this service, we can read any of the 3 ROTPKs used on an Arm CCA platform:
ROTPK for CCA firmware (BL2, BL31, RMM).
ROTPK for secure firmware.
ROTPK for non-secure firmware.
10.5.7. References
Copyright (c) 2023-2024, Arm Limited. All rights reserved. Copyright (c) 2024, Linaro Limited. All rights reserved.